
A Course in Parallel Linear Algebra

Course Notes for the Ph.D. in High Performance Scientific Computing

A Course in Parallel Linear Algebra
Ph.D. in High Performance Scientific Computing

Pasqua D’Ambra
‗

Fabio Durastante
†

Salvatore Filippone
‡

November 5, 2025

University of Pisa

‗
National Research Council of Italy, Institute for Applied Computing pasqua.dambra@cnr.it

†
University of Pisa, Department of Mathematics fabio.durastante@unipi.it

‡
University of Rome Tor Vergata, Department of Civil and Computer Engineering salvatore.filippone@uniroma2.it

mailto:pasqua.dambra@cnr.it
mailto:fabio.durastante@unipi.it
mailto:salvatore.filippone@uniroma2.it

A Course in Parallel Linear Algebra

Disclaimer
These lecture notes are intended for the students of the Ph.D. in High Performance Scientific Computing at

the University of Pisa. The contents will be subject to changes and updates over time. Always check the date

on the first page to keep track of the latest version.

GNU GPL 3.0
cz This book is released into the public domain using GNU GPL 3.0. You can copy, modify, distribute

and perform the work, even for commercial purposes, all without asking permission. For more information,

please refer to the GNU GPL 3.0 license.

Colophon
This document was typeset with the help of KOMA-Script and LAT

E
X using the kaobook class.

The source code of this book is available at:

https://github.com/Cirdans-Home/ParallelLinearAlgebra. You are welcome to contribute by reporting

issues, suggesting improvements or even sending pull requests. Please, do not hesitate to contact us if you

find any mistakes or if you have any suggestions.

Publisher
This is the version from November 5, 2025 by University of Pisa

https://www.gnu.org/licenses/gpl-3.0.en.html
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/
https://github.com/Cirdans-Home/ParallelLinearAlgebra

All of old. Nothing else ever. Ever tried. Ever failed. No matter. Try again.

Fail again. Fail better.

– Samuel Beckett, Worstward Ho (1983)

Y así, del poco dormir y del mucho leer, se le secó el cerebro, de manera que

vino a perder el juicio.

– Miguel de Cervantes, Don Quĳote de la Mancha (1605–1615)

42.

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1978–1980)

Preface

These notes serve as an (admittedly brief) introduction to the world of high performance computing software

for linear algebra problems. They were prepared for the PhD programme in high performance scientific

computing at the University of Pisa: we are grateful for the chance to pass along our accumulated experience.

This specific field of inquiry lies at the intersection between computer science and numerical analysis, but

these two fields extend quite a lot in multiple different directions, hence working at the intersection requires

getting acquainted with multiple topics.

It is impossible to give a full introduction to these fields in the space available, and many excellent specialist

texts are already available on the subject. The present notes should therefore be regarded as a concise

overview, developed primarily from the authors’ own experience.

We hope nonetheless to share our passion for the challenges and intellectual satisfaction that comes with

working in this wonderful field of inquiry, which accounts for a very significant fraction of resources and

time in computing centres around the world.

Pasqua D’Ambra
Fabio Durastante

Salvatore Filippone

Contents

Preface v

Contents vii

1 Parallel Numerical Linear Algebra: Why? 1
1.1 The Main Ideas . 1

1.1.1 A gallery of problems . 1

1.2 How large is large? . 5

1.3 Parallel Computers . 6

1.4 What tools are we going to use? . 10

1.4.1 Fortran . 10

1.4.2 Software Version Control: git . 13

1.4.3 MPI, OpenMP, OpenACC, CUDA and other enemies 16

1.4.4 Cluster ecosystem: Slurm and Environment Modules 17

1.4.5 Environment Modules . 20

Parallel Programming Techniques for Linear Algebra 23

2 Programming in action 25
2.1 The evolution of programming . 25

3 General Parallel Programming Issues 29
3.1 Parallelism: basic concepts . 29

3.2 Parallelism: Performance metrics . 30

3.2.1 Scalability of a parallel system . 31

3.2.2 Speed-up and efficiency . 31

3.2.3 Amdhal’s law . 33

3.2.4 Gustafson’s law . 34

3.2.5 Closure . 35

3.3 Paradigms, models and tools for parallel programming . 35

3.3.1 Algorithmic paradigms . 36

3.3.2 Programming models . 36

3.3.3 Roofline model . 37

4 Intra-node Parallelism 41
4.1 Intra-node parallelism: advanced architectures . 42

4.2 Intra-node parallelism: tools . 44

4.2.1 OpenMP . 44

4.3 Intra-node parallelism: Accelerators . 46

5 Inter-node Parallelism 47
5.1 Inter-node parallelism: MPI . 47

5.1.1 Point-to-point operations . 50

5.1.2 Collective operations . 52

5.1.3 Multiple interacting processes: what could possibly go wrong? 55

5.2 Inter-node parallelism: PGAS . 57

Building Blocks for Linear Algebra Programming 59

6 Building Blocks for Dense Linear Algebra 61
6.1 Introduction . 61

6.2 BLAS . 62

6.2.1 Level 1 BLAS . 62

6.2.2 Level 2 BLAS . 73

6.2.3 Level 3 BLAS . 80

6.2.4 Performance consideration for the BLAS . 85

7 Sparse Matrices and Iterative Solvers 87
7.1 Introduction . 87

7.1.1 A simple iterative solver . 88

7.1.2 Classical iterative solvers . 88

7.1.3 Krylov solvers and preconditioners . 89

7.1.4 Preconditioners . 91

7.2 Sparse Matrix-Vector product . 94

7.2.1 COOrdinate . 95

7.2.2 Compressed Sparse Rows . 96

7.2.3 Sparse Matrix-Vector Product considerations . 96

7.2.4 Design Patterns: the “State” Pattern . 97

Parallel Linear Algebra Software Design and Additional Features 101

8 Where is my data? 103
8.1 Dense linear algebra data distribution . 103

8.1.1 Simple LU factorization . 103

8.1.2 A 1-dimensional layout for LU . 104

8.1.3 A 2-dimensional layout for LU . 107

8.2 Evolution of Parallel Dense Linear Algebra Software . 111

8.3 Sparse linear algebra data distribution . 112

8.3.1 A simple iterative solver revisited . 112

8.3.2 Basic observations . 113

8.3.3 Sparse Matrix-Vector Product in Parallel . 114

8.3.4 Graph partitioning . 114

8.3.5 The correspondence between indices and processes 116

8.3.6 Data Exchange for Matrix-Vector Products . 117

Appendix 121

A The Errors of Our Way 123
A.1 Numbers in a Computer . 124

A.1.1 Floating-point Numbers . 126

A.1.2 The IEEE 754 Floating-Point Standard . 128

A.2 Floating-point Arithmetic Properties . 129

A.3 Backward Error Analysis . 131

A.4 Vector and Matrix Norms . 133

A.5 Perturbation Theory for Linear Systems . 135

A.6 Notes and References . 137

B Spack 139
B.1 Installation . 139

B.2 Basic Usage . 140

B.2.1 Environment Modules . 142

Bibliography 145

List of Figures

1.1 Sparse Matrix Pattern . 2

1.2 Neural Network . 4

1.3 ReLU and sigmoid activation functions. 5

3.1 Speed-up vs. number of processors . 33

3.2 Speed-up vs. problem size . 33

3.3 Some parallel programming paradigms . 36

3.4 Roofline model for a hypothetical architecture with a peak performance of 100 GFLOP/s and a

memory bandwidth of 25 GB/s. The ridge point is at an operational intensity of 4 FLOP/Byte. 38

4.1 The architecture of the IBM POWER4 processor. 41

4.2 The architecture of the Intel i9-14900HX processor, on the left part of the figure we see the eight

performance cores, each with is dedicated L2 cache, while on the right part of the figure we see the

sixteen efficient cores which shares one L2 cache every four cores. The L3 cache is shared among

all the cores, while the L1 cache is private to each core. 42

4.3 A process. 44

4.4 A set of threads within a process. 44

4.5 The fork-join execution model. 45

4.6 A 2D grid of threads . 46

4.7 SIMT model: host and device . 46

4.8 SIMT model: a multi-processor . 46

6.1 Performance of the AXPY operation using OpenMP and BLAS 70

6.2 The GEMV operation. The matrix 𝐴 is of size 𝑚 × 𝑛, the vector 𝑥 is of size 𝑛, and the vector 𝑦 is of

size 𝑚. The shaded cells are the ones that are accessed in the computation of the GEMV operation. 75

6.3 The GEMV operation. The matrix 𝐴 is of size 𝑚 × 𝑛, the vector 𝑥 is of size 𝑛, and the vector 𝑦 is of

size 𝑚. The shaded cells are the ones that are accessed in the computation of the GEMV operation. 76

6.4 The GEMV operation. The matrix 𝐴 is of size 𝑚 × 𝑛, the vector 𝑥 is of size 𝑛, and the vector 𝑦 is of

size 𝑚. The shaded cells are the ones that are accessed in the computation of the GEMV operation. 77

6.5 Banded matrix with 𝑘𝑙 sub-diagonals and 𝑘𝑢 super-diagonals. 80

6.6 Performance of the three versions of the GEMM operation for the three different ordering of the

|do| loops together with the DGEMM implementation of the OpenBLAS. 85

7.1 Example of sparse matrix . 95

7.2 COO compression of matrix in Figure 7.1 . 95

7.3 CSR compression of matrix in Figure 7.1 . 96

7.4 State design pattern . 97

7.5 Code for the State pattern — inner object . 98

7.6 Code for the State pattern — outer context . 99

8.1 A simple LU factorization algorithm . 104

8.2 A BLOCK 1-D data distribution . 104

8.3 Point classfication. 113

8.4 Matrix structure. 114

8.5 A (partitioned) graph. 114

8.6 A structured mesh. 114

8.7 The resulting pattern. 114

8.8 An unstructured mesh. 115

8.9 The resulting pattern. 115

8.10 A graph partition. 115

8.11 A matrix partition. 115

8.12 A 2D domain partition. 116

8.13 A complex domain partition. 116

8.14 A rather silly domain partition. 116

8.15 Halo exchange. 118

A.1 An example floating-point number system . 127

A.2 An example floating-point number system with highlighted denormalized numbers 128

List of Tables

1.1 Top 10 supercomputers from the TOP500 list (June 2025) . 9

1.2 Basic gfortran options. 12

6.1 Level 1 BLAS Operations . 73

6.3 Level 2 BLAS Operations . 80

6.5 Level 2 BLAS Operations (band storage) . 80

7.1 Notation for parameters describing a sparse matrix . 95

Parallel Numerical Linear
Algebra: Why? 1

1.1 The Main Ideas 1
1.1.1 A gallery of problems . . 1
1.2 How large is large? 5
1.3 Parallel Computers 6
1.4 What tools? 10
1.4.1 Fortran 10
1.4.2 Software Version Control 13
1.4.3 Programming tools 16
1.4.4 Cluster ecosystem 17
1.4.5 Environment Modules . . 20

1.1 The Main Ideas

Broadly speaking, Linear Algebra is a branch of mathematics concerned

with vector spaces and the linear transformations between them. It in-

volves the study of lines, planes, and subspaces, but is also fundamental

in understanding systems of linear equations, matrices, and vector
operations. Central concepts in Linear Algebra include vectors, matrices,

tensors, determinants, eigenvalues, singular values and eigenvectors.

While all of these seem to have only a theoretical or mathematical impor-

tance, Linear Algebra has widespread applications across science and

engineering, including computer graphics, machine learning, optimization,

and physics, making it a foundational tool in both theoretical and applied

mathematics.

Numerical Linear Algebra is the study of how Linear Algebra problems

can be solved using numerical methods, particularly on computers; and

in the case of this course parallel computers. This field is crucial when

dealing with large-scale problems where exact solutions, when available,

are impractical or impossible due to limitations in computational re-

sources and data precision. It focuses on the development and analysis

of efficient, stable, and accurate algorithms for matrix computations,

such as solving systems of linear equations, computing eigenvalues, per-

forming matrix factorizations, computing matrix functions, and solving

matrix equations.

1.1.1 A gallery of problems

Just to give you an idea of the kind of problems we need to face in practice,

we will start by going through some examples that routinely appear in

applications.

Linear Systems Let us consider the following partial differential equa-

tion (PDE) problem:

−Δ𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω,
(1.1)

whereΩ is a bounded domain inℝ𝑑
and 𝑓 is a given function 𝑓 : Ω→ ℝ𝑑

.

The solution 𝑢 is the function we want to compute. The operator Δ is the

Laplace operator, which is a second-order differential operator defined

as the divergence of the gradient of a function which can be written in

cartesian coordinate form as

Δ𝑢 =
𝜕2𝑢

𝜕𝑥2

1

+ 𝜕2𝑢

𝜕𝑥2

2

+ · · · + 𝜕2𝑢

𝜕𝑥2

𝑑

. (1.2)

Let us assume that the domain Ω is a 𝑑-dimensional unit cube, so that

we may discretize it using a finite difference method. This means that we

2 1 Parallel Numerical Linear Algebra: Why?

0 200 400

0

200

400

nz = 1247

Figure 1.1: Pattern of a sparse matrix,

each dot represents a non-zero element

of the matrix.

will replace the continuous problem with a discrete one, where we will

approximate both the solution 𝑢 by a vector u ∈ ℝ𝑁
and the function 𝑓

by a vector f ∈ ℝ𝑁
. In a concrete way, we build the grid of points in Ω

by dividing it into 𝑁 equal parts, e.g., for 𝑑 = 3 this means selecting 𝑛1

points in the 𝑥1 direction, 𝑛2 points in the 𝑥2 direction and 𝑛3 points in

the 𝑥3 direction. The points are then given by

𝑥1 = {𝑥1,1 , 𝑥1,2 , . . . , 𝑥1,𝑛1
} , 𝑥1,𝑖 =

𝑖

𝑛1 − 1

, 𝑖 = 0, . . . , 𝑛1 − 1,

𝑥2 = {𝑥2,1 , 𝑥2,2 , . . . , 𝑥2,𝑛2
} , 𝑥2,𝑖 =

𝑖

𝑛2 − 1

, 𝑖 = 0, . . . , 𝑛2 − 1,

𝑥3 =
{
𝑥3,1 , 𝑥3,2 , . . . , 𝑥3,𝑛3

}
, 𝑥3,𝑖 =

𝑖

𝑛3 − 1

, 𝑖 = 0, . . . , 𝑛3 − 1.

We then approximate the second-order derivatives in (1.2) via a centered
finite difference scheme, which gives us the following discrete approximation

of the Laplacian operator:

Δ𝑢𝑖 , 𝑗 ,𝑘 =
𝑢𝑖+1, 𝑗 ,𝑘 − 2𝑢𝑖 , 𝑗 ,𝑘 + 𝑢𝑖−1, 𝑗 ,𝑘

ℎ2

1

+
𝑢𝑖 , 𝑗+1,𝑘 − 2𝑢𝑖 , 𝑗 ,𝑘 + 𝑢𝑖 , 𝑗−1,𝑘

ℎ2

2

+
𝑢𝑖 , 𝑗 ,𝑘+1 − 2𝑢𝑖 , 𝑗 ,𝑘 + 𝑢𝑖 , 𝑗 ,𝑘−1

ℎ2

3

,

where ℎ1, ℎ2 and ℎ3 are the grid spacings in the 𝑥1, 𝑥2 and 𝑥3 directions,

respectively. Similarly, we can consider the discrete values of the function

𝑓 at the grid points, which we denote by

f =
(
𝑓𝑖 , 𝑗 ,𝑘

)
𝑖 , 𝑗 ,𝑘
∈ ℝ𝑁 ,

where now 𝑁 = 𝑛1 · 𝑛2 · 𝑛3 is the total number of grid points.

The discretization of the PDE problem leads to a system of linear equa-

tions

𝐴u = f,

where 𝐴 ∈ ℝ𝑁×𝑁
is what we will call a sparse matrix—see Figure 1.1

for a graphical representation of a sparse matrix—that represents the

discretized Laplace operator, and u ∈ ℝ𝑁
is the vector of unknowns.

Informally, we can say that a sparse matrix is a matrix in which most

of the elements are zero, we will came back to specialized algorithms

and efficient data structures to store sparse matrices in the second half

of the course. For all interesting PDEs the size 𝑁 of the linear system

we have to solve is usually large and we need to use efficient algorithms

for it. A good source for reading about finite difference methods is the

book [1], other approaches which generate sparse linear systems with

features similar to the previous one are the finite element method [2],

and the finite volume method [3].

Eigenvalue Problems The second example we want to discuss is the

eigenvalue problem, which is a fundamental problem in linear algebra.

Given a square matrix 𝑃 ∈ ℝ𝑁×𝑁
, the eigenvalue problem consists in

1.1 The Main Ideas 3

finding a scalar 𝜆 and a non-zero vector v ∈ ℝ𝑁
such that

𝑃v = 𝜆v.

The scalar 𝜆 is called an eigenvalue of the matrix 𝐴, and the vector v is

called an eigenvector associated with the eigenvalue 𝜆. An example of

application in which we have to compute an eigenvector is the derivation

of the stationary distribution of a Markov chain [4], which is a stochastic

process that undergoes transitions from one state to another within a

finite or countable number of possible states. More formally, we can

define a stochastic process {𝑋ℓ}ℓ=0,1,. which takes values in a finite set of

states S= {1, 2, . . . , 𝑁}, and is defined by a transition matrix 𝑃 ∈ ℝ𝑁×𝑁
,

where 𝑃𝑖 , 𝑗 is the probability of moving from state 𝑖 to state 𝑗; by this

construction the sum of the elements in each row of 𝑃 is equal to 1, the

elements of 𝑃 are nonnegative (𝑃𝑖 , 𝑗 ≥ 0). The evolution of a probability

distribution p ∈ ℝ𝑁
is given by the equation

pℓ+1 = 𝑃pℓ ,

where pℓ is the probability distribution at discrete time ℓ . Under suitable

conditions on 𝑃, there exists a stationary distribution 𝝅, i.e., a probability

distribution at which the process stabilizes, meaning that the distribution

does not change over time. This means that we have

𝝅⊤ = 𝝅⊤𝑃,

and 𝝅⊤1 = 1. In many application 𝑁 is large, and we need to find suitable

algorithms to compute the eigenvector 𝝅.

Matrix Equations Another important class of problems involves solving

matrix equations, which arise in various applications such as model

reduction in control theory. For instance, consider the Sylvester equation,

which is a linear matrix equation of the form

𝐴𝑋 + 𝑋𝐵 = 𝐶,

where 𝐴 ∈ ℝ𝑚×𝑚
, 𝐵 ∈ ℝ𝑛×𝑛

, 𝐶 ∈ ℝ𝑚×𝑛
are given matrices, and 𝑋 ∈

ℝ𝑚×𝑛
is the unknown matrix to be solved for. This equation frequently

appears in model reduction techniques, such as balanced truncation,

where the goal is to approximate a high-dimensional dynamical system

with a lower-dimensional one while preserving key properties. Let us

consider a linear time-invariant (LTI) dynamical system described by the

following set of ordinary differential equations (ODEs):

¤x(𝑡) = 𝐴x(𝑡) + 𝐵u(𝑡), (1.3)

where x(𝑡) ∈ ℝ𝑛
is the state vector, u(𝑡) ∈ ℝ𝑚

is the input vector,𝐴 ∈ ℝ𝑛×𝑛

is the system matrix, and 𝐵 ∈ ℝ𝑛×𝑚
is the input matrix. Additionally, let

the system output be given by:

y(𝑡) = 𝐶x(𝑡), (1.4)

where y(𝑡) ∈ ℝ𝑝
is the output vector and 𝐶 ∈ ℝ𝑝×𝑛

is the output matrix.

To analyze the system, we are often interested in finding a reduced-

order model that approximates the behavior of the original system.

4 1 Parallel Numerical Linear Algebra: Why?

x1

x2

x3

x4

xn

h1

h2

h3

hh

o1

o2

ok

Input Layer
(n features) Hidden Layer

(h neurons) Output Layer
(k classes)

W1 ∈ Rn×h W2 ∈ Rh×k

z1 = XW1

a1 = σ(z1)

z2 = a1W2

a2 = softmax(z2)

n h k

Figure 1.2: A simple neural network with

one hidden layer.

One common approach is to solve the Sylvester equation, which arises

in model reduction techniques such as balanced truncation. First, we

compute the controllability Gramian 𝑃 and the observability Gramian 𝑄,

which satisfy the following Lyapunov equations:

𝐴𝑃 + 𝑃𝐴⊤ + 𝐵𝐵⊤ = 0, (1.5)

𝐴⊤𝑄 +𝑄𝐴 + 𝐶⊤𝐶 = 0. (1.6)

Next, we compute a transformation matrix 𝑇 that simultaneously diago-

nalizes 𝑃 and 𝑄. This involves solving the Sylvester equation:

𝐴𝑇 + 𝑇𝑆 = 𝐵, (1.7)

where 𝑆 is a diagonal matrix, and 𝑇 is the transformation matrix that

maps the original state space to the reduced-order state space. The

Sylvester equation (1.7) is a key step in the model reduction process.

Efficient numerical algorithms are used to solve this equation, especially

when the dimensions of 𝐴, 𝐵, and 𝑇 are large.

Machine Learning In recent years, machine learning has become an

increasingly important field, with applications in various domains such

as image recognition, natural language processing, and recommendation

systems. Many machine learning algorithms rely heavily on linear algebra

concepts and techniques. For instance, consider the problem of training a

linear regression model, which is a fundamental technique in supervised

learning. Given a dataset with 𝑚 samples and 𝑛 features, we can represent

the data as a matrix 𝑋 ∈ ℝ𝑚×𝑛
, where each row corresponds to a sample

and each column corresponds to a feature. The target variable can be

represented as a vector y ∈ ℝ𝑚
. The goal of linear regression is to find a

vector of coefficients 𝜷 ∈ ℝ𝑛
such that

y ≈ 𝑋𝜷.

This can be formulated as an optimization problem, where we want to

minimize the sum of squared errors between the predicted values and

the actual values:

min

𝜷
∥𝑋𝜷 − y∥2

2
.

Another example is the training of neural networks, which are widely

used in deep learning. Neural networks consist of layers of interconnected

nodes, where each node performs a linear transformation followed by a

non-linear activation function.

The training process involves optimizing the weights of the connections

between the nodes, which can be represented as matrices, e.g., consider a

simple feedforward neural network with one hidden layer (Figure 1.2). The

input layer has 𝑛 features, the hidden layer has ℎ neurons, and the output

layer has 𝑘 classes. The weights between the input layer and the hidden

layer can be represented as a matrix𝑊1 ∈ ℝ𝑛×ℎ
, and the weights between

the hidden layer and the output layer can be represented as a matrix

𝑊2 ∈ ℝℎ×𝑘
. The forward pass of the neural network can be expressed as

a series of matrix multiplications and non-linear activations:

z1 = 𝑋𝑊1 , a1 = 𝜎(z1), z2 = a1𝑊2 , a2 = softmax(z2),

1.2 How large is large? 5

−2 2 4

2

4

𝑥

ReLU(𝑥)

−5 5

0.5

1

𝑥

𝜎(𝑥)

Figure 1.3: ReLU and sigmoid activation

functions.

where 𝜎 is a non-linear activation function (e.g., ReLU, sigmoid, see

Figure 1.3), and softmax is the softmax function used for multi-class

classification. The training of the neural network involves minimizing a

loss function, such as cross-entropy loss, using optimization algorithms

like stochastic gradient descent. The backpropagation algorithm, which

is used to compute the gradients of the loss function with respect to the

weights, relies heavily on matrix operations and linear algebra concepts.

Take home message

Applied mathematics, after the modeling step, is all about solving a

suitable combination of linear algebra problems. Nowadays people

want to solve ever larger problems, and get reliable results in a

reasonable amount of time. This is the reason why we need to use

accurate and robust numerical algorithms, and write them to be

efficient, scalable and to run on parallel computers.

Sources for Linear Algebra and Numerical Linear Algebra There are

many good books on Linear Algebra and Numerical Linear Algebra, and

we will not try to give you a complete list of them. However, we will

mention a few of them that we found particularly useful. For a general

introduction to Numerical Linear Algebra, we recommend the book by

Golub and Van Loan [5], which is a classic in the field. It covers a wide

range of topics, including matrix factorizations, eigenvalue problems, and

singular value decomposition. Other books covering numerical linear

algebra with their own perspective include [6] and [7]. A somewhat

unusual and refreshing treatment of theoretical topics in Linear Algebra

can be found in the book by Axler [8]; for a compehensive treatment of

the theory we recommend the books by Horn and Johnson [9, 10]. In the

remaining of this note we will focus on the numerical and implementation

aspects of Linear Algebra, and we will not go too deep into the theoretical

aspects of the subject; nevertheless, we will try to give you some references

for the theoretical aspects of the problems we will discuss in the course. If

you feel the need to delve more deeply in the theoretical aspects of Linear

Algebra, we recommend consulting the above mentioned books [5–10]

and the references therein. Some relevant notations and basic facts we

use in the following are given in Appendix A.4.

1.2 How large is large?

In the previous Section Subsection 1.1.1 on page 1 we have seen some

examples of problems in numerical linear algebra, and a recurrent theme

in all of them is that the size of the problems we are dealing with is large.
But how large is large? The answer to this question is “it depends”. It

depends on the problem we are dealing with, the algorithm we are using,

the hardware we are using, and the time we have to solve the problem.

Furthermore, it is also a matter of when we are asking this question: 20

years ago the answer to “how large is large” would have been different

from today, and it will undoubtedly be different yet again 20 years from

now.

6 1 Parallel Numerical Linear Algebra: Why?

For instance, if we are dealing with a linear system of equations, the size

of the problem could be given in first approximation by the number of

unknowns we have to solve for. If we are dealing with a sparse matrix,

the size of the problem is a combined information given by the number

of non-zero elements in the matrix and the overall size of the matrix. If

we are dealing with a dense matrix, the size of the problem is given by

the number of rows and columns in the matrix.

Nowadays, we are are able of solving with relative ease sparse linear

systems of equations with several millions of unknowns, and we are

pushing towards solving linear systems with hundreds of billions of

unknowns. The same applies to the eigenvalue problem, where we

are able to compute (few) eigenvalues and eigenvectors of matrices

with several millions of rows and columns. The situation for matrix

equation is more complicated, and to push towards the solution of large

matrix equations we need to be in the case in which the solution of the

matrix equation is a low-rank matrix, e.g., in the case of the Sylvester

equation (1.7) this means that

𝑇 = 𝑇1𝑇
⊤

2
, where 𝑇1 ∈ ℝ𝑚×𝑟 , 𝑇2 ∈ ℝ𝑛×𝑟 ,

and 𝑟 ≪ 𝑚, 𝑛. In general, this idea of exploiting clever structures in

the problem we are solving will permit us to solve problem of larger

size than the ones we would be able to solve without these structures.

For those of you who have a background in computer science, this is

akin to the idea of building data structures that permit us to store and

manipulate large amounts of data in a more efficient way.

1.3 Parallel computers, cluster and
supercomputers

To deal with problem which are large in the sense we have just discussed,

we need to use parallel computers, which are computers that can perform

multiple calculations simultaneously. This is achieved by using multiple

processors or cores that can work together to solve a problem. Parallel

computers can be classified into two main categories:

▶ Shared memory systems: In these systems, all processors share

a common memory space. This means that they can access the

same data and communicate with each other easily. However, the

amount of memory is limited, and the performance can be affected

by contention for memory access.

▶ Distributed memory systems: In these systems, each processor

has its own local memory. This means that they cannot directly

access each other’s data, and communication between processors is

done through message passing. This allows for larger amounts of

memory to be used, but it also requires more complex programming

models.

In addition to these two categories, parallel computers can also be

classified based on their architecture:

1.3 Parallel Computers 7

▶ Multicore processors: These are processors that have multiple

cores on a single chip. Each core can execute its own thread of

instructions, allowing for parallel execution of tasks.

▶ Clusters: These are groups of interconnected computers that work

together to solve a problem. Each computer in the cluster is called

a node, and they communicate with each other through a network.

▶ Supercomputers: These are extremely powerful computers that

are designed to perform complex calculations at high speeds. They

often use thousands of processors working in parallel to solve large

problems.

To have an idea of what a supercomputer is, let us consider the list
1

1: You can access the whole list at

www.top500.org/lists/top500/2025/06/.

The list has been compiled biannually

since June 1993 and offers a systematic

overview of the most powerful super-

computing systems worldwide, serving

as a key reference for tracking progress

and trends in high-performance

computing.

of

the top 10 supercomputers in the world as of June 2025 and which we

have summarized in Table 1.1.

The computers in this table are ranked according to Rmax, the maximum

sustained performance; but how is this measured? This is the High

Performance Linpack (HPL) benchmark, which is run according to the

following rules:

1. Generate a (random) linear system 𝐴𝑥 = 𝑏 of size 𝑁 and solve for

𝑥;

2. Measure the time for the solution process 𝑇 and define a computa-

tion rate 𝑅(𝑁) according to the formula

𝑅 =
2

3

𝑁3

𝑇
;

3. Let 𝑁 grow and repeat the process, until you get the best possible

execution rate value Rmax.

Linear algebra problems have been used to benchmark supercomputers

for a very long time, and have influenced their design in multiple ways.

The first information we can extract recover from table 1.1 it is that

these supercomputers have a huge number of cores; the second is that

operating them consumes a lot of power, and the third is that they are all

equipped with accelerators, which are specialized hardware components

designed to perform specific tasks, namely graphical processing units
(GPUs). Of course, all of this complexity pays off when we consider

the Rmax column, where we can see the sustained rate of execution on

High-Performance Linpack benchmark (HPL): the number one machine

El Capitan
‗

is capable of executing 1.7 × 10
18

arithmetic operations per

second!

We observe that linear algebra is a primary tool for benchmarking su-

percomputers, since dense linear algebra problems are compute-bound,

meaning that their performance depends mainly on the processing capa-

bility rather than memory access, and enable the hardware to operate

close to its peak performance. Historically, and still today, dense linear

algebra has been central to scientific computing, making it a meaningful

indicator of raw computational performance and a natural choice for

evaluating the capabilities of modern HPC systems. The Linpack bench-

mark originated from example tests included in the LINPACK User’s

Guide [11], which measured the performance of solving a dense linear

‗ https://en.wikipedia.org/wiki/El_Capitan_(supercomputer), original meaning

https://en.wikipedia.org/wiki/El_Capitan

https://www.top500.org/lists/top500/2025/06/
https://en.wikipedia.org/wiki/El_Capitan_(supercomputer)
https://en.wikipedia.org/wiki/El_Capitan

8 1 Parallel Numerical Linear Algebra: Why?

system of size 100 using LU factorization with partial pivoting and the

corresponding triangular solvers in double precision. A few years later,

this test evolved into a standardized benchmark designed to compare

computing systems in terms of floating-point performance. In the current

HPL benchmark on which the Top500 list is based, the problem size

and software configuration can be chosen by supercomputer vendors

to achieve the best performance, although certain rules constrain the

operation count — for instance, algorithms such as Strassen’s method for

matrix–matrix multiplication, which reduce computational complexity

below O(𝑛3), are not permitted. The continuous interaction between

technological advances in supercomputing and the field of linear algebra

has driven the evolution of mathematical algorithms and software for

linear algebra from the 1980s to the present day. Each major architectural

shift — from vector processors to distributed-memory systems, and more

recently to hybrid CPU–GPU and heterogeneous exascale platforms —

has inspired corresponding innovations in algorithmic design, numerical

libraries, and programming models. This co-evolution continues to shape

modern high-performance numerical software, ensuring that algorithmic

strategies remain aligned with emerging architectures, as we will discuss

in the following lectures.

1.3 Parallel Computers 9

Table 1.1: Top 10 supercomputers from the TOP500 list (June 2025)

Rank System Description Cores Rmax (PFlop/s) Rpeak (PFlop/s) Power (kW)

1 El Capitan - HPE Cray EX255a, AMD 4th Gen

EPYC 24C 1.8GHz, AMD Instinct MI300A,

Slingshot-11, TOSS, HPE DOE/NNSA/LLNL

United States

11,039,616 1,742.00 2,746.38 29,581

2 Frontier - HPE Cray EX235a, AMD Optimized

3rd Generation EPYC 64C 2GHz, AMD In-

stinct MI250X, Slingshot-11, HPE Cray OS,

HPE DOE/SC/Oak Ridge National Labora-

tory United States

9,066,176 1,353.00 2,055.72 24,607

3 Aurora - HPE Cray EX - Intel Exascale Com-

pute Blade, Xeon CPU Max 9470 52C 2.4GHz,

Intel Data Center GPU Max, Slingshot-11, In-

tel DOE/SC/Argonne National Laboratory

United States

9,264,128 1,012.00 1,980.01 38,698

4 JUPITER Booster - BullSequana XH3000, GH

Superchip 72C 3GHz, NVIDIA GH200 Super-

chip, Quad-Rail NVIDIA InfiniBand NDR200,

RedHat Enterprise Linux, EVIDEN EuroH-

PC/FZJ Germany

4,801,344 793.40 930.00 13,088

5 Eagle - Microsoft NDv5, Xeon Platinum

8480C 48C 2GHz, NVIDIA H100, NVIDIA

Infiniband NDR, Microsoft Azure Microsoft

Azure United States

2,073,600 561.20 846.84

6 HPC6 - HPE Cray EX235a, AMD Optimized

3rd Generation EPYC 64C 2GHz, AMD In-

stinct MI250X, Slingshot-11, RHEL 8.9, HPE

Eni S.p.A. Italy

3,143,520 477.90 606.97 8,461

7 Supercomputer Fugaku - Supercomputer Fu-

gaku, A64FX 48C 2.2GHz, Tofu interconnect

D, Fujitsu RIKEN Center for Computational

Science Japan

7,630,848 442.01 537.21 29,899

8 Alps - HPE Cray EX254n, NVIDIA Grace

72C 3.1GHz, NVIDIA GH200 Superchip,

Slingshot-11, HPE Cray OS, HPE Swiss

National Supercomputing Centre (CSCS)

Switzerland

2,121,600 434.90 574.84 7,124

9 LUMI - HPE Cray EX235a, AMD Optimized

3rd Generation EPYC 64C 2GHz, AMD In-

stinct MI250X, Slingshot-11, HPE EuroH-

PC/CSC Finland

2,752,704 379.70 531.51 7,107

10 Leonardo - BullSequana XH2000, Xeon Plat-

inum 8358 32C 2.6GHz, NVIDIA A100 SXM4

64 GB, Quad-rail NVIDIA HDR100 Infini-

band, EVIDEN EuroHPC/CINECA Italy

1,824,768 241.20 306.31 7,494

10 1 Parallel Numerical Linear Algebra: Why?

To keep the number of hours of this

course under control we are going to

discuss Fortran and its usage together

with the implementative and algorithmi-

cal aspects of the Parallel Linear Algebra

we set out to study. Most of what we

discuss mutatis mutandis can be ported to

C/C++ or other compiled languages. If

you want to discover more about Fortran

a good sources are the website fortran-

lang.org and the book [12].

1.4 What tools are we going to use?

In the context of this course, we will focus on distributed memory

systems, which are the most common type of parallel computers used in

High-Performance Computing (HPC) environments. These systems are

typically composed of many nodes, each with its own local memory, and

they communicate with each other using message-passing libraries such

as MPI (Message Passing Interface). But before delving into the details of

the programming model we need to use, let us first discuss the tools we

will be using to write our code. We will be using the following tools:

▶ Modern Fortran: Fortran is a language that has been used for

scientific computing since many years. It is particularly well-suited

for numerical computations and is still widely used in many

scientific applications.

▶ Software Version Control: git: We will be using git as our version

control system. This will allow us to keep track of changes to our

code and collaborate with others more effectively.

▶ MPI, OpenMP, OpenACC, CUDA and other enemies: We will

be using MPI for parallel programming, nevertheless all of the

nodes we will deal with will also be equipped by many-core

processors, this will drive uso into looking for OpenMP for shared

memory parallelism. Furthermore, as you have seen in Table 1.1, the

supercomputers we will be using are equipped with accelerators,

namely GPUs, and we will look into OpenACC and CUDA for

accelerator/GPU programming.

▶ Queue manager: Slurm: We will be using Slurm as our job sched-

uler to manage the execution of our jobs on the cluster.

1.4.1 Fortran

Fortran, short for “Formula Translation”, is one of the oldest high-level

programming languages, originally developed in the 1950s by IBM for

scientific and engineering applications. It was designed to allow easy

translation of mathematical formulas into code, making it particularly

well-suited for numerical and computational tasks. Over the decades,

Fortran has evolved significantly, with modern versions such as Fortran

90, Fortran 95, Fortran 2003, Fortran 2008, Fortran 2018, and Fortran

2023 introducing features like modular programming, array operations,

object-oriented programming, and parallel computing capabilities.

One of the key strengths of Fortran is its performance in numerical

computations. It is highly optimized for array and matrix operations,

which are fundamental in scientific computing. Fortran compilers are

known for their ability to generate efficient machine code, making it a

preferred choice for high-performance computing (HPC) applications.

Modern Fortran supports a variety of programming paradigms, including

procedural, modular, and object-oriented programming. It also includes

features for parallel programming, such as coarrays and integration

with MPI and OpenMP, enabling developers to write scalable code

for distributed and shared memory systems. Despite its age, Fortran

remains widely used in fields like climate modeling, computational

https://fortran-lang.org/
https://fortran-lang.org/

1.4 What tools are we going to use? 11

fluid dynamics, and numerical linear algebra, where performance and

reliability are critical.

In the course, we will be using the GNU Fortran compiler (gfortran),

which is part of the GNU Compiler Collection (GCC). Other, viable

options are the Intel Fortran compiler (ifort), the Cray Fortran compiler

(ftn), the LLVM Fortran compiler (flang), the PGI Fortran compiler

(pgfortran), or the NAG compiler (nagfor). In reality, the choice of

the compiler should also be influenced by the machine and the feature

of the language we want to use. For instance, the Cray compiler is

particularly well-suited for Cray supercomputers, while the Intel compiler

is optimized for Intel architectures. We decided to use gfortran as

it is widely available and is the default compiler on many systems,

furthermore its development is always up to date, or nearly up to date,

with the latest Fortran standards.

How to get gfortran

To check if gfortran is installed on your system, you can run the

following command in your terminal:

gfortran --version

If it is not installed, you can install it using your package manager.

For example, on Ubuntu or Debian, you can use:

sudo apt-get install gfortran

On macOS, you can install it using Homebrew:

brew install gcc

Another viable option is to install it using Spack, which is a package

manager for HPC systems. Spack can be downloaded from spack.io,

or from their GitHub repository.

Information on how to install and use Spack can be found in Ap-

pendix B.

Now that we have installed gfortran, we can start using it to compile

our Fortran code. The basic syntax for compiling a Fortran program is as

follows:

gfortran -o output_file source_file.f90

where output_file is the name of the executable file you want to create—

selected with the -o option, and source_file.f90 is the name of your

Fortran source code file; see Table 1.2 for a list of basic gfortran options.

Let us write a simple Fortran program to test our installation. Create a

file called hello.f90, e.g., by doing

touch hello.f90

and open it with your favorite text editor. Then, copy and paste the

following code into the file:

program hello

use iso_fortran_env, only: output_unit

implicit none

https://spack.io/
https://github.com/spack/spack

12 1 Parallel Numerical Linear Algebra: Why?

Table 1.2: Basic gfortran options.

Option Description

-o output_file Specify the name of the output executable file.

-Wall Enable all compiler warnings.

-g Generate debug information for debugging.

-O0 Disable optimization (default).

-O1 Enable basic optimization.

-O2 Enable more aggressive optimization.

-O3 Enable even more aggressive optimization.

-fcheck=all Enable runtime checks for array bounds and other errors.

-frecursive Enable recursion for subroutines and functions.

-fPIC Enable position-independent code (PIC) for shared libraries.

2: The caf compiler is a wrapper around

the gfortran compiler. It is developed by

the OpenCoarrays open-source software

project [13] which produces an applica-

tion binary interface (ABI) used by the

GNU Compiler Collection (GCC) Fortran

front-end to build executable programs

leveraging the parallel programming fea-

tures of Fortran 2018. We will discuss the

coarray programming model in more

detail in Section 5.2.

3: Try to run this piece of code multiple

times, what do you osserve?

write(output_unit,'("Hello, World!")')

end program hello

This program uses the iso_fortran_env module to write the string

"Hello, World!"

to the standard output. The implicit none statement is used to enforce

explicit declaration of all variables, which is a good programming practice

in Fortran. Now, we can compile the program by running the following

command in your terminal:

gfortran -o hello hello.f90

This will create an executable file called hello. To run the program,

simply execute the following command:

./hello

You should see the output:

Hello, World!

Parallel Fortran: coarrays

Fortran is also a parallel language in its own right. A parallel version

hello_par.f90 might look like:

program hello

use iso_fortran_env, only: output_unit

implicit none

write(output_unit,'("Hello world from image ",I0," out

of ",I0)') this_image(), num_images()↩→

end program hello

The coarray program can be compiled by doing
2

caf hello_par.f90 -o hello_par

and run with

cafrun -np 4 hello_par

which will print out something equivalent
3

to

http://www.opencoarrays.org/
http://www.opencoarrays.org/

1.4 What tools are we going to use? 13

Continuous integration and continuous
deployment (CI/CD) are software devel-

opment practices that aim to improve

the quality and speed of software de-

livery. Continuous integration involves

automatically building and testing code

changes as they are made, ensuring that

new code does not break existing func-

tionality. Continuous deployment takes

this a step further by automatically de-

ploying code changes to production after

passing tests, allowing for rapid and reli-

able software releases. It is a key practice

in modern software development, en-

abling teams to deliver new features by

being relatively sure that the changes do

not break the codebase.

Hello world from image 2 out of 4

Hello world from image 3 out of 4

Hello world from image 4 out of 4

Hello world from image 1 out of 4

We will look at various tools for parallel programming, and weight their

advantages and disadvantages. Specifically, the details explaining what

is happening in this example code are given in Section 5.2.

1.4.2 Software Version Control: git

Software version control is a system that records changes to files over

time so that you can recall specific versions later. It is an essential tool

for software development, allowing multiple developers to work on the

same project simultaneously without overwriting each other’s changes.

Version control systems track changes to files, enabling you to revert to

previous versions, compare changes, and collaborate with others more

effectively. There are two main types of version control systems:

▶ Centralized Version Control Systems (CVCS): In a CVCS, there

is a central server that stores the repository, and developers check

out files from this central repository. Examples include Subversion

(SVN) and CVS (Concurrent Versions System). The main drawback

of CVCS is that if the central server goes down, no one can work

on the project.

▶ Distributed Version Control Systems (DVCS): In a DVCS, every

developer has a complete copy of the repository on their local

machine. This allows for offline work and better collaboration.

Examples include Git, Mercurial, and Bazaar. Git is the most widely

used DVCS and is known for its speed, flexibility, and powerful

branching and merging capabilities.

Git is a distributed version control system that allows multiple developers

to work on a project simultaneously. It was created by Linus Torvalds

in 2005 for the development of the Linux kernel. Git is designed to

handle everything from small to very large projects with speed and

efficiency. Git allows you to track changes to files, collaborate with others,

and manage different versions of your codebase. Git is widely used in

software development, and it has become the de facto standard for version

control in many projects. It is used by individual developers, small teams,

and large organizations alike.

Git is a powerful tool that allows you to:

▶ Track changes to files and directories.

▶ Collaborate with others on the same project.

▶ Create branches to work on different features or bug fixes.

▶ Merge changes from different branches.

▶ Revert to previous versions of files.

▶ Share your code with others using remote repositories.

▶ Manage conflicts when multiple developers make changes to the

same file.

▶ Keep a history of all changes made to the codebase.

▶ Tag specific versions of the codebase for release.

▶ Work offline and synchronize changes later.

14 1 Parallel Numerical Linear Algebra: Why?

¥: The people from the PHC at the

Mathematics Department of the uni-

versity of Pisa host their own Git

server through an instance of Gitea.

It can be reached at the address

git.phc.dm.unipi.it.

To use GitHub effectively you also

need to generate an ssh key to reg-

ulate and cypher data transfer with

the repository. This can be done by

using the command ssh-keygen -t

ed25519 -C "your_email@unipi.it"

and then copying the content of the

file ~/.ssh/id_ed25519.pub to your

GitHub account settings. Remember

that you also need the key to your

system agente to be able to use it. This

can be done by running the command

ssh-add ~/.ssh/id_ed25519 (assum-

ing that you have selected the default

name and location for the key). If the

system complains that the agent is not

running, you can start it by running

eval `ssh-agent -s`.

▶ Use hooks to automate tasks during the development process.

▶ Integrate with other tools and services, such as continuous integra-

tion and deployment (CI/CD) systems.

How to get git

To start using it on your system, you can check if it is installed by

running the following command in your terminal:

git --version

If it is not installed, you can install it using your package manager.

For example, on Ubuntu or Debian, you can use:

sudo apt-get install git

On macOS, you can install it using Homebrew:

brew install git

Git could be ued in a completely local environment, but it is mostly

used in a distributed environment, where multiple developers work

on the same project. In this case, we need to use a remote repository,

which is a version of your project that is hosted on the internet or on a

network. Remote repositories allow you to share your code with others

and collaborate on projects. There are many platforms that provide

hosting for Git repositories, such as:

▶ GitHub: A web-based platform that provides hosting for Git

repositories. It is widely used for open-source and private projects,

and it offers features like issue tracking, pull requests, and project

management tools.

▶ GitLab: A web-based platform that provides hosting for Git repos-

itories, similar to GitHub. It also offers features like continuous

integration and deployment (CI/CD), issue tracking, and project

management tools.

▶ Bitbucket: A web-based platform that provides hosting for Git

repositories, with a focus on team collaboration. It offers features

like pull requests, issue tracking, and integration with other Atlas-

sian products like Jira.

▶ SourceForge: A web-based platform that provides hosting for Git

repositories, with a focus on open-source projects. It offers features

like issue tracking, project management tools, and a community of

developers.

Another viable option is to use a self-hosted Git repository, which is a

Git repository that you host on your own server
¥

. In our case, we will

assume that we are using a remote repository hosted on GitHub, but the

same principles apply to all the other platforms.

First steps with GitHub

To create a new repository on GitHub, follow these steps:

1. Go to github.com and log in to your account.

2. Click on the New button in the upper right corner of the page.

https://about.gitea.com/
https://git.phc.dm.unipi.it/
https://github.com/
https://github.com/

1.4 What tools are we going to use? 15

4: The first time you want to make a

commit to the repository, you need

to set your name and email address.

This can be done by running the

following commands: git config

--global user.name "Your Name" and

git config --global user.email

"your_email@unipi.it".

3. Fill in the repository name, description, and choose whether it

should be public or private.

4. Click on the Create repository button.

After creating the repository, you can clone it to your local machine using

the following command:

git clone

followed by the ssh address of the repository, which can be found on the

GitHub page of the repository. For example, if your repository is called

my-repo and your user name is user-name the command would be:

git clone git@github.com:user-name/my-repo.git

The first time you clone a repository, you will get a copy of the entire

repository, including all the files, directories, and history. This is a

complete copy of the repository, and you can work on it locally without

needing to be connected to the internet.

Once you have cloned the repository, you can start working on it. You can

create new files, edit existing files, and delete files as needed. When you

are ready to save your changes, you can use the following commands
4
:

▶ git add <file>: This command adds the specified file to the

staging area, which is a temporary area where you can prepare

files for commit.

▶ git commit -m "commit message": This command creates a new

commit with the changes in the staging area and adds a commit

message describing the changes.

▶ git push: This command pushes your local commits to the remote

repository on GitHub.

You can also use the git status command to check the status of your

repository, which will show you which files have been modified, added,

or deleted. You can use the git log command to view the commit history

of your repository, which will show you a list of all the commits made to

the repository, along with their commit messages and timestamps. You

can also use the git pull command to fetch and merge changes from

the remote repository to your local repository. This is useful when you

are collaborating with others and want to get the latest changes made by

other developers.

Exercise 1.4.1 After having created and cloned your first repository

to your local machine, create a new file called GITCOMMANDS.md in the

repository and use the GitHub Markdown syntax to write a short

description of the git commands you have learned so far. Then add,

commit and push this modification to the remote repository.

We will see more about git in the next lectures, while we need it to store

and share our code.

These notes

Also these notes are stored in a Git repository, which is hosted on

GitHub, and can be found at:

16 1 Parallel Numerical Linear Algebra: Why?

https://github.com/Cirdans-Home/ParallelLinearAlgebra

You can use the feature of Git to propose changes to the notes, by

creating a pull request to the repository. This is a way to suggest

changes to the notes, and it will be reviewed by the author before

being merged into the main branch of the repository. You can also

use the issues feature to report bugs or suggest new features for the

notes. This is a way to communicate with the author and other users

of the notes, and it will be used to track the progress of the changes.

1.4.3 MPI, OpenMP, OpenACC, CUDA and other enemies

This set of tools represents the backbone and provides the actual imple-

mentations of the parallel programming models we will be using in this

course to make Linear Algebra algorithms run on parallel computers.

▶ MPI (Message Passing Interface): MPI is a standardized and

portable message-passing system that allows processes to commu-

nicate with each other in a parallel computing environment. It is

widely used in high-performance computing (HPC) applications

and provides a set of functions for point-to-point and collective

communication, synchronization, and data distribution.

▶ OpenMP: OpenMP is an API that supports multi-platform shared

memory multiprocessing programming. It provides a set of com-

piler directives, library routines, and environment variables that

allow developers to specify parallel regions in their code. OpenMP

is primarily used for parallelizing loops and sections of code that

can be executed concurrently on multiple threads.

▶ OpenACC: OpenACC is a directive-based programming tool that

allows developers to write parallel code for heterogeneous systems,

including CPUs and GPUs. It provides a set of directives that enable

automatic data movement between the host and device memory,

making it easier to offload computations to accelerators.

▶ CUDA (Compute Unified Device Architecture): CUDA is a parallel

computing platform and application programming interface (API)

developed by NVIDIA for general-purpose computing on its own

GPUs. It allows developers to write programs that can execute on

NVIDIA GPUs, providing access to the massive parallel processing

power of these devices.

These programming tools are not mutually exclusive, and they can be

used together in a single application. For example, you can use MPI for

inter-node communication and OpenMP for intra-node parallelism. This

framwork is usually described as MPI+X, where X can be OpenMP, Ope-

nACC, or CUDA. There exist research into the possibility of developing

alternatives to the MPI+X framework, and maybe some of you are also

involved in this. Here we will not discuss these alternatives, since virtually

all the large libraries and applications are based on the MPI+X framework.

Nevertheless, porting the ideas and algorithms we will discuss to these

alternatives could be an interesting avenue of research.

Further details on these parallel programming tools are discussed in

Chapter 3 on page 29, Chapter 4 on page 41, and Chapter 4 on page 41.

https://github.com/Cirdans-Home/ParallelLinearAlgebra

1.4 What tools are we going to use? 17

5: Partition: in the Slurm language a

partition is a set of nodes which can be

used together simultaneously. Usually

in a cluster there are different partition

with different conditions of usage: parti-

tions with few nodes which can run jobs

only for a small amount of time and can

be used for debug purposes, large parti-

tion which can run long jobs and have

large node counts for production runs, and

sometimes partition also collects nodes

with different architectures or specifica-

tions, e.g., nodes equipped with GPUs,

nodes specialized in data transfer jobs,

or containing fat nodes which have large

RAMs and can be used to do data analy-

sis.

1.4.4 Cluster ecosystem: Slurm and Environment Modules

Our code will need to be run on a cluster, and this means that we need to

use a job scheduler to manage the execution of our jobs. A job scheduler

is a software system that manages the allocation of resources on the

cluster and the execution of jobs. It is responsible for scheduling jobs,

monitoring their progress, and managing the resources of the cluster.

There are many job schedulers available, but we will be using Slurm
(Simple Linux Utility for Resource Management), which is a free and

open-source job scheduler that is widely used in HPC environments.

Slurm is designed to be scalable, flexible, and easy to use. It provides

a simple command-line interface for submitting jobs, monitoring their

progress, and managing resources. Slurm is also highly configurable,

allowing you to customize its behavior to suit your needs. Since this is

not a course on becoming a system administrator, we will not go into the

details of how to install and configure Slurm, we will just focus on how

to use it to submit jobs to the cluster and monitor their progress.

The first thing we can do is checking the information on the cluster which

are available to Slurm. This can be done via the sinfo command, which

will show us the status of the nodes in the cluster. To given few examples,

let us run in on the Toeplitz cluster from the Department of Mathematics

of the University of Pisa:

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

cl1 up infinite 1 idle lnx1

cl2* up infinite 4 idle lnx[2-5]

all up infinite 3 mix gpu[01,03-04]

all up infinite 1 alloc gpu02

all up infinite 5 idle lnx[1-5]

gpu up infinite 3 mix gpu[01,03-04]

gpu up infinite 1 alloc gpu02

The output of the command shows us the status of the nodes in the

cluster, including their availability, the time limit for jobs, the number

of nodes in each state, and the list of nodes in each partition
5
. When we

have runned this command, the Toeplitz cluster had three partitions:

▶ cl1: This partition has one node, which is currently idle.

▶ cl2: This partition has four nodes, which are all idle.

▶ gpu: This partition has three nodes, which are in a mixed state

(some are idle and some are allocated).

Furthermore there is a partition called all, which is a virtual partition

that includes all the nodes in the cluster.

We can distinguish betweeen two types of jobs: interactive and batch
jobs, they have different purposes and are used in different situations.

An interactive job is a job that runs in the foreground and allows you to

interact with it while it is running, it is usually employed for debugging,

testing, compiling or for running interactive data analysis. A batch job is

a job that runs in the background and does not require user interaction,

it is usually employed for running long computations or simulations.

18 1 Parallel Numerical Linear Algebra: Why?

6: Each Slurm job is assigned a unique
job ID, which is used to track the job’s

progress and status.

7: A task is a single instance of a program

that is running on a node. In the case of

an interactive job, we are running a single

task, which is the bash shell. In the case

of a batch job, we will see next We can

run multiple tasks on a single node, or

we can run multiple tasks on multiple

nodes. In our setting tasks will be the

MPI processes we will be using to run

our code.

Interactive jobs let us start investigating how to run an interactive job

on the cluster. To run an interactive job on the Toeplitz cluster, we can

use the srun command, which is used to submit jobs to Slurm. The basic

syntax for running an interactive job is as follows:

srun --partition=cl2 --nodes=1 --ntasks-per-node=1

--time=00:10:00 --pty bash↩→

After running this command, the bash will write something along the

lines of
6
:

srun: job 12160 queued and waiting for resources

srun: job 12160 has been allocated resources

This means that the job has been submitted to Slurm and is waiting for

resources to be allocated, once the resources are allocated, the job will

start running, and you will be logged into the node where the job is

running, i.e., you will see your shell change to something like:

durastante@lnx2:~$

Let us look at the options we have used in the command:

▶ --partition=cl2: This option specifies the partition to use for the

job. In this case, we are using the cl2 partition.

▶ --nodes=1: This option specifies the number of nodes to use for

the job. In this case, we are using one node.

▶ --ntasks-per-node=1: This option specifies the number of tasks

to run per node. In this case, we are using one task
7

per node.

▶ --time=00:10:00: This option specifies the time limit for the job.

In this case, we are using a time limit of 10 minutes.

▶ --pty bash: This option specifies that we want to run an interactive

shell (bash) in the allocated resources.

There are many other options that can be used with the srun command,

another common one which we can use is --cpus-per-task=4, which

specifies the number of CPUs to use for each task; this is usefuel when

we want to run a multi-threaded program, such as a program which uses

OpenMP or OpenACC, or if we want to compile our code using multiple

threads.

After we are done with the interactive job, we can exit the shell by running

the exit command. This will terminate the interactive job and return us

to our original shell.

Exercise 1.4.2 Use the srun command to run an interactive job on the

Toeplitz cluster. Use the --cpus-per-task=4 option to allocate four

CPUs for your job. Once you are logged into the node, run the top

command to see the list of processes running on the node. Then, run

the exit command to exit the interactive job.

Batch jobs are used to run long computations or simulations that do

not require user interaction. To run a batch job on the Toeplitz cluster,

we can use the sbatch command, which is used to submit batch jobs to

Slurm. The basic syntax for running a batch job is as follows:

sbatch runscript.sh

1.4 What tools are we going to use? 19

where runscript.sh is a shell script that contains the commands to run

the job. The shell script should contain the following lines:

#!/bin/bash

#SBATCH --partition=cl2

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --time=00:10:00

#SBATCH --cpus-per-task=4

#SBATCH --job-name=my_job

#SBATCH --output=my_job.out

#SBATCH --error=my_job.err

Your commands go here

echo "Hello, World!"

The first line of the script is called the shebang line, and it tells the system

which interpreter to use to run the script. In this case, we are using

the bash interpreter. The next lines are called Slurm directives, and they

specify the options for the job. They are analogous to the options we used

in the srun command. The one which are new are

▶ --job-name=my_job: This option specifies the name of the job. In

this case, we are using the name my_job.

▶ --output=my_job.out: This option specifies the name of the output

file for the job. In this case, we are using the name my_job.out.

▶ --error=my_job.err: This option specifies the name of the error

file for the job. In this case, we are using the name my_job.err.

Monitoring jobs is an important part of using a job scheduler, as it

allows you to check the status of your jobs and monitor their progress.

Slurm provides several commands for monitoring jobs, including:

▶ squeue: This command shows the status of all jobs in the queue,

including their job IDs, user names, partition names, and job states.

▶ scontrol: This command provides detailed information about a

specific job, including its job ID, user name, partition name, and

job state.

▶ scancel: This command is used to cancel a job in the queue. You

can use it to cancel a specific job by specifying its job ID.

As an example, if we run the squeue command after submitting our

interactive job, we will see something like:

JOBID PARTITION NAME USER ST TIME NODES

NODELIST(REASON)↩→

12160 cl2 bash durastan R 1:02 1 lnx2

The output of the command shows us the status of the job, including its

job ID, partition name, user name, and job state. The job state can be one

of the following:

▶ PENDING: The job is waiting for resources to be allocated.

▶ RUNNING: The job is currently running.

▶ COMPLETED: The job has completed successfully.

▶ FAILED: The job has failed.

▶ CANCELLED: The job has been cancelled by the user.

20 1 Parallel Numerical Linear Algebra: Why?

8: The PATH variable contains a list of

directories the system checks before run-

ning a command. Updating the PATH

variable enables running any executa-

bles found in the directories mentioned

in PATH from anywhere else on the sys-

tem without typing the absolute file path.

LD_LIBRARY_PATH tells the dynamic link

loader ld where to search for the dy-

namic shared libraries an application

was linked against. The MANPATH environ-

ment variable specifies where the man

command looks for reference manual

(man) pages.

▶ TIMEOUT: The job has exceeded its time limit.

The NODELIST column shows the name of the node where the job is

running, and the REASON column shows the reason why the job is in its

current state.

If we want to cancel on or more jobs, we can use the scancel command,

followed by the job ID of the job we want to cancel. For example, if we

want to cancel the job with ID 12160, we can run:

scancel 12160

Thi command can be executed both if the job is running or if it is in the

queue. In the first case, it will terminate the job, by sending a SIGTERM

signal to the process, while in the second case it will remove the job from

the queue. If you are not the administrator of the cluster, you can only

cancel your own jobs, but if you are the administrator, you can cancel

any job in the queue.

1.4.5 Environment Modules

The Environment Modules system is a tool that allows users to dy-

namically modify their environment variables
8
, such as the PATH, LD_ ⌋

LIBRARY_PATH, and MANPATH variables. This is useful for managing differ-

ent software packages and versions on a cluster, as it allows users to load

and unload different software packages without having to modify their

shell configuration files. The Environment Modules system provides a

set of commands for loading and unloading software packages, as well

as for displaying the current environment variables.

The classical use cases for the Environment Modules system are when you

have more than one version of a software package installed on the cluster,

or when you have different software packages that depend on different

versions of the same library. For example, if you have two versions of

the gcc compiler installed on the cluster, you can use the Environment

Modules system to load the version you want to use, without having

to modify your shell configuration files. Consequently, you can have

different version of libraries compiled with the different version of the

compiler, and you can use the Environment Modules system to load the

correct combination of software packages and libraries for your job.

The Environment Modules system provides several commands for man-

aging your environment variables:

▶ module avail: This command shows the list of available software

packages on the cluster.

▶ module load <package>: This command loads the specified soft-

ware package and modifies the environment variables accordingly.

▶ module unload <package>: This command unloads the specified

software package and restores the environment variables to their

previous state.

▶ module list: This command shows the list of currently loaded

software packages.

▶ module show <package>: This command shows detailed informa-

tion about the specified software package, including its version

and dependencies.

1.4 What tools are we going to use? 21

▶ module purge: This command unloads all currently loaded soft-

ware packages and restores the environment variables to their

default state.

Again, since this is not a course on becoming a system administrator,

we will not go into the details of how to install, configure and wrirte

Environment Modules, we will just mention them when we need to

change the environment for our jobs. Some information on how to use

them in conjunction with the Spack package manager is discussed in

Appendix B.

Before closing this chapter, let us see how to used the Environment

Modules system to load different version of the gcc compiler on the

Toeplitz cluster. First of all let us see which version of the gcc compiler are

available on the cluster. This can be done by running the module avail

command, which will show us the list of available software packages on

the cluster. The output of the command will be something like:

--- /software/spack/share/spack/modules/linux-ubuntu22.04-broadwell ----
armadillo/12.8.1-openmpi-4.1.6-gcc-13.2.0
cmake/3.27.9-gcc-11.4.0
cmake/3.27.9-gcc-12.3.0
cmake/3.27.9-gcc-13.2.0
gcc/12.3.0
gcc/13.2.0
intel-oneapi-compilers/2025.0.4-gcc-11.4.0
intel-oneapi-mkl/2024.0.0-openmpi-4.1.6-gcc-13.2.0
intel-oneapi-mkl/2024.2.2-intel-oneapi-mpi-2021.14.1-oneapi-2025.0.4
intel-oneapi-mpi/2021.14.1-oneapi-2025.0.4
likwid/5.3.0-gcc-13.2.0
metis/5.1.0-gcc-12.3.0
metis/5.1.0-gcc-13.2.0
metis/5.1.0-oneapi-2025.0.4
mumps/5.7.3-intel-oneapi-mpi-2021.14.1-oneapi-2025.0.4
mumps/5.7.3-openmpi-4.1.6-gcc-13.2.0
netlib-scalapack/2.2.0-openmpi-4.1.6-gcc-13.2.0
openblas/0.3.26-gcc-12.3.0
openblas/0.3.26-gcc-13.2.0
openblas/0.3.29-oneapi-2025.0.4
openmpi/4.1.6-gcc-12.3.0
openmpi/4.1.6-gcc-13.2.0
parmetis/4.0.3-openmpi-4.1.6-gcc-13.2.0
plasma/23.8.2-gcc-13.2.0
suite-sparse/7.3.1-gcc-13.2.0
suite-sparse/7.8.3-oneapi-2025.0.4
superlu-dist/8.2.1-openmpi-4.1.6-gcc-13.2.0
superlu/5.3.0-gcc-13.2.0

------------------------ /data/software/modules ------------------------
advanpix/4.8.0 cocoa/5.4 julia/1.10.4 julia/gpu-compiled
anaconda3/2024.02 julia/1.8.1 julia/1.11.3 matlab/R2021a

-- /data/software/spackgpu/share/spack/modules/linux-ubuntu22.04-zen3 --
gpu-cmake/3.27.9-gcc-11.4.0
gpu-cmake/3.27.9-gcc-12.3.0
gpu-cmake/3.27.9-gcc-13.2.0
gpu-cmake/3.30.5-gcc-14.2.0
gpu-cuda/12.3.1-gcc-12.2.0
gpu-cuda/12.4.0-gcc-13.2.0
gpu-cuda/12.6.2-gcc-14.2.0
gpu-cuda/12.8.0-gcc-14.2.0
gpu-ddd/3.3.12-gcc-12.2.0
gpu-doxygen/1.9.8-gcc-12.2.0
gpu-eigen/3.4.0-gcc-12.3.0
gpu-gcc/12.2.0
gpu-gcc/12.3.0
gpu-gcc/13.2.0
gpu-gcc/14.2.0
gpu-gdb/14.1-gcc-12.2.0
gpu-gmp/6.2.1-gcc-12.3.0
gpu-gnuplot/6.0.0-gcc-12.2.0
gpu-gsl/2.7.1-gcc-13.2.0
gpu-hdf5/1.14.5-openmpi-4.1.6-gcc-14.2.0
gpu-hpcg/3.1-openmpi-4.1.6-gcc-12.2.0

22 1 Parallel Numerical Linear Algebra: Why?

9: This is due to the fact that the nodes

in the cl1 and cl2 partitions are Intel

nodes, while the nodes in the gpu par-

tition are AMD nodes, hence compilers

target different system architectures. You

can only compile and execute the soft-

ware by the correct combination of com-

piler and architectures. Truth be told,

you could crosscompile but this is a diffi-

cult thing to make work, and why should

you bother?

gpu-kokkos/4.3.00-cuda-12.4.0-gcc-13.2.0
gpu-metis/5.1.0-gcc-12.2.0
gpu-metis/5.1.0-gcc-13.2.0
gpu-metis/5.1.0-gcc-14.2.0
gpu-mpfr/4.2.1-gcc-12.3.0
gpu-mumps/5.7.3-openmpi-4.1.6-gcc-14.2.0
gpu-openblas/0.3.26-gcc-12.2.0
gpu-openblas/0.3.26-gcc-13.2.0
gpu-openblas/0.3.28-gcc-14.2.0
gpu-openmpi/4.1.6-cuda-12.2.0-gcc-14.2.0
gpu-openmpi/4.1.6-cuda-12.3.1-gcc-12.2.0
gpu-openmpi/4.1.6-cuda-12.4.0-gcc-13.2.0
gpu-openmpi/4.1.6-gcc-12.3.0
gpu-openmpi/4.1.6-gcc-13.2.0
gpu-openmpi/4.1.8-cuda-12.8.0-gcc-14.2.0
gpu-valgrind/3.20.0-openmpi-4.1.6-gcc-12.2.0

Key:
modulepath

As you can see from the output, there are many software packages

available on the cluster, including different versions of the gcc compiler.

Observe also that the modules are divided into two blocks. The first block

contains the software packages which can be used on the partitions cl1

and cl2, while the second block contains the software packages which

can be used on the gpu partition
9
. Let us suppose that we want to work on

the cl1/cl2 partition. We can first use srun to move on a node there:

srun --partition=cl2 --nodes=1 --ntasks-per-node=1

--time=00:10:00 --pty bash↩→

Then we can load the gcc module we want to use, for example:

module load gcc/12.3.0

and verif y that the module has been loaded correctly by running:

gcc --version

The output of the command will show us the version of the gcc compiler

that is currently loaded in our environment.

If now we want to load a different version of the gcc compiler, we can use

the module unload Command to unload the current version of the gcc

compiler, and then load the new version we want to use. For example:

module unload gcc/12.3.0

module load gcc/13.2.0

We can then verify that the new version of the gcc compiler has been

loaded correctly by running:

gcc --version

The output of the command will show us the version of the gcc compiler

that is currently loaded in our environment.

Finally, if we want to unload all the modules we have loaded, we can use

the module purge command, which will unload all the modules we have

loaded and restore the environment variables to their default state.

In the following chapters we will sometime select the modules we want

to use to compile and run our code.

Parallel Programming Techniques for
Linear Algebra

Programming in action 2
2.1 The evolution of program-

ming 25
We have seen some of the tools that we are going to use, and we have

glanced (in Table 1.1) at the kind of performance we can obtain on

those machines: the most powerul machines in the Top500 can achieve a

computation rate of 𝑂(10
18) arithmetic operations per second, providing

an amount of power we could only dream of in past years
‗
.

But, what is a parallel computer, and how do you actually program it?

That is what we are going to discuss in the sequel; in particular, we are

going to define parallelism in Chapter 3 on page 29.

Extracting the best possible performance from a parallel computer re-

quires three ingredients:

1. Having the best possible implementation for the “serial” (local)

parts of the computation;

2. Having an optimal communication strategy;

3. Having a balanced workload distributed across processes.

Therefore after this chapter we will delve into a more detailed discussion

about the first topic in Chapter 6 on page 61 and Chapter 7 on page 87,

how to get good performance from a “normal” computer, whereas the

actual parallelization will be examined later: we will be building from

the ground up.

2.1 The evolution of programming

Before delving into the techniques for “serial” programming, let us

pause briefly to consider the evolution of programming languages and

compilers.

In fact, if we spend a minute for reflection, we realize that the very

existence of compilers is absolutely not to be taken for granted: indeed,

in the beginning of the history of computer science, the possibility of

writing a program capable of translating into machine language with

a satisfactory efficiency was very much in doubt, and everybody did

programming at machine or assembly language level.

The very first “high level” language with its accompanying compiler

was the Fortran programming language in 1954 (see [14] for a historical

perspective); the Fortran language is still being actively developed, al-

though it has changed very substantially from its original form. Still, the

intellectual enterprise of writing a translator from a language closer to

humans into machine language, and producing a final result competitive

from a performance point of view, was a formidable challenge, and it has

led to many developments in computer science.

‗
When the first Top500 list was announced in 1993, the most powerful machine in the

world was capable of 59 GFLOPS, which is well within reach of a modern workstation

even without an accelerator, and the laptops we are using to write these notes would have

easily made into the list around position 100.

26 2 Programming in action

Programming languages are much more constrained than natural lan-

guages; their definition is usually geared towards a certain application

area, and is managed by committees that may be “de facto” standardiza-

tion bodies, or official ones.

Among the languages whose definition falls within the scope of the

International Standards Organisation (ISO https://www.iso.org) we

find:

▶ Ada

▶ Algol

▶ APL

▶ BASIC

▶ C

▶ C++

▶ COBOL

▶ Fortran

▶ Pascal

▶ PL/I

▶ Prolog

▶ Ruby

▶ SQL

▶ UML

There are a few other popular languages, for instance Java, Julia, Matlab

and Python, which are not standardized by a formal institution.

In any case, each programming language has a “Language Standard” defi-

nition. A language standard constraints both the application programmer

and the compiler developer:

▶ The application programmer has to submit a source code respecting

the rules laid out in the language document;

▶ The compiler developer has to produce a compiler that, given

a source code that is “legal” in the above sense, produces an

executable program that behaves according to the specifications.

Note that the precise rules of the language standard may be much more

involved than our intuition tells us, and in some cases thay may give rise

to surprising results; this is the main reason why reporting a bug in a

compiler
†

is also a nontrivial proposition.

From the above discussion, it follows that for the compiler developer,

the first priority is always the correctness of the translated program:

efficiency in its intended domain must come after correctness. When we

get to efficiency, every language is designed to be convenient in writing

certain applications, therefore any language compiler will be optimized

with certain criteria and applications in mind.

Among the languages mentioned above, three stand out for our purposes:

Fortran, Julia and Matlab. All three languages have been designed for the

development of numerical software; among them, Matlab is designed for

maximal convenience in prototyping, with its interactive environment,

whereas Fortran and Julia are designed to extract maximum performance.

Many choices in the language standard definiton have been made to

allow for the compilers to make decisions favouring fast programs.

†
Compilers are, after all, programs, therefore they too exhibit bugs.

https://www.iso.org

2.1 The evolution of programming 27

Of the other languages mentioned in the lists above, the ones that are

used the most to achieve the level of performance we are interested in are

C and C++; in particular, the C language was designed to write operating

systems, and as such provides facilities to precisely control the behaviour

of the application program, including the ability to closely match the

machine code that is going to be generated. Thus, even if C was never

designed specifically for high performance computing, it is possible to

generate high performance code. This is also true of C++: again, the

language was never designed specifically for HPC, but it can be used

effectively.

Over the years, the quality of the available compilers, and of the code

they are able to generate, has evolved quite a lot: many things that were

done “by hand” with tricky source code constructs in the 90s, can now

be safely delegated to the compiler. Nevertheless, writing a program that

fully exploits the hardware capabilities will always involve a significant

amount of work and ingenuity in finding the best way to express what

the programmer’s intentions are.

General Parallel Programming
Issues 3

3.1 Parallelism: basic con-
cepts 29

3.2 Parallelism: Performance
metrics 30

3.2.1 Scalability of a parallel
system 31

3.2.2 Speed-up and efficiency . 31
3.2.3 Amdhal’s law 33
3.2.4 Gustafson’s law 34
3.2.5 Closure 35
3.3 Paradigms, models and

tools for parallel program-
ming 35

3.3.1 Algorithmic paradigms . 36
3.3.2 Programming models . . 36
3.3.3 Roofline model for multi-

core architectures 37

We call parallelism the ability to have multiple operations completing

their execution at the same time. This definition leaves open what we

mean by operation; depending on the context we might mean a single

machine instruction of any kind, a floating-point operation or something

else. In a scientific or engineering application context, the most important

parameter is likely the number of floating point operations, because this

is usually the limiting factor for the execution speed.

It is possible to have parallelism at multiple levels in a computing system,

such as:

▶ Within a single machine instruction specifying multiple operations;

examples of this are the SSE instructions available in the Ix86 Intel

processors, or the fused floating-point multiply-and-add available

on many modern architectures;

▶ Within a single processor capable of completing more than one

instruction per clock cycle; most modern RISC processors have

multiple execution units and are called superscalar;
▶ Within a single silicon chip hosting multiple CPUs; these archi-

tectures are known as multicore processors
‗
, a core being each

complete CPU;

▶ Within a single computer containing multiple processors;

▶ Using multiple computers connected through some sort of com-

munication device.

From the application programmer’s point of view the first two kinds of

parallelism are mostly handled through the compiler and in the libraries

implementing the heaviest computational kernels, and are “almost”

transparent; in the following we will concentrate on the last three kinds

of parallel computing systems.

In classifying the high performance parallel computers currently in com-

mon use the discriminating factor is the memory subsystem configuration;

thus we distinguish two main kinds of parallel systems:

1. shared memory systems;

2. distributed memory systems.

3.1 Parallelism: basic concepts

Since its introduction in the early Seventies, the Flynn taxonomy [15, 16]

has been broadly used to classify computer architectures. According to

this scheme, computers belong to one these four categories:

SISD (Single Instruction Single Data): this category includes sequential

computers where a single stream of data is processed by a single

stream of instructions.

‗
This usage is slightly confusing, since we are calling processor both a single CPU and a chip

hosting multiple cores; hopefully the context will be sufficient to avoid any major trouble.

30 3 General Parallel Programming Issues

SIMD (Single Instruction Multiple Data): this category mostly includes

vector processors capable of handling, with a single instruction,

multiple data presented in the form of a vector. The probably most

notable example of such machines is the Cray-1 computer equipped

with vector registers of length 64.

MISD (Multiple Instruction Single Data): no significant example of

such architectures has ever been built. Flynn places in this category

ancient plug-board machines; according to other authors, examples

of these architectures are represented by some embedded devices

where the same instruction is redundantly executed in multiple

streams on the same data in order to achieve fault tolerance by

verifying accordance of the results.

MIMD (Multiple Instruction Multiple Data): here, multiple instruction

streams concurrently operate on different (sub)sets of data. To this

category belongs the vast majority of the parallel computers built

in the last 30 years including both shared and distributed memory

multiprocessors.

This simple taxonomy can still be used to roughly categorize modern

architectures; however the current landscape of high performance com-

puters is much more complex and modern parallel supercomputers can

commonly be described as hybrid combinations of different types of

architectures. A typical modern supercomputer is composed of several

nodes communicating through a network interconnect; nodes include

several processors eventually arranged in a shared-memory NUMA

(Non-Uniform Memory Access) fashion; each processor is a multicore;

each core is equipped with SIMD units like the SSE units in x86 processors

or the AltiVec in Power processors capable of executing floating-point

vector instructions of size two or four; finally, nodes can be equipped

with multiple accelerators such as GPU devices that have their own

memory system and are connected to the other processor(s) (commonly

referred to as hosts) through a PCI link or a high-speed interconnect

which is typically hardware specific, e.g., the NVLink in NVIDIA GPUs.

Exploiting the considerable computational power of such computers

clearly demands programming models and algorithms that are capable of

matching their hierarchical structure and heterogeneity. In the following

Chapter 4 on page 41 and Chapter 5 on page 47 we will discuss the paral-

lel programming models that can be used to exploit the computational

power of modern supercomputers. In this chapter we will discuss the

basic concepts of parallel programming and the performance metrics

that can be used to evaluate the performance of parallel programs.

3.2 Parallelism: Performance metrics

Since there are countless alternatives in parallel computing, in terms

of hardware architectures, programming paradigms and applications,

it is necessary to define some metrics to evaluate the performance of a

parallel system.

There exists no single criterion that would be meaningful to all users. For

instance a computer scientist might be interested in the pure algorithmic
speed-up, while a computational scientist would be more interested in

the time to completion and in the maximum size of the problem that

3.2 Parallelism: Performance metrics 31

can be analyzed, and a system administrator just wants to maximize
system utilization.

We add a word of caution against any published performance measures:

there is no real substitute for an actual test with the workload we are

interested in. All benchmarks are indicators that are only as good as their

relation to our intended usage of a parallel computer; procurement of a

machine that will be used to run a single critical application day in, day

out, is very different from procurement of a machine that will be installed

in a computing center serving a wide community of researchers.

3.2.1 Scalability of a parallel system

A parallel system may be defined as the implementation of a parallel algorithm
on a given parallel architecture. With the scalability theory we want to organize

the evaluation of performance of parallel systems, taking into account

all possible usage aspects. Specifically we need to define the appropriate

metric to use when tackling the following questions:

▶ How do we measure the raw performance of a system?

▶ How do we compare measurements obtained on different ma-

chines?

▶ How does the metric respond to the programming paradigm

employed?

▶ Do we want raw performance or value for money?

Given the variety of questions to be answered, we may only give a general

criterion, and not a single, precisely defined measurement procedure.

We say that a parallel system is scalable if it gives the same performance per

processor while growing the number of processors involved and/or the

size of the problem to be solved. We also say that a program is scalable if

we improve its performance when increasing the number of processors

employed from 𝑝 − 1 to 𝑝.

3.2.2 Speed-up and efficiency

Let us first define the size of a problem𝑊 as the number of basic operations

necessary for the best sequential algorithm known to solve the problem.

A given problem of size 𝑊 may be solved by a program on one or more

processors, running in parallel; we may thus define:

▶ Serial execution time 𝑇𝑠 : the time between the start and the end of

the program execution on one processor;

▶ Parallel execution time on 𝑝 processors 𝑇𝑝 : the time between the

start of the execution and the completion of execution on the last

processor.

We note explicitly the influence of I/O operations on the total execution

time; most of the I/O is normally executed once at the start of the simu-

lation, and later operations are typically rather infrequent; depending

on our main modeling objective and measurement procedures, we may

include them or we may want to look at the scalability of the computa-
tional kernel in isolation. However if the I/O is an essential part of the

32 3 General Parallel Programming Issues

1: This a sector quite distinct from par-

allel linear algebra, there exists several

libraries that permits handling Paral-

lel I/O operations and this is an ac-

tive area of research see, e.g., the ROOT

library from CERN root.cern or the

CAPIO framework §High-Performance-

IO/capio.

application, then it is advisable to look at schemes for parallelizing the

I/O operation themselves
1
.

Given the previous considerations, 𝑇𝑠 will be essentially a function of the

size of the problem and of the processor speed, while 𝑇𝑝 will additionally

depend on the number of processors, on the parallel system architecture

and on the balance between the communication speed and the processor

speed. Thus:

▶ 𝑇𝑠 = 𝑓 (𝑊)
▶ 𝑇𝑝 = 𝑓 (𝑊, 𝑝, 𝑎𝑟𝑐ℎ)

It is not possible to define a parallel system performance in an absolute

sense, without referring to a specific kind of application. An example is

the Top500 list of the most powerful computers in the world from Table ??:

its rules are very specific on the way to measure and report computing

power using a predeterimined application, i.e., the factorization of a large

dense matrix.

We now define a widely used performance index: the speed-up on a

problem 𝑆(𝑊, 𝑝), which is the ratio between:

▶ 𝑇𝑠(𝑊): Sequential execution time for the best algorithm known to

solve the problem;

▶ 𝑇𝑝(𝑊, 𝑝): Parallel execution time on 𝑝 processors.

Thus we have:

𝑆(𝑊, 𝑝) = 𝑇𝑠(𝑊)
𝑇𝑝(𝑊, 𝑝) (3.1)

According to the value attained by 𝑆(𝑊, 𝑝) we distinguish the situa-

tions:

1. 𝑆(𝑊, 𝑝) = 𝑝: linear speed-up

2. 𝑆(𝑊, 𝑝) < 𝑝: sub-linear speed-up

3. 𝑆(𝑊, 𝑝) > 𝑝: super-linear speed-up

A linear speed-up is usually the goal to aim for: having a speed-up

of 𝑝 while using 𝑝 processors means that all parts of the application

have been perfectly parallelized with no penalization from the necessary

communication.

There exist a few codes for which it is possible to partition the computa-

tion in substantial tasks that can proceed with little or no communication

among them, and they are often called “embarassingly” parallel; how-

ever in most cases an increase in the number of processors entails an

increase of:

▶ startup times,

▶ data communication times,

▶ synchronization overhead.

We may therefore expect that with growing 𝑝 we will see a growing

distance from the ideal linear speedup.

In a few cases it is possible to have a super-linear speed-up, i.e. 𝑆(𝑊, 𝑝) >
𝑝; this may happen for two reasons:

https://root.cern/
https://github.com/High-Performance-IO/capio
https://github.com/High-Performance-IO/capio

3.2 Parallelism: Performance metrics 33

popt p

linear

super−linear

sub−linear

S
pe

ed
−

up

Figure 3.1: Speed-up vs. number of pro-

cessors

Wmin

1

W

S
pe

ed
−

up

Wsat maxW

Figure 3.2: Speed-up vs. problem size

1. A serial program may be confronted with a problem instance so

large that it cannot exploit efficiently the memory hierarchy (see

Section Subsection 3.3.3 on page 37 for some details on this aspect),

in terms of cache memory and/or central memory; in this case a

partition of the problem on multiple processors may well bring the

memory load on each one of them within the hardware resources,

thus improving the computational speed;

2. In some graph search algorithms the partition of the problem in

multiple subproblems may drastically alter the search sequence, so

that the solution may be found much earlier; in these cases, if there

is enough memory available, we might even experience a speed-up

while running a parallel program on a single processor!

The possible speed-up behaviours vs. number of processors are shown in

Figure Figure 3.1; we show a realistic situation for the case of sub-linear

speed-up, in that the distance from the linear case grows with 𝑝, because

with a fixed problem size 𝑊 the communication overhead increases in

percentage.

Since the speed-up 𝑆(𝑊, 𝑝) is a function of both number of processors 𝑝

as well as problem size 𝑊 , we often want to look at the behaviour of 𝑆

varying 𝑊 with a fixed machine size 𝑝; the behaviour in such a case is

shown in Figure Figure 3.2.

From the figure we may see that we do have a benefit from a parallel

run only in a certain range of problem sizes [𝑊min ,𝑊max]. For small

problem sizes we have that the communication overhead is so large

that 𝑆 < 1; the actual crossing point is dependent on the ratio between

the speed of the processor and the speed of the network, and on the

specific algorithm we are considering. The speedup reaches a peak at

𝑊sat, levels off, and then after 𝑊max it drops rapidly; this is a typical

behaviour if the memory per node grows with𝑊 , because the underlying

computing node performance degrades rapidly as soon as the available

node memory is overflowed.

A closely related metrics is the efficiency of a parallel system, defined as

the ratio between the speed-up and the number of processors:

𝐸(𝑊, 𝑝) = 𝑆(𝑊, 𝑝)
𝑝

(3.2)

or, substituting the definition (3.1):

𝐸(𝑊, 𝑝) = 𝑆(𝑊, 𝑝)
𝑝

=
𝑇𝑠(𝑊)

𝑇𝑝(𝑊, 𝑝) · 𝑝 (3.3)

If we rule out the odd cases of superlinear speed-up, we normally have

that 𝐸(𝑊, 𝑝) ∈ (1/𝑝, 1).

3.2.3 Amdhal’s law

Let us consider the following definitions based on the serial execution

time 𝑇𝑠(𝑊):

The serial fraction 𝑓𝑠 of a program is the ratio between the time spent in

code sections that are intrinsically serial and the total time 𝑇𝑠(𝑊).

34 3 General Parallel Programming Issues

The parallel fraction 𝑓𝑝 of a program is the ratio between the time spent

in code sections that are parallelizable and 𝑇𝑠(𝑊).

Obviously we have 𝑓𝑠 =
(
1 − 𝑓𝑝

)
; we can now state the Amdhal’s law:

𝑇𝑝(𝑊, 𝑝) = 𝑇𝑠(𝑊) · 𝑓𝑠 +
𝑇𝑠(𝑊)

𝑝
· 𝑓𝑝 (3.4)

that is, the parallel executin time 𝑇𝑝(𝑊, 𝑝) is an average between 𝑇𝑠(𝑊) e
𝑇𝑠 (𝑊)

𝑝 , weighted with the serial and parallel fractions, respectively.

Using this relation we may derive a simple relation between the speed-up

𝑆(𝑊, 𝑝), the number of processors 𝑝 and the serial fraction 𝑓𝑠 . We have:

𝑆(𝑊, 𝑝) =
𝑇𝑠(𝑊)

𝑇𝑝(𝑊, 𝑝)

=
𝑇𝑠(𝑊)

𝑇𝑠(𝑊) · 𝑓𝑠 +
𝑇𝑠(𝑊)

𝑝
· (1 − 𝑓𝑠)

=
𝑝

1 + (𝑝 − 1) · 𝑓𝑠
(3.5)

Considering the limit for 𝑝 → +∞we obtain:

𝑆(𝑊, 𝑝) = lim

𝑝→+∞

𝑝

1 + (𝑝 − 1) · 𝑓𝑠
=

1

𝑓𝑠
(3.6)

This result is quite important, because it gives a hard limit for the results

that can be obtained by parallelizing an application. If, for instance, a

code has a sequential fraction of 5%, then no matter how much effort we

put int, it is impossible to get a speed-up larger than 20.

If we want to have absolute performance, it is then clear that we have to

leave no stone unturned in attacking an application code; unfortunately

in many cases, especially at fixed problem sizes, the overhead added in

terms of synchronization and data exchange is such that the speed-up is

not really growing even if we parallelize every line of code.

It is however important not to overestimate the negative conclusions that

could be drawn from Amdhal’s law. First of all, only a few application

context require to get performance at all costs; these kind of applications

(e.g. weather forecasts) are among the driving forces in the evolution

of computing techniques. On the other hand, in most application areas

we are really interested in scaling up the size of the machine when we

want to handle much larger problem instances: we don’t (usually) fire

100 processors at a linear system of size 1000. Since the linear algebra

applications are usually of this kind, the limits defined by Amdhal’s law

are not as constraining as they seem.

3.2.4 Gustafson’s law

As noted, the outlook from Amdhal’s law is too pessimistic, and the

reason should (by now) be clear: normally we use parallelism to solve

big problems, not small ones, and each problem will have a “natural”

range beyond which it does not make sense to add processors. To account

for this we may use Gustafson’s law [17]; if a serial program has a

3.3 Paradigms, models and tools for parallel programming 35

2: In an interview (“Dr. Dobb’s Journal”,

April 1996, www.ddj.com/184409858)

Donald E. Knuth, one of the most influ-

ential computer scientists in the world,

states: “. . . the psychological profiling [of

a computer scientist] is mostly the ability

to shift levels of abstraction, from low

level to high level. To see something in

the small and to see something in the

large.”

sequential fraction 𝛼 and a parallel fraction (1 − 𝛼) then, as we grow the

number of processor, we scale the parallel part of the workload to have

𝑊(𝑛) = 𝛼𝑊 + (1 − 𝛼)𝑛𝑊 , thus obtaining

𝑆′𝑛 =
𝑊(𝑛) = 𝛼𝑊 + (1 − 𝛼)𝑛𝑊

𝑊
= 𝛼 + (1 − 𝛼)𝑛 (3.7)

Even if this is a much better measure of the possibilities of parallel

computers, it still has some problems; the reason is that we are assuming

that the serial fraction 𝛼 remains the same as we scale the program.

3.2.5 Closure

What happens in practice is that the workload is composed of:

▶ A serial part;

▶ A parallel part;

▶ A parallelization/communication overhead.

To estimate precisely the speedup we need to account for all these parts,

and this is something very application dependent.

3.3 Paradigms, models and tools for parallel
programming

Having given a brief overview of the architectural features important to

parallel computing, let us turn our attention to the problems to be tackled

when we actually try to implement a parallel application. First of all let

us note that the use of a parallel machine does not necessarily mean the

use of parallel application; it is quite possible that the machine is needed

to run multiple independent instances of a given serial application. In

this case the machine is used to maximize the throughput, i.e. the number

of user requests completed per unit time; this scenario has some analogy

with the work pool paradigm discussed later, but is nonetheless outside

our main interests.

At this point we introduce a distinction between paradigms, models and

tools for parallel programming, following [17]:

Paradigm: the logical structure imposed on a parallel algorithm;

Model: the mechanism by which parallelism is expressed in the code;

Tool: the software instrument employed to implement the program code

(compiler, library, etc.).

We thus have three different levels related to the problem we are facing
2
.

Choices made at these three levels may combine in various ways, although

some programming tools “encourage” certain strategies more than others;

moreover, any choice at the software level has still to take into account

the hardware architecture on which the application will run.

In this section we give an overview of the alternatives that have been

experimented in the last few decades; in the current practice two pro-

gramming tools, and the models they embody, dominate the field, and

will be detailed in Chapter 4 on page 41 and Chapter 5 on page 47.

http://www.ddj.com/184409858

36 3 General Parallel Programming Issues

Synchronization

Synchronization

Worker Worker Worker Worker

Master

C C C C

CCCC

Phase parallel

Master−Worker

Pool

T0 T1 T2 T3

Work pool

Divide and Conquer

Figure 3.3: Some parallel programming

paradigms

3.3.1 Algorithmic paradigms

In Figure Figure 3.3 we illustrate some important parallel programming

paradigms:

Phase parallel: the computation is organized in a succession of phases

in which the tasks alternate between doing their own indepen-

dent computations and synchronization phases during which the

necessary interactions take place;

Divide and conquer: Each task divides its own problem in two or more

subproblems, and assigns them to “children” tasks, who in turn will

do the same recursively; when all “children” tasks have completed,

their “parent” will collect their solutions and combine them to

build the solution to its own problem to be sent to its parent, and

so on;

Owner computes: there exists a “natural” partitioning of data, with

each subset of the partition assigned to a task, such that each task

will execute (mostly) the same operations on the subset of data it

owns;

Master-worker: one of the tasks takes on the role of controller, distributes

parts of the job to the controlled tasks and collects the partial

solutions combining them to build the problem solution;

Work pool: there is a shared data structure containing a queue of jobs

to be executed; each free task accesses the queue and takes charge

of one of the jobs; when the job is completed, it may happen that,

given the results, the task has to add more jobs to the queue before

taking charge of a new one. This process goes on until all tasks are

free and the queue is empty.

The algorithms typical of CSE, and specifically those for fluid dynamics

problems, usually lend themselves to a phase parallel structure, with

the partitioning of the computing load driven by a partitioning of the

simulation domain according to the “owner computes” scheme. This is

the natural approach for most applications based on finite difference,

volumes or elements discretizations of partial differential equations.

It is however possible to have hybrid situations; consider for instance

an application aiming at the optimization of the design of some device.

In principle this is a maximization problem for a certain function in the

space of all possible design points; the evaluation of the function on

a given point is a (potentially very) complex simulation of the device.

In this case it may be appropriate to employ a master-worker scheme,

where the master task organizes the search in the configuration space,

delegating each function evaluation to the worker tasks.

3.3.2 Programming models

We will concentrate on the parallel programming models most relevant

to our application domains:

Implicit parallelism: in this model the programmer delegates to the

compiler the exploitation of the available parallelism. This is a very

difficult task for the compiler, consequently the efficiency attained

is usually quite low.

3.3 Paradigms, models and tools for parallel programming 37

Data parallel: the parallel program contains one control flux (i.e. a single

stream of high-level instructions), and the parallelism is available

because those instruction are applied to data sets that may be

partitioned and operated upon independently. It implies a logically

shared memory; perhaps the best example of this model is the

use of the HPF (High Performance Fortran) language. The main

difference with respect to the previous model is that there are

language constructs (e.g.: FORALL) and directives guiding the

compiler in the process of parallelizing the source code.

Message passing: The parallel application is built out of a set of pro-

cesses that may only interact through the exchange of messages, i.e.

packets of data, under the explicit programmer control. In principle

each process may execute a different program, thus guaranteeing

the maximal algorithmic flexibility. In practice we see the common

usage of the SPMD (Single Program Multiple Data) technique, in

which all processes execute a copy of the same program; this is a

natural implementation of the owner computes paradigm, similar to

the data parallel, but having a greater flexibility because different

tasks may be executing different sections of code;

Shared variable: in this model we assume a logically shared memory,

just as in the data parallel programming, but we may have multiple

control fluxes and private data areas as in the message passing

model.

The data parallel approach and HPF have generated a strong interest

in the past, because of the compiler based approach and because of the

upward compatibility with respect to serial Fortran applications; however

HPF has not been very successful in the marketplace and its usage is

declining to the point of disappearing.

The message-passing model is the most popular today for applications

needing scalability to a large number of processors; the main disadvan-

tage is the need for the programmer to explicitly insert all necessary

communications. If the user does not apply a coherent programming

discipline, it may lead to applications written at too “low” a level, hard

to reuse and maintain. Message passing is implemented with the usage

of subroutine libraries.

The shared-variable approach may be programmed explicitly by the

user, but becomes really interesting when it can be implemented through

a compiler; similarly to the data-parallel case, the programmer then

inserts directives into the source code to guide the compiler in the desired

parallelization.

3.3.3 Roofline model for multicore architectures

Modern computer architectures are organized around a memory hi-

erarchy designed to balance speed, capacity, and cost. At the top of

this hierarchy are the registers and cache memories (L1, L2, and L3),

which provide extremely fast access to the data most frequently used

by a processor. Below them lies the main memory (RAM), followed by

secondary storage such as solid-state drives (SSD) or hard disk drives

(HDD), and finally tertiary storage for long-term or archival data.

38 3 General Parallel Programming Issues

A critical performance parameter across this hierarchy is the memory

bandwidth, which represents the rate at which data can be transferred

between memory and the processor. As processors have become faster

and more parallel, improvements in computational speed have far out-

paced increases in memory bandwidth. This imbalance has led to what is

known as the memory wall — the point at which the latency and limited

bandwidth of memory become the primary bottleneck to overall system

performance. To better understand this limitation, the roofline model [18]

is often employed as a visual framework that relates a system’s computa-

tional throughput to its memory bandwidth. It is a visual performance

model that provides an insightful way to bound the performance of

a kernel on a given architecture. The roofline model is based on two

key hardware characteristics: the peak floating-point performance of

the processor (Perf, in FLOP/s) and the peak memory bandwidth (BW,

in Bytes/s). It also requires the operational intensity (OI) of the kernel,

defined as the ratio of the number of floating-point operations to the

number of bytes accessed from memory (in FLOP/Byte). The model is

represented as a log-log plot of the attainable performance as a function

of the operational intensity; see Figure 3.4. Note that we have:

𝑃𝑒𝑟 𝑓 =
𝐹𝐿𝑂𝑃

𝑠
=

𝐹𝐿𝑂𝑃

𝐵𝑦𝑡𝑒
· 𝐵𝑦𝑡𝑒

𝑠
= 𝑂𝐼 · 𝐵𝑊.

The plot consists of two regions: a memory-bound region and a compute-

Figure 3.4: Roofline model for a hypo-

thetical architecture with a peak per-

formance of 100 GFLOP/s and a mem-

ory bandwidth of 25 GB/s. The ridge

point is at an operational intensity of 4

FLOP/Byte.

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
2.3

Ridge Point (4 FLOP/Byte)

Operational Intensity (FLOP/Byte)

P
e
r
f

(
G

F
L

O
P

/
s
)

Memory Bandwidth (25 GB/s)

Peak Performance (100 GFLOP/s)

bound region. The memory-bound region is characterized by a linear

increase in performance with increasing operational intensity, limited by

the memory bandwidth. The compute-bound region is characterized by a

horizontal line at the peak floating-point performance, indicating that the

performance is limited by the processor’s computational capabilities. The

intersection of the two regions is called the ridge point, which represents

the minimum operational intensity required to achieve peak performance.

The roofline model can be used to analyze the performance of different

kernels on a given architecture, identify performance bottlenecks, and

guide optimization efforts. By comparing the operational intensity of a

kernel to the ridge point, one can determine whether the kernel is memory-

bound or compute-bound, and focus optimization efforts accordingly.

More specifically, since the achievable performance of an application

depends linearly on both its operational intensity (OI) and the available

memory bandwidth (BW), algorithmic optimization techniques that

improve operational intensity and data locality are crucial for enhancing

3.3 Paradigms, models and tools for parallel programming 39

3: The STREAM benchmark

can be obtained from http:

//www.cs.virginia.edu/stream/

or installed via Spack with the

command spack install stream

stream_type=double, usually we are

interested in an multicore architecture

and on using an OpenMP drive, this

can be installed with the command

spack install stream_type=double

+openmp.

performance. These principles have guided the evolution of optimization

strategies in dense linear algebra programming, as exemplified by the

progression of the Basic Linear Algebra Subprograms (BLAS) from Level

1 to Level 3 routines (see Chapter 6 on page 61 for details). Higher-level

BLAS operations, such as matrix–matrix multiplication, achieve much

higher operational intensity by reusing data in fast memory, thereby

significantly reducing memory traffic and approaching the compute-

bound regime of the roofline model.

To obtain a measure of the bandwidth available to a given application we

may use the STREAM3
benchmark [19, 20], which measures the sustainable

memory bandwidth (in GB/s) and the corresponding computation rate

for simple vector kernels. The benchmark is composed of four simple

vector kernels: COPY, SCALE, SUM, and TRIAD. The COPY kernel copies a

vector from one location to another, the SCALE kernel scales a vector

by a constant factor, the SUM kernel adds two vectors together, and the

TRIAD kernel performs a scaled vector addition. Each kernel is executed

multiple times to obtain a reliable measure of the memory bandwidth.

The benchmark is designed to be simple and easy to understand, while

still providing a good measure of the memory bandwidth available

to real-world applications. The STREAM benchmark is widely used in

the high-performance computing community to evaluate the memory

performance of different architectures and to compare the performance

of different systems.

To obtain a measure of the peak floating-point performance of a given

architecture this is more difficult, since it depends on the specific instruc-

tions used, the vectorization capabilities of the processor, the number of

cores, the clock frequency, and other factors. A simple way to estimate

the peak floating-point performance is to use the following formula:

FLOP/s = Number of Cores×Clock Frequency (GHz)×FLOP per Cycle

where FLOP per Cycle is the number of floating-point operations that can

be performed in a single clock cycle. This value depends on the specific

architecture and can be obtained from the processor’s documentation. For

example, a modern x86 processor with AVX2 instructions can perform 8

double-precision floating-point operations per cycle. This means that a

processor with 4 cores running at 3 GHz can achieve a peak performance

of:

Peak FLOP/s = 4 × 3 × 8 = 96 GFLOP/s

However, this is just an estimate, and the actual peak performance may

be lower due to various factors such as memory bandwidth limitations,

cache misses, and other overheads. Vendors usually provide a theoretical

peak performance value for their processors, which can be used as a

reference point for performance analysis.

http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/

Figure 4.1: The architecture of the IBM

POWER4 processor.

Intra-node Parallelism 4
4.1 Advanced architectures . 42
4.2 Tools 44
4.2.1 OpenMP 44
4.3 Accelerators 46

During the last decades, the performance of computer microprocessors

managed to keep the pace with Moore’s law
1

1: Moore’s law, named after Gordon E.

Moore, co-founder of Intel, is the obser-

vation that the number of transistors on a

microchip doubles approximately every

two years, leading to a corresponding

increase in computational power and a

decrease in relative cost. This empirical

trend, first articulated in 1965, has driven

the exponential growth of the semicon-

ductor industry and has been a key en-

abler of technological advancements in

computing, from personal computers to

modern supercomputers. However, as

transistor sizes approach physical limits,

maintaining this pace of progress has be-

come increasingly challenging, prompt-

ing innovations in alternative computing

paradigms and architectures: which is

why we are now discussing parallelism.

mostly thanks to higher and

higher clock frequencies—the result of the deep exploitation of micro-

architectural techniques such as pipelining, out-of-order, speculative or

superscalar execution or branch prediction that are commonly gathered

under the generic name of Instruction Level Parallelism (ILP) techniques.

At the beginning of the last decade, this trend has reached the point of

diminishing returns mostly due to two hard limits:

▶ Concurrence limit: despite the fact that ILP techniques can be

very sophisticated and complex, there is a limit to the level of

concurrence that can be achieved through them: even the most

advanced and modern microprocessors cannot issue more than

four or five instructions per clock cycle whereas the concurrence

available in a wide range of operations is much larger.

▶ Power limit: reducing the microprocessors power consumption

and heat dissipation is an issue of considerable importance for

the computer industry; for example, it is crucial for extending the

battery life of mobile devices and for limiting the operational costs

of large scale supercomputers (as a reference, consider that the

highest-ranked computers in the Top500 list consume around 30

MW—the equivalent of a small town, or at least, the equivalent

of a small town which is not housing a supercomputing center).
Increasing the processors clock speed brought the processors

power consumption and heat dissipation to unsustainable limits

due to the fact that power depends on the cube of the frequency.

In order to work around these issues, the microprocessors industry

abruptly steered towards Thread Level Parallelism (TLP) techniques

which gave birth to a new generation of computer processors, commonly

known as multicores or Chip Multi-Processors (CMP). Conceptually, these

processors simply pack onto the same die multiple independent Process-

ing Units (i.e., cores) capable of handling different instructions and data

streams. As a result, they are capable of sustaining much higher levels of

concurrence. At the same time, considerable performance improvements

can be achieved at a much smaller cost in terms of power consumption

and heat dissipation. As a matter of fact, increasing the numbers of cores

on a chip only increases the power consumption by the same factor due to

its linear dependence on the number of transistors. Likewise, by slightly

reducing the operational frequency and increasing the number of cores,

performance can be improved and power consumption reduced at the

same time. A few years from this technological revolution, multicore

processors are nowadays ubiquitous and the evolution of computers is

driven by a run towards higher and higher numbers of cores per chip.

42 4 Intra-node Parallelism

4.1 Intra-node parallelism: advanced
architectures

The first general-purpose, multicore processors was the POWER4, re-

leased by IBM in 2001. This chip, whose architecture is sketched in Figure

Figure 4.1 on the preceding page, shipped two cores, each with its own

L1 cache memory; L2 cache is shared among the two cores as well as the

L3 one which lies off the chip. The two cores access the main memory

through a shared bus.

The POWER4 chip can be roughly described as two processors glued

together on the same die. This idea is at the base of most of the multi-

core processors developed so far. Last generation multicore processors

commercialized by the major chip producers (e.g., AMD or Intel) can

pack up to larger numbers of cores on the same die. For example, the

AMD EPYC 9655P processor, released in 2023, is a processor with 96

cores and 192 threads; while Intel Xeon w9-3595X processor, released

in 2024, is a processor with 60 cores and 120 threads. On a lower scale,

the are processors with different kind of cores like the Intel i9-14900HX

processor packing 24 Cores and 32 Threads divided into 8 performance

cores (16 Threads, 2.2 GHz) and 16 efficient cores (16 Threads, 1.6 GHz)

which is depicted in Figure 4.2

To obtain the analogous of Fig-

ure 4.2 for your processor you

can use the following command:

lstopo --no-attrs --no-factorize

--no-collapse --no-cpukinds

--no-legend topology.pdf The

lstopo command is part of the hwloc

package which is available on most

Linux distributions, e.g., on Ubuntu you

can install it with the command: sudo

apt-get install hwloc.

Modern CPUs are equipped with a hi-

erarchy of special-purpose cache mem-

ories designed to mitigate the perfor-

mance bottlenecks associated with ac-

cessing main memory. These caches are

built using static random-access mem-

ory (SRAM), a type of memory that

is significantly faster than the dynamic

random-access memory (DRAM) used in

main system memory. Although SRAM

is faster and more power-efficient for

frequent accesses, it is also more expen-

sive and occupies more physical space

per bit than DRAM. As a result, caches

are relatively small in capacity but ex-

tremely fast, enabling quick access to the

most frequently used data. To balance

speed, cost, and capacity, CPU caches are

typically structured into multiple levels,

commonly referred to as L1, L2, and L3.

The L1 cache is the smallest and fastest,

located closest to the processor core, and

usually split into separate instruction

and data caches.

Machine

Package L#0

L3

L2

L1d

L1i

Core L#0

PU L#0
P#0

PU L#1
P#1

L2

L1d

L1i

Core L#1

PU L#2
P#2

PU L#3
P#3

L2

L1d

L1i

Core L#2

PU L#4
P#4

PU L#5
P#5

L2

L1d

L1i

Core L#3

PU L#6
P#6

PU L#7
P#7

L2

L1d

L1i

Core L#4

PU L#8
P#8

PU L#9
P#9

L2

L1d

L1i

Core L#5

PU L#10
P#10

PU L#11
P#11

L2

L1d

L1i

Core L#6

PU L#12
P#12

PU L#13
P#13

L2

L1d

L1i

Core L#7

PU L#14
P#14

PU L#15
P#15

L2

L1d

L1i

Core L#8

PU L#16
P#16

L1d

L1i

Core L#9

PU L#17
P#17

L1d

L1i

Core L#10

PU L#18
P#18

L1d

L1i

Core L#11

PU L#19
P#19

L2

L1d

L1i

Core L#12

PU L#20
P#20

L1d

L1i

Core L#13

PU L#21
P#21

L1d

L1i

Core L#14

PU L#22
P#22

L1d

L1i

Core L#15

PU L#23
P#23

L2

L1d

L1i

Core L#16

PU L#24
P#24

L1d

L1i

Core L#17

PU L#25
P#25

L1d

L1i

Core L#18

PU L#26
P#26

L1d

L1i

Core L#19

PU L#27
P#27

L2

L1d

L1i

Core L#20

PU L#28
P#28

L1d

L1i

Core L#21

PU L#29
P#29

L1d

L1i

Core L#22

PU L#30
P#30

L1d

L1i

Core L#23

PU L#31
P#31

NUMANode L#0 P#0

Figure 4.2: The architecture of the Intel i9-14900HX processor, on the left part of the figure we see the eight performance cores, each with

is dedicated L2 cache, while on the right part of the figure we see the sixteen efficient cores which shares one L2 cache every four cores.

The L3 cache is shared among all the cores, while the L1 cache is private to each core.

A careful analysis of the architecture of the modern processor archi-

tectures reveals a detail that shows how limited the scalability can

be on certain operations. In light of the EPYC 9655P’s simultaneous

capabilities—710 GFLOP/s of peak double-precision throughput versus

a fixed 614 GB/s of socket memory bandwidth—it becomes clear why

workloads naturally bifurcate into compute-bound and memory-bound

regimes:

▶ memory-bound: for these are the operations the ratio between num-

ber of computations and number of data transfers from the main

memory is close to one or smaller. Because no data reuse is possible

(i.e., data brought into cache memories are never reused), these

operations cannot run any faster than the speed at which data is

transferred from the main memory. Since, as shown before, one or

a few cores are typically sufficient to saturate the available memory

bandwidth, parallelizing these operations for multicore processors

only provides a marginal benefit (mostly due to a better utilization

of the memory bus) if any at all. One notable operations in this

family is the sparse matrix-vector product that performs O(𝑛𝑛𝑧)
floating-point operations on O(𝑛𝑛𝑧) data, nnz being the number

4.1 Intra-node parallelism: advanced architectures 43

2: See the list on the TOP500 website

top500.org/lists/top500/2008/06/.

of nonzeroes in the matrix; this operation is the computational

kernel of iterative methods for the solution of linear sparse systems.

Level1 (e.g., the sum of two vectors) and Level 2 (e.g., the dense

matrix-vector product) BLAS operations perform, respectively,O(𝑛)
floating-point operations on O(𝑛) data and O(𝑛2) floating-point

operations on O(𝑛2) data and are, therefore, another example of

operations belonging to this family.

If the processor needs a piece of data,

it first checks the L1 cache. If the data

is not found there—a situation known

as a cache miss—it proceeds to check

the L2 cache, which is larger but slightly

slower. If the data is still not found, the

search continues to the L3 cache, which

is larger still but with higher latency.

If none of the caches contain the re-

quired data, the CPU finally accesses

main memory, which is much slower

but has much greater capacity. This hier-

archical approach provides an effective

compromise: it allows the processor to

access frequently used data with mini-

mal delay, while still supporting access

to the full range of memory available in

the system. By organizing caches into

multiple levels, the CPU can take ad-

vantage of fast, low-capacity storage for

immediate needs, while relying on larger,

slower caches and eventually main mem-

ory for less frequently accessed data. This

structure significantly reduces the av-

erage time required to access memory,

thereby improving overall system perfor-

mance. The rationale behind this layered

design stems from the trade-offs inherent

in memory technology. A single, large

cache made entirely of fast SRAM would

be prohibitively expensive and consume

excessive power and space. Conversely,

using only DRAM would result in un-

acceptable delays for many applications.

Multi-level caches enable the CPU to nav-

igate these trade-offs effectively, ensur-

ing that performance remains high even

as data sets and workloads grow. Thus,

the cache hierarchy is a cornerstone of

modern processor architecture, essential

for bridging the gap between processor

speed and memory latency.

▶ computation-bound: for these operations, the amount of computa-

tions is much higher than the amount of data transfer from memory.

This property provides a very high temporal locality of data, i.e.,

data that are read from main memory and brought into caches can

be reused in multiple instructions over time. Because each core

is equipped with one or more levels of exclusive cache, most of

the memory traffic happens in parallel without using the main

memory bus. In this case performance scalability can be very good

up to relatively high number of cores. To this family belong, for

example, the Level 3 BLAS routines (e.g., the dense matrix-matrix

product) that perform O(𝑛3) floating-point operations on O(𝑛2)
coefficients. Some very common algorithms, such as the dense LU

factorization described in Section Subsection 6.2.3 on page 80, rely

on these routines and therefore benefit from the same property.

This memory bottleneck (sometimes referred to as the memory wall in

literature) which hinders the performance of memory-bound operations

is clearly a hard constraint towards the scalability of multicore processor,

indeed in our AMD EPYC 9655P when an algorithm’s operational

intensity (FLOPs per byte transferred) exceeds roughly 1.16 FLOP/byte,

the processor’s arithmetic units throttle performance (compute-bound),

whereas below that knee, data-movement across the memory subsystem

saturates first (memory-bound). This divergence underpins the “memory-

wall”: as core counts and aggregate compute grow, the relatively static

bandwidth imposes diminishing returns on memory-heavy kernels,

making cache reuse or higher bandwidth essential for scaling beyond

today’s multicore ceilings.

One technological approach for improving on this limitation consists in

adding an on-chip interconnect to multicore processors: because cores

can directly and efficiently exchange data through this interconnect,

the traffic towards main memory can be reduced and the memory

bottleneck relieved. Historically, one notable example of this approach

has been the Cell Broadband Engine (CBE) processor released by the

STI (Sony Toshiba IBM) consortium in November 2006. The CBE was

equipped with one PowerPC core and eight SIMD vector cores connected

through a ring interconnect with an aggregated bandwidth of 204.8

GB/s. Another distinctive feature of the CBE processor was that cores are

not equipped with cache memories but with local scratchpad memories

that are explicitly handled by the programmer. Because of its substantial

computing power (204.8 Gflop/s for single-precision computations)

the CBE processor gained a considerable popularity in the scientific

computing community and was chosen as the main computational engine

of the RoadRunner supercomputer, the first to cross the 1 Petaflop/s

barrier, ranked number 1 on the June 2008 Top500 list
2
. Because of its

difficult programming model, much more similar to the one used for

distributed memory parallel computers rather than shared memory ones,

https://top500.org/lists/top500/2008/06/

44 4 Intra-node Parallelism

Data area

Instruction

flow

Figure 4.3: A process.

Data area

Instruction flows

Figure 4.4: A set of threads within a

process.

the interest around the CBE processor for scientific computing has rapidly

decreased.

Another approach to overcome the memory wall consists in using 3D

stacked memory and has become the object of an hectic research activity.

Currently used memory layouts can be roughly described as the processor

and the memory modules being side-by-side and connected through

a wire (the memory bus) in a 2D configuration; this novel approach,

instead, disposes memory cells into arrays stacked one on top of the

other and then all together on top of the multicore chip in a 3D layout.

4.2 Intra-node parallelism: tools

We are now at a crucial point in our discussion: how do we harness the

available computing capabilities of the advanced architectures we have

seen in the previous sections? One of the most common answers relies

on the concept of a thread, which in turn requires the introduction of the

concept of a process.

All modern computers support multiprogramming, that is, the ability

of the system of having multiple programs in execution at the same

time. From a microscopic point of view you obviously cannot have more

programs executing than there are available execution cores, but from a

macroscopic (that is, on a human time scale) point of view there can be

many programs executing at the same time. In this context, the process is

a basic unit of execution consisting of an instance of a program being run,

together with the data it operates upon; thus, it is a dynamic entity, as

opposed to a static entity such as a program (and you can have multiple

processes running the same program). The data part is private to the

process owning it; we will return to the process concept in Chapter 5.

What happens when you have multiple execution cores? One possibility

is to have multiple independent fluxes of instruction, each one of them

executing part of the program, each one of them with a certain private

data area, but all of them sharing the overall program data. These units of

execution/instruction fluxes are called threads; for scientific applications,

we typically aim at having as many active threads as there are available

processing cores
‗
.

From a programmer’s point of view, handling threads requires some

software support; on most modern systems you can use POSIX threads

(see e.g. [21]) to implement what you need, but they are a very low-

level tool, and not particularly attuned to the needs of computational

scientists.

The most popular programming tool used for scientific applications in

conjunction with languages such as Fortran and C is OpenMP.

4.2.1 OpenMP

OpenMP is a de-facto standard API (Application Program Interface)

for writing shared memory parallel scientific applications in Fortran,

‗
Other classes of applications, such as databases and web servers, also use threads, but

their usage constraints and the programming and tuning techniques are quite different.

4.2 Intra-node parallelism: tools 45

Parallel do (fork)

Sincronization (join)

Master thread execution (resumed)

Master thread execution

Figure 4.5: The fork-join execution

model.

C and C++; it was first conceived in 1997, and its specification is main-

tained by the OpenMP Architecture Review Board (www.openmp.org),

an organization to which anybody can contributed.

An OpenMP compilation system requires a compiler that supports it, and

consists of:

▶ Compiler directives,

▶ Run time routines,

▶ Environment variables.

A compiler directive is a statement that can be interpreted in two ways:

1. As an instruction to the compiler to do something, or a notification

that a compiler is allowed to do something under the responsibility

of the programmer;

2. As a comment, for all compilers that do not support the directive

system that is being used.

Thus, it is broadly possible to insert OpenMP parallelization statements

in the source code whilst at the same time maintaining the original

behaviour of the program. The instructions to the compiler can be

supplemented by environment variables and/or specific function calls.

In its original conception, OpenMP was concerned mostly with splitting

the workload of do loops, based on the concept of fork-join, shown in Figure

4.5:

1. Upon entering execution of a certain block of code, for instance a

do loop, multiple threads are activated, and the workload for that

block of code is split among them;

2. The threads may interact among them during the execution by

using shared memory areas;

3. Upon completion of the block of code, all threads but one are

deactivated, and execution proceeds as in a serial program.

We have described programming with OpenMP referring to threads,

meaning that with a logical sharing of memory we have a natural match

in shared memory systems, even though this is not mandated by the

OpenMP standard. Indeed, there have been attempts at providing a shared

memory logical programming view of distributed memory systems, but

no such attempt has been particularly successful in practice.

The OpenMP standard has been updated multiple times; at the time of

this writing, version 6.0 has been recently released, and version 5.2 is

broadly supported by many compilers; in particular, it has been extended

with:

▶ Support for irregular and data-driven dispatching of workload;

▶ Source-to-source transformations to improve memory hierachy

handling and workload splitting among threads;

▶ Support for novel architectural features such as SIMD extensions

and accelerators.

We will show some OpenMP code in the sequel; for a complete presenta-

tion see [22–25]. OpenMP is also frequently used in conjunction with MPI,

which we will see in Section 5.1, in what is called nested parallelism.

www.openmp.org

46 4 Intra-node Parallelism

(0,0)(1,0) (2,0) (3,0)

(0,1)(1,1) (2,1) (3,1)

(0,2)(1,2) (2,2) (3,2)

(0,3)(1,3) (2,3) (3,3)

(0,0)

(0,1)

(0,2)

(1,1)

(1,2)

Grid of size 2x3 Block of size 4x4

Figure 4.6: A 2D grid of threads

Figure 4.7: SIMT model: host and device

Figure 4.8: SIMT model: a multi-

processor

4.3 Intra-node parallelism: Accelerators

In relatively recent years the computing world has seen the widespread

adoption of GPUs, with the most common ones being the devices built

by NVIDIA corporation. These devices were originally designed to

handle graphics computations, but were soon coopted to perform general

purpose tasks, which are commonly described as GPGPU (general

purpose programming on graphics programming units); currently there

are multiple companies building similar devices, and because of the way

they are used they are normally referred to as accelerators.

We now very briefly describe some of the features of the NVIDIA

devices, especially from a programmer’s point of view. The NVIDIA

GPGPU architectural model is based on a scalable array of multi-threaded,

streaming multi-processors, each composed of a fixed number of scalar

processors, one or more instruction fetch units, on-chip fast memory,

which is split between shared memory and cache, plus additional special-

function hardware.

CUDA is the programming model provided by NVIDIA for its GPGPUs;

a CUDA program consists of a host program that runs on the CPU host,

and a kernel program that executes on the GPU device.

The computation is carried on by threads grouped into blocks. More

than one block can execute on the same multiprocessor, and each block

executes concurrently. During the invocation (also called grid) of a kernel,

the host program defines the execution configuration, that is:

▶ how many blocks of threads should be executed;

▶ the number of threads per block.

Each thread has an identifier within the block and an identifier of its

block within the grid (see Figure 4.6). All threads share the same entry

point in the kernel; the thread ID can then be used to specialize the thread

action and coordinate with that of the other threads.

Figures 4.7 and 4.8 describe the underlying SIMT architecture. Note that a

single host may be connected with multiple devices. Each GPU device is

made up by an array of multiprocessors and a global memory. The host is

connected to devices using a bus, often having a much smaller bandwidth

than that of the device global memory. Multiprocessors execute only

vector instructions; a vector instruction specifies the execution on a set

of threads (called warp) with contiguous identifiers inside the block.

The warp size is a characteristic constant of the architecture; its value is

currently 32 for NVIDIA’s GPUs. Programming GPUs is a very specialized

activity, and many research efforts are currently devoted to improving

their usage. Besides the support available in the latest version of the

OpenMP standard [22], there is also the OpenACC programming interface

standard https://www.openacc.org/specification, and a number of

efforts such as SYCL and Kokkos.

https://www.openacc.org/specification

Inter-node Parallelism 5
5.1 Inter-node parallelism:

MPI 47
5.1.1 Point-to-point operations 50
5.1.2 Collective operations . . . 52
5.1.3 Message Passing Errors . 55
5.2 Inter-node parallelism:

PGAS 57

The most powerful computers in the world listed in the Top500
‗

are

all clusters: a number of computer nodes, most of them equipped with

multicore processors and possibily with accelerators, connected through

a high-speed network.

The main question from a user’s point of view is then: how do you

program such a machine? This is what we will (relatively briefly) describe

here.

5.1 Inter-node parallelism: MPI

When dealing with clusters, the most common programming tool is the

“Message Passing Interface”, or MPI.

This project started in the early ’90s to consolidate the experience gathered

in developing distributed memory applications, and to provide with a

unified programming interface to simplify developers’ life. It is a de-facto

standard, and anybody can participate in its development (see https:

//www.mpi-forum.org/); there exist multiple implementations, from

vendors as well as open-source from research projects such as

▶ MPICH https://www.mpich.org/

▶ OpenMPI https://www.open-mpi.org/

▶ MVAPICH https://mvapich.cse.ohio-state.edu/

The current stable version is 4.1, and work is underway to define version

5.0.

What is exactly MPI?

From the MPI 4.1 standard document

MPI (Message-Passing Interface) is a message-passing

library interface specification.

All parts of this definition are significant.

▶ MPI addresses primarily the message-passing parallel program-

ming model, in which data is moved from the address space of one

process to that of another process through cooperative operations

on each process.

▶ MPI is a specification, not an implementation; there are multiple

implementations of MPI.

▶ This specification is for a library interface; MPI is not a language,

and all MPI operations are expressed as functions, subroutines, or

methods, according to the appropriate language bindings which,

for C and Fortran, are part of the MPI standard.

‗
You can access the whole list at www.top500.org/lists/top500/2024/11/.

https://www.mpi-forum.org/
https://www.mpi-forum.org/
https://www.mpich.org/
https://www.open-mpi.org/
https://mvapich.cse.ohio-state.edu/
https://www.top500.org/lists/top500/2024/11/

48 5 Inter-node Parallelism

▶ Extensions to the “classical” message-passing model are provided

in collective operations, remote-memory access operations, dy-

namic process creation, and parallel I/O.

The first item is very important: message passing programming is about

having multiple cooperating processes. By definition each process has

its own private address space, therefore other processes cannot access

data directly; hence the need for messages, in which the two processes

cooperate to exchange data.

Every message passing environment thus has a core that comprises at

least the following basic functionalities:

▶ Environment start and stop;

▶ Identification of participating processes;

▶ Send and receive data.

In principle, anything you need to cover in your programming can be

implemented through these simple functionalities; in practice, as already

mentioned, many extensions have been included in the MPI interface

specification, because:

▶ Even if many functionalities can be covered with simple send/re-

ceives, robust and efficient implementations require much more

sophisticated data structures and algorithms that require special-

ized knowledge, and it is much better to delegate them to the MPI

library implementors behind a unified interface;

▶ Some issues are purposedly left partially or wholly undefined,

such as how to start multiple processes, often interacting with the

management system of the cluster we are running on; in some

versions of MPI it is even possible to have a number of processes

that changes dynamically at runtime;

▶ Access to some hardware features, such as I/O and direct remote

memory access, require specialized interface and/or extensions

beyond the programming model defined above.

What does an MPI program look like? An MPI version of “Hello, world”

hello_mpi.f90 might look like:

program hello

use iso_fortran_env, only: output_unit

use mpi_mod

implicit none

character(len=40) :: message

integer :: myrank, np, ierror, i

integer :: status(MPI_STATUS_SIZE)

integer, parameter :: tag=123

call MPI_Init(ierror)

call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierror)

call MPI_Comm_size(MPI_COMM_WORLD,np,ierror)

write(message,&

&'("Hello world from image ",I0," out of ",I0)')

myrank,np↩→

if (myrank == 0) then

write(output_unit,'(a)') message

do i=1,np-1

call MPI_Recv(message,40,MPI_CHARACTER,i,tag,&

5.1 Inter-node parallelism: MPI 49

& MPI_COMM_WORLD,status,ierror)

write(output_unit,'(a)') message

end do

else

call MPI_Send(message,40,MPI_CHARACTER,0,tag,&

& MPI_COMM_WORLD,ierror)

end if

call MPI_Barrier(MPI_COMM_WORLD,ierror)

call MPI_Finalize(ierror)

end program hello

A few observations are in order:

▶ The type of the data being sent is specified by one of the argu-

ments; in most clusters where the nodes are homogeneous, the

data is transferred directly, but in principle it would possible, in-

deed required, for the MPI implementation to translate the data

representation if we are running on a heterogeneous system;

▶ Every message has an envelope consisting of the following:

1. Source process;

2. Destination process;

3. Tag;

4. Communicator.

The standard mandates that two messages with the same envelope

must be delivered in the order they were sent;

▶ The tag is an arbitrary user-defined attribute; it allows different

kinds of messages to be exchanged; in particular, a message with a

certain tag might be received before a message with a different tag

even if it was sent later and has an otherwise identical envelope;

▶ The communicator is an extremely important argument because it

allows for a clean separation of the messaging space in different

portions, each one corresponding to a different communicator

object:

• If the program uses a library, you clearly do not want to the

messages defined and exchanged within the library to be

erroneously matched to the messages in the user’s program;

to this purpose, libraries will (very likely) create a new private

communicator upon initialization;

• You may define communicators for groups of processes, to

limit the exchange of data; for instance, if you have a 2-

dimensional arrangement of processes in rows and columns,

it is possible to define communicators for each row/column.

In our “hello world” example we are using the MPI_COMM_WORLD

communicator, which is predefined by the MPI implementation

at the start of every application, but a realistic application would

immediately duplicate it into its own private communicator, even

for the user part, via the appropriate environment functions.

▶ Send and receive functions appearing in the above example are

the default ones, but there exist much more sophisticated versions

allowing for fine-grained control of the application behaviour.

▶ We have seen one example of collective operation in the call to

MPI_Barrier, but many other collectives exist and they are very

often essential to achieve good performance.

50 5 Inter-node Parallelism

As you can see, there are a number of issues that the user has to take

care of when handling the communications among different processes.

MPI gives very fine-grained control over the operations of your parallel

program, but that control come with the responsibility of properly using

the facilities from the library.

5.1.1 Point-to-point operations

Point-to-point operations are the simplest form of data exchange: one pro-

cess sends a packet of data to another one. Not surprisingly the interfaces

to the relevant library functions contain the words send/receive.

The description above is deceptively simple: many, many details must

be considered. For instance, what happens if a process wants to send

a message to another that is unaware (perhaps because it has not yet

reached a certain point in the computation)? Do we want the data to flow

anyway and be handled by the operating system, perhaps up to a limited

size? When is the sender process free to reuse the data area holding

the contents to be sent? Do we want to wait until the receiving process

becomes ready and prepares a data area sufficient for storing the incoming

message? Do we want maximum performance or ease of use? These and

many other questions are handled by the MPI standard in a general way

defining different modes for communicating data, thereby allowing a great

flexibility in tailoring the communication to the application needs.

In our PSCToolkit library [26] (and in most of our presentation) we will

use a subset of modes:

1. The SEND operation is “locally blocking”: as soon as the subroutine

returns the application code may freely reuse the data buffer, but

this does not necessarily mean that the message has even started its

trip, let alone arrived to destination. This is a useful feature when

calling the message passing environment from Fortran, where we

might want to send data using a “natural” expression which implies

that it is held in a compiler-generated temporary variable: it would

be highly undesirable to depend on the contents of a temporary

not to change until some unrelated event (i.e. the actual message

delivery) has happened. On the other hand it would be equally

undesirable to only use transmission modes in which the sender

waits for the receiver to actually handle the incoming message: not

only this provides lower performance, it also makes it harder to

write code that does not go into deadlock. In practice the library will

perform a copy to an internal buffer and will start an asynchronous

send on the copy, returning as soon as the send operation has been

requested to the communication subsystem (but not necessarily

performed). Given this behaviour, a timing of a send routine is

much less than the time it takes for the message to travel to its

destination
†
;

2. The RECV operation performed on the receiver side is “globally

blocking”: the call completes only when the data has actually been

received and put in the user designated data buffer;

†
To measure the actual performance of a point-to-point operation the common method

is to time a ping–pong between two processes: the first sends, the second receives, then

sends back to the first, who in its turn receives; the measured time is then assumed to be

twice the amount it takes for a one-way trip.

5.1 Inter-node parallelism: MPI 51

3. The call to the RECV operation is not tightly synchronized; it may

be placed before or after the matching SEND. In practice this means

that we rely, at least to some extent, to the MPI implementation to

provide buffer space for incoming messages for which no RECV

has been posted yet;

4. If a task 𝑖 sends two successive messages to task 𝑗, we are guaranteed

that delivery will happen in exactly the same order, and thus the

order of the RECV should match that of the SENDs; we are giving

up the availability of the explicit tag that enables MPI messages

to be received out of order. However it is still possible for task 𝑗 to

receive a message sent after 𝑖’s message by some other task 𝑘 ≠ 𝑖.

We will also make heavy use of the overloading capabilities of the Fortran

language, trying to simplify the calling sequences; for each kind of oper-

ation we will define a single generic interface that accounts for all specific

versions. The correct underlying implementation is chosen automatically

by the compiler according to the data type (integer, real, complex, char-

acter, logical), and to the rank (0 =scalar, 1 =vector, 2 =matrix) of the

variable being used. Thus we are guaranteed that it is impossible to incur

in a mismatch between the subroutine being called and the data type of

the variable.

Other modes available in MPI for point-to-point SEND operations in-

clude:

Standard: the MPI library decides whether to use internal buffering or

wait for a matching receive;

Buffered: the message is stored in an outgoing buffer, and the operation

returns independently of a receive;

Synchronous: the send operation may be started, but it will be completed

only after a matching receive has been posted;

Ready: a send may only be issued if a matching receive has already been

issued.

Moreover, the send/receive operations may also be issued in their non-
blocking version: the calling process initiates the operation, and receives

a handle to test for successful completion at a later point. This is quite

useful, and indeed we provide this facility for the halo data exchange of

Sec. 8.3.6.

MPI and OpenMP: which one to choose?

The MPI model makes very minimal assumptions on the underlying

hardware architecture, especially for what concerns the memory

model; thus it can be used on parallel machines up to thousands of

processors, and has been implemented on practically all architectures

in common use today.

Even though the initial cost of the parallelization is quite higher

than with OpenMP, the scaling up of the application is usually less

problematic from a software point of view.

Thus MPI would be the tool of choice when:

▶ The architecture is a multicomputer (e.g. a Linux cluster);

52 5 Inter-node Parallelism

▶ the problem potentially requires a massive amount of computing

power;

▶ we want to have a highly scalable and flexible application;

▶ we have enough time and resources to write the parallel code.

To conclude our comparison between OpenMP and MPI, we state on

the basis of our experience an 80/20 heuristics: the total investment

needed to have a fully optimized application is generally the same,

but is distributed in a different way, 80 % initial parallelization and

20 % tuning for MPI, exactly the opposite for OpenMP.

In parallel programming, just like in many other human enterprises,

the devil is in the details.

5.1.2 Collective operations

Collective operations by definition involve (and must be called by) all
processes participating to a given context, i.e. all tasks in a certain virtual

parallel machine; actually we have already seen one example with the

synchronization operator mpi_barrier.

All functionalities provided with collective operations may be described,

and might be implemented, with a sequence of send/receive to/from a root

process; examples of these naive implementations will be given below.

Even in this case there would be an incentive to define a specific calling

sequence to avoid code duplications for the most common operations.

However the main reason for defining specific routines is performance:

the optimal implementation of a collective operation may be much faster
(and complex) than the naive one. Finding the optimal implementation

is an extremely complex enterprise, and we cannot expect the general

user to do it; without entering into details [27, 28], we explicitly note that

the optimal algorithm for a given operation will depend not only on the

number of tasks involved, but also on the performance of the network,

on its topology and on the size of the data to be processed, and a quality

implementation will automatically choose among multiple algorithms

the best one for any given call.

Note also that collective operations introduce new possibilities for dead-

locks, such as only a subset of the processes entering a call, or passing to

the subroutine arguments that are inconsistent across processes.

Broadcast

The operation of broadcast propagates the value of a certain data item

from a root task to the set of all those participating in the same context.
The PSCToolkit interface is as follows:

call psb_bcast(icontxt, a, root=root)

where the optional argument root specifies the source task, with a default

of 0. After a successful completion the contents of A will be the same

for all tasks, and will be equal to the contents that were available on

task root before the call. Thus the functionality of the operation may be

achieved by the following naive implementation:

5.1 Inter-node parallelism: MPI 53

if (iam == root) then

do i=0,np-1

if (i /= iam) then

call psb_snd(icontxt,a,i)

end if

end do

else

call psb_rcv(icontxt,a,root)

end if

which is, of course, not optimal.

The value for the root argument must be the same for all participating

processes; otherwise results are unpredictable, with deadlock a very

likely outcome. As in the send/receive case the data A may be:

▶ A scalar of type integer, real, complex, logical, character; for charac-

ter data there is an additional optional argument length to override

the size of the string to be exchanged;

▶ A rank-1 or rank-2 array of type integer, real or complex.

A simple and immediate example of the use of a broadcast is a typical

application structure in which the initial data input for a simulation is

performed on just one processor, which then propagates the relevant

values to all others. This is common practice, and is mandatory if data is

not available on a shared file system.

Combine

The combine operations (in MPI jargon reduce) perform a distributed

arithmetic or logical operation which combines values present on different

tasks to give a single instance of the data which is the result, available

on a single destination task. A naive implementation would be all

tasks sending their data to the destination task, which applies locally

the required arithmetic operation; in some sense this is the opposite

of a broadcast. In our environment we provide the operations of sum,

maximum, minimum, maximum absolute value and minimum absolute

value; the underlying MPI layer allows very general versions and can be

used with any associative arithmetic operation.

The PSCToolkit calling interfaces are:

call psb_sum(icontxt, a, root=root)

call psb_amx(icontxt, a, root=root, ia=ia)

call psb_amn(icontxt, a, root=root, ia=ia)

where A is the integer, real or complex data as before, whereas root is

the identifier of the destination task. We also have:

call psb_max(icontxt, a, root=root, ia=ia)

call psb_min(icontxt, a, root=root, ia=ia)

similar to the previous, but available only for integer and real data. IfA is an

array, the implied operation is performed element by element, consistently

with the Fortran array semantics. The default value is 𝑟𝑜𝑜𝑡 = −1, which

is interpreted as meaning that the result should be available to all tasks;

this is functionally equivalent to performing a broadcast immediately

after the combine operation, although (as noted before) there may exist

54 5 Inter-node Parallelism

a faster implementation. Thus the functionality of the sum might be

achieved by the following naive implementation:

if (root==-1) then

root_=0

else

root_=root

end if

if (iam == root_) then

do i=0,np-1

if (i /= iam) then

call psb_rcv(icontxt,tmp,i)

a = a + tmp

end if

end do

else

call psb_snd(icontxt,a,root_)

end if

if (root==-1) then

call psb_bcast(icontxt,a,root_)

end if

which is, of course, not optimal.

Notice that depending on the data type this collective function will often

be based on floating-point operations; since floating-point addition is not

associative (see appendix A), a change in the sequence of sends/receive

will change the result. This has the implication that it is not reasonable

to expect bit-identical results between the naive implementation and

an optimized library implementation; another implication is that an

operation involving a global sum, such as a dot product, will produce

different results when run on a different number of processors on

otherwise identical input data. However we should be careful to avoid

an unfortunate situation which might exist in some implementations; if

a given process issues a receive for the first available message, regardless

of the sender process, fluctuations in timings across the network may

cause the messages to arrive in a different relative order, thus forcing the

floating point operations to be executed in a different order between two

successive runs on an otherwise identical machine configuration. While

we may accept numerical results (and convergence histories) to vary

with the number of processors, since we are effectively using a different

machine, it is highly desirable that they should be reproducible once we

fix the configuration and the input data: any collective communication

implementation ought, at the very least, to provide the means for the

user to force a communication pattern that gives reproducible results, if

not make it the default.

In the maximum/minimum absolute value case it is possible to specify

an optional argument ia, an integer of the same rank and size of the data

A; it will keep track, for each entry of the result A, of the identifier of the

task the result comes from.

An example of use may be given as follows: find an extravagantly

5.1 Inter-node parallelism: MPI 55

expensive way to compute the sum of the series

𝑛∑
𝑘=1

𝑘2.

A possible solution consists in launching a parallel job with 𝑛 tasks, with

each one computing one term of the series then delegating the sum to a

combine
‡
:

call psb_init(icontxt)

call psb_info(icontxt,iam,np)

temp = dble(iam) * dble(iam)

call psb_sum(icontxt,temp)

if (iam == 0) then

write(6,*) 'total sum for n = ',np,' is ',temp

endif

A more realistic example would be the search for the maximum element

of a distributed vector to check convergence of an iterative method. If the

vector is partitioned among tasks, we can first search for the maximum

in the local part on each task, then we apply a combine to get the global

maximum; if root=-1 (as is the default), all tasks will have the (same)

result, and will be able to take a coherent decision on whether to proceed

or stop the iterations.

5.1.3 Multiple interacting processes: what could possibly
go wrong?

How do errors manifest themselves in a message-passing program?

First of all, there are errors detected and reported by the MPI library

itself; in most cases these are related to the underlying network, or the

operating environment, and there is very little, if anything, to be done at

the application level to improve the situation.

Probably more interesting for our readers are programming mistakes in

the message-passing application itself; these obviously include the errors

that are possible with a serial application. Whether related to the serial

part or the message passing statements, you may think of the dreaded

segmentation fault error message as being a very unfortunate event;

however, in some sense it is actually a good thing, in that it is giving a

very clear alert that something is deeply wrong.

In practice, there are two things that are more insidious during execu-

tion:

1. Race conditions, where the outcome of a code is not fully deter-

mined and might change from one run to the next;

2. Deadlocks: (a subset of) the processes in the application are waiting

for a certain event, but because of the structure of the code this

event will never materialize, and no progress is possible.

‡
Actually the code shown, albeit working, is not a completely correct answer to the problem

as stated; are you able to spot the error?

56 5 Inter-node Parallelism

To illustrate a deadlock, let us go back to the example of a simple sequence

of send/receive operations. The order of send/receive pairs in the source

code must take into account the blocking semantics of the receive opera-

tions, discussed above; this feature provides an implicit synchronization

among processors, but may also cause a deadlock. Consider the very

simple case in which task 0 must send an integer to task 1, and vice-versa;

the most reliable way is the following:

1 if (iam == 0) then

2 call psb_snd(icontxt,n,1)

3 call psb_rcv(icontxt,k,1)

4 else if (iam == 1) then

5 call psb_rcv(icontxt,n,0)

6 call psb_snd(icontxt,k,0)

7 endif

The above code will certainly complete (barring a catastrophic failure in

the underlying network or operating system layers).

The following scheme, relying on the “locally blocking” semantics, is

also very likely to work:

1 if (iam == 0) then

2 call psb_snd(icontxt,n,1)

3 call psb_rcv(icontxt,k,1)

4 else if (iam == 1) then

5 call psb_snd(icontxt,k,0)

6 call psb_rcv(icontxt,n,0)

7 endif

at least if the operating system does not run out of memory space for

pending messages
§
.

However if we do write the exchange as follows:

1 if (iam == 0) then

2 call psb_rcv(icontxt,k,1)

3 call psb_snd(icontxt,n,1)

4 else if (iam == 1) then

5 call psb_rcv(icontxt,n,0)

6 call psb_snd(icontxt,k,0)

7 endif

each task will wait for the message coming from the other, and will never

reach the call to the send routine(s). We thus have a deadlock: we are

waiting for an event that cannot possibly happen; the computer is busy,

but no useful work is performed.

In CSE applications the most likely error causing this kind of problem is

to enter a section of code containing the send/receive operations according

to a variable whose value is slightly different on different processes: if one

process chooses the branch with the receive and the other does not choose

a branch with a matching send, the first process is blocked indefinitely.

Thus variables that may alter the control flux of a program must be care-

fully controlled, and preferrably computed through collective operations,

so as to make sure that all processes have exactly the same reference

value and the selection of different execution paths happens in a coherent

fashion.

§
Admittedly an unlikely event if we are dealing with just a single integer!

5.2 Inter-node parallelism: PGAS 57

5.2 Inter-node parallelism: PGAS

Building Blocks for Linear Algebra
Programming

Building Blocks for Dense Linear
Algebra 6

6.1 Introduction 61
6.2 BLAS 62
6.2.1 Level 1 BLAS 62
6.2.2 Level 2 BLAS 73
6.2.3 Level 3 BLAS 80
6.2.4 Performance considera-

tion for the BLAS 85

6.1 Introduction

To introduce properly the problem at hand, let us consider a simple

code for computing the Cholesky factorization 𝐴 = 𝑈𝑇𝑈 . It is easy

Algorithm 1: Cholesky factorization

1 for 𝑗 = 1 to 𝑛 do
2 for 𝑖 = 1 to 𝑘 − 1 do
3 𝑢𝑖 𝑗 ← 1

𝑢𝑖𝑖

(
𝑎𝑖 𝑗 −

∑𝑖−1

𝑘=1
𝑢𝑘𝑖𝑢𝑘 𝑗

)
;

4 𝑢𝑗 𝑗 ←
√(

𝑎 𝑗 𝑗 −
∑𝑗−1

𝑘=1
𝑢2

𝑘 𝑗

)
;

to see that this code can be translated into open code in any common

programming language. However you may notice that the resulting

code has the appearance of “reinventing the wheel”, that is, it is but

one example of similar code resurfacing over and over again in the

implementation of these kind of algorithms.

This observation suggests an immediate strategy:

“Define a set of operators such that any algorithm can be

expressed as their application to the data at hand.”

Some languages define some of these as native operators; this is true to

a varying extent of Matlab, Fortran and Julia. Writing code with them

consists of combining the appropriate sequence of calls to the primitive

operators.

It would therefore be appropriate to define a set of functions/subrou-

tines to implement these operators: this would guarantee that the same

code is written once but reused multiple times, thereby offering the

opportunity to amortize the cost of a quality implementation. We have

taken the Cholesky factorization algorithm as a reference for simplicity

in presentation; however, the same kind of reasoning applies to many

other algorithms, in both dense and sparse linear algebra. Encapsulating

the operators inside standardized code and interfaces enables develop-

ers to explore alternative implementations while preserving the overall

behaviour of the code.

Moreover, restructuring the code in this way may (and does) suggest

alternative ways of exploiting the characteristics of computing archi-

tectures, such as for example the possibility of using building blocks

involving submatrices and not just vectors.

These topics will be explored in the following and in Chapter 7.

62 6 Building Blocks for Dense Linear Algebra

6.2 BLAS

The Basic Linear Algebra Subprograms (BLAS) are a set of low-level

routines that perform common linear algebra operations such as vector

and matrix multiplication. The BLAS is divided into three levels:

▶ Level 1: Vector operations (e.g., dot product, vector addition)

▶ Level 2: Matrix-vector operations (e.g., matrix-vector multiplica-

tion)

▶ Level 3: Matrix-matrix operations (e.g., matrix-matrix multiplica-

tion)

The BLAS is designed to be efficient and portable, making it a popular

choice for high-performance computing applications. The BLAS is often

used as a building block for higher-level libraries and applications, such as

LAPACK (Linear Algebra PACKage) and ScaLAPACK (Scalable LAPACK).

The BLAS is implemented in many programming languages, including

C, Fortran, and Python. In this chapter, we will focus on the dense BLAS,

which is a set of routines for performing dense linear algebra operations

on matrices and vectors.

There are several implementations of the BLAS, including:

OpenBLAS: An open-source implementation of the BLAS and LAPACK

libraries.

ATLAS: Automatically Tuned Linear Algebra Software, an open-source

implementation of the BLAS and LAPACK libraries.

Intel MKL: A high-performance implementation of the BLAS and LA-

PACK libraries optimized for Intel processors.

cuBLAS: A GPU-accelerated implementation of the BLAS library for

NVIDIA GPUs.

BLIS: A portable and high-performance implementation of the BLAS

library.

6.2.1 Level 1 BLAS

Level 1 BLAS routines operate on vectors and include operations such as

vector addition, scalar multiplication, and dot products. The following

are some of the most commonly used Level 1 BLAS routines:

▶ AXPY: Computes the vector sum 𝑦 = 𝛼𝑥 + 𝑦, where 𝛼 is a scalar,

and 𝑥 and 𝑦 are vectors.

▶ DOT: Computes the dot product of two vectors 𝑥 and 𝑦, i.e., 𝑦 = 𝑥⊤𝑦.

▶ NRM2: Computes the Euclidean norm of a vector 𝑥, i.e., ∥𝑥∥2 =√
𝑥⊤𝑥.

▶ ASUM: Computes the sum of the absolute values of the elements in

a vector 𝑥, i.e.,

∑𝑛
𝑖=1
|𝑥𝑖|.

Let us start by writing a simple Fortran program that uses the Level 1

BLAS routines to compute the AXPY operation. The AXPY operation is

defined as:

𝑦 = 𝛼𝑥 + 𝑦

where 𝛼 is a scalar, and 𝑥 and 𝑦 are vectors. The following Fortran code

demonstrates how to use the AXPY routine from the BLAS library:

6.2 BLAS 63

1: The other prefixes are:

▶ s: single precision,

▶ d: double precision,

▶ c: complex single precision,

▶ z: complex double precision.

2: The OpenBLAS library can be

installed on most Linux distribu-

tions using the package manager,

for example on Ubuntu it can be

installed using the following command

apt-get install libopenblas-dev.

One can always build OpenBLAS from

source, or use Spack to install it (see

Appendix B).

3: Compiler directives are special com-

ments in the source code that are inter-

preted by the compiler if the paralleliza-

tion flags are enabled. They are used to

specify how the code should be paral-

lelized.

program axpy_example

use iso_fortran_env, only: int64, real64, output_unit

implicit none

integer(kind=int64), parameter :: n = 5

real(kind=real64) :: x(n), y(n), alpha

integer(kind=int64) :: i

! Initialize the vectors and scalar

x = [1.0, 2.0, 3.0, 4.0, 5.0]

y = [10.0, 20.0, 30.0, 40.0, 50.0]

alpha = 2.0

! Call the AXPY routine

call daxpy(n, alpha, x, 1, y, 1)

! Print the result

write(output_unit, '("Resulting vector y:")')

do i = 1, n

write(output_unit, '(F6.2)', advance='no') y(i)

end do

write(output_unit, '("")')

return

end program axpy_example

The routine which executes the AXPY operation is daxpy, where the first

argument is the length of the vectors, the second argument is the scalar

𝛼, and the third and fourth arguments are the input vectors 𝑥 and 𝑦. The

last argument is the increment for the input vectors:

call daxpy(n, alpha, x, incx, y, incy)

Observe also that the AXPY routine is called with the d prefix, which

indicates that the routine operates on double-precision floating-point

numbers. BLAS are strongly typed, and the prefix indicates the type of

the data being used
1

To compile this program we need to have acces to a

BLAS library. In this case we will use OpenBLAS, which is an open-source

implementation of the BLAS and LAPACK libraries
2
. We compile the

program using the following command:

gfortran -o axpy_example axpy_example.f90 -lopenblas

and we run the program using the following command:

./axpy_example

The program will output the result of the AXPY operation, which is the

vector 𝑦 after the operation has been performed:

Resulting vector y:

12.00 24.00 36.00 48.00 60.00

AXPY in OpenMP

This is a quite simple routine, and is a good starting point for thinking

about exploiting parallelism. Indeed the AXPY operation can be par-

allelized by splitting the input vectors into chunks and computing the

AXPY operation on each chunk in parallel.

In the context of multi-core processors, the AXPY operation can be

parallelized using OpenMP. The OpenMP API is a set of compiler
directives3

, library routines, and environment variables that influence

64 6 Building Blocks for Dense Linear Algebra

4: In OpenMP, a thread is an indepen-

dent execution unit within a program

that can run concurrently with other

threads. Each thread has its own ex-

ecution context, including a program

counter and machine registers, but

shares the process’s address space and

resources. Threads also have execution-

specific attributes, such as the cores they

can utilize and performance metrics like

CPU time usage.

run-time behavior. It is designed for parallel programming in C, C++, and

Fortran. OpenMP provides a portable and scalable model for developers

of shared memory parallel applications.

Let us first write a simple OpenMP program that computes the AXPY

operation in parallel, and then discuss what is happening in the code.

program axpy_opm_example

use iso_fortran_env, only: int64, real64, output_unit

use omp_lib

implicit none

integer(kind=int64), parameter :: n = 5

real(kind=real64) :: x(n), y(n), alpha

integer(kind=int64) :: i

! Initialize the vectors and scalar

x = [1.0, 2.0, 3.0, 4.0, 5.0]

y = [10.0, 20.0, 30.0, 40.0, 50.0]

alpha = 2.0

! Write the OpenMP directive to parallelize the for loop

!$omp parallel do

do i = 1, n

y(i) = y(i) + alpha * x(i)

end do

!$omp end parallel do

! Print the result

write(output_unit, '("Resulting vector y:")')

do i = 1, n

write(output_unit, '(F6.2)', advance='no') y(i)

end do

write(output_unit, '("")')

! Return

return

end program axpy_opm_example

This sample program can be compiled using the following command:

gfortran -o axpy_omp_example axpy_omp_example.f90 -fopenmp

and then run using the following command:

./axpy_omp_example

You can compare the ouput of this program with the previous one and

observe that the result is the same.

So, what is happening in the code? The first thing to notice is that we have

included the OpenMP header file

use omp_lib

This header file contains the definitions of the OpenMP routines and

directives. The next thing to notice is the !$omp parallel do directive,

which tells the compiler to parallelize the following loop. But how

things are being parallelized? The !$omp parallel do directive tells the

compiler to spawn a team of threads4
and distribute the loop iterations

among them. of the loop among them.

But how many threads are created? The number of threads created is

determined by the OMP_NUM_THREADS environment variable, which can

6.2 BLAS 65

be set before running the program, for example to set the number of

threads to 4, we can run the following command:

export OMP_NUM_THREADS=4

./axpy_omp_example

The number of threads can also be set in the code using the OpenMP

function: omp_set_num_threads, observe that for some task we may have

a limitation of the number of usable threads, hence it may be useful to

set the number of threads in the code instead of using the environment

variable.

A good idea would be for our test program of printing in input the

number of threads being used so that we can see how many threads

are being used. We can do this by adding the following code to our

program:

! Discover the number of threads

integer(kind=int64) :: nthreads

!$omp parallel

!$omp single

nthreads = omp_get_num_threads()

!$omp end single

!$omp end parallel

! Print the number of threads

write(output_unit, '("Number of threads: ", I2)') nthreads

This code uses the omp_get_num_threads routine to get the number of

threads, observe that we need to use the !$omp parallel directive to

create a parallel region and then use the !$omp end parallel directive

to end the parallel region to ask for the number of threads. Moreover, it

uses the !$omp single directive since there is no need for all threads to

repeatedly update the variable nthreads.

There are two important questions that we need to answer:

1. How the threads are scheduled?

2. Who owns what data?

The OpenMP API provides several scheduling policies to control how

the iterations of the loop are distributed among the threads. The schedul-

ing policies are specified using the schedule clause on the parallel

directive:

▶ static: Iterations are divided into chunks of equal size, and each

thread is assigned a chunk. This is the default scheduling policy.

It is predictable and easy to understand, but may not be the most

efficient for all loops.

▶ static, chunk_size: Similar to static scheduling, but the size

of the chunks can be specified. This provides more control over the

distribution of iterations.

▶ dynamic: Iterations are assigned to threads as they become available.

This allows for load balancing among threads and can improve

performance for irregular loops, but it may introduce overhead

due to scheduling and make the code less predictable.

▶ guided: Similar to dynamic scheduling, but the size of the chunks

decreases over time. This improves load balancing while reducing

scheduling overhead.

66 6 Building Blocks for Dense Linear Algebra

▶ runtime: The scheduling policy is determined at runtime based on

the value of the OMP_SCHEDULE environment variable. This provides

flexibility in choosing the scheduling policy without modifying

the code.

▶ auto: The scheduling policy is determined by the compiler. This

allows the compiler to optimize the scheduling based on the specific

loop and system characteristics.

As an example, consider the following scheduling policy for the AXPY

operation:

!$omp parallel do schedule(static, chunk_size)

do i = 1, n

y(i) = alpha * x(i) + y(i)

end do

!$omp end parallel do

where chunk_size is the size of the chunks assigned to each thread.

The OpenMP API provides several clauses to control the visibility of data

between threads, which can be specified on a parallel directive:

▶ shared: A variable declared as shared is visible to all threads in

the team. There is a single instance of the variable that each thread

can access.

▶ private: A variable declared as private is only visible to a single

thread. Each thread creates its own uninitialized instance of the

variable, and only the creating thread has that instance in scope.

▶ firstprivate: Similar to private, but the private instance is initial-

ized with the value of the original variable from the thread that

created the parallel region.

▶ lastprivate: Each thread has a private instance of the variable. At

the end of the parallel region, the variable in the thread that created

the parallel region is updated with the value from the private

instance of the thread that executed the last iteration of the loop or

the lexically last section.

In our example program, the variables which are shared between the

threads are the input vectors 𝑥 and 𝑦, and the scalar 𝛼, while the 𝑖 variable

has a single value for each thread. Hence we can be more precise and

rewrite the OMP directive as:

!$omp parallel do shared(x, y, alpha) private(i) schedule(dynamic)

do i = 1, n

y(i) = alpha * x(i) + y(i)

end do

!$omp end parallel do

If we compile and run this program, we will see that the result is the

same as before.

Let us try to write a version of these codes that we can use to measure
performance. As a firt time measuring step we will use the cpu_time

function, which returns the CPU time in seconds. To get a more reliable

measure of the time taken we need to do the following:

▶ Run the code several times and take the average time.

▶ Use a large enough problem size to get a reliable measure of the

time taken.

6.2 BLAS 67

The allocate routine is used to allocate

memory for the allocatable arrays. An

allocatable array is an object that can

be dynamically associated with mem-

ory, but such that it always has a well-

defined status (either allocated or not);

together with some other semantics fea-

tures, it is guaranteed never to generate

a memory leak. The size of the array is

determined by the user-provided input

n, which is read from the command-line

arguments. The stat argument in the

allocate statement is used to capture

any errors during memory allocation. If

the allocation fails, the program writes

an error message to the error_unit and

stops execution. The deallocate routine

is used to release the memory allocated

for the arrays when they are no longer

needed. Similar to allocation, the stat ar-

gument is used to check for errors during

deallocation. If deallocation fails, an er-

ror message is written, and the program

stops execution. The program initializes

the x and y arrays with specific values

and performs the AXPY operation mul-

tiple times to measure its execution time.

The cpu_time intrinsic is used to mea-

sure the time taken for the operation. The

average execution time is calculated and

printed to the output.

Let us start by modifying the code using BLAS to read the size of the

problem from the command line and add the time measurement code.

The following code does this:

program axpy_blas_time

use iso_fortran_env, only: int64, real64, output_unit, &

error_unit

implicit none

integer(kind=int64) :: n

real(kind=real64), dimension(:), allocatable :: x, y

character(len=100) :: arg

real(kind=real64) :: alpha, t1, t2, elapsed_time, &

average_time

integer(kind=int64) :: i,info

! Read the size of the vector from command line arguments

if (command_argument_count() < 1) then

write(error_unit, '("Usage: ./axpy_blas_time <size>")')

stop

end if

! Read the size of the vector

call get_command_argument(1, arg)

read(arg, *) n

! Allocate the vectors

allocate(x(n), y(n), stat=info)

if (info /= 0) then

write(error_unit, '("Error allocating memory")')

stop

end if

! Initialize the vectors and scalar

x = [(real(i), i=1,n)]

y = [(sqrt(real(i)), i=1,n)]

alpha = 2.0

! Call the AXPY routine many times

do i = 1, 1000

elapsed_time = 0.0

call cpu_time(t1) ! Start the timer

call daxpy(n, alpha, x, 1, y, 1)

call cpu_time(t2) ! Stop the timer

elapsed_time = elapsed_time + (t2 - t1)

end do

! Calculate the average time

average_time = elapsed_time / 1000.0

! Print the elapsed and average time:

write(output_unit, '("Elapsed time: ", 1PE12.6, " s")') &

elapsed_time

write(output_unit, '("Average time: ", 1PE12.6, " s")') &

average_time

! Deallocate the vectors

deallocate(x, y, stat=info)

if (info /= 0) then

write(error_unit, '("Error deallocating memory")')

stop

end if

return

end program axpy_blas_time

To compile the code we use the following command:

68 6 Building Blocks for Dense Linear Algebra

gfortran -O3 -march=native -mtune=alderlake -o axpy_blas

axpy_blas_time.f90 -lopenblas↩→

differently from before, since we want to try and measure the performance

of the code, we activate the optimization flags. We are going to run this

example on a Laptop which has a Intel
®

Core™ i9-14900HX processor.

To set the tuning flags for the compiler to the right architecture we run

the command:

gcc -mtune=native -Q --help=target|grep mtune

and we get the following output:

-mgather -mtune-ctrl=use_gather

-mscatter -mtune-ctrl=use_scatter

-mtune-ctrl=

-mtune= alderlake

The -mtune=alderlake flag is the one we are looking for, and we can use

it to set the tuning flags for the compiler, different processors will have

different tuning flags, and you can find the right one for your processor

using a combination of the command above and a quick search on the

internet.

Having done this, we can now adapt the version using OpenMP to

measure also the relevant performance metrics. To this end it suffices to

use omp_lib code, and the OpenMP directives we have seen before:

do i = 1, 1000

elapsed_time = 0.0

t1 = omp_get_wtime() ! Start the timer

! Write the OpenMP directive to parallelize the for loop

!$omp parallel do shared(x, y, alpha) private(j)

schedule(static)↩→

do j = 1, n

y(j) = alpha * x(j) + y(j)

end do

!$omp end parallel do

t2 = omp_get_wtime() ! Stop the timer

elapsed_time = elapsed_time + (t2 - t1)

end do

As before, we can compile the code by doing

gfortran -O3 -march=native -mtune=alderlake -o axpy_omp

axpy_omp_time.f90 -fopenmp↩→

We are now ready to run the code and measure the performance. To do

this a good idea is to write a small script that runs the code for different

thread counts and problem sizes and writes the results to a file. The

following script does this:

#!/bin/bash

This script runs the AXPY BLAS benchmark with different

sizes and threads. The axpy_blas runs the BLAS (OpenBLAS)

implementation of the AXPY operation. The axpy_omp

runs the OpenMP implementation of the AXPY operation.

module load openblas

SIZE=1000000

Run the BLAS version

./axpy_blas ${SIZE} >> axpy_blas.log 2>&1

6.2 BLAS 69

Run the OpenMP version with different thread counts

for threads in 1 2 4 8 16 32; do

export OMP_NUM_THREADS=$threads

./axpy_omp ${SIZE} >> axpy_blas.log 2>&1

done

We can run it using the following command:

chmod +x axpy_blas.sh

./axpy_blas.sh

The script will create a file called axpy_blas.log with the results of the

runs. To analyze the results we can write a small Python script that reads

the file and plots the results, the following script does this:

import re

import matplotlib.pyplot as plt

import numpy as np

filename = "code/axpy_blas.log"

Lists to hold extracted values

elapsed_times = []

average_times = []

Regular expression pattern for scientific notation floats

pattern = r"([-+]?\d*\.\d+E[-+]\d+)"

Read and parse the file

with open(filename, 'r') as file:

for line in file:

match = re.search(pattern, line)

if match:

value = float(match.group(1))

if "Elapsed time" in line:

elapsed_times.append(value)

elif "Average time" in line:

average_times.append(value)

Custom x-axis labels

x_labels = ["BLAS", "1", "2", "4", "8", "16", "32"]

indices = np.arange(len(x_labels))

Create side-by-side bar plots

fig, axes = plt.subplots(2, 1, figsize=(14, 5))

Elapsed time bar plot

axes[0].bar(indices, elapsed_times, color='skyblue')

axes[0].set_title("Bar Plot of Elapsed Times")

axes[0].set_xlabel("Thread Count")

axes[0].set_ylabel("Time (s)")

axes[0].set_xticks(indices)

axes[0].set_xticklabels(x_labels)

Average time bar plot

axes[1].bar(indices, average_times, color='salmon')

axes[1].set_title("Bar Plot of Average Times")

axes[1].set_xlabel("Thread Count")

axes[1].set_ylabel("Time (s)")

axes[1].set_xticks(indices)

axes[1].set_xticklabels(x_labels)

plt.tight_layout()

plt.show()

Save the figure to a file as EPS

fig.savefig("axpy_times.eps", format='eps')

70 6 Building Blocks for Dense Linear Algebra

We can run it using the following command:

python3 axpy_time.py

The script will create a file called axpy_time.eps, which we have included

in Figure 6.1. The plot shows the performance of the AXPY operation

Figure 6.1: Performance of the AXPY

operation using OpenMP and BLAS

BLAS 1 2 4 8 16 32
Thread C unt

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Ti
m
e
(s
)

Bar Pl t f Elapsed Times

BLAS 1 2 4 8 16 32
Thread C unt

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m
e
(s
)

1e−7 Bar Pl t f Average Times

using BLAS and OpenMP with different number of threads. The x-axis

shows if the problem has been solved by BLAS or by the OpenMP

implementation with a given number of threads, while the y-axis shows

the time taken to compute the AXPY operation in seconds.

From this experiment we observe that the performance of the AXPY

operation using 8 threads is the one that achieves better performance

for this problem size. In all cases the performance of the OpenMP

implementation is better than the BLAS implementation. Although for

this example we cheated a little, since we used a version of OpenBLAS

installed via Spack and which does not have multithreading enabled.

Exercise 6.2.1 Adapt the code we have already written to run on the

Toeplitz cluster. This means selecting the right compiler and the right

flags to compile the code from the available nodes. You can use the

module command to load the right compiler and the right flags. You

can use the module avail command to see the available modules. You

can use the module load command to load the right module.

Then to run the code you have to produce a job script that will run the

code on the cluster. You can use the sbatch command to submit the

job script to the cluster. The job script will have to be a job script to run

on a single node of the cluster, and a single task, with a number of

cpus per task equal to the number of threads you want to use.

Adapt the Python script to read the output of the job script and plot

the results.

Exercise 6.2.2 Explore the different scheduling policies available in

OpenMP and how they affect the performance of the AXPY operation.

You can do this by modifying the scheduling policy in the OpenMP

directive and measuring the performance of the AXPY operation.

6.2 BLAS 71

5: Observe that in the code we have

added a declaration for the variable ddot

as a real(real64) variable, which is the

type of the result of the d variant of the

dot product routine. This is due to the

fact that ddot is a function that returns a

value. We need to let the compiler know

what to expect when it sees the ddot

function. This is also due to the fact that

BLAS and their interfaces comes from

before the Fortran 90 standard, and hence

they do not have a module we can use to

import the routines. The same will apply

in the following for the dnrm2 routine,

which is the double precision version of

the 2-norm routine. Try to run the code

without the declaration of the variable

ddot and see what happens. You will get

a compilation error, since the compiler

does not know what to expect when it

sees the ddot function.

The dot and the nrm2 operations

Another important operation is the dot product, which is defined as:

𝑐 = 𝑥⊤𝑦 =

𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖

The dot product is a scalar product of two vectors, and it is defined as the

sum of the products of the corresponding elements of the two vectors.

The dot product can be computed using the BLAS routine ddot, which

computes the dot product of two vectors 𝑥 and 𝑦 of size 𝑛:

c = ddot(n, x, incx, y, incy)

where incx and incy are the increments for the input vectors 𝑥 and 𝑦.

What kind of parallelism can we exploit in this case? The dot product is a

what is called a reduction operation, which means that we can compute

the dot product in parallel by splitting the input vectors into chunks

and computing the dot product on each chunk in parallel. The results of

the dot products on each chunk can then be added together to get the

final result. This is a good example of a reduction operation that can be

parallelized using OpenMP. The following code shows how to do this
5
:

program dot_omp

use iso_fortran_env, only: output_unit, real64

use omp_lib

implicit none

integer :: i

integer, parameter :: n = 10000

integer :: nthreads

real(real64) :: x(n), y(n)

real(real64) :: sum, c

real(real64) :: start_time, end_time

real(real64) :: ddot

!$omp parallel

!$omp single

nthreads = omp_get_num_threads()

!$omp end single

!$omp end parallel

write(output_unit,'("Number of threads: ",I0)') nthreads

! Initialize arrays

x = 1.0

y = 2.0

c = 0.0

start_time = omp_get_wtime()

!$omp parallel do private(i) shared(x,y) reduction(+:c)

do i = 1, n

c = c + x(i) * y(i)

end do

!$omp end parallel do

end_time = omp_get_wtime()

write(output_unit,'("Dot product: ",F0.2)') sum

write(output_unit,'("Time taken: ",E0.2)') end_time -

start_time↩→

! Check the result with blas

call cpu_time(start_time)

sum = ddot(n, x, 1, y, 1)

call cpu_time(end_time)

72 6 Building Blocks for Dense Linear Algebra

if (abs(c - sum) > 1.0e-12) then

write(output_unit,'("Abs. Error: ",F0.2)') abs(c - sum)

else

write(output_unit,'("Result is correct")')

end if

write(output_unit,'("BLAS time: ",E0.2)') end_time -

start_time↩→

end program dot_omp

The code uses again the !$omp parallel do directive to create a parallel

region and distribute the iterations of the loop among the threads, the

reduction clause is used to specify that the variable c is a reduction

variable, which means that each thread will have its own private copy

of the variable c, and at the end of the parallel region the values of the

private copies will be added together to get the final result. We have

used again the !shared(x,y) and !private(i) clauses to specify the

visibility of the data between the threads.

The code for the computation of the 2-norm of a vector which is defined

as:

𝑐 = ∥𝑥∥2 =

√
𝑛∑
𝑖=1

𝑥2

𝑖

is similar, we can use the dnrm2 routine to compute the 2-norm of a vector

𝑥 of size 𝑛:

c = dnrm2(n, x, incx)

where incx is as usual the increment for the input vector 𝑥. Also the

implementation using OpenMP is similar to the one we have seen before,

it suffices to change the do loop as

c = 0.0

!$omp parallel do reduction(+:c) shared(x) private(i)

do i = 1, n

c = c + x(i)**2

end do

!$omp end parallel do

c = sqrt(c)

Exercise 6.2.3 Write a program analogous to the one computing

the dot product to compute instead the 2-norm of a vector using

OpenMP and the BLAS routine dnrm2 to verify the results. Measure

the performance of the code and compare it with the performance

of the BLAS implementation. You can use the same script we have

used to measure the performance of the AXPY operation to measure

the performance of the 2-norm operation. You can again plain around

with the scheduling policies to see how they affect the performance of

the code.

All the other Level 1 BLAS operations

In addition to the BLAS we have discussed, the 1st level BLAS operations

include the operations reported in Table 6.1. The operations are all vector

operations, and they are all defined in the BLAS standard.

6.2 BLAS 73

Table 6.1: Level 1 BLAS Operations

types name (size arguments) description equation flops data

s, d, c, z axpy(n, alpha, x, incx, y, incy) update vector 𝑦 = 𝑦 + 𝛼𝑥 2𝑛 2𝑛

s, d, c, z,

cs, zd

scal(n, alpha, x, incx) scale vector 𝑦 = 𝛼𝑦 𝑛 𝑛

s, d, c, z copy(n, x, incx, y, incy) copy vector 𝑦 = 𝑥 0 2𝑛

s, d, c, z swap(n, x, incx, y, incy) swap vectors 𝑥 ↔ 𝑦 0 2𝑛

s, d dot(n, x, incx, y, incy) dot product 𝑥⊤𝑦 2𝑛 2𝑛

c, z cdotu(n, x, incx, y, incy) (complex) 𝑥⊤𝑦 2𝑛 2𝑛

c, z cdotc(n, x, incx, y, incy) (complex conj) 𝑥𝐻 𝑦 2𝑛 2𝑛

sds, ds dot(n, x, incx, y, incy) (internally double

precision)

𝑥⊤𝑦 2𝑛 2𝑛

s, d, sc,

dz

nrm2(n, x, incx) 2-norm ∥𝑥∥2 2𝑛 𝑛

s, d, sc,

dz

asum(n, x, incx) 1-norm ∥𝑥∥
1

𝑛 𝑛

s, d, c, z iamax(n, x, incx) ∞-norm ∥𝑥∥∞ 𝑛 𝑛

s, d, c, z rotg(a, b, c, s) generate plane

(Givens’) rotation

(c real, s complex)

𝑂(1) 𝑂(1)

s, d, c, z +

t

rot(n, x, incx, y, incy, c, s) apply plane rota-

tion (c real, s com-

plex)

6𝑛 2𝑛

cs, zd rot(n, x, incx, y, incy, c, s) apply plane rota-

tion (c & s real)

6𝑛 2𝑛

s, d rotmg(d1, d2, a, b, param) generate modified

plane rotation

𝑂(1) 𝑂(1)

s, d rotm(n, x, incx, y, incy, param) apply modified

plane rotation

6𝑛 2𝑛

6.2.2 Level 2 BLAS

The level 2 BLAS define operators that involve vectors and matrices,

such as

GEMV : Computes the vector sum 𝑦 = 𝛼𝐴𝑥+𝛽𝑦, where 𝛼, 𝛽 are scalars,

𝑥 and 𝑦 are vectors. and 𝐴 is a two-dimensional matrix;

GER : Computes the rank-1 update 𝐴 = 𝛼𝑥𝑦⊤ + 𝐴, where 𝛼 is a scalar,

𝑥, 𝑦 are vectors and 𝐴 is a two-dimensional matrix;

TPSV and [TRSV]: Solve a triangular system of equations 𝐴𝑥 = 𝑏, where

𝐴 is a triangular matrix and 𝑏 is a vector;

If the vectors involved are of size 𝑛 and the matrices of size 𝑛 × 𝑛, then

the level 2 BLAS operators involve 𝑂(𝑛2) arithmetic operations, hence

the name.

Let us try to write a simple Fortran program that uses the Level 2 BLAS

routines to compute the GEMV operation. The GEMV operation, in its

general form, is defined as:

𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦 (6.1)

where 𝛼 and 𝛽 are scalars, and 𝐴 is a matrix of size 𝑚 × 𝑛, 𝑥 is a vector

of size 𝑛, and 𝑦 is a vector of size 𝑚.

The following Fortran code demonstrates how to use the GEMV routine

from the BLAS library:

74 6 Building Blocks for Dense Linear Algebra

program gemv_blas

use iso_fortran_env, only: real64, output_unit, error_unit

implicit none

integer :: m, n, lda

real(real64) :: alpha, beta

real(real64), allocatable :: A(:,:), x(:), y(:)

character(len=100) :: m_str, n_str

real(real64) :: start_time, end_time, elapsed_time

integer :: i,j,info

! Read m and n from command line arguments

if (command_argument_count() < 2) then

write(error_unit, '("Usage: gemv_blas <m> <n>")')

stop

end if

call get_command_argument(1, m_str, status=info)

call get_command_argument(2, n_str, status=info)

if (info /= 0) then

write(error_unit, '("Error reading command line

arguments")')↩→

stop

end if

read(m_str, *) m

read(n_str, *) n

! set parameters

lda = m

alpha = 1.0d0

beta = 1.0d0

allocate(A(lda, n), x(n), y(m),stat=info)

if (info /= 0) then

write(error_unit, '("Error allocating memory")')

stop

end if

! Initialize matrix A and vectors x and y

do i = 1, m

do j = 1, n

A(i, j) = real(i + j, kind=real64)

end do

end do

do i = 1, n

x(i) = real(i, kind=real64)

end do

do i = 1, m

y(i) = real(i, kind=real64)

end do

! Compute the matrix-vector product using BLAS gemv

call cpu_time(start_time)

call dgemv('N', m, n, alpha, A, lda, x, 1, beta, y, 1)

call cpu_time(end_time)

elapsed_time = end_time - start_time

write(output_unit, '("BLAS dgemv time: ", E0.6)') elapsed_time

! Free allocated memory

deallocate(A, x, y, stat=info)

if (info /= 0) then

write(error_unit, '("Error deallocating memory")')

stop

end if

end program gemv_blas

The routine which executes the GEMV operation is dgemv, where the first

6.2 BLAS 75

6: The next example of codes are differ-

ent implementations of the GEMV rou-

tine, it could be a good idea to creaet

a Fotran module which contains them,

and then use the use statement to import

the module in the code that will run the

performance (and correctness) tests. This

will allow us to have a cleaner code, and

to reuse the code in different programs.

The module can be created using the

module statement and the end module

statement.

Listing 6.1: Example of Fortran module

to house the GEMV operation.

module gemvmod

use iso_fortran_env

use omp_lib

implicit none

private

public :: ! subroutine names

contains

! Here we define the

! subroutine that will

! compute the GEMV

! operation and whose

! name will be put

! after the public

! statement

end module gemvmod

𝐴𝑦 𝑥

𝑚

𝑛

=

Figure 6.2: The GEMV operation. The

matrix 𝐴 is of size 𝑚 × 𝑛, the vector 𝑥
is of size 𝑛, and the vector 𝑦 is of size

𝑚. The shaded cells are the ones that

are accessed in the computation of the

GEMV operation.

argument is the transposition flag, the second argument is the size of the

matrix, the third argument is the size of the vector, the fourth argument

is the scalar 𝛼, and the fifth and sixth arguments are the input matrix

𝐴 and vector 𝑥. The seventh argument is the increment for the input

vector 𝑥, and the eighth argument is the scalar 𝛽. The ninth argument is

the input vector 𝑦, and the last argument is the increment for the input

vector 𝑦:

call dgemv('N', n, m, alpha, A, lda, x, incx, beta, y,

incy)↩→

Observe also that the GEMV routine is called with the d prefix, which

indicates that the routine operates on double-precision floating-point

numbers. The lda argument is the leading dimension of the matrix 𝐴,

which is the size of the first dimension of the array that stores the matrix

𝐴. The leading dimension is used to specify the memory layout of the

matrix, and it is used to access the elements of the matrix in memory, i.e.,

it needs to be the actual size of the first dimension of the array that stores

the matrix 𝐴.

Let us look at how the GEMV operation can be parallelized employing

OpenMP directives
6
.

First we need to write (6.1) in a form that is more suitable for paralleliza-

tion:

𝑦𝑖 = 𝛼
𝑛∑
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗 + 𝛽𝑦𝑖 (6.2)

where 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛. The first idea we may have is to

parallelize the outer loop, i.e., the loop over 𝑖. This seems a good idea,

since the computation of 𝑦𝑖 does not depend on the computation of 𝑦 𝑗
for 𝑗 ≠ 𝑖, using the OpenMP directive we have alread seen we can write

a subroutine:

subroutine gemv_openmp_n(m, n, alpha, A, lda, x, beta, y)

use iso_fortran_env, only: real64

use omp_lib

implicit none

integer, intent(in) :: m, n, lda

real(real64), intent(in) :: alpha, beta

real(real64), intent(in) :: A(lda, *)

real(real64), intent(in) :: x(*)

real(real64), intent(inout) :: y(*)

real(real64) :: ddot

integer :: i

real(real64) :: temp

!$omp parallel do private(i,temp) shared(m, n, A, x, y, alpha,

beta)↩→

do i = 1, m

temp = ddot(n, A(i,1:n), 1, x, 1)

y(i) = alpha * temp + beta * y(i)

end do

!$omp end parallel do

end subroutine gemv_openmp_n

The question is: how are we accessing the memory? We are processing

the memory in 𝑛-blocks with a stride of 𝑚—see Figure Figure 6.2—which

is suboptimal as it leads to inefficient memory bandwidth utilization. The

vector 𝑦 is accessed sequentially, allowing it to be stored in registers. If 𝑛

76 6 Building Blocks for Dense Linear Algebra

𝐴𝑦 𝑥

𝑚

𝑛

=

Figure 6.3: The GEMV operation. The

matrix 𝐴 is of size 𝑚 × 𝑛, the vector 𝑥
is of size 𝑛, and the vector 𝑦 is of size

𝑚. The shaded cells are the ones that

are accessed in the computation of the

GEMV operation.

is small, the vector 𝑥 can be reused efficiently at the cache level. However,

due to the irregular access pattern of the matrix 𝐴, this approach is not

well-suited for column-major matrices, which are the default storage

format in Fortran. To improve performance, we can start by considering

a different scheduling and blocking policy while first maintaining the

same looping structure:

subroutine gemv_openmp_n_block(m, n, alpha, A, lda, x, beta, y)

use, intrinsic :: iso_fortran_env, only: real64

use omp_lib

implicit none

integer, intent(in) :: m, n

real(real64), intent(in) :: alpha, beta

real(real64), intent(in) :: A(lda, *)

integer, intent(in) :: lda

real(real64), intent(in) :: x(*)

real(real64), intent(inout) :: y(*)

! Local variables

integer :: i, j

real(real64) :: temp

real(real64) :: ddot

!$omp parallel do schedule(dynamic,32) private(i,j,temp)

shared(m,n,A,x,y,alpha,beta)↩→

do i = 1, m

temp = ddot(n, A(i,1:n), 1, x, 1)

y(i) = alpha * temp + beta * y(i) ! scale-add update

end do

!$omp end parallel do

end subroutine gemv_openmp_n_block

The code above uses the !$omp schedule directive to specify that the

iterations of the loop over 𝑖 should be scheduled dynamically in chunks

of 32 iterations. This means that each thread will process a chunk of 32

iterations at a time, and when it finishes processing the chunk, it will

request another chunk of 32 iterations to process. This allows the threads

to balance the workload dynamically, and it can improve the performance

of the code. The choice of the chunk size is important, and it can affect

the performance of the code. A chunk size that is too small can lead to

overhead due to the scheduling of the threads, while a chunk size that is

too large can lead to load imbalance among the threads due to caching

effects. The optimal chunk size depends on the size of the problem and

the size of the cache. One can experiment with different chunk sizes to

find the optimal one for a given problem size/machine configuration.

An alternative approach involves swapping the order of the loops,

effectively computing the entries by 𝑚-blocking—see Figure Figure 6.3.

Since the matrix 𝐴 is stored in column-major order, this allows 𝐴 to be

read sequentially, optimizing memory access. Each element of the vector

𝑥 is loaded into registers and reused efficiently. The vector 𝑦 is accessed

in every iteration, but if its size is smaller than the cache capacity, it can

be reused at the cache level. This approach is particularly well-suited for

GEMV operations with small 𝑚, as it takes advantage of the memory

hierarchy for better performance, this can be coded as:

subroutine gemv_openmp_m(m, n, alpha, A, lda, x, beta, y)

use iso_fortran_env, only: real64

use omp_lib

implicit none

6.2 BLAS 77

𝐴𝑦 𝑥

𝑚

𝑛

=

Figure 6.4: The GEMV operation. The

matrix 𝐴 is of size 𝑚 × 𝑛, the vector 𝑥
is of size 𝑛, and the vector 𝑦 is of size

𝑚. The shaded cells are the ones that

are accessed in the computation of the

GEMV operation.

7: Observe that in general the tile sizes

𝑛𝑥 and 𝑛𝑦 may not divide exactly the

matrix size 𝑚 and 𝑛, hence we need to

handle the case where the last tile is

smaller than 𝑛𝑥 and 𝑛𝑦 . This can be done

by using the min function to compute the

size of the last tile.

integer, intent(in) :: m, n, lda

real(real64), intent(in) :: alpha, beta

real(real64), intent(in) :: A(lda, *)

real(real64), intent(in) :: x(n)

real(real64), intent(inout) :: y(m)

integer :: i

y = beta * y ! Update y with beta * y

!$omp parallel do private(i) shared(A, x, alpha)

reduction(+:y)↩→

do i = 1, n

call daxpy(m, alpha*x(i), A(1:m,i), 1, y, 1)

end do

!$omp end parallel do

end subroutine gemv_openmp_m

The third approach would be to tile the matrix 𝐴 into blocks of size

𝑛𝑥 ×𝑛𝑦 , and then compute the GEMV operation on each block; see Figure

Figure 6.4. This is a good approach if the matrix 𝐴 is large enough, and

it allows us to take advantage of the cache hierarchy. The code for this

approach is similar to the one we have seen before, but we need to add

an outer loop that iterates over the blocks of the matrix 𝐴. The code

for this approach is a simple example of divide-and-conquer approach,

where we divide the problem into smaller subproblems and solve each

subproblem by a call to the sequetial GEMV operation. An example of

this approach can be coded as
7
:

subroutine gemv_openmp_tiled(m, n, alpha, A, lda, x, beta, y, n_x,

n_y)↩→

use iso_fortran_env, only: real64

use omp_lib

implicit none

integer, intent(in) :: m, n, lda

real(real64), intent(in) :: alpha, beta

real(real64), intent(in) :: A(lda, *)

real(real64), intent(in) :: x(n)

real(real64), intent(inout) :: y(m)

integer, intent(in), optional :: n_x, n_y

real(real64), allocatable :: yloc(:)

! local variables

integer :: n_x_, n_y_

integer :: i, j, ti, mb, nb

! set tile sizes or defaults

if (.not. present(n_x)) then

n_x_ = 32

else

n_x_ = n_x

end if

if (.not. present(n_y)) then

n_y_ = 32

else

n_y_ = n_y

end if

! scale y by beta

y = beta * y

!$omp parallel default(none) &

!$omp shared(A, x, y, m, n, lda, alpha, n_x_, n_y_) &

!$omp private(i,j,ti,tj,mb,nb,yloc)

allocate(yloc(m))

78 6 Building Blocks for Dense Linear Algebra

yloc = 0.0_real64

! Tile the i-j loops; collapse for better load balance

!$omp do collapse(2) schedule(static)

do i = 1, m, n_x_

do j = 1, n, n_y_

mb = min(n_x_, m - i + 1) ! handle edge tiles

nb = min(n_y_, n - j + 1)

! perform the small GEMV into the thread-local yloc

call dgemv('N', mb, nb, alpha, &

A(i, j), lda, &

x(j), 1, &

1.0_real64, yloc(i), 1)

end do

end do

!$omp end do

! Safely accumulate thread-local yloc into global y

do ti = 1, m

!$omp atomic

y(ti) = y(ti) + yloc(ti)

end do

deallocate(yloc)

!$omp end parallel

end subroutine gemv_openmp_tiled

We have used in the code the optional

keyword in the subroutine argument list,

which allows us to specify that the ar-

guments n_x and n_y are optional. This

means that we can call the subroutine

without specifying these arguments, and

the default values will be used. To check

if the arguments are present, we can

use the present function, which returns

.true. if the argument is present, and

.false. otherwise. Another important

point we had alread remarked is that the

BLAS DGEMV routine expects its LDA

argument to be the first dimension of

the original array A(lda,*), not the local

tile height, since this is used internally to

ensure that each tile addresses memory

correctly.

With respect to the previous example, we have exploited new OpenMP

directives, first we have used the !collapse(2) directive, which allows

us to collapse the two loops into a single loop, this allows us to have a

better load balance between the threads, and to use a better scheduling

policy. We have also used the !omp atomic directive, which allows us

to safely update the global vector y with the local vector yloc. This is

important since we are updating the global vector y in parallel, and

we need to ensure that the updates are done in a safe manner. The

!omp atomic directive ensures that the update is done in a safe manner,

and that the updates are done in the correct order.

Observe also that for the default tile sizes we have used the values 32 for

both 𝑛𝑥 and 𝑛𝑦 , the way in which this value should be set is not trivial,

and follows consideration about the cache size and the memory hierarchy

of the machine. The idea is to use a tile size that is small enough to fit in

the cache, but large enough to allow for good memory access patterns.

The tile size should be chosen based on the size of the cache, the size

of the matrix, and the size of the vector. As a first approximation, 32 is

usually a good guess, but if your objective is to squeeze the last drop of

performance out of your machine, you should experiment with different

tile sizes to find the optimal one for your machine.

Exercise 6.2.4 Write a program that uses the BLAS GEMV routine

to compute the GEMV operation, and compare the performance of

the BLAS implementation with the performance of the OpenMP

implementations. You can adapt the same Python script we have used

to measure the performance of the AXPY operation to measure the

performance of the GEMV. It is also a good idea to play around with

the scheduling policies to see how they affect the performance of the

code.

Listing 6.2: Forward substitution algo-

rithm.

subroutine fwd_subs(A, b, x)

implicit none

integer :: i, j

real(real64), intent(in) ::

A(:,:)↩→
real(real64), intent(in) :: b(:)

real(real64), intent(out) ::

x(size(b))↩→
integer :: n

n = size(b)

x(1) = b(1)/A(1,1)

do i = 2, n

x(i) = b(i)

do j = 1, i-1

x(i) = x(i) - A(i,j)*x(j)

end do

x(i) = x(i)/A(i,i)

end do

end subroutine fwd_subs

Listing 6.3: Backward substitution algo-

rithm.

subroutine bwd_subs(A, b, x)

implicit none

integer :: i, j

real(real64), intent(in) ::

A(:,:)↩→
real(real64), intent(in) :: b(:)

real(real64), intent(out) ::

x(size(b))↩→
integer :: n

n = size(b)

x(n) = b(n)/A(n,n)

do i = n-1, 1, -1

x(i) = b(i)

do j = i+1, n

x(i) = x(i) - A(i,j)*x(j)

end do

x(i) = x(i)/A(i,i)

end do

end subroutine bwd_subs

Not all the Level 2 BLAS operations are amenable to parallelization, for

6.2 BLAS 79

example the trsv operation, which solves the system of equations

𝐴𝑥 = 𝑏, 𝐴 =


𝑎11 0 0 · · · 0

𝑎21 𝑎22 0 · · · 0

...
...

. . .
...

...

𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 · · · 𝑎𝑛𝑛


or

𝐴 =



𝑎11 𝑎12 𝑎13 · · · 𝑎1𝑛

0 𝑎22 0 · · · 0

0 0 𝑎33 · · · 0

...
...

...
. . .

...

0 0 0 · · · 𝑎𝑛𝑛


where 𝐴 is a triangular matrix, 𝑥 is the solution vector, and 𝑏 is the

right-hand side vector. The trsv operation is not parallelizable since

the solution of the system of equations is done in a sequential manner,

i.e., we need to solve the system of equations for 𝑥𝑖 before we can solve

the system of equations for 𝑥𝑖+1—if the matrix 𝐴 is lower triangular

Listing 6.2—-or we need to solve the system of equations for 𝑥𝑖 before

we can solve the system of equations for 𝑥𝑖−1—if the matrix 𝐴 is upper

triangular Listing 6.3. The are options for treating the case of sparse (lower

or upper) triangular matrices via iterative methods, or other specialized

algorithms. We will come back to this in Chapter 7 on page 87.

In general, when we have to design an algorithm which we expect to

be parallelizable, it is a good idea to avoid as much as possible solution

of triangular systems since this is a classical example of bottleneck in

parallel algorithms.

All the other Level 2 BLAS operations

As we have seen, expressing parallelism at the level of the Level 2 BLAS is

already more challenging than at the level of the Level 1 BLAS. The reason

is that the Level 2 BLAS operations are all matrix-vector operations, and

the dependencies between the elements of the matrix and the vector

are more complex than the dependencies between the elements of the

vector in the Level 1 BLAS operations, i.e., this gave us the opportunity

to discuss the treatment of different data layouts, and the impact of the

memory hierarchy on the performance of the code.

The level 2 BLAS operations include more operations than the one we

have discussed, as we have done for the Level 1 BLAS, we report in Table

Table 6.3 on the following page the full list of operations. As you can see,

the level 2 BLAS operations are all matrix-vector operations and are all

of quadratic complexity.

We also need to mention the existence of a special case of the level 2 BLAS

which involves the use of band storage. This is a special case of the level

2 BLAS which is used to store banded matrices. In BLAS, packed storage

formats are used for banded and triangular banded matrices to improve

efficiency by storing only the nonzero elements. A banded matrix has

nonzero entries confined to a diagonal band around the main diagonal.

If a matrix has 𝑘𝑙 sub-diagonals (below the main diagonal) and 𝑘𝑢 super-

diagonals (above the main diagonal), it is stored in a two-dimensional

array of size (𝑘𝑙 + 𝑘𝑢 + 1) × 𝑛, where 𝑛 is the number of columns. The

80 6 Building Blocks for Dense Linear Algebra

Table 6.3: Level 2 BLAS Operations

types name (size arguments) description equation flops data

s, d, c, z gemv(trans, m, n, alpha, A,
lda, x, incx, beta, y,
incy)

general matrix-vector

multiply

𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦 2𝑚𝑛 𝑚𝑛

c, z hemv(uplo, n, alpha, A, lda,
x, incx, beta, y, incy)

Hermitian

matrix-vector mul.

𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦 2𝑛2 𝑛2/2

s, d + t symv(uplo, n, alpha, A, lda,
x, incx, beta, y, incy)

symmetric

matrix-vector mul.

𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦 2𝑛2 𝑛2/2

s, d, c, z trmv(uplo, trans, diag, n,
A, lda, x, incx)

triangular

matrix-vector mul.

𝑥 = 𝐴𝑇𝑥 𝑛2 𝑛2/2

s, d, c, z trsv(uplo, trans, diag, n,
A, lda, x, incx)

triangular solve 𝑥 = 𝐴−1𝑥 𝑛2 𝑛2/2

s, d, c ger(m, n, alpha, x, incx, y,
incy, A, lda)

general rank-1 update 𝐴 = 𝐴 + 𝛼𝑥𝑦𝑇 2𝑚𝑛 𝑚𝑛

s, d geru(m, n, alpha, x, incx,
y, incy, A, lda)

general rank-1

update(complex)

𝐴 = 𝐴 + 𝛼𝑥𝑦𝑇 2𝑚𝑛 𝑚𝑛

c, z gerc(m, n, alpha, x, incx,
y, incy, A, lda)

general rank-1

update(complex conj)

𝐴 = 𝐴 + 𝛼𝑥𝑦𝐻 2𝑚𝑛 𝑚𝑛

s, d + t syr(uplo, n, alpha, x, incx,
A, lda)

symmetric rank-1

update

𝐴 = 𝐴 + 𝛼𝑥𝑥𝑇 𝑛2 𝑛2/2

c, z her(uplo, n, alpha, x, incx,
A, lda)

Hermitian rank-1

update

𝐴 = 𝐴 + 𝛼𝑥𝑥𝐻 𝑛2 𝑛2/2

s, d syr2(uplo, n, alpha, x,
incx, y, incy, A, lda)

symmetric rank-2

update

𝐴 =

𝐴 + 𝛼𝑥𝑦𝑇 + 𝛼𝑦𝑥𝑇
2𝑛2 𝑛2/2

c, z her2(uplo, n, alpha, x,
incx, y, incy, A, lda)

Hermitian rank-2

update

𝐴 =

𝐴+ 𝛼𝑥𝑦𝐻 + 𝑦(𝑥𝐻)
2𝑛2 𝑛2/2

main diagonal is stored in row 𝑘𝑢 of the packed array. Super-diagonals

are stored above row 𝑘𝑢, and sub-diagonals below. For a matrix element

𝐴(𝑖 , 𝑗), the corresponding element in the packed array AB is located at

AB(𝑘𝑢 + 𝑖 − 𝑗 , 𝑗).


∗ ∗ · · · 0

∗ ∗ ∗ · · ·
.
.
.

∗ ∗ ∗ ∗ · · ·
.
.
.

∗ ∗ ∗ ∗ ∗ · · ·
.
.
.

0

. . .
.
.
.

.

.

. ∗ ∗ ∗ ∗ ∗

.

.

. · · · ∗ ∗ ∗ ∗


Figure 6.5: Banded matrix with 𝑘𝑙 sub-

diagonals and 𝑘𝑢 super-diagonals.

A triangular banded matrix is either upper or lower triangular with a

specified bandwidth 𝑘. For an upper triangular banded matrix, the main

diagonal and up to 𝑘 super-diagonals are stored; for a lower triangular

banded matrix, the main diagonal and up to 𝑘 sub-diagonals are stored.

The storage array has dimensions (𝑘 + 1) × 𝑛. In the upper triangular

case, the packed mapping is AB(𝑘 + 𝑖 − 𝑗 , 𝑗) for 𝑖 ≤ 𝑗 and 𝑗 − 𝑖 ≤ 𝑘; in the

lower triangular case, it is AB(𝑖 − 𝑗 , 𝑗) for 𝑖 ≥ 𝑗 and 𝑖 − 𝑗 ≤ 𝑘. In ?? we

show the list of the level 2 BLAS operations that are defined for banded

matrices and require the use of packed storage.

6.2.3 Level 3 BLAS

The level 3 BLAS define operators that involve matrices, such as

GEMM : Computes the matrix 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶, where 𝛼, 𝛽 are scalars,

and 𝐴, 𝐵, 𝐶 are matrices;

SYR2K : Computes the symmetrix rank-2 update 𝐶 = 𝛼𝐴𝐵⊤ + 𝛼𝐵𝐴⊤ +
𝛽𝐶, where 𝛼 is a scalars and 𝐴, 𝐵, 𝐶 are matrices;

If the matrices involved are of size 𝑛 × 𝑛, then the level 3 BLAS operators

involve 𝑂(𝑛3) arithmetic operations (given 𝑂(𝑛2) accesses to data), hence

the name.

We are going to look into the GEMM operation in more detail, since it

is the one which is most amenable to parallelization, and it is one of

the most used in practice. As we have done for the level 2 BLAS GEMV

operation, let us start from the mathematical formulation of the GEMM

operation, which is given by

𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶, (6.3)

where 𝐴 and 𝐵 can optionally be transposed or hermitian-conjugated

inside the routine, and all three matrices may be strided. The ordinary

matrix multiplication 𝐴𝐵 can be performed by setting 𝛼 = 1.0, and

Table 6.5: Level 2 BLAS Operations (band storage)

types name (options) description equation

s, d, c, z gbmv (trans, m, n, kl, ku, alpha,

A, lda, x, incx, beta, y, incy)

band general matrix-vector

multiply

𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦

s, d, c, z hbmv (uplo, n, k, alpha, A, lda,

x, incx, beta, y, incy)

band Hermitian

matrix-vector mul.

𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦

s, d + t sbmv (uplo, n, k, alpha, A, lda,

x, incx, beta, y, incy)

band symmetric

matrix-vector mul.

𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦

s, d, c, z tbmv (uplo, trans, diag, n, k, A,

lda, x, incx)

band triangular

matrix-vector

𝑥 = 𝐴𝑇𝑥

s, d, c, z tbsv (uplo, trans, diag, n, k, A,

lda, x, incx)

band triangular solve 𝑥 = 𝐴−1𝑥

6.2 BLAS 81

𝛽 = 0.0, and the result is stored in 𝐶. The following code shows how to

call the GEMM operation in Fortran:

program gemm_blass

use iso_fortran_env, only: real64, output_unit, error_unit

implicit none

character(len=100) :: n_str, m_str, k_str

integer :: n, m, k, info

real(real64), allocatable :: a(:,:), b(:,:), c(:,:)

! Read from command line arguments n, m, k

if (command_argument_count() < 3) then

write(error_unit, *) "Usage: gemm_blass n m k"

stop

end if

call get_command_argument(1, n_str)

call get_command_argument(2, m_str)

call get_command_argument(3, k_str)

read(n_str, *) n

read(m_str, *) m

read(k_str, *) k

! Check if n, m, k are positive integers

if (n <= 0 .or. m <= 0 .or. k <= 0) then

write(error_unit, '("n = ",I0,", m = ",I0,", k = ",I0,"

must be positive integers")') n,m,k↩→

stop

else

write(output_unit, '("n = ",I0,", m = ",I0,", k = ",I0)')

n,m,k↩→

end if

! Allocate matrices

allocate(a(n,k), b(k,m), c(n,m), stat=info)

if (info /= 0) then

write(error_unit, *) "Error allocating matrices"

stop

end if

! Initialize matrices

call random_number(a)

call random_number(b)

call random_number(c)

! Perform matrix multiplication using BLAS

call dgemm('N', 'N', n, m, k, 1.0d0, a, n, b, k, 1.0d0, c, n)

! Free matrices

deallocate(a, b, c, stat=info)

if (info /= 0) then

write(error_unit, *) "Error deallocating matrices"

stop

end if

end program gemm_blass

The code is very simple, and it is similar to the one we have seen for the

GEMV operation, it also uses the dgemm routine, which is the one that

implements the GEMM operation in the BLAS library and is called as

follows:

call dgemm(transa, transb, m, n, k, alpha, A, lda, B, ldb, beta,

C, ldc)↩→

where transa and transb are the transposition options for the matrices 𝐴

and 𝐵, respectively, m, n, and k are the dimensions of the matrices, alpha

and beta are the scalars, and lda, ldb, and ldc are the leading dimensions

82 6 Building Blocks for Dense Linear Algebra

of the matrices 𝐴, 𝐵, and 𝐶, respectively. The leading dimension is the

first dimension of the array that stores the matrix in memory.

To see how the GEMM operation can be parallelized, we need to look at

the mathematical formulation of the GEMM operation, which is given

by

𝐶𝑖 𝑗 = 𝛼
𝑘∑

𝑙=1

𝐴𝑖𝑙𝐵𝑙 𝑗 + 𝛽𝐶𝑖 𝑗 , 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛. (6.4)

First of all, let us express the GEMM operation as a looped operation

plainly in Fortran:

subroutine matmul_ijl(n,m,k,alpha,A,B,beta,C)

use iso_fortran_env, only: real64

implicit none

integer, intent(in) :: n, m, k

real(real64), intent(in) :: alpha

real(real64), intent(in) :: A(n,k)

real(real64), intent(in) :: B(k,m)

real(real64), intent(in) :: beta

real(real64), intent(inout) :: C(n,m)

! Local variables

integer :: i, j, l

real(real64) :: sum

! Matrix multiplication

! C = alpha * A * B + beta * C

do i = 1, m

do j = 1, n

C(i,j) = beta * C(i,j)

do l = 1, k

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)

end do

end do

end do

end subroutine matmul_ijl

The above code is a straight formula-to-code implementation of the

GEMM operation as we have writte in (6.4). If we look at the code, we

can observe that we can swap the order of the outer two loops, i.e., we

can loop over the columns of the matrix 𝐶 first, and then over the rows

of the matrix 𝐶, i.e.,

subroutine matmul_jil(n,m,k,alpha,A,B,beta,C)

use iso_fortran_env, only: real64

implicit none

integer, intent(in) :: n, m, k

real(real64), intent(in) :: alpha

real(real64), intent(in) :: A(n,k)

real(real64), intent(in) :: B(k,m)

real(real64), intent(in) :: beta

real(real64), intent(inout) :: C(n,m)

! Local variables

integer :: i, j, l

real(real64) :: sum

! Matrix multiplication

! C = alpha * A * B + beta * C

do j = 1, m

do i = 1, n

C(i,j) = beta * C(i,j)

6.2 BLAS 83

do l = 1, k

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)

end do

end do

end do

end subroutine matmul_jil

Do you think this is a good idea? Let us try and measure the performance

of the two variants of the code. We can write a simple wrapper calling

the two subroutines on three randomly generated matrices, and measure

the time over 100 repetitions:

program matmul_sequential

use iso_fortran_env, only: real64, output_unit

implicit none

integer, parameter :: n = 1000

real(real64) :: A(n,n), B(n,n), C(n,n)

real(real64) :: alpha, beta

real(real64) :: start_time, end_time, elapsed_time

integer :: rep

! Initialize matrices A and B

call random_number(A)

call random_number(B)

call random_number(C)

! Set alpha and beta

alpha = 1.0d0

beta = 1.0d0

! Perform matrix multiplication with matmul

elapsed_time = 0.0d0

do rep = 1, 100

call cpu_time(start_time)

call matmul_ijl(n,n,n,alpha,A,B,beta,C)

call cpu_time(end_time)

elapsed_time = elapsed_time + (end_time - start_time)

end do

write(output_unit,*) 'Average time for matmul_ijl:',

elapsed_time/100.0d0↩→

elapsed_time = 0.0d0

do rep = 1, 100

call cpu_time(start_time)

call matmul_jil(n,n,n,alpha,A,B,beta,C)

call cpu_time(end_time)

elapsed_time = elapsed_time + (end_time - start_time)

end do

write(output_unit,*) 'Average time for matmul_jil:',

elapsed_time/100.0d0↩→

! Exit the program with a success status

stop

end program matmul_sequential

Since we are looking for performance, we compile the code with the

-O3 optimization flag, and the -mtune=native and -march=alderlake

flags, which are used to optimize the code for the specific architecture of

the machine we are using. After running the code, we get the following

output:

Average time for matmul_ijl: 0.37526105999999992

Average time for matmul_jil: 0.15405741999999961

84 6 Building Blocks for Dense Linear Algebra

As you can see, the second version of the code is about 2.6 times faster

than the first one. Indeed, in the second version of the code, we have

improved the memory access pattern by accessing the elements of the

matrix 𝐶 in a column-major order, which is the same order in which

the elements are stored in memory. As we have discussed in Section 4.1,

modern CPUs fetch memory in cache lines and benefit when loops stride

through memory sequentially. In this regard, the second version of the

code is better than the first one, nevertheless, we can still improve the

performance of the code by using a yet better memory access pattern. If

we select the (𝑗 , 𝑙 , 𝑖)-ordering of the loops:

▶ The innermost loop is 𝑖, so each iteration reads 𝐴(𝑖 , 𝑙) and 𝐶(𝑖 , 𝑗)
contiguously (first index varies);

▶ 𝐵(𝑙 , 𝑗) is constant inside the inner loop (with fixed 𝑙 and 𝑗), so it

can be held in a register (or broadcast) while sweeping through a

whole column of 𝐴 and 𝐶;

▶ Over 𝑙 (middle loop), 𝐴(:, 𝑙) (column of A) and 𝐵(:, 𝑗) (column of

𝐵) are accessed sequentially; both are contiguous in memory for

fixed 𝑗;

▶ Over 𝑗 (outer loop), each column of 𝐶 is computed in turn.

Namely, we can write the code as follows:

subroutine matmul_jli(n,m,k,alpha,A,B,beta,C)

use iso_fortran_env, only: real64

implicit none

integer, intent(in) :: n, m, k

real(real64), intent(in) :: alpha

real(real64), intent(in) :: A(n,k)

real(real64), intent(in) :: B(k,m)

real(real64), intent(in) :: beta

real(real64), intent(inout) :: C(n,m)

! Local variables

integer :: i, j, l

! Matrix multiplication

C = beta * C

! Compute C += alpha * A * B

do j = 1, n

do l = 1, k

do i = 1, m

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)

end do

end do

end do

end subroutine matmul_jli

This order achieves unit-stride access on all arrays by using memory

in cache-line order, in Fortran terms, the first index (row) is looped

innermost, which maximizes locality. Indeed if repeat the previous

experiment by adding the measure for the new code, we get:

Average time for matmul_ijl: 0.37526105999999992

Average time for matmul_jil: 0.15405741999999961

Average time for matmul_jli: 9.1884539999999792E-002

The new code is about 1.5 times faster than the previous one, and

about 4 times faster than the first one; see Figure 6.6 for a graphical

6.2 BLAS 85

ĳl jil jli BLAS

0

0.1

0.2

0.3

0.4 0.39

0.15

9.29 · 10
−2

0.13

Implementation

Average Time (s)

Figure 6.6: Performance of the three ver-

sions of the GEMM operation for the

three different ordering of the do loops

together with the DGEMM implementa-

tion of the OpenBLAS.

Modern compilers are very sophisticated,

and some of the techniques that once

were necessarily implemented “by hand”

can now be delegated to the compiler,

possibly under the control of directives

as in OpenMP

representation of the performance of the three versions of the code and

the time measured for the OpenBLAS implementation of the DGEMM.

Exercise 6.2.5 Reimplement this experiment on your own machine, and

measure the performance of the three versions of the code and version

of the BLAS you have installed. You can use the -O3 optimization flag,

and the -mtune=native and -march=<----> flags, which are used to

optimize the code for the specific architecture of the machine you are

using. Try also other computing loads by varying the size of the matrices,

and see how the performance of the code changes.

Please note that with these examples we have just begun to explore the

coding techniques that are needed to achieve peak performance: a very

substantial amount of work would still be necessary to arrive at a level of

performance comparable to that of most BLAS implementations.

6.2.4 Performance consideration for the BLAS

The BLAS were designed to solve a major problem: different computer

architectures typically require different coding techniques to achieve

optimal performance. This entails the need to recode algorithms for every

new major computing platform, which is clearly unsustainable in the

long term given the complexity of coding algorithms in an efficient and

stable manner.

The solution to this major problem revolves arount the idea of the BLAS:

1. Design and code algorithms based on the BLAS operators;

2. Reimplement “only” the BLAS operators for new computer archi-

tectures.

By and large, the above strategy has worked effectively, indeed the

success of LAPACK is based precisely on the peformance portability of

the BLAS.

Note that most modern computer architectures are based on proces-

sors connected to a memory hierarchy, designed to alleviate the speed

differential beween the processor and the main memory access; these

hierarchies are based on the idea of reusing data as much as possible

whenever it has been accessed. This concept of data reuse naturally

matches the design of the level 3 BLAS, where we access 𝑂(𝑛2) data to

perform 𝑂(𝑛3) operations, thus providing the potential to reuse each

data item 𝑛 times.

It is also possible to build the entire BLAS library around an efficient imple-

mentation of GEMM plus a few additional support routines, see [29].

Sparse Matrices and Iterative
Solvers 7

7.1 Introduction 87
7.1.1 A simple solver 88
7.1.2 Classical iterative solvers 88
7.1.3 Krylov solvers and precon-

ditioners 89
7.1.4 Preconditioners 91
7.2 Sparse Matrix-Vector

product 94
7.2.1 COOrdinate 95
7.2.2 Compressed Sparse Rows 96
7.2.3 Sparse Matrix-Vector

Product considerations . 96
7.2.4 Design Patterns: the

“State” Pattern 97

7.1 Introduction

What is a sparse matrix? The most famous definition of “sparse matrix” is

attributed to James Wilkinson, one of the founding fathers of numerical

linear algebra [30]:

Any matrix with enough zeros that it pays to take advantage

of them.

Sparse linear systems (and sparse eigenvalue problems) often arise in

the solution of Partial Differential Equations, and in the sequel we will

almost always assume that this is the case; other sources exist, but they

often exhibit somewhat different features, and we will not discuss them

in detail.

Solving PDEs in a closed, analytic form is almost always impossible,

and even when it is possible, it is by no means guaranteed that this will

lead to the most accurate solution. Therefore, when faced with PDEs,

we typically have to discretize and linearize them; there are multiple

techniques to perform these steps, but for the most part they share the

same general appearance:

▶ The original PDE domain is partitioned, and only 𝑂(1) variables

and equations are associated with each partition;

▶ Each equation only contains a limited number of nonzero coeffi-

cients 𝑘; moreover, 𝑘 is bounded independently of the size 𝑛 of

the domain (and of the linear system), and is determined by local

topological features.

These facts tend to push towards a different way of organizing the data

layout, as well as handling the interaction with the discretization mesh

these problems come from.

Another extremely important point about sparse problems is that they

almost always require iterative solution strategies. To see why this is the

case, we need to consider two major factors.

The first one is that when an 𝑛 × 𝑛 matrix 𝐴 is sparse, its storage requires

much less than 𝑛2
memory; indeed, if the number of nonzeros per

row is 𝑂(1), that is, it is bounded independently of 𝑛, it is possible to

store 𝐴 using only 𝑂(𝑛)memory by storing explicitly only the non-zero

coefficients together with their indices, and this is very often the case in

a PDE context.

The fact that matrix 𝐴 only takes up 𝑂(𝑛)memory is extremely important

in that 𝑛 is typically related to the degree of refinement of the mathemati-

cal model; thus, a linear storage cost will encourage the use of much more

refined models (given the same amount of memory available), entailing

much larger values for 𝑛.

The second factor emerges from the factorization strategies we describe

in Section 6.2 and Section 8.1: the update steps in Algorithm 7 tend to

88 7 Sparse Matrices and Iterative Solvers

introduce non-zeros into positions that in the original matrix where zeros

(and thus not stored explicitly). This phenomenon is called fill-in and

ultimately limits the effectiveness of factorization strategies when applied

to sparse problems: since a cheap storage footprint 𝑂(𝑛) encourages to

use much larger values of 𝑛, fill-in leads to excessive memory pressure

by growing the number of nonzeros.

The ideal situation would be to require that the storage associated with

𝐴 remains the same throughout the solution process: this is exactly

what happens with iterative solvers, where the matrix is only employed to

perform operations that do not alter its structure such as matrix-vector

multiplications.

7.1.1 A simple iterative solver

Let us consider the following iteration (Richardson):

𝑥𝑘+1 = 𝑥𝑘 + 𝜔(𝑏 − 𝐴𝑥𝑘). (7.1)

If the scalar 𝜔 is such that ∥𝐼 − 𝜔𝐴∥ < 1, then the iteration converges

and the residual (𝑏 − 𝐴𝑥𝑘) becomes negligible, or

𝑥̄ = lim

𝑘→∞
𝑥𝑘 , 𝐴𝑥̄ = 𝑏,

with the obvious caveat that in practice we stop the iteration as soon as

𝑥𝑘 is “good enough”.

The notion of “good enough” is usually implemented by computing the

norm of the residual, typically scaled against the norm of the RHS, and

comparing it with a tolerance:

∥𝑏 − 𝐴𝑥𝑘∥
∥𝑏∥ ≤ 𝜏. (7.2)

Thus the basic ingredients of any simple iterative solver can be listed as

follows:

1. Matrix-vector products;

2. Vector sums;

3. Vector norms;

4. Vector dot products.

There are many possible ways to combine these ingredients in defining

an iterative solver; the previous method 7.1 is just a very simple example,

and much more sophisticated methods have been developed over the

years.

7.1.2 Classical iterative solvers

Let us now state a slightly modified version of of 7.1

𝑥𝑘+1 = 𝑥𝑘 +𝑀−1(𝑏 − 𝐴𝑥𝑘), (7.3)

where 𝑀 is a linear operator (preconditioner) that formally transforms

𝐴𝑥 = 𝑏 into 𝑀𝐴𝑥 = 𝑀𝑏, and ideally satisfies the properties:

7.1 Introduction 89

1. 𝑀 is easy to compute;

2. 𝑀−1
is easy to apply;

3. 𝑀−1𝐴 ≈ 𝐼.

Different choices for 𝑀 give rise to many iterative methods, including

common ones like Jacobi, Gauss-Seidel, Chebychev. From the point of

view of the software kernels that we need to develop for a complete

implementation we have practically covered all of them (save for the

sparse triangular system solution, which however can be easily derived

from the matrix-vector code).

7.1.3 Krylov solvers and preconditioners

Unfortunately the methods that can be derived from 7.3 are not efficient

enough for large scale problems. The algorithms of choice to solve

very large scale problems are currently drawn from the class of Krylov

subspace iterations, preconditioned with many different strategies. We

will very briefly recall here two of the main Krylov methods, Conjugate

Gradients (CG) and Generalized Minimum Residual (GMRES), and give

some ideas about preconditioning; for a thorough introduction to the

subject see [31].

Conjugate Gradients

The first method we describe is the famous Conjugate Gradients method,

which is applicable when the matrix 𝐴 is symmetric positive definite

(SPD). We start from its original derivation by defining an equivalent

minimzation problem:

min

𝑥
𝜙(𝑥) = 1

2

𝑥𝑇𝐴𝑥 − 𝑥𝑇𝑏. (7.4)

That this is equivalent to our linear system can be easily seen by applying

the conditions for the minimizer 𝑥𝑐 :

min

𝑥
𝜙(𝑥) ⇒ ∇𝜙(𝑥𝑐) = 0,

and computing the gradient of the function we come back to

𝐴𝑥𝑐 − 𝑏 = 0,

which is our original problem. An obvious idea is then to start from

an arbitrary point and move along the gradient, which is, after all, the

direction along which the function changes most rapidly:

−∇𝜙(𝑥) = 𝑏 − 𝐴𝑥 = 𝑟,

since we want to have a reduction in 𝜙. If the residual 𝑟 is nonzero, there

exists 𝛼 such that

𝜙(𝑥𝑖 + 𝛼𝑟𝑖) < 𝜙(𝑥𝑖)

and it can be easily seen that

𝛼 = 𝑟𝑇𝑖 𝑟𝑖/𝑟𝑇𝑖 𝐴𝑟𝑖 .

90 7 Sparse Matrices and Iterative Solvers

This is the steepest descent method, which is however not satisfactory

beacuse the gradient at each step is constrained to be orthogonal to the

gradient at the previous step

𝑟𝑇
𝑘+1

𝑟𝑘 = 0,

and this may slow down convergence significantly. If we now modify the

search direction as in

𝑝𝑘 = 𝑟𝑘−1 + 𝛽𝑘𝑝𝑘−1 ,

and apply a little bit of algebra, we arrive at the conjugate gradients

method, which has the property that

𝑝𝑇
𝑘
𝐴𝑝 𝑗 = 0 𝑘 ≠ 𝑗 ,

or, the search directions are orthogonal in the inner product induced by the
matrix 𝐴. Note that by properly sequencing the operations and providing

Algorithm 2: Conjugate Gradients

1 Compute 𝑟(0) ← 𝑏 − 𝐴𝑥(0) ;

2 while 𝑟𝑖 ≠ 0 do
3 𝑖 ← 𝑖 + 1;

4 if 𝑖 = 1 then
5 𝑝(1) ← 𝑟(0) ;

6 else
7 𝛽𝑖 ← −𝑝𝑇𝑖−1

𝐴𝑟𝑖−1/𝑝𝑇𝑖−1
𝐴𝑝𝑖−1;

8 𝑝(𝑖) ← 𝑟(𝑖−1) + 𝛽𝑖𝑝(𝑖−1)
;

9 𝛼𝑖 ← 𝑝𝑇
𝑖
𝑟𝑖−1/𝑝𝑇𝑖 𝐴𝑝𝑖 ;

10 𝑥(𝑖) ← 𝑥(𝑖−1) + 𝛼𝑖𝑝
(𝑖)

;

11 𝑟(𝑖) ← 𝑟(𝑖−1) − 𝛼𝑖𝐴𝑝𝑖 ;

some additional storage, the method only requires one matrix-vector

product per iteration.

GMRES

What should we do when the matrix 𝐴 is not SPD? One possible method

is GMRES, which computes at each step the solution to the minimization

problem

min ∥𝑏 − 𝐴𝑥∥2 ,

from the vector space 𝑉𝑘 built by successive multiplications by 𝐴

𝑉𝑘 = span{𝑟, 𝐴𝑟, 𝐴2𝑟, . . . , 𝐴𝑘𝑟}.

GMRES requires keeping track explicitly of 𝑉𝑘 and therefore is quite

expensive in terms of memory; it is usually implemented in its restarted

(RGMRES) varian, that is, builds 𝑉𝑘 up to a certain size 𝑚 then restarts

the process.

7.1 Introduction 91

Algorithm 3: GMRES(m)

1 Compute 𝑟0 ← 𝑏 − 𝐴𝑥0, 𝛽← ∥𝑟0∥ and 𝑣1 ← 𝑟0/𝛽;

2 for 𝑗 = 1, . . . , 𝑚 do
3 Compute 𝑤 𝑗 ← 𝐴𝑣 𝑗 ;
4 for 𝑖 = 1, . . . , 𝑗 do
5 ℎ𝑖 𝑗 ← (𝑤 𝑗 , 𝑣𝑖);
6 𝑤 𝑗 ← 𝑤 𝑗 − ℎ𝑖 𝑗𝑣𝑖 ;

7 ℎ 𝑗+1, 𝑗 ← ∥𝑤 𝑗∥2. If ℎ 𝑗+1, 𝑗 = 0 then 𝑚 ← 𝑗 and go to 9;

8 𝑣 𝑗+1 ← 𝑤 𝑗/ℎ 𝑗+1, 𝑗 ;

9 Define the (𝑚 + 1) ×𝑚 Hessenberg matrix 𝐻𝑚 = {ℎ𝑖 𝑗}1≤𝑦≤𝑚+1,1≤ 𝑗≤𝑚 ;

10 Compute 𝑦𝑚 the minimizer of ∥𝛽𝑒1 − 𝐻𝑚𝑦∥2 and set

𝑥𝑚 ← 𝑥0 +𝑉𝑚𝑦𝑚 ;

Other Krylov methods

There are many other variants of Krylov subspace methods, among which

we can list BCG, CGS, BiCGSTAB, BiCGSTAB(l), QMR, TFQMR and so

on.

No method is universally better than all the others; the proper choice

will require some experimentation and/or an analysis of the spectral

properties of the linear system matrix 𝐴.

7.1.4 Preconditioners

In the method 7.3 we mentioned the use of a linear transformation 𝑀

called a preconditioner. An appropriate choice of preconditioner is often

essential to achieve convergence in a reasonable amount of effort. A

preconditioner is a preprocessing for the linear algebraic system

𝐴𝑥 = 𝑏, 𝑥, 𝑏 ∈ ℝ𝑛 , 𝐴 ∈ ℝ𝑛×𝑛 , (7.5)

that transforms it into an equivalent one by applying a nonsingular

transformation, for example:

𝑀−1𝐴𝑥 = 𝑀−1𝑏. (7.6)

The choice of the transformation 𝑀 is usually made so that certain

spectral properties of the coefficient matrix 𝑀−1𝐴 are more favourable

for the convergence properties of the Krylov methods applied to the

system at hand. Equation (7.6) shows a left preconditioning approach; it

is also possible to apply a right preconditioning,

𝐴𝑀−1𝑢 = 𝑏, 𝑥 = 𝑀−1𝑢 (7.7)

or a split preconditioning

𝑀−1

1
𝐴𝑀−1

2
𝑢 = 𝑀−1

1
𝑏, 𝑥 = 𝑀−1

2
𝑢. (7.8)

In the case of 𝐴 sparse, the transformed matrix 𝑀−1𝐴 is usually not built

explicitly, because

1. The inverse of a sparse matrix is in general dense

92 7 Sparse Matrices and Iterative Solvers

2. The product of two sparse matrices is denser than either of the

factors.

So, what normally happens is that the operator 𝑀−1
is applied after

matrix 𝐴 at each step in the method requiring an explicit inversion and a

product.

The preconditioner matrix 𝑀 should then satisfy three conflicting re-

quirements:

▶ It should be computed cheaply from 𝐴 (cfr the setup time in

equation (7.9));

▶ It should be cheap to apply 𝑀−1
;

▶ We should have ∥𝐴 − 𝑀∥, ∥𝑀−1∥ and ∥𝐼 − 𝑀−1𝐴∥ “small” for

some norm depending on the problem at hand.

The number of iterations needed to attain a prescribed tolerance is a

very important factor but we also need to consider the cost of each

iteration as well as the preprocessing cost. If the choice of 𝑀 finds a good

tradeoff between the quality of the approximation of 𝐴 and the cost to

compute and apply 𝑀, then the benefit in the number of iterations 𝑗 can

compensate the setup time and computational overhead per iteration

needed to implement the preconditioning strategy. For example we often

have that the time to solution 𝑇𝑠𝑙𝑣 is given by:

𝑇𝑠𝑙𝑣 = 𝑇𝑠𝑒𝑡𝑢𝑝 + 𝑁𝑖𝑡 × 𝑇𝑖𝑡 , (7.9)

where 𝑇𝑠𝑒𝑡𝑢𝑝 is the time to build the preconditioner, 𝑁𝑖𝑡 the number of

iterations and 𝑇𝑖𝑡 the time per iteration.

On the other hand, if either the setup or the application of the 𝑀−1

operator is too expensive, then the total time may grow.

Taking two extreme examples, if we choose 𝑀 = 𝐼, then both setup and

application are very fast, but the convergence is no better than before.

If, on the other hand, if we choose 𝑀 = 𝐴, then the setup is very easy

and the convergence is very fast, but at each step we would need to solve

the very same problem we started from, and therefore we would end up

with an application phase that costs just as much as the full solution.

The art of preconditioning lies therefore in finding a reasonable trade-off

among all of the previous factors.

Stationary Iterations as Preconditioners

While stationary iteration methods such as the Richardson iteration 7.1

are not very effective in comparison with Krylov subspace methods, the

splittings on which they are based can be used to provide a preconditioner

𝑀. The simplest preconditioner is the (point) Jacobi preconditioner in

which we invert the diagonal 𝐷 of matrix 𝐴. When using these kind of

splittings we usually specify a fixed (and small) number of iterations to

be performed.

Note that to implement the Jacobi iteration we need to implement

multiplication by a vector element by element, whereas to implement

the Gauss-Seidel iteration we need to implement a triangular system

solution for a sparse coefficient matrix.

7.1 Introduction 93

Incomplete Factorizations

For a general sparse matrix 𝐴 the application of a direct solution method

often means computing its 𝐿𝑈 factorization: if we can afford the compu-

tation of the triangular factors, we can also solve (exactly) a linear system

having 𝐴 as a coefficient matrix, and we also have a “preconditioner”

that guarantees immediate convergence of iterative methods. The catch

is obvious: the triangular factors are too expensive because of fill-in, i.e.

they contain many more nonzeroes than the original matrix 𝐴, and we

can rarely afford their exact computation.

However we can trade the exactness of the factorization for the memory

space, by defining an incomplete factorization as

𝐴 = 𝐿̂𝑈̂ − 𝑅

where we throw the fill-in onto the residual 𝑅 (which is discarded),

to keep an acceptable sparsity structure in the triangular matrices 𝐿̂𝑈̂ .

Thus a general incomplete factorization may be stated as Algorithm 4 by

referring to a pattern 𝑃 which discriminates the accepted factorization

entries. Algorithm 4 is written in the customary form overwriting the

Algorithm 4: General Incomplete LU Factorization

1 for 𝑖 = 2, . . . , 𝑛 do
2 for 𝑘 = 1, . . . , 𝑖 − 1 do
3 if (𝑖 , 𝑘) ∈ 𝑃 then
4 𝑎𝑖𝑘 ← 𝑎𝑖𝑘/𝑎𝑘𝑘 ;

5 for 𝑗 = 𝑘 + 1, . . . , 𝑛 do
6 if (𝑖 , 𝑗) ∈ 𝑃 then
7 𝑎𝑖 𝑗 ← 𝑎𝑖 𝑗 − 𝑎𝑖𝑘𝑎𝑘 𝑗 ;

entries of 𝐴 with the entries of 𝐿̂ and 𝑈̂ ; in practice, since the iterative

methods will require 𝐴 for the matrix-vector product, the factors are

stored separately.

That a matrix 𝐴 admits an incomplete factorization and that the factor-

ization is a good preconditioner are entirely non-trivial propositions;

however there exists a vast class, the so-called 𝑀-matrices, for which it

can be proven that such a factorization exists [31, 32], and gives rise to a

convergent splitting, thus guaranteeing a good quality preconditioner.

Algebraic Multigrid Preconditioners

Multilevel methods are often used to build preconditioners for the matrix

𝐴, and are coupled with Krylov methods to solve a linear system 𝐴𝑥 = 𝑏.

Generally speaking, a multilevel method provides an approximate inverse

of 𝐴 by suitably combining approximate inverses of a hierarchy of

matrices that represent 𝐴 in increasingly coarser spaces. This is achieved

by recursively applying two main processes: smoothing, which provides

an approximate inverse of a single matrix in the hierarchy, usually by a

simple iteration, and coarse-space correction, which computes a correction

to the approximate inverse by transferring suitable information from the

94 7 Sparse Matrices and Iterative Solvers

current space to the next coarser one and vice versa, and by computing,

through smoothing, an approximate inverse of the coarse matrix (see [33–

35]).

Our software framework for multigrid preconditioner is detailed in [36].

Final observations

The literature on preconditioners is immense, and it is impossible to do it

justice in these brief notes; some good starting points include [31, 33–35],

whilst our own contributions can be found in e.g. [36–38]. We will not

discuss preconditioners in any further details here, except to underline

that, as we have seen, from a software point of view they require the

availability of two additional kernels:

1. Multiplication/division of two vectors element by element;

2. Solution of a triangular linear system with a sparse coefficient

matrix.

7.2 Sparse Matrix-Vector product

Let us return to the sparse matrix definition by Wilkinson:

Any matrix with enough zeros that it pays to take advantage

of them.

This definition implicitly refers to some operation in the context of which

we are “taking advantage” of the zeros; experience shows that it is

impossible to exploit the matrix structure in a way that is uniformly good

across multiple operators, let alone multiple computing architectures.

The usual two-dimensional array storage is a linear mapping that stores

the coefficient 𝐴(𝐼 , 𝐽) of an 𝑀 × 𝑁 matrix at position (𝐽 − 1) × 𝑀 + 𝐼

of a linear array. This formula assumes column-major ordering used in

Fortran, Matlab and Julia; an analogous formula applies for row-major

storage used in C and Java. Thus representing a matrix in memory

requires just one linear array, and two integer values detailing the size of

the matrix.

Now enter sparse matrices: “taking advantage” of the zeros essentially

means avoiding their explicit storage. But this means that the simple

mapping between the index pair (𝐼 , 𝐽) and the position of the coefficient

in memory is destroyed. Therefore, all sparse matrix storage formats

are devised around means of rebuilding this map using auxiliary index

information: a pair of dimensions does not suffice any longer. How

costly this rebuilding is in the context of the operations we want to

perform is the critical issue we need to investigate. Indeed, performance

of sparse matrix kernels is typically much less than that of their dense

counterparts, precisely because of the need to retrieve index information

and the associated memory traffic. Moreover, whereas normal storage

formats allow for sequential and/or blocked accesses to memory in the

input and output vectors 𝑥 and 𝑦, sparse storage means that coefficients

stored in adjacent positions in the sparse matrix may operate on vector

entries that are quite far apart, depending on the pattern of nonzeros

contained in the matrix.

7.2 Sparse Matrix-Vector product 95

Figure 7.1: Example of sparse matrix

1 1 1 2 2 2 3 3

1 2 8 1 3 9 2 8

AS ARRAY

JA ARRAY

IA ARRAY

Figure 7.2: COO compression of matrix

in Figure 7.1

By now it should be clear that the performance of sparse matrix compu-

tations depends critically on the specific representation chosen. Multiple

factors contribute to determine the overall performance:

▶ the match between the data structure and the underlying com-

puting architecture, including the possibility of exploiting special

hardware instructions;

▶ the suitability of the data structure to decomposition into indepen-

dent, load-balanced work units;

▶ the amount of overhead due to the explicit storage of indices;

▶ the amount of padding with explicit zeros that may be necessary;

▶ the interaction between the data structure and the distribution of

nonzeros (pattern) within the sparse matrix;

▶ the relation between the sparsity pattern and the sequence of

memory accesses especially into the 𝑥 vector.

Many storage formats have been invented over the years; a number of

attempts have also been directed at standardizing the interface to these

data formats for convenient usage (see e.g., [39]).

We will now review two very simple and widely-used data formats:

COOrdinate (COO) and Compressed Sparse Rows (CSR). These two

formats are probably the closest we can get to a “general purpose” sparse

matrix representation. For each format, we will show the representation

of the example matrix in Figure 7.1.

Name Description

M Number of rows in matrix

N Number of columns in matrix

NZ Number of nonzeros in matrix

AVGNZR Average number of nonzeros per row

MAXNZR Maximum number of nonzeros per row

NDIAG Number of nonzero diagonals

AS Coefficients array

IA Row indices array

JA Column indices array

IRP Row start pointers array

JCP Column start pointers array

NZR Number of nonzeros per row array

OFFSET Offset for diagonals

Table 7.1: Notation for parameters de-

scribing a sparse matrix

7.2.1 COOrdinate

The COO format is a particularly simple storage scheme, defined by the

three scalars M, N, NZ and the three arrays IA, JA and AS. By definition of

number of rows we have 1 ≤ 𝐼𝐴(𝑖) ≤ 𝑀, and likewise for the columns; a

graphical description is given in Figure 7.2.

Algorithm 5: Matrix-Vector product in COO format

do i=1,nz
ir = ia(i)
jc = ja(i)
y(ir) = y(ir) + as(i)*x(jc)

end do

96 7 Sparse Matrices and Iterative Solvers

1 2 8 1 3

1 4 7 10 14

9 2 8

AS ARRAY

JA ARRAY

IRP ARRAY

Figure 7.3: CSR compression of matrix

in Figure 7.1

The code to compute the matrix-vector product 𝑦 = 𝐴𝑥 is shown in

Alg. 5; it costs five memory reads, one memory write and two floating-

point operations per iteration, that is, per nonzero coefficient. Note that

the code will produce the result 𝑦 (to within floating-point rounding

tolerance) even if the coefficients and their indices appear in an arbitrary

order inside the COO data structure.

7.2.2 Compressed Sparse Rows

The CSR format is perhaps the most popular sparse matrix representation.

It explicitly stores column indices and nonzero values in two arrays

JA and AS and uses a third array of row pointers IRP, to mark the

boundaries of each row. The name is based on the fact that the row index

information is compressed with respect to the COO format, after having

sorted the coefficients in row-major order. Figure 7.3 illustrates the CSR

representation of the example matrix shown in Figure 7.1.

Algorithm 6: Matrix-Vector product in CSR format

do i=1,m
t=0
do j=irp(i),irp(i+1)-1

t = t + as(j)*x(ja(j))
end do
y(i) = t

end do

The code to compute the matrix-vector product 𝑦 = 𝐴𝑥 is shown in

Alg. 6; it requires three memory reads and two floating-point operations

per iteration of the inner loop, i.e., per nonzero coefficient; the cost of

the access to x(ja(j)) is highly dependent on the matrix pattern and

on its interaction with the memory hierarchy and cache structure. In

addition, each iteration of the outer loop, i.e., each row of the matrix,

requires reading the pointer values irp(i) and irp(i+1), with one of

them available from the previous iteration, and one memory write for

the result.

7.2.3 Sparse Matrix-Vector Product considerations

The previous discussion of COO and CSR has barely scratched the surface

of the possible implementations of the kernels for sparse matrices; as

an example, the article [40] lists 67 different variations, just for usage on

GPUs, and all of them published in just the four preceding years.

From a user point of view, the variability is therefore bewildering; it is also

quite problematic to hardwire a data storage format into your software,

since this will inevitably make the end product inflexible, hard to evolve

and to adapt to new computing architectures and usage conditions.

Moreover, it is a fact that even on a single, given computing architecture,

no individual storage format is likely to be uniformly better than all

others when considering different operations involving the matrix itself.

Encapsulating storage format variations under a uniform outer shell

7.2 Sparse Matrix-Vector product 97

Figure 7.4: State design pattern

allows for having a single entry point with no need for conditional

compilation in the case in which the user is actually running in serial

mode.

The usefulness of having an object with the ability to switch among

different types was recognized long ago; as early as 1983 we find the

following statement in [41], Section 4.12:

Often a seemingly simple representation problem for a set

or mapping presents a difficult problem of data structure

choice. Picking one data structure for the set makes certain

operations easy, but others take too much time and it seems

that there is no one data structure that makes all the opera-

tions easy. In that case the solution often turns out to be the

use of two or more different structures for the same set or

mapping.

It is therefore desirable to have a flexible framework that allows to switch

among different formats as needed, even at runtime.

7.2.4 Design Patterns: the “State” Pattern

In the Object Oriented Design of software, the term “Design Pattern”

denotes an accepted best practice in the form of a common solution to a

software design problem that recurs in multiple contexts [42, 43].

The State pattern in Object Oriented Design is a behavioral pattern that

involves encapsulating an object’s state behind an interface in order to

facilitate varying the object’s type at runtime. Figure 7.4 shows a UML

class diagram of the State pattern, including the class relationships and

the public methods. The methods described in an OOD typically map to

the type-bound procedures in Fortran OOP.

Let us consider the problem of switching among different storage formats

for a given object. Before the dawn of OOP, a common solution involved

defining a data structure containing integer values that drive the inter-

pretation and dispatching of the various operations on the data. This

older route complicates software maintenance by requiring the rewriting

and recompiling of previously working code every time one incorporates

a new storage format. A more modern, object-oriented strategy builds

the dispatching information into a type system, thereby enabling the

compiler to perform the switching. However, most OOP languages do

not allow for a given object to change its type dynamically (there do exist

dynamically typed languages, but they are not in common use). This

poses the dilemma of how to reference the object and yet allow for the

type being referenced to vary.

The solution lies in adding a layer of indirection by encapsulating the

object inside another object serving only as an interface that provides a

handle to the object in a given context. All code in the desired context

references the handle but never directly references the actual object. This

solution enables the compiler to delay until runtime the determination

of the actual object type (what Fortran calls the “dynamic type”). The

sample code in Figure 7.5 demonstrates the State pattern in a sparse-

matrix context, wherein a base_sparse_mat type plays the role of “State”

from Figure 7.4 and spmat_type serves as the “Context” also depicted in

98 7 Sparse Matrices and Iterative Solvers

Figure 7.5: Code for the State pattern —

inner object

module base_mod
! The base class for STATE objects
type :: base_sparse_mat
! data components here

contains
procedure, pass(a) :: foo => base_foo

end type base_sparse_mat
contains
subroutine base_foo(a)
class(base_sparse_mat) :: a
! Actual implementation
write(*,*) 'This the FOOing of a base sparse matrix'

end subroutine base_foo
end module base_mod

module coo_mod
! A derived class for STATE objects in COO
use base_mod
type, extends(base_sparse_mat) :: coo_sparse_mat
integer :: nnz=0 !> Number of nonzeros.
integer, allocatable :: ia(:) !> Row indices.
integer, allocatable :: ja(:) !> Column indices.
real, allocatable :: val(:) !> Coefficient values.

contains
procedure, pass(a) :: foo => coo_foo

end type coo_sparse_mat
contains
subroutine coo_foo(a)
class(coo_sparse_mat) :: a
! Actual implementation
write(*,*) 'This the FOOing of a coo sparse matrix with',&

& a%nnz,' nonzero entries'
end subroutine coo_foo

end module coo_mod

Figure 7.4. The methods of the outer class delegate all operations to the

inner-class methods. The inner class serves as the actual workhorse.

An interesting side effect for the State pattern is that is allows easy

handling of heterogeneous computing platforms: the application program

making use of the computational kernels will see a uniform outer data

type, but the inner data type can be easily adjusted according to the

specific features of the processing element that the current process is

running on.

In our software, we implement such a flexible architecture based on the

techniques outlined in [44]. In particular, it is possible to add support

for accelerator devices resulting in the data structures described in [40,

45].

7.2 Sparse Matrix-Vector product 99

module spmat_mod
! The class for CONTEXT objects
use base_mod
type :: spmat_type

class(base_sparse_mat), allocatable :: a
contains

procedure, pass(a) :: foo => spmat_foo
end type spmat_type

contains
subroutine spmat_foo(a)
class(spmat_type) :: a
call a%a%foo()

end subroutine spmat_foo
end module spmat_mod

! Simple example
program try

use spmat_mod
use coo_mod
type(spmat_type) :: a
! Start with the base STATE
allocate(a%a)
call foobar(a)
! Switch to COO
deallocate(a%a)
allocate(coo_sparse_mat :: a%a)
call foobar(a)

contains
! Workhorse
subroutine foobar(a)

type(spmat_type) :: a
call a%foo()

end subroutine foobar
end program try Figure 7.6: Code for the State pattern —

outer context

Parallel Linear Algebra Software
Design and Additional Features

Where is my data? 8
8.1 Dense data distribution 103
8.1.1 Simple LU factorization 103
8.1.2 1-dimensional LU 104
8.1.3 2-dimensional LU 107
8.2 Evolution of Parallel

Dense Linear Algebra
Software 111

8.3 Sparse data distribution 112
8.3.1 A simple iterative solver

revisited 112
8.3.2 Basic observations . . . 113
8.3.3 Sparse Matrix-Vector

Product in Parallel . . . 114
8.3.4 Graph partitioning . . . 114
8.3.5 Indices and processes . 116
8.3.6 Data Exchange 117

As everybody knows, there are three important factors for parallel

performance: data location, data location and data location
‗
. This is due

to a fact we already mentioned briefly in Chapter 1: it is an unfortunate

feature of the technological evolution that memory speed does not keep

up with the speed of processors. Hence, the placement of data and its

management play a significant role in determining the performance of

software; moreover, the placement of data in the case of dense vs sparse

linear algebra is driven by somewhat different considerations, and results

in quite different layouts.

The basic principle when choosing a data layout is always the same: find

the best possible tradeoff between the performance local to a given node

and the communication behaviour of the algorithms, whilst at the same

time keeping the best possible load balancing.

This objective requires quite a bit of analysis and work to be achieved;

moreover, even if we apply the same basic principle, the actual outcome

is very problem and algorithm dependent, as we shall soon see.

8.1 Dense linear algebra data distribution

To distribute data for dense linear algebra we have to keep track of the

following issues:

1. The need to account for the data reuse techniques of the level

3 BLAS (blocking) and for the surface-to-volume effect, which

expresses the trade-off between communication (“surface”) and

computation (“volume”) when data are distributed across multi-

ple processes. Although no explicit spatial geometry is involved

here, the underlying principle of the surface-to-volume effect still

influences data distribution strategies and is implicitly taken into

account;

2. The load balancing features of the various algorithms (we’ll use

the LU factorization as a reference);

3. The need to choose the best possible process grid configuration

(for MPI programs).

8.1.1 Simple LU factorization

Let’s begin our discussion taking as a reference the 𝐿𝑈 factorization

algorithm in its most elementary form with a concrete example of size 3

(we are ignoring pivoting for the time being):

‗
The phrase “location, location, location” used in reference to real estate is commonly

attributed to the british real estate tycoon Harold Samuel (1912-1987), but is probably

much older.

104 8 Where is my data?

Figure 8.1: A simple LU factorization

algorithm

Figure 8.2: A BLOCK 1-D data distribu-

tion

▶ Factor the diagonal (auxiliary constraint: 𝑙𝑖𝑖 = 1)

Compute

(
𝑎11

)
→

(
𝑙11

)
(𝑢11)

▶ Update the first column:(
𝑙21

𝑙31

)
←

(
𝑎21

𝑎31

)
(𝑢11)−1

▶ Update the first row:(
𝑢12 𝑢13

)
← (𝑙11)−1

(
𝑎12 𝑎13

)
▶ Update the lower-right submatrix;(

𝑎̂22 𝑎̂23

𝑎̂32 𝑎̂33

)
←

(
𝑎22 𝑎23

𝑎32 𝑎33

)
−

(
𝑙21

𝑙31

) (
𝑢12 𝑢13

)
▶ Apply recursively to lower-right submatrix;

As we can see, the algorithm proceeds column by column, and the

amount of work to be performed at each step diminishes steadily over the

course of the execution. Before proceeding, we can recast the previous

considerations in a more formal setting where 𝑎𝑖 , 𝑗 is the generic entry

of the linear system matrix 𝐴, 𝑎𝑖 ,: is the 𝑖-th row and similarly for the

columns, as shown in algorithm 7; similar notation is used for the factors

𝐿 and 𝑈 . Note that the update of the row (𝑙11)−1
(
𝑎12 𝑎13

)
is clearly a

no-op in this formulation since 𝑙11 = 1.

Algorithm 7: Simple 𝐿𝑈 factorization

1 for 𝑖 ← 1 to 𝑛 do
2 𝑙𝑖 ,𝑖 ← 1;

3 𝑢𝑖 ,𝑖 ← 𝑎𝑖 ,𝑖 ;

4 𝑙𝑖+1:𝑛,𝑖 ← 𝑎𝑖+1:𝑛,𝑖 · 𝑢−1

𝑖 ,𝑖
;

5 𝑎𝑖+1:𝑛,𝑖+1:𝑛 ← 𝑎𝑖+1:𝑛,𝑖+1:𝑛 − 𝑙𝑖+1:𝑛,𝑖 · 𝑢𝑖 ,𝑖+1:𝑛 ;

Let us now consider how we could parallelize the above program in a

distributed memory environment.

8.1.2 A 1-dimensional layout for LU

We start with the simplest posssible arrangement of 𝑛𝑝 processes (MPI

tasks): a 1-dimensional array. To begin with, we allocate to each process a

chunk of 𝑛𝑏 = 𝑛/𝑛𝑝 consecutive columns (assuming they divide exactly),

and let the algorithm 7 execute. In other words, each process 𝑝, 𝑝 =

0 . . . 𝑛𝑝 − 1 owns a vertical stripe of the input matrix 𝑎
1:𝑛,(𝑝·𝑛𝑏)+1:(𝑝+1)·𝑛𝑏−1

.

This is also known as a BLOCK data layout Figure Figure 8.2.

Given that in this configuration any column 𝑎:,𝑖 is owned by a single

process, that process can perform the first two steps of the algorithm;

then, it has to communicate to all others the value of 𝑙𝑖+1:𝑛,𝑖 so that each

process can proceed to update its own stripe of the result as shown

in algorithm 8. This algorithm gives a first view of what a parallel

algorithm typically looks like: it alternates between computations and

8.1 Dense linear algebra data distribution 105

Algorithm 8: 1-D parallel 𝐿𝑈 factorization

1 Every process has index 𝑖𝑝 ;

2 Every process owns 𝑛𝑏 ← 𝑛/𝑛𝑝 columns;

3 for 𝑖 ← 1 to 𝑛 do
4 𝑖𝑝 = (𝑖 − 1)/(𝑛𝑏);
5 if I am 𝑖𝑝 (I own column 𝑖) then
6 𝑙𝑖 ,𝑖 ← 1;

7 𝑢𝑖 ,𝑖 ← 𝑎𝑖 ,𝑖 ;

8 𝑙𝑖+1:𝑛,𝑖 ← 𝑎𝑖+1:𝑛,𝑖 · 𝑢−1

𝑖 ,𝑖
;

9 Broadcast send 𝑙𝑖+1:𝑛,𝑖 ;

10 else
11 Broadcast receive 𝑙𝑖+1:𝑛,𝑖 ;

12 𝑗𝑠𝑡 ← max(𝑖𝑝 · 𝑛𝑏 + 1, 𝑖 + 1) (first column I own);

13 𝑗𝑒𝑛 ← min((𝑖𝑝 + 1) · 𝑛𝑏 − 1, 𝑛) (last column I own);

14 𝑎𝑖+1:𝑛,𝑗𝑠𝑡 :𝑗𝑒𝑛 ← 𝑎𝑖+1:𝑛,𝑗𝑠𝑡 :𝑗𝑒𝑛 − 𝑙𝑖+1:𝑛,𝑖 · 𝑢𝑖 , 𝑗𝑠𝑡 :𝑗𝑒𝑛 ;

communication phases. Naturally, to optimize the runtime of an algorithm

it is necessary to achieve that:

1. The computational phases are as efficient and as balanced as

possible;

2. The communication phases are kept to a minimum, and if at all

possible shuld be overlapped with the computations.

In this particular formulation of the 𝐿𝑈 algorithm we can immediately

notice that the only part of the computation that is really happening in

parallel is the rank-1 update of the lower-right submatrix 𝑎𝑖+1:𝑛,𝑗𝑠𝑡 :𝑗𝑒𝑛 ←
𝑎𝑖+1:𝑛,𝑗𝑠𝑡 :𝑗𝑒𝑛 − 𝑙𝑖+1:𝑛,𝑖 · 𝑢𝑖 , 𝑗𝑠𝑡 :𝑗𝑒𝑛 ; fortunately, this is also the most expensive

part.

There is one major point that needs to be highlighted though: as the

loop index 𝑖 progresses, it will eventually be the case that 𝑖 > 𝑛𝑏 . At this

point, process 0 will stop doing any work, and the rest of the calculation

will be carried out by processes 1 through 𝑛𝑝 − 1, that is, the degree

of parallelism will reduce. A similar phenomenon will happen every

time the index 𝑖 crosses the boundary between one process and the next;

therefore, the efficiency of the parallel algorithm is greatly diminished.

A CYCLIC layout for LU

Is it possibile to improve? Let’s rethink the data layout. When we describe

the algorithm for the 𝐿𝑈 factorization as in 7 we are naturally inclined

to think of columns 𝑖 and 𝑖 + 1 as being next to each other in the matrix

layout, which is what happens in the memory of a single node for a

serial implementation. And yet, this is by no means necessary: all that is

required is that the order of processing follows the index 𝑖 in the logical
view of the underlying matrix 𝐴.

In other words, if column 𝑖 + 1 is stored in a memory space that is not

adjacent to that for column 𝑖, we can still apply the same algorithm

provided that we can figure out where exactly columns 𝑖 and 𝑖 + 1 are

located. This is a first example of a general concept: an index space

I= {𝑖 , 𝑖 = 1 . . . 𝑛} can be distributed over a set of processes, but this does

106 8 Where is my data?

Can you figure out the values of 𝑗𝑠𝑡 and

𝑗𝑒𝑛?

not prevent our algorithms from working as long as we can figure out

the mapping between the abstract index 𝑖 and its physical counterpart,

say local index 𝑗 on process 𝑝.

As an example of this, we can store column 1 on the first process,

column 2 on the second, and so on, with column 𝑖 being assigned

to process mod (𝑖 − 1, 𝑛𝑝) where the -1 is needed to adjust for the

range of processes being {0, . . . 𝑛𝑝 − 1}. Thus, each process will have

a bunch of columns that can be stored adjacently, because the step

𝑎𝑖+1:𝑛,𝑖+1:𝑛 ← 𝑎𝑖+1:𝑛,𝑖+1:𝑛 − 𝑙𝑖+1:𝑛,𝑖 · 𝑢𝑖 ,𝑖+1:𝑛 does not really depend on the

ordering of columns, as long as the physical position of 𝑖 and 𝑖 + 1 can

be computed. The distribution we have discussed above, corresponding

Algorithm 9: CYCLIC 1-D parallel 𝐿𝑈 factorization

1 Every process has index 𝑖𝑝 ;

2 Columns are assigned to processes in a round-robin fashion;

3 Thus, column 𝑖 is owned by process mod ((𝑖 − 1), 𝑛𝑝);
4 for 𝑖 ← 1 to 𝑛 do
5 𝑖𝑝 = mod ((𝑖 − 1), 𝑛𝑝);
6 𝑗𝑠𝑡 first column I own that is ≥ 𝑖;
7 𝑗𝑒𝑛 last column I own ;

8 if I am 𝑖𝑝 (I own column 𝑖) then
9 𝑙𝑖 ,𝑖 ← 1;

10 𝑢𝑖 ,𝑖 ← 𝑎𝑖 ,𝑖 ;

11 𝑙𝑖+1:𝑛,𝑖 ← 𝑎𝑖+1:𝑛,𝑖 · 𝑢−1

𝑖 ,𝑖
;

12 Broadcast send 𝑙𝑖+1:𝑛,𝑖 ;

13 𝛿 𝑗 = 1;

14 else
15 Broadcast receive 𝑙𝑖+1:𝑛,𝑖 ;

16 𝛿 𝑗 = 0;

17 𝑎𝑖+1:𝑛,𝑗𝑠𝑡+𝛿 𝑗 :𝑗𝑒𝑛 ← 𝑎𝑖+1:𝑛,𝑗𝑠𝑡+𝛿 𝑗 :𝑗𝑒𝑛 − 𝑙𝑖+1:𝑛,𝑖 · 𝑢𝑖 , 𝑗𝑠𝑡+𝛿 𝑗 :𝑗𝑒𝑛 ;

to a round-robin assignment, is called a CYCLIC distribution of data.

In the context of the present discussion, the main advantage with respect

to the BLOCK distribution is that process 0 only stops doing useful

computations in the last 𝑛𝑝 iterations of the main factorization loop;

therefore all processes remain active up until the very end of the algorithm,

and there is an imbalance only in the last few iterations. Since 𝑛 is usually

much larger than 𝑛𝑝 , the resulting imbalance is negligibile.

A BLOCK-CYCLIC 1D layout for LU

The previous arrangement is very good for one of the main performance

factors, that is, load balancing; however, it relies on the level-2 update

kernel implementing the operation

𝑎𝑖+1:𝑛,𝑖+1:𝑛 ← 𝑎𝑖+1:𝑛,𝑖+1:𝑛 − 𝑙𝑖+1:𝑛,𝑖 · 𝑢𝑖 ,𝑖+1:𝑛 ,

which is to be understood as being applied to the reordered columns of

matrix 𝐴 in a split fashion, with each process updating its own part.

8.1 Dense linear algebra data distribution 107

This strategy is not satisfactory because it does not apply the level-3

BLAS kernels, which we know are necessary to achieve best performance

on available processing cores.

A cure for this problem is readily available: apply a CYCLIC distribution

not to individual columns, but to sections of 𝑛𝑏 adjacent columns.

If the value for 𝑛𝑏 is chosen properly, we can achieve a good tradeoff

between the need to have optimal “local” performance, that is use level

3 computations, and optimal “parallel” performance, that is achieving

load balancing and good surface-to-volume ratio.

The price to be paid is that the update of 𝑢𝑖 ,𝑖+1:𝑛 which was a no-op in the

scalar algorithm, requires now the solution of a triangular system with

multiple right-hand sides (TRSM). Most of the computations happen in

Algorithm 10: Block-Cyclic 1-D parallel 𝐿𝑈 factorization

1 Every process has index 𝑖𝑝 ;

2 Every process owns a certain number of blocks of 𝑛𝑏 columns;

3 for 𝑘 ← 1 to 𝑛/𝑛𝑏 do
4 𝑖 ← (𝑘 − 1) · 𝑛𝑏 + 1;

5 𝑖𝑝 ← mod (𝑘 − 1, 𝑛𝑝);
6 Let 𝑗𝑠𝑡 the first column I own beyond 𝑖 + 𝑛𝑏 − 1;

7 Let 𝑗𝑒𝑛 the last column I own (the range 𝑗𝑠𝑡 : 𝑗𝑒𝑛 might be empty);

8 if I am process 𝑖𝑝 (I own block column 𝑘) then
9 Factor block column

𝐴𝑖:𝑛,𝑖:𝑖+𝑛𝑏−1 ⇒ (𝐿𝑖:𝑛,𝑖:𝑖+𝑛𝑏−1 , 𝑈𝑖:𝑖+𝑛𝑏−1,𝑖:𝑖+𝑛𝑏−1);
10 Broadcast send 𝐿𝑖:𝑖+𝑛𝑏−1,𝑖:𝑖+𝑛𝑏−1;

11 else
12 Broadcast receive 𝐿𝑖:𝑖+𝑛𝑏−1,𝑖:𝑖+𝑛𝑏−1;

13 On my block row execute 𝐿−1

𝑖:𝑖+𝑛𝑏−1,𝑖:𝑖+𝑛𝑏−1
·𝑈𝑖:𝑖+𝑛𝑏−1, 𝑗𝑠𝑡 :𝑗𝑒𝑛 ;

14 𝐴𝑖+𝑛𝑏 :𝑛,𝑗𝑠𝑡 :𝑗𝑒𝑛 ← 𝐴𝑖+𝑛𝑏 :𝑛,𝑗𝑠𝑡 :𝑗𝑒𝑛 − 𝐿𝑖+𝑛𝑏−1:𝑛,𝑖:𝑖+𝑛𝑏−1 ·𝑈𝑖:𝑖+𝑛𝑏−1, 𝑗𝑠𝑡 :𝑗𝑒𝑛 ;

the last two steps of the algorithm, which can be formulated as calls to

TRSM and GEMM.

8.1.3 A 2-dimensional layout for LU

The final step is to look again at the balance between communications

and computations. As we have seen, algorithms 8, 9 and 10 require at

each iteration the execution of a BROADCAST collective communication.

The optimal implementation of collective operations is a very fascinating

and complicated issue in itself; suffice it to say that the optimal choice

changes depending on the amount of data being treated, on the network

connectivity and on the network parameters. All collective algorithms

will however have a completion time that depends on the number of

processes involved, in our case 𝑛𝑝 .

A better balance between communication and computation can be

achieved by adopting a blocked version of the 𝐿𝑈 factorization, in

which the involved matrices are partitioned into square blocks rather

108 8 Where is my data?

A 2D block-cyclic distribution provides

good load balancing and an efficient

computation-to-communication ratio, es-

pecially in algorithms where the active

matrix shrinks (e.g., LU, QR, Cholesky).

A 1D block-cyclic distribution can be ad-

vantageous on heterogeneous nodes, en-

abling efficient use of local accelerators

such as GPUs. Finally, pure block distri-

butions (1D or 2D, non-cyclic) are often

preferable for uniform workloads like

GEMM, where communication overhead

is minimal and perfect balance is easily

maintained.

than vertical block panels, with each block of size 𝑛𝑏 × 𝑛𝑏 , as illustrated

in the following example with 3 × 3 blocks:

©­«
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

ª®¬ =
©­«
𝐿11

𝐿21 𝐿22

𝐿31 𝐿32 𝐿33

ª®¬ ©­«
𝑈11 𝑈12 𝑈13

𝑈22 𝑈23

𝑈33

ª®¬ .
Suppose that red is the factorized panel, blue is the row-block to be

updated, black is the “active" matrix to be updated and then factorized.

It holds:

𝐴11 = 𝐿11𝑈11 , 𝐴12 = 𝐿11𝑈12 , 𝐴13 = 𝐿11𝑈13;

therefore, we can update the blue blocks by solving triangular systems

with multiple right-hand sides (TRSM):

𝑈12 = (𝐿11)−1𝐴12 𝑈13 = (𝐿11)−1𝐴13

and update the “active" matrix by matrix-matrix multiplications (GEMM):

𝐴22 − 𝐿21𝑈12 → 𝐴̃22 𝐴23 − 𝐿21𝑈13 → 𝐴̃23

𝐴32 − 𝐿31𝑈12 → 𝐴̃32 𝐴33 − 𝐿31𝑈13 → 𝐴̃33

If we now consider a logical two-dimensional process grid, the processes

can be arranged in a matrix-like topology with 𝑃𝑟 rows and 𝑃𝑐 columns.

A block-cyclic distribution can then be applied both along the rows and

along the columns of the global matrix. In this scheme, the global matrix

is partitioned into square or rectangular blocks, which are assigned to

the processes in a cyclic manner both horizontally and vertically across

the process grid. We now have to modify the algorithm by including not

only a broadcast of the 𝐿 block-column (along the rows of the process

grid), but also a broadcast of the 𝑈 block-row (along the columns). The

advantage is obviously that each broadcast should now involve only

𝑂(√𝑛𝑝) processes.

An interesting side effect is that we need to be a bit more careful with

the choice of the process arrangement. If we have 16 processes, they can

be arranged as 1 × 16, 2 × 8, 4 × 4, 8 × 2 or 16 × 1 process grids, and

the optimum arrangement providing the fastest execution is likely to be

either 4 × 4 or 2 × 8. If we now want to increase the degree of parallelism

we might add 1 process, but since 17 is a prime number, we would be

stuck with either a 1 × 17 or a 17 × 1 grid, and this is likely to be worse

in terms of performance; so we would really like to grow the number of

processes in a balanced way.

The final version of the 𝐿𝑈 factorization can now be presented in algo-

rithm 11.

Obviously a number of details have to be taken care of, such as the precise

computation of all the block boundaries, accounting for a size 𝑛 that is not

exactly divisible by the size of the process grid (times 𝑛𝑏), and possibly

for a matrix storage that has its starting position (1, 1) stored in a process

different from (0, 0). Moreover, we have not discussed explicitly the use

of partial pivoting, which is of course necessary for the 𝐿𝑈 algorithm to

proceed as is normal in the serial version.

8.1 Dense linear algebra data distribution 109

All of these “details” are handled in the ScaLAPACK software, and you can

learn many tricks of the trade by looking at how that software is organized.

It is worth to note that, following the modular software design principles

established with BLAS standard operations, ScaLAPACK was conceived

as a portable and extensible library for dense linear algebra on distributed-

memory architectures. To achieve this goal, its developers introduced

two fundamental building blocks: the Parallel Basic Linear Algebra

Subprograms (PBLAS) and the Basic Linear Algebra Communication

Subprograms (BLACS) [46, 47]. The PBLAS extend the functionality of

the sequential BLAS to distributed environments by operating on block-

cyclically distributed matrices, allowing for scalable implementations of

matrix–matrix and matrix–vector operations across multiple processes.

The BLACS, in turn, provide a uniform communication layer built on

top of a message-passing interface, such as MPI or vendor-specific

communication libraries, defining communication contexts, process

grids, and point-to-point or collective data transfers in a consistent and

hardware-independent way.

110 8 Where is my data?

Algorithm 11: Block-Cyclic 2-D parallel 𝐿𝑈 factorization

1 Every process has a 2D index (𝑖𝑝 , 𝑗𝑝) in the range

(0 : 𝑚𝑝 − 1, 0 : 𝑛𝑝 − 1);
2 Every process owns a certain number of blocks of size 𝑛𝑏 × 𝑛𝑏 ;

3 for 𝑘 ← 1 to 𝑛/𝑛𝑏 do
4 𝑖 ← (𝑘 − 1) · 𝑛𝑏 + 1;

5 𝑖𝑝 ← mod (𝑘 − 1, 𝑚𝑝);
6 𝑗𝑝 ← mod (𝑘 − 1, 𝑛𝑝);
7 Let 𝑖𝑠𝑡 the first row I own which is ≥ 𝑖;
8 if my process row index is 𝑖𝑝 then
9 𝛿𝑖 ← 𝑛𝑏 ;

10 else
11 𝛿𝑖 ← 0;

12 Let 𝑖𝑒𝑛 the last row I own ;

13 Let 𝑗𝑠𝑡 the first column I own which is ≥ 𝑖;
14 if my process col index is 𝑗𝑝 then
15 𝛿 𝑗 ← 𝑛𝑏 ;

16 else
17 𝛿 𝑗 ← 0;

18 Let 𝑗𝑒𝑛 the last column I own;

19 if my process col index is 𝑗𝑝 then
20 With all processes in my column 𝑗𝑝 , factor block column

𝐴𝑖𝑠𝑡 :𝑖𝑒𝑛 , 𝑗𝑠𝑡 :𝑗𝑠𝑡+𝑛𝑏−1 ⇒ (𝐿𝑖𝑠𝑡 :𝑖𝑒𝑛 , 𝑗𝑠𝑡 :𝑗𝑠𝑡+𝑛𝑏−1 , 𝑈𝑖𝑠𝑡 :𝑖𝑠𝑡+𝑛𝑏−1, 𝑗𝑠𝑡 :𝑗𝑠𝑡+𝑛𝑏−1);
21 Copy the 𝐿 block 𝐿̂𝑖𝑠𝑡 :𝑖𝑒𝑛 ,1:𝑛𝑏 ← 𝐿𝑖𝑠𝑡 :𝑖𝑒𝑛 , 𝑗𝑠𝑡 :𝑗𝑠𝑡+𝑛𝑏−1 ;

22 Broadcast send 𝐿̂𝑖𝑠𝑡 :𝑖𝑒𝑛 ,1:𝑛𝑏 ;

23 else
24 Broadcast receive 𝐿̂𝑖𝑠𝑡 :𝑖𝑒𝑛 ,1:𝑛𝑏 ;

25 if my process row index is 𝑖𝑝 then
26 On my block row execute 𝐿̂−1

𝑖𝑠𝑡 :𝑖𝑠𝑡+𝑛𝑏−1,1:𝑛𝑏
·𝑈𝑖𝑠𝑡 :𝑖𝑠𝑡+𝑛𝑏−1, 𝑗𝑠𝑡 :𝑗𝑒𝑛 ;

27 Copy the 𝑈 block 𝑈̂1:𝑛𝑏 , 𝑗𝑠𝑡 :𝑗𝑒𝑛 ← 𝑈𝑖𝑠𝑡 :𝑖𝑠𝑡+𝑛𝑏−1, 𝑗𝑠𝑡 :𝑗𝑒𝑛 ;

28 Broadcast send 𝑈̂1:𝑛𝑏 , 𝑗𝑠𝑡 :𝑗𝑒𝑛 ;

29 else
30 Broadcast receive 𝑈̂1:𝑛𝑏 , 𝑗𝑠𝑡 :𝑗𝑒𝑛 ;

31 𝐴𝑖𝑠𝑡+𝛿𝑖 :𝑖𝑒𝑛 , 𝑗𝑠𝑡+𝛿 𝑗 :𝑗𝑒𝑛 ← 𝐴𝑖𝑠𝑡+𝛿𝑖 :𝑖𝑒𝑛 , 𝑗𝑠𝑡+𝛿 𝑗 :𝑗𝑒𝑛−𝐿̂𝑖𝑠𝑡+𝛿𝑖 :𝑖𝑒𝑛 ,1:𝑛𝑏 ·𝑈̂1:𝑛𝑏 , 𝑗𝑠𝑡+𝛿 𝑗 :𝑗𝑒𝑛 ;

8.2 Evolution of Parallel Dense Linear Algebra Software 111

8.2 Evolution of Parallel Dense Linear Algebra
Software

As we already pointed out in the introduction, the evolution of dense

linear algebra software has not only mirrored advances in computer

architectures but has also driven theoretical progress in numerical linear

algebra, encouraging researchers to reformulate classical algorithms to

better exploit modern hardware while preserving numerical stability.

The earliest libraries, EISPACK and LINPACK, developed in the 1970s

and early 1980s, provided standard solutions for eigenvalue problems

and linear systems on vector and serial architectures, using Fortran

implementations and column-major storage schemes [11, 48].

As hierarchical memory systems became dominant, the community

recognized the need for algorithms that minimized data movement

and improved cache reuse. This led to the development of LAPACK

(Linear Algebra PACKage) [49], which reimplemented EISPACK and

LINPACK in a blocked form. The blocking technique enabled the use of

Level 3 BLAS operations, significantly improving performance on shared-

memory architectures. The shift from vector to cache-based machines

also inspired extensive numerical analysis studies on the reformulation

of Gaussian elimination and orthogonal factorizations, emphasizing both

computational efficiency and algorithmic stability.

With the emergence of distributed-memory architectures in the 1990s,

ScaLAPACK extended LAPACK’s concepts to large-scale parallel systems,

employing MPI-based message passing and block-cyclic data distribution

to balance computation and communication [50]. These developments

further stimulated the analysis of communication-avoiding algorithms,

a major research direction that linked algorithmic theory and parallel

performance.

The rise of multicore and manycore architectures in the 2000s prompted

a shift toward fine-grained, task-based parallelism. PLASMA (Parallel

Linear Algebra for Scalable Multi-core Architectures) introduced dynam-

ically scheduled tile algorithms to fully exploit multicore systems [51],

while MAGMA (Matrix Algebra on GPU and Multicore Architectures)

extended these ideas to heterogeneous CPU–GPU systems, merging

algorithmic redesign with hardware-aware optimization [52].

The latest generation, SLATE (Software for Linear Algebra Targeting

Exascale), represents a comprehensive rethinking of dense linear algebra

for exascale and heterogeneous systems, incorporating asynchronous ex-

ecution, fault tolerance, and communication-avoiding strategies. Beyond

software engineering, SLATE and related efforts embody decades of co-

evolution between numerical analysis and high-performance computing,

where concerns for accuracy, stability, and scalability remain central to

algorithmic innovation [53].

112 8 Where is my data?

8.3 Sparse linear algebra data distribution

The data layout for sparse matrix problems in parallel is driven by the

same considerations for parallel efficiency that we have seen before, but

the outcome of the analysis will be very different.

8.3.1 A simple iterative solver revisited

Let us now go back to the Richardson iteration 7.1:

𝑥𝑘+1 = 𝑥𝑘 + 𝜔(𝑏 − 𝐴𝑥𝑘). (8.1)

As we have seen, the convergence is measured against the norm of

the residual, and the other operators needed are sums of vectors and

matrix-vector products.

Thus we need to figure out a way to perform these kernels, and most

importantly the matrix-vector product 𝑦 ← 𝐴𝑥, and choosing a parallel

data layout will be critical in this regard
†
.

It is now time to point out a few things:

▶ When we compute entry 𝑖 of the output vector, we are multiplying

row 𝐴𝑖 ,: of the matrix by the vector 𝑥, and this multiplication will

only need to involve the nonzero coefficients;

▶ By the same token, for each entry 𝑖 of the output vector 𝑦, only a

subset of the entries of the 𝑥 vector will actually be involved in the

computation.

We will distribute the coefficient matrix for the linear system based

on the “owner computes” rule: the variable associated to each mesh

point is assigned to a process that will own the corresponding row in

the coefficient matrix and will carry out all related computations. This

allocation strategy is equivalent to a partition of the discretization mesh

into sub-domains, and is naturally associated with a 1-dimensional process

grid structure, with the matrix being allocated to processes by (blocks of)

rows.

Is this a sensible idea?

Well, actually yes (in most cases). Indeed, when we discussed the 1-

dimensional distribution of section 8.1.2, we split the matrix by columns:
this strategy will most likely not work here because (as already mentioned)

each row of the sparse matrix has a number of nonzero entries that is

typically bounded by a constant 𝑘, independently of 𝑛. Whenever that

constant is small, and for most PDE discretization schemes 𝑘 is only a

few tens at most, there are too few arithmetic operations to make it worth

splitting them between different processes. Thus we will distribute rows
of the matrix onto our parallel processes

‡
.

†
This is a very simple iteration, and for the time being we will not search for alternatives

with faster convergence; anyway, other parallel iterative algorithms tend to share the same

considerations discussed in the sequel.

‡
There are cases where the number of nonzeros per row warrants distribution across

multiple processes, but they tend to come from different application domains and require

different problem solution strategies.

8.3 Sparse linear algebra data distribution 113

Figure 8.3: Point classfication.

8.3.2 Basic observations

Our computational model implies that the data allocation on the parallel

distributed memory machine is guided by the structure of the physical

model, and specifically by the discretization mesh of the PDE.

Each point of the discretization mesh will have (at least) one associated

equation/variable, and therefore one index 𝑖. We say that point 𝑖 depends
on point 𝑗 if the equation for a variable associated with 𝑖 contains a term

in 𝑗, or equivalently if 𝑎𝑖 𝑗 ≠ 0. After the partition of the discretization

mesh into sub-domains assigned to the parallel processes, we classify the

points of a given sub-domain as following.

Internal. An internal point of a given domain depends only on points

of the same domain. If all points of a domain are assigned to one

process, then a computational step (e.g., a matrix-vector product)

of the equations associated with the internal points requires no

data items from other domains and no communications.

Boundary. A point of a given domain is a boundary point if it depends
on points belonging to other domains.

Halo. A halo point for a given domain is a point belonging to another

domain such that there is a boundary point which depends on it.

Whenever performing a computational step, such as a matrix-vector

product, the values associated with halo points are requested from

other domains. A boundary point of a given domain is usually a

halo point for some other domain
§
; therefore the cardinality of the

boundary points set determines the amount of data sent to other

domains.

Overlap. An overlap point is a boundary point assigned to multiple

domains. Any operation that involves an overlap point has to be

replicated for each assignment.

Overlap points do not usually exist in the basic data distributions; however

they are a feature of Domain Decomposition Schwarz preconditioners

which are the subject of related research work.

We denote the sets of internal, boundary and halo points for a given

subdomain by I, B and H. Each subdomain is assigned to one process;

each process usually owns one subdomain, although the user may choose

to assign more than one subdomain to a process. If each process 𝑖 owns

one subdomain, the number of rows in the local sparse matrix is |I𝑖|+|B𝑖|,
and the number of local columns (i.e. those for which there exists at least

one non-zero entry in the local rows) is |I𝑖| + |B𝑖| + |H𝑖|.
This classification of mesh points guides the naming scheme that we

adopted in the library internals and in the data structures. We explicitly

note that “Halo” points are also often called “ghost” points in the

literature.

§
This is the normal situation when the pattern of the sparse matrix is symmetric, which is

equivalent to say that the interaction between two variables is reciprocal. If the matrix

pattern is non-symmetric we may have one-way interactions, and these could cause a

situation in which a boundary point is not a halo point for its neighbour.

114 8 Where is my data?

y A x

p5

p4

p3

p2

p1

p0

Figure 8.4: Matrix structure.

Figure 8.5: A (partitioned) graph.

Figure 8.6: A structured mesh.

Figure 8.7: The resulting pattern.

8.3.3 Sparse Matrix-Vector Product in Parallel

The classification of points that we saw before in Fig. 8.3 formulated in

terms of the discretization mesh can be carried over in terms of matrix

structure as in Fig. 8.4. The pink area corresponds to the local coefficients,

the green area corresponds to the halo. There exist a Surface to Volume effect:
for “sensible” data distributions, most of the nonzeros are in the pink

area, whilst the green area is almost empty. In particular, the green area

contains many column sections that are completely empty, meaning that

their nonzeros are outside the range of rows. So, even if it looks like the

matrix-vector product requires a copy of the full vector 𝑥, what is really

needed is only a small subset of the entries of 𝑥 from other processes

(since obviously there is no actual need to perform multiplication by

zeros).

To compute the SpMV, we then have to retrieve values of 𝑋 corresponding

to entries in the green area with a halo data exchange.

What constitutes a “sensible” data distribution?

8.3.4 Graph partitioning

We begin by looking at the implications of the “owner computes”

paradigm as applied to parallel computations of sparse matrix-vector

products.

Let us first recall the notion of a graph which is an entity composed of

two sets: G= {V, E}, where

V = {𝑣1 , . . . , 𝑣𝑛}
E ⊆ V× V.

The set V is called the vertex set, whereas E is the edge set; every edge

connects two vertices. The degree of a vertex is defined by the number of

edges having that vertex as an endpoint.

We can now state a rather simple fact: there is an isomorphism between

a (square) matrix and a graph where

▶ To each row (column) 𝑖 there corresponds a vertex 𝑣𝑖 ;

▶ To each coefficient 𝑎𝑖 𝑗 there corresponds an edge 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗);

A sparse matrix will then be associated with a graph that is not fully
connected, that is, there exist (many) pairs of vertices that are not linked

directly by an edge. In some cases a graph may have a value associated

with either the nodes or the edges.

The correspondence between a matrix and a graph is established once we

associate an index 𝑖, the variable 𝑥𝑖 and the matrix row 𝑎𝑖 ,: with one of

the graph nodes; using this association, we can easily see that the amount

of work needed to compute 𝑦𝑖 in a matrix-vector product is proportional

to the number of entries in rows 𝑎𝑖 ,:, that is, to the degree of node 𝑖.

The first objective in establishing an allocation of data to multiple pro-

cesses should by now be clear: we want to allocate vertices (rows of the

matrix) to processes in such a way that the sum of their degrees (the

number of nonzeros) and therefore the amount of work in a matrix-vector

8.3 Sparse linear algebra data distribution 115

Figure 8.8: An unstructured mesh.

Figure 8.9: The resulting pattern.

Figure 8.10: A graph partition.

0 500 1000 1500 2000 2500 3000

nz = 10193

0

500

1000

1500

2000

2500

3000

Figure 8.11: A matrix partition.

product is spread uniformly across the processes. If the number of nonze-

ros per row is roughly constant, this is essentially equivalent to allocating

an equal number of vertices to each process.

If we now look back at Fig. 8.3, we can immediately see the second

objective we have to strive for: every boundary point needs to know the

value of the entry of 𝑥 associated with (at least) one halo point. Thus, we

will need to exchange an amount of data proportional to the number of

halo points, and we clearly want to minimize this overhead.

We can now state our problem:

Given a graph G = {V, E}, find a partition of V into

subsets V𝑖 such that V =
⋃

V𝑖 , and define a set H = {𝑒 =

(𝑖 , 𝑗) ∈ E : 𝑖 ∈ V𝑝 , 𝑗 ∈ V𝑞 , 𝑝 ≠ 𝑞} such that:

▶ |V𝑖| = |V𝑗| ∀𝑖 , 𝑗;
▶ |H| is minimized.

Note that the first criterion, equal distribution of vertices, may not be

attainable in practice; if the number of nonzeros per row has a large

variance, we may associate a weight to each vertex, and the partition

of the vertices should then strive to obtain a uniform distribution of

weight.

This is called a graph partitioning problem, and it is unfortunately an

NP-complete problem, meaning that it is too expensive to solve exactly;

it is therefore necessary to employ heuristics to get at a reasonable solution

in a reasonable amount of time (fig 8.10).

A discussion of the properties of NP-complete problems is outside the

scope of the present work; more details can be found in [54, 55].
¶

What is the effect of a graph partition algorithm? Essentially it splits

the matrix into multiple blocks of rows, but there may be multiple

blocks assigned to a given process; if we list the matrix rows in the

order of the processes we have implicitly applied a renumbering of the

equations/variables (fig 8.11).

For example, if we have a 2-dimensional rectangular domain, then the

obvious way to partition the domain is to split into subrectangles, and

actuall this is what a graph partitioner heuristics will likely do (see

Fig. 8.12); however, if we apply a natural numbering to the mesh points

(say, by rows or by columns), then each subdomain will receive many

blocks of rows.

Applying a renumbering of the mesh points is equivalent to applying

a symmetric permutation to the coefficient matrix 𝐴; this has only very

minor effects on the numerical convergence of an iterative solver, but it

could affect performance in rather significant ways. In any case, applying

a graph partitioner is equivalent to applying a renumbering and then

cutting the matrix into stripes.

¶
Strictly speaking, it is not known whether any NP-complete problem admits an efficient

algorithm for its solution, but it can be proven that if such an efficient algorithm exists for

any one of the problems in this very large class, then an efficient algorithm exists for all

other problems; since none is known, it is deemed very unlikely that any such algorithm

actually exists. The question of the existence of an efficient algorithm, that is, whether we

actually have P = NP, is the most famous open problem in theoretical computer science.

116 8 Where is my data?

Figure 8.12: A 2D domain partition.

Figure 8.13: A complex domain partition.

Figure 8.14: A rather silly domain parti-

tion.

Generating a discretization mesh is a non trivial matter in its own

right, and many algorithms generate a numbering that may appear

rather strange and involved; in any case, it is worth remembering that

partitioning a graph requires usage of heuristics, and these may well

depend on the initial numbering. An example of a partition is shown

in fig. 8.13, for a mesh designed to study the thermal diffusion in a

mechanical part.

A final observation is now in order. If we look at “sensible” data dis-

tributions, such as those in fig. 8.12 and 8.13, we can notice that the

data exchange happens at the boundaries of the subdomains, and these

boundaries grow as the “surface” of the subdomain, whereas the amount

of computations grows as the “volume” of the subdomain. This ratio

between communication and computation, known as the surface-to-

volume effect, is a fundamental factor influencing the scalability and

overall efficiency of parallel algorithms. What is a “non-sensible” data

distribution? We show one in fig. 8.14: all of the definitions and strategies

we have discussed will “work” (from a logical point of view), but the

communication overhead will be ridiculous.

8.3.5 The correspondence between indices and processes

As mentioned before, an index space I= {𝑖 , 𝑖 = 1 . . . 𝑛} can be distributed
over a set of processes, as long as we can figure out the mapping between

the abstract index 𝑖 and its physical counterpart, say local index 𝑗 on

process 𝑝. As we shall see, this is particularly important for sparse

matrices.

Let us begin by restating our situation: There exists an index set spanning a
problem space, and this index set is partitioned among multiple processors. This

partition can be realized in many different ways, for example:

▶ serial/replicated distribution, where each process owns a full copy

and no communication is needed (this also cover the case of a serial

run);

▶ block distribution, where each process owns a subrange of the

indices;

▶ list assignment, where we have for each process a list specifying

the indices it owns;

▶ global list assignment, where we have a list specifying for each

index its owner process, replicated on all processes.

Encapsulating these variations under a uniform outer shell allows for

having a single entry point with no need for conditional compilation in

the case in which the user is actually running in serial mode.

Given a data distribution, we need to answer questions that hinge upon

relating the “global” indices to their “local” counterparts:

1. Which global index is the image of a certain local one?

2. Which processor owns a certain global index, and to what local

index does it correspond?

Notice that the first question is much easier to answer, because when we

assign a set of indices to a process, and define their local counterparts, we

also keep track of their global counterpart; this only requires an amount

8.3 Sparse linear algebra data distribution 117

of memory that is proportional to the local number of points, and is

therefore scalable. The second question is instead much more complex,

and can be split in three parts:

1. If a global index is owned by a certain process, that process can

answer the query provided it has a mapping from global to local

indices; however, finding any one of the global indices may require

searching through a set that is potentially disordered, therefore

proper data structures should be designed to facilitate this task;

2. If the query originated from a process such that the global index

corresponds to one of the halo indices, then the process will likely

also know which other process owns it, but it will not necessarily

know what local index is in use on that other process;

3. If the query is about an arbitrary global index that may be owned

by any process, it may be necessary to have an expensive search

phase in which all processes cooperate.

Knowing the location of indices is necessary to retrieve the values

associated with the halo of any given subdomain; thus, it is normally the

case that the halo indices are listed in a preprocessing step, defining a set

of communications that need to take place at every matrix-vector product

to guarantee that each process has access to the entries of 𝑥 it needs, and

these entries are up to date. A very useful set of auxiliary information for

this purpose would be building a subdomain adjacency graph, that is, a

graph that has one vertex for each subdomain, and one edge between

two subdomains whenever there is a direct exchange between the two.

8.3.6 Data Exchange for Matrix-Vector Products

We mentioned in Sec. 8.3.3 the need to retrieve entries of the 𝑥 vector from

the other processes (see also fig. 8.4). The sparse case is however quite

different from the dense parallel BLAS operations: we want to transfer

the minimum possibile amount of data, but the minimum set of entries

that needs to be transferred depends on the pattern of the sparse matrix

𝐴, that is, on the nummber and location of the nonzero coefficients. For

“sensible” matrix patterns and data distributions, this minimum amount

of data is much smaller than the total number of entries in the vector 𝑥;

moreover, the positions of the entries remain the same for as long as we

are dealing with the same matrix pattern.

In the context of an iterative solver, the data exchange will happen at

every matrix-vector product, which happens at least once per iteration;

it is therefore convenient to prepare auxiliary data structures detailing

the exact locations of the entries to be sent/received, and to organize the

send/receive operations between each pair of processes. The time it takes

to prepare the auxiliary structure will be amortized over the multiple

matrix-vector products in the course of the system solution process.

In the MPI jargon, this operation might be called a persistent variable
all-to-all neighborhood collective communication:

All-to-all: Each process may send and receive to/from any other;

Variable: The amount of data is specific to any given send/receive pair;

Persistent: The operation is repeated involving the values associated

with the same set of vector indices, multiple times;

118 8 Where is my data?

1 2 3 4 5 6 7 8

6463626160595857

3225

27 40

P1

P0

Figure 8.15: Halo exchange.

Neighborhood: Many pairs of processes would exchange an empty set

of data, and we can obviously drop the send/receive pair; thus,

each process will only actually communicate with a subset of the

other processes (its neighborhood).

In our library this is called a Halo data exchange.

The exact details, such as the specific lists of indices, are determined by the

pattern of the sparse matrix 𝐴; this pattern will be common to all matrices

built on the same discretization mesh with the same discretization

method. In our software, the lists needed to organize the data exchange

are stored together with the index map in a communication descriptor object,

which therefore encapsulates all the necessary information.

Since the communication descriptor depends on the matrix pattern, it

cannot be fully set up when we initially allocate indices to processes, but

requires going over all the indices in the sparse matrix pattern, either

implicitly (during the build phase of the matrix itself including the

coefficients), or explicitly (listing just the positions of the entries).

Consider the discretization mesh depicted in fig. 8.15, partitioned among

two processes as shown by the dashed line; the data distribution is such

that each process will own 32 entries in the index space, with a halo made

of 8 entries placed at local indices 33 through 40. If process 0 assigns

an initial value of 1 to its entries in the 𝑥 vector, and process 1 assigns a

value of 2, then after a call to psb_halo the contents of the local vectors

will be as shown in table ??.

8.3 Sparse linear algebra data distribution 119

I GLOB(I) X(I) I GLOB(I) X(I)

1 1 1.0 1 33 2.0

2 2 1.0 2 34 2.0

3 3 1.0 3 35 2.0

4 4 1.0 4 36 2.0

5 5 1.0 5 37 2.0

6 6 1.0 6 38 2.0

7 7 1.0 7 39 2.0

8 8 1.0 8 40 2.0

9 9 1.0 9 41 2.0

10 10 1.0 10 42 2.0

11 11 1.0 11 43 2.0

12 12 1.0 12 44 2.0

13 13 1.0 13 45 2.0

14 14 1.0 14 46 2.0

15 15 1.0 15 47 2.0

16 16 1.0 16 48 2.0

17 17 1.0 17 49 2.0

18 18 1.0 18 50 2.0

19 19 1.0 19 51 2.0

20 20 1.0 20 52 2.0

21 21 1.0 21 53 2.0

22 22 1.0 22 54 2.0

23 23 1.0 23 55 2.0

24 24 1.0 24 56 2.0

25 25 1.0 25 57 2.0

26 26 1.0 26 58 2.0

27 27 1.0 27 59 2.0

28 28 1.0 28 60 2.0

29 29 1.0 29 61 2.0

30 30 1.0 30 62 2.0

31 31 1.0 31 63 2.0

32 32 1.0 32 64 2.0

33 33 2.0 33 25 1.0

34 34 2.0 34 26 1.0

35 35 2.0 35 27 1.0

36 36 2.0 36 28 1.0

37 37 2.0 37 29 1.0

38 38 2.0 38 30 1.0

39 39 2.0 39 31 1.0

40 40 2.0 40 32 1.0

Appendix

A
The Errors of Our Way

When a physical problem goes through the modeling process to be solved

on a computer, it is almost always the case that the computed solution

will be only an approximation to the “true” mathematical solution. Many

different factors concur to this result:

▶ The mathematical model, that is, the set of equations describ-

ing the phenomenon, is only valid to within a certain degree of

approximation;

▶ The inputs to the problem consist of experimental data, known

through measurements which are inherently affected by a certain

amount of error;

▶ The data from the measurements is taken into the computer, where

real numbers are represented in the floating-point number system,

with its limitations;

▶ The techniques employed to solve the problem may require:

1. Truncation of a series which is capable of giving the exact

solution only in an asymptotic sense;

2. Usage of a heuristics which produces only an approximate

solution, because the strategy needed to attain the exact

solution is too expensive.

▶ The process of executing an algorithm undergoes rounding errors,

thereby introducing further uncertainty.

These statements are only qualitative in nature; to give them a more

precise, quantitative meaning, it is necessary to present some material

on computer arithmetic and on error analysis.

First of all it is necessary to define formally the very basic concepts of ab-
solute and relative errors. Given an exact quantity 𝑥 and an approximation

𝑥̂ = 𝑥 + 𝛿𝑥 we define:

Absolute error:
𝐸abs(𝑥̂) = |𝑥 − 𝑥̂| = |𝛿𝑥|

Relative error:
𝐸rel(𝑥̂) =

|𝑥 − 𝑥̂|
|𝑥| =

|𝛿𝑥|
|𝑥|

Among the two, the relative error is more useful in most scientific

calculations, because it is scale-independent: scaling both 𝑥 → 𝛼𝑥 and

𝑥̂ → 𝛼𝑥̂ leaves 𝐸rel(𝑥̂) invariant.

Most engineers will discuss of computed quantities by stating that they

have a certain number 𝑝 of correct significant digits. This concept is

intuitively clear; and yet, a formal definition is surprisingly difficult. First

of all, let us recall that the significant digits are digits from the first

124 A The Errors of Our Way

nonzero to the last; thus 1.123 has four, while 0.012 has two significant

digits. Consider now the following two examples:

𝑥 = 1.00000, 𝑥̂ = 1.00499, 𝐸rel(𝑥̂) = 4.99 × 10
−3 ,

𝑥 = 9.00000, 𝑥̂ = 8.99899, 𝐸rel(𝑥̂) = 1.12 × 10
−4

;

by any reasonable definition we should have three correct significant

digits in both cases, yet the relative error differs by a factor of 44.

A seemingly sensible definition would be: an approximation 𝑥̂ has 𝑝 correct
significant digits if 𝑥 and 𝑥̂ rounded to 𝑝 digits produce the same result.

However this definition leaves the door open to some rather curious

situations; consider in fact the two numbers

𝑥 = 0.9949, 𝑥̂ = 0.9951.

Using the previous definition, we have that 𝑥̂ has either one or three

correct digits but not two!

Thus, while the number of correct significant digits can be a useful tool

in visualizing the situation, it is at best a crude quantitative measure, and

for precise statements it is far better to use the relative error.

A.1 Numbers in a Computer

Numbers in a computer are represented as finite strings of binary digits,

or bits. Since the strings of digits are finite, it is obviously impossible

to store arbitrary real numbers; at most, it will be possible to store in a

computer a subset of the reals, indeed a subset of the rationals.

Consider first a simple representation method in which the numbers are

composed of a string of digits in a certain base 𝛽 as follows:

𝑟 = ±𝑑𝑘−1 · · · 𝑑1𝑑0.𝑑−1𝑑−2 · · · 𝑑−𝑡 , (A.1)

with 𝑘 digits for the integer part and 𝑡 digits for the fractionary part,

where for each digit we have 0 ≤ 𝑑 < 𝛽. Now, by definition the value is

given (apart from the sign) by the following expression:

𝑟 = 𝑑𝑘−1 × 𝛽𝑘−1 + 𝑑𝑘−2 × 𝛽𝑘−2 + · · · + 𝑑𝑜 × 𝛽0 + 𝑑−1𝛽
−1 + · · · + 𝑑−𝑡𝛽

−𝑡 .

Let us now ask the question:

Which numbers are exactly represented in this number

system?

The answer should be quite clear: those rational numbers whose expan-

sion in base 𝛽 is finite, with a number of digits after the point less than or

equal to 𝑡. Ignoring for the time being the integer part, a direct translation

of the above statement implies that:

𝑟 =
𝑝

𝑞
= .𝑑−1 · · · 𝑑−𝑡 ;

A.1 Numbers in a Computer 125

now, if this is exact, it means that multiplying by an appropriate power

of the base we should get an integer number:

𝑟 × 𝛽𝑡 ∈ ℤ.

This simple fact also translates into

𝑝

𝑞
× 𝛽𝑡 ∈ ℤ,

but since 𝑝/𝑞 is a reduced representation of a rational number, i.e. 𝑝 and

𝑞 are mutually prime, it follows that

𝛽𝑡

𝑞
∈ ℤ.

For this to be true we must have that

The prime factors of 𝑞 form a subset of the prime factors

of 𝛽.

This simple observation implies that it is impossible to represent exactly

the number 1/10 on a binary computer (𝛽 = 2)!

The simple representation of equation (A.1) is called fixed-point and it

was used in the early days of electronic computing. Indeed, the seminal

book [56] contains many examples of error analysis in the context of

fixed-point operations. At first sight it appears to be a very natural choice,

but a more careful consideration (aided by practical experience) shows

some rather substantial disadvantages. To appreciate this point, let us

first notice that given a finite number of digits available 𝑝 = 𝑘 + 𝑡, it is

clear that the range of the representable numbers

𝐹𝑋𝑃𝐹 = [−(𝛽𝑘 − 𝛽−𝑡), (𝛽𝑘 − 𝛽−𝑡)],

is substantially smaller than the set of integers that can be represented

with the same number of digits

𝐼𝑁𝑇𝑆 = [−(𝛽𝑝 − 1), (𝛽𝑝 − 1)];

we have paid a price in the range to achieve the finer 𝛽−𝑡 spacing between

any two consecutive fixed point numbers accrued by the 𝑡 fractional

digits. Fixed point numbers are usually defined with 𝑘 = 0, so that the

range is [−1, 1]; this is exceedingly cumbersome by modern standards,

since all data must be preprocessed and scaled to fit into this range.

Another less evident problem is the issue of how much error do we

actually have in the representation of data. Since only a subset of the real

numbers is represented, it is necessary to approximate each real number

(within the range) with a fixed-point number; taking the obvious step

of rounding to the nearest neighbour, we find that the absolute error is

bounded by

|𝛿𝑥| ≤ 1

2

𝛽−𝑡

over the entire range. The relative error, however, tells us a different story;

consider the first nonzero fixed-point number 𝛽−𝑡 ; the absolute error in its

representation is bounded by 1/2𝛽−𝑡 , which means that the relative error

can be up to 0.5, or 50%. The relative error slowly decreases until at the

126 A The Errors of Our Way

other extreme of the range, the largest fractional number representable is

1−𝛽−𝑡 , and its associated relative error is practically equal to the absolute

error 1/2𝛽−𝑡 ; if 𝑡 is large, then the difference between the largest and

smallest value of the relative error can be very significant. If we now ask

the question of how best to use an increase in hardware resources, and

specifically how best to allocate 𝑃 available digits within a number, we

have to choose between improving the error by increasing 𝑡 or improving

the range by increasing 𝑘. While the absolute error will improve with

increasing 𝑡, the relative error will improve unequally over the range: at

large values, an already small relative error is further diminished, while

there is little to no effect at small values.

The above considerations make it clear that it is desirable to have a better

scheme for representing real numbers on a digital computer, which

will be introduced in the next subsection. Fixed-point number systems

survive today only in selected application areas, for instance in special

processors for Digital Signal Processing (DSP). One interesting usage of

fixed point numbers is in the T
E
X typesetting system used to typeset this

work and most articles and books in mathematics [57].

A.1.1 Floating-point Numbers

The floating-point representation of real numbers is today used univer-

sally on general purpose computing devices. Its origin may be traced

to the scientific notation for real numbers; it is based on the idea of

normalization of a real number. As an example, the (base 10) number

−2.71828 can be represented in scientific notation as

−.271828 × 10
1 ,

with the following components:

− is the sign of the number;

.271828 is the fractional part; it is shifted so that the first nonzero digit

comes right after the point;

1 is the exponent.

In principle any base can be chosen; of course electronic computers are

binary, but this would not rule out the choice of, say, 𝛽 = 8; indeed, the

IBM 360 mainframe architecture defined its native floating-point format

with 𝛽 = 16, with each hexadecimal digit being composed of four bits.

Formally, a floating point number is represented as follows:

(𝑠, 𝑒 , 𝑓) = ±𝛽𝑒
(
𝑑1

𝛽1

+ 𝑑2

𝛽2

+ . . .
𝑑𝑡

𝛽𝑡

)
with 𝑓 < 1 represented on 𝑡 figures. This is actually equivalent to the

representation

(𝑠, 𝑒 , 𝑓) = ± 𝑓 × 𝛽𝑒−𝑡 ,

a form perhaps easier to work with. The number is supposed to be

normalized, i.e. 𝑑1 ≠ 0. To see the advantage of this system in terms of

maximizing the effective range with the available digits, consider that

A.1 Numbers in a Computer 127

0.25 0.5 1.0 2.00
.6
2
5

0
.7
5

0
.8
7
5

1
.2
5

1
.5
0

1
.7
5

0
.3
1
2
5

0
.4
3
7
5

Figure A.1: An example floating-point

number system

if we are using 𝑘 digits for the exponent, then the largest representable

number would be

(1 − 𝛽−𝑡) × 𝛽𝛽
𝑘−1

a large improvement over the limit 𝛽𝑘 − 1 that would apply to fixed-point

numbers with 𝑘 integer digits. Notice that the range of the floating-

point numbers is logically partitioned into sections corresponding to

the different values of the exponent 𝑒; when 𝛽 = 2 these sections are

called octaves
‗
. Also, normally the 𝑘 digits of the exponent fields are

employed to represent negative exponents as well as positive ones; thus,

the effective range would be closer to 𝛽𝛽
𝑘−1−1

. In the sequel fl(𝑥)will be

used to denote the best approximation to 𝑥 in the floating-point number

system in use; the set of all floating point numbers will be denoted by

𝐹.

An example will now help visualize the situation; if we choose 𝛽 = 2, 𝑡 = 3,

𝑒𝑚𝑖𝑛 = −1, 𝑒𝑚𝑎𝑥 = 3 we can represent the following set of numbers:

0, 0.25, 0.3125, 0.3750, 0.4375, 0.5, 0.625, 0.750, 0.875

1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0,

depicted graphically in Figure A.1 The relative error in the machine

representation of numbers can be bounded in terms of the quantity 𝜖𝑚 ,

or machine epsilon, which is the distance between the number 1.0 and

the next floating point number 1.0+. In a normalized number system we

must have

fl(1.0) = 𝛽1 × (.10 · · · 0𝑡)
fl(1.0+) = 𝛽1 × (.10 · · · 1𝑡)

hence

𝜖𝑚 = 1.0+ − 1.0 = 𝛽1 × (.00 · · · 1𝑡) = 𝛽(1−𝑡). (A.2)

In the sample floating point system we are using, we have 𝜖𝑚 = 2
(1−3) =

0.25, which can be confirmed visually. Let us now consider the relative

error in the floating point representation; assuming that the process of

approximating the number 𝑥 by fl(𝑥) is performed by rounding to the

nearest neighbour, it is easy to see that the largest relative error will be

incurred when we approximate with 1.0 the number 1.0 + 𝜖𝑚/2; for this

number we have ����fl(𝑥) − 𝑥

𝑥

���� ≈ 1

2

𝛽(1−𝑡).

The smallest error will be incurred at the other extreme of the octave

where we approximate 2.0 − 𝜖𝑚/2 with 2.0, thus giving����fl(𝑥) − 𝑥

𝑥

���� ≈ 1

2

𝛽−𝑡 .

‗
The name octave is derived from musical notation: two notes with the same name in

consecutive octaves have a base frequency in the ratio 1 : 2.

128 A The Errors of Our Way

From the above considerations we may derive the following rule

fl(𝑥) = 𝑥(1 + 𝛿) |𝛿| ≤ 𝑢,

where 𝑢 is the unit roundoff, and we have

𝑢 =
1

2

𝛽(1−𝑡).

Moving from one section to the next implies that the absolute spacing

among the numbers will be multiplied by a factor of 𝛽, but the relative
error for two floating-point numbers with the same 𝑓 and different 𝑒 will

be exactly the same. Put it another way, the relative error in a section will

vary by a factor of 𝛽, decreasing over the section, and this pattern will

be repeated identically over the various section composing the range of

the floating-point numbers. The variation between the relative error at

the beginning and at the end of a section is called “wobbling”; since the

wobble factor is equal to 𝛽, it is advantageous to have as small a value as

possible, so that the relative error oscillates in a band as tight as possible.

This is a very important reason to prefer systems with 𝛽 = 2.

A problem with this sort of number system is apparent from Figure A.1:

there is a “hole” around the origin, which is caused by the requirement

for the numbers to be normalized, i.e. for 𝑑1 to be nonzero. Relaxing this

requirement allows to obtain a uniform spacing around the origin, and

introduces the so-called “denormalized” numbers having 𝑒 = 𝑒min , 𝑑0 =

0; in our example these are

0.0625, 0.125, 0.1875.

Figure A.2: An example floating-point

number system with highlighted denor-

malized numbers
0.25 0.5 1.0 2.00

.6
2
5

0
.7
5

0
.8
7
5

1
.2
5

1
.5
0

1
.7
5

0
.3
1
2
5

0
.4
3
7
5

A.1.2 The IEEE 754 Floating-Point Standard

The IEEE Standard 754 was published in 1985, at the end of a design

process that lasted through many years. It defines a binary floating

point system designed to enable the development of robust and portable

numerical software; it is the floating-point format of choice for practically

all computers in common use.

The IEEE format conforms to the model described in section A.1.1. It is

a binary system, that is 𝛽 = 2; therefore the first digit for a normalized

number can only be 1 and can be assumed. For this reason it is often called

a “phantom” bit, since it is not stored explicitly. The format currently

specifies four variations of differing size:

Single precision (32 bits) 𝑡 = 23 + 1 𝑒𝑚𝑖𝑛 = −127, 𝑒𝑚𝑎𝑥 = 127, 𝑢 =

6.0 × 10
−8

, range 10
±38

Double precision (64 bits) 𝑡 = 52 + 1 𝑒𝑚𝑖𝑛 = −1023, 𝑒𝑚𝑎𝑥 = 1023, 𝑢 =

1.1 × 10
−16

, range 10
±308

Extended precision (80 bits) 𝑡 = 63 + 1 𝑒𝑚𝑖𝑛 = −16383, 𝑒𝑚𝑎𝑥 = 16383,

𝑢 = 5.4 × 10
−20

A.2 Floating-point Arithmetic Properties 129

Quad precision (128 bits) 𝑡 = 112 + 1 𝑒𝑚𝑖𝑛 = −16383, 𝑒𝑚𝑎𝑥 = 16383,

𝑢 = 9.6 × 10
−35

The exponent is represented with an unsigned number to which a

displacement is implicitly subtracted; as an example, in single precision

the exponent field is 8-bits wide, and the displacement is -127, so that the

minimum representable value is -127. The maximum normalized value is

given by 𝑒 = 254 − 127 = 127. When the exponent part is at its minimum

possible value the phantom bit is assumed to be 0, and therefore we are

including unnormalized numbers, often called “denormals”.

The standard provides means to represent so-called “symbols”, which

comprise infinity and “Not a Number” (NaN). An infinite value is

represented by a number having the maximum possible value for the

exponent field and a fractional part equal to 0; for a single precision

number this happens when the actual exponent is 𝑒 = 255 − 127 = 128.

When the exponent is at its maximum value but the fractional part is

nonzero, then the bit pattern is interpreted as a NaN (Not a Number);

this is used to signal the result of an invalid operation. The following list

summarizes the possible occurrences of these exceptional values:

▶ 1/0 = (−1)/(−0)∞
▶ (−1)/0 = 1/(−0) = −∞
▶ 0/0 = ∞−∞ = ∞/∞ = 0 ×∞ =

√
−1 = 𝑁𝑎𝑁 .

As we can se the sign of zero influences the outcome of a division,

whereas it is not detectable in e.g. a comparison. IS THIS COMPLETELY

CORRECT???.

A.2 Floating-point Arithmetic Properties

Floating point arithmetic is universally employed in modern computer

systems; thus the error analysis of algorithms is usually carried out

referring to a model of its behaviour. The most widely used is the so-

called standard model which is summarized in the following equation:

fl(𝑥 op 𝑦) = (𝑥 op 𝑦)(1 + 𝛿), |𝛿| ≤ 𝑢, op = + − ∗/ 𝑥, 𝑦 ∈ 𝐹. (A.3)

Note that the assumption that the operands 𝑥, 𝑦 belong to 𝐹 does not
guarantee that the exact result will also belong to𝐹. That the result is exactly

representable in 𝐹 is a fact that is only true for certain combinations of

operation and operands. In particular it is obiously true of multiplications

and divisions by 𝛽, since these operations amount to adding/subtracting

into the exponent field (barring overflow or underflow). A less immediate

result, in base 2, is the following

Theorem A.2.1 (Sterbenz) If 𝑥 and 𝑦 are floating point numbers with
𝑦/2 ≤ 𝑥 ≤ 2𝑦 and 𝑥 − 𝑦 does not underflow, then fl(𝑥 − 𝑦) = 𝑥 − 𝑦.

Proof. See [58].

In any case, let us repeat that any occurrence of an exact result is a very

rare exception among floating computations.

130 A The Errors of Our Way

The IEEE 754 arithmetic standard requires that the result of any individual

aritmetic operatiom be the same as the rounding of the exact result, for

instance:

𝑢 ⊕ 𝑣 = round(𝑢 + 𝑣);

this requirement is more stringent than that of the standard model

summarized in (A.3). It also implies that if the “true” result is exactly

representable, it must be correctly reproduced.

An implication of the rounding requirement is that the implementor of

the arithmetic subsystem needs to provide more digits for storing the

intermediate results than are specified in the floating point format. This

can be shown by a rather simple example, employing the same sample

floating point format presented in sec. A.1.1. Consider the computation of

1.0−0.875; employing 4 bits for the intermediate results, the computation

is carried out as:

2
1 × 0.100 −

2
0 × 0.111 →

2
1 × 0.100 −

2
1 × 0.0111

2
1 × 0.0001 = 2

−1 × 0.010.

Without the extra bit in the intermediate quantitites, the computation

would proceed as follows:

2
1 × 0.100 −

2
0 × 0.111 →

2
1 × 0.100 −

2
1 × 0.011

2
1 × 0.001 = 2

−1 × 0.100,

thereby producing a final result in error by 100 %, despite the fact that

the “true” result is exactly representable! This extra digit is called a guard
digit. In the history of computing, many machines, among them several

models from Cray, have been designed without a guard digit; the early

IBM 360 computers also lacked a guard (hexadecimal) digit, but pressure

from the users led to a correction of this feature, with some installed

machines being retrofitted in the field. Surprisingly, the requirement

of rounding of the exact result in IEEE 754 can be satisfied for floating

point addition with just three extra bits; see [59] for a proof and a full

discussion of computer arithmetic.

Floating-point operations are:

Commutative (where it makes sense)

𝑢 ⊕ 𝑣 = 𝑣 ⊕ 𝑢

𝑢 ⊗ 𝑣 = 𝑣 ⊗ 𝑢

Non associative
(𝑥 ⊕ 𝑦) ⊕ 𝑧 ≠ 𝑥 ⊕ (𝑦 ⊕ 𝑧)

Non distributive
𝑥 ⊗ (𝑦 ⊕ 𝑧) ≠ (𝑥 ⊗ 𝑦) ⊕ (𝑥 ⊗ 𝑧)

The breaking of associative and distributive properties is perhaps the

most important feature of floating-point arithmetic, and certainly one

that gives rise to many surprising results.

One immediate example of this statement is that if sums are not asso-

ciative, then the order of summation can alter the result. Consider for

A.3 Backward Error Analysis 131

instance the computations detailed below in single precision IEEE 754,

with about 7-8 decimal digits (24 binary digits):

1.0 ⊕ 2.0 ⊕ 3.0 ⊕ 4.0 ⊕ 2.68435456 × 10
8 ⊕ −2.68435456 × 10

8 = 0.0

2.0 ⊕ 3.0 ⊕ 4.0 ⊕ 2.68435456 × 10
8 ⊕ −2.68435456 × 10

8 ⊕ 1.0 = 1.0

3.0 ⊕ 1.0 ⊕ 2.68435456 × 10
8 ⊕ 4.0 ⊕ −2.68435456 × 10

8 ⊕ 2.0 = 2.0

3.0 ⊕ 4.0 ⊕ 2.68435456 × 10
8 ⊕ −2.68435456 × 10

8 ⊕ 1.0 ⊕ 2.0 = 3.0

2.0 ⊕ 4.0 ⊕ 2.68435456 × 10
8 ⊕ −2.68435456 × 10

8 ⊕ 1.0 ⊕ 3.0 = 4.0

1.0 ⊕ 2.68435456 × 10
8 ⊕ 4.0 ⊕ −2.68435456 × 10

8 ⊕ 3.0 ⊕ 2.0 = 5.0

4.0 ⊕ 2.68435456 × 10
8 ⊕ −2.68435456 × 10

8 ⊕ 1.0 ⊕ 2.0 ⊕ 3.0 = 6.0

2.68435456 × 10
8 ⊕ −2.68435456 × 10

8 ⊕ 1.0 ⊕ 2.0 ⊕ 3.0 ⊕ 4.0 = 10.0

−2.68435456 × 10
8 ⊕ 1.0 ⊕ 2.0 ⊕ 3.0 ⊕ 4.0 ⊕ 2.68435456 × 10

8 = 0.0

From the point of view of strict adherence to the standard, all of the

above results are equally correct, even though they do not satisfy our

intuitive expectations. In the first instance, where the result is zero, the

blame is often put on the subtraction

−2.68435456 × 10
8 ,

but the real culprit is the previous sum

1.0 ⊕ 2.0 ⊕ 3.0 ⊕ 4.0 ⊕ 2.68435456 × 10
8 ,

because the number of significant digits is such that the contribution of

the small numbers is lost; the subsequent subtraction simply exposes

this problem. This is an example of an unstable calculation, one in which

our expectations run too high with respect to the real capabilities of the

underlying number system. A more formal and quantitative analysis of

such phenomena is the subject of the next section.

A.3 Backward Error Analysis

Backward error analysis is one of the most useful tools in the evaluation of

accuracy of algorithms; this despite the fact that its basic idea is extremely

simple. To see it, consider again the standard model of floating point

computations (A.3):

fl(𝑥 op 𝑦) = (𝑥 op 𝑦)(1 + 𝛿).

If op is distributive, a seemingly trivial rewriting gives us the basis for a

very important insight:

fl(𝑥 op 𝑦) = (𝑥 op 𝑦)(1 + 𝛿) = (𝑥 · (1 + 𝛿)) op (𝑦 · (1 + 𝛿)). (A.4)

In plain english, the rounded result of the floating point operation is

equal to the exact result of the operation applied to perturbed data; note

that the perturbed data might not be exactly representable. This is an

extremely important shift in the point of view regarding the error, for

the following reasons:

132 A The Errors of Our Way

▶ Interpreting the error as the effect of perturbation in the input

allows us to draw on the rich mathematical theory of perturbations;

▶ For realistic problems, perturbations are already present in the

input data anyway, both because of measurement errors and also

because of the approximation inherent in storing the numbers in

finite precision.

Let us then formally define the backward error:

Definition A.3.1 Given the function 𝑦 = 𝑓 (𝑥), and its computed ap-
proximation 𝑦̂ = 𝑓 (𝑥), the backward error is the perturbation 𝛿𝑥 such
that

𝑦̂ = 𝑓 (𝑥 + 𝛿𝑥).

The basic tenet of backward error analysis can be thus stated as:

Definition A.3.2 An algorithm is stable in the sense of backward error
analysis (or for short backward stable) if the perturbation 𝛿𝑥 introduced in
the data is not too large compared to the uncertainty with which the original
data 𝑥 was known.

Now the obvious question arises: is it possible to expect a small error in

the result given a small backward error?

The link between the forward error (i.e. the error in the function result)

and the backward error is provided by the condition number. Let us

consider the computation of 𝑓 (𝑥)where 𝑓 is a real differentiable function;

expanding in Taylor series we have

𝑓 (𝑥) = 𝑓 (𝑥 + 𝛿𝑥) = 𝑓 (𝑥) + 𝑓 ′(𝑥)𝛿𝑥 + 𝑂(𝛿𝑥2);

this is equivalent to stating that

| 𝑓 (𝑥 + 𝛿𝑥) − 𝑓 (𝑥)| ≈ | 𝑓 ′(𝑥)||𝛿𝑥|.

Therefore: if the error in the computed value can be interpreted as the

effect of a perturbation in the input, then the perturbation is amplified

by a factor | 𝑓 ′(𝑥)| that depends only on the true function 𝑓 , not the

approximate 𝑓 .

Moving to relative errors, simple algebraic manipulations give

| 𝑓 (𝑥 + 𝛿𝑥) − 𝑓 (𝑥)|
| 𝑓 (𝑥)| ≈ |𝛿𝑥||𝑥|

| 𝑓 ′(𝑥)| · |𝑥|
| 𝑓 (𝑥)| (A.5)

where the quantity | 𝑓 ′(𝑥)| · |𝑥|/| 𝑓 (𝑥)| is called the relative condition number.
A problem is well conditioned if its condition number is small, ill-

conditioned if it is large, and ill-posed if its condition number is infinite
†
.

This formulation achieves two very important goals:

1. It separates neatly the effect of the algorithm (which is felt mainly

through 𝛿𝑥) from the features of the “true” function 𝑓 (𝑥);
2. It allows to draw from the powerful analytical tools of the theory

of perturbations.

†
Ill-posed problems also include those for which the solution is not differentiable.

A.4 Vector and Matrix Norms 133

The first point can hardly be overemphasized. Given that perturbations

in the data are completely unavoidable, in most situations what we can

reasonably ask for is that the method employed for the solution should

introduce an uncertainty not significantly larger than that which was

already present. Whether this is sufficient to get a good solution is a

completely different question; in particular, it is extremely ill-advised to

expect a reliable answer to a severely ill-conditioned problem.

To give a concrete example, let us analyze the simple task of computing

the sum of 𝑛 floating-point numbers:

𝑆 =

𝑛∑
𝑖=1

𝑥𝑖 . (A.6)

If we compute the sum in the natural order we have for 𝑛 = 3

𝑆 = ((𝑥1 + 𝑥2)(1 + 𝛿1) + 𝑥3)(1 + 𝛿2)

and generalizing

𝑆
𝑛∑
𝑖=1

𝑥𝑖

max(1,𝑖−1)∏
𝑘=1

(1 + 𝛿𝑘).

The bound |𝛿| ≤ 𝑢 carries over to the following result

𝑛∏
𝑘=1

(1 + 𝛿𝑘) = (1 + 𝜃)

with

|𝜃| ≤ 𝛾𝑛 =
𝑛𝑢

1 − 𝑛𝑢

under the hypothesis that 𝑛𝑢 < 1.

In the IEEE single precision arithmetic we have 𝑢 = 6.0×10
−8

; this means

that a sum involving 10
7

terms can be expected to have very significant

perturbations. Such sums are necessary to compute scalar products in

the context of iterative solvers; it is therefore clear that very large systems,

of the order of hundreds of millions of unknowns, need careful attention,

and usually double precision arithmetic, to be solved reliably.

A.4 Vector and Matrix Norms

We have seen how we can build an understanding of the effects of

errors on computations of function values; quantitative statements about

simple scalar functions can be formulated by relying on the concept of

the absolute value of a number.

Since most of this book will deal with linear systems, matrices and

vectors, it is natural to ask how can we carry over to this new context of

linear spaces the concepts of error and conditioning we have just seen; to

achieve this goal we need to generalize the concepts of absolute value and

distance into the concepts of norm and metric on a linear space.

Definition A.4.1 Let Vbe a linear space on the real or complex numbers,
e.g. ℝ𝑛 . A metric (or distance) is a function 𝑑(·, ·) : (V× V) → ℝ that

134 A The Errors of Our Way

satisfies all of the following properties:

▶ 𝑑(𝑥, 𝑦) ≥ 0, with equality if and only if 𝑥 = 𝑦 (positive definiteness);
▶ 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (simmetry);
▶ 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality).

Definition A.4.2 Let Vbe a linear space on the real or complex numbers,
e.g. ℝ𝑛 . A norm on V is a function ∥ · ∥ : V→ ℝ that satisfies all of the
following properties:

▶ ∥𝑥∥ ≥ 0, and ∥𝑥∥ = 0 if and only if 𝑥 = 0 (positive definiteness);
▶ ∥𝛼𝑥∥ = |𝛼|∥𝑥∥ (homogeneity);
▶ ∥𝑥 + 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥ (triangle inequality).

The most familiar example is the Euclidean norm

∥𝑥∥2 =

(∑
𝑖

|𝑥𝑖|2
)

1/2

,

which is readily generalized to the 𝑝-norm

∥𝑥∥𝑝 =

(∑
𝑖

|𝑥𝑖|𝑝
)

1/𝑝

.

In the limit we obtain the infinity-norm ∥𝑥∥∞ = max𝑖(|𝑥𝑖|). Note that

any norm induces a metric function via the formula 𝑑(𝑥, 𝑦) = ∥𝑥 − 𝑦∥,
whereas a metric does not necessarily correspond to a norm because it

lacks the homogeneity property. Thus we will always in the sequel make

use of norms and norm-induced distances.

Definition A.4.3 Let Vbe a linear space on the real or complex numbers.
An inner product is a function ⟨·, ·⟩ : (V× V) → ℝ that satisfies all of
the following properties:

1. ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩ in ℝ or ⟨𝑦, 𝑥⟩ in ℂ (simmetry);
2. ⟨𝑥, 𝑦 + 𝑧⟩ = ⟨𝑥, 𝑦⟩ + ⟨𝑥, 𝑧⟩;
3. ⟨𝛼𝑥, 𝑦⟩ = 𝛼⟨𝑥, 𝑦⟩ for any real or complex 𝛼;
4. ⟨𝑥, 𝑥⟩ ≥ 0, with equality if and only if 𝑥 = 0.

The usual scalar product among vectors in ℂ𝑛

⟨𝑥, 𝑦⟩ = 𝑦∗𝑥 =
∑
𝑖

𝑦𝑖𝑥𝑖

is an inner product; two vectors are said to be orthogonal if their in-

ner product is zero. Any inner product satisfies the Cauchy-Schwartz

inequality

|⟨𝑥, 𝑦⟩| ≤
√
⟨𝑥, 𝑥⟩ · ⟨𝑦, 𝑦⟩.

Any inner product induces a norm:

∥𝑥∥ =
√
⟨𝑥, 𝑥⟩,

but not all norms are induced by an inner product, e.g. the infinity norm

does not correspond to any inner product.

A.5 Perturbation Theory for Linear Systems 135

Definition A.4.4 A real symmetric (complex Hermitian) matrix is positive

definite if 𝑥𝑇𝐴𝑥 > 0 (𝑥∗𝐴𝑥 > 0) for all 𝑥 ≠ 0.

A positive definite matrix induces an inner product and a norm via the

formulae

⟨𝑥, 𝑦⟩𝐴 = 𝑦∗𝐴𝑥

∥𝑥∥𝐴 =
√
𝑥∗𝐴𝑥

The 𝐴-norm is sometimes called the energy norm.

Since the space of all 𝑚 × 𝑛 matrices is itself a linear space, we can

define a matrix norm on it just like the norms we have already seen in

Definition A.4.2. However it is useful to define a particular class of norms

that takes into account the fact that a matrix is a representation of an

operator linking two vectors spaces.

Definition A.4.5 Let 𝐴 be an 𝑚 × 𝑛 matrix, ∥ · ∥𝑚̂ a norm on ℝ𝑚 and
∥ · ∥𝑛̂ a norm on ℝ𝑛 . Then

∥𝐴∥𝑚̂𝑛̂ = max

𝑥≠0

∥𝐴𝑥∥𝑚̂
∥𝑥∥𝑛̂

is called an operator norm, or induced norm, or subordinate matrix

norm.

Any operator norm is also a matrix norm. Operator norms satisfy the

following additional properties:

1. ∥𝐴𝑥∥ ≤ ∥𝐴∥∥𝑥∥
2. ∥𝐴𝐵∥ ≤ ∥𝐴∥∥𝐵∥

For the norm induced by the Euclidean 2-norm we have ∥𝑄𝐴𝑍∥ = ∥𝐴∥
for all orthogonal or unitary 𝑄 and 𝑍. Other useful facts about norms

are:

▶ ∥𝐴∥∞ = max𝑥≠0

∥𝐴𝑥∥∞
∥𝑥∥∞ = max𝑖(

∑
𝑗 |𝑎𝑖 𝑗|);

▶ ∥𝐴∥1 = max𝑥≠0

∥𝐴𝑥∥1

∥𝑥∥1

= max𝑗(
∑

𝑖 |𝑎𝑖 𝑗|) = ∥𝐴𝑇∥∞;

▶ ∥𝐴∥2 = max𝑥≠0

∥𝐴𝑥∥2

∥𝑥∥2

=
√
𝜆max(𝐴∗𝐴) where 𝜆max is the largest

eigenvalue;

▶ ∥𝐴∥2 = ∥𝐴𝑇∥2.

A.5 Perturbation Theory for Linear Systems

Considering a linear system 𝐴𝑥 = 𝑏, its computed solution 𝑥̂ will in

general satisfy a backward error result of the type

(𝐴 + 𝛿𝐴)(𝑥 + 𝛿𝑥) = (𝑏 + 𝛿𝑏).

Subtracting 𝐴𝑥 = 𝑏 and assuming that 𝐴 is nonsingular, i.e. 𝐴−1
exists,

we obtain

𝛿𝑥 = 𝐴−1(−𝛿𝐴𝑥̂ + 𝛿𝑏).

136 A The Errors of Our Way

Applying any operator norm we get

∥𝛿𝑥∥ ≤ ∥𝐴−1∥(∥𝛿𝐴∥𝑥̂∥ + ∥𝛿𝑏∥),

and by simple algebraic manipulations

∥𝛿𝑥∥
∥𝑥̂∥ ≤ ∥𝐴

−1∥∥𝐴∥(∥𝛿𝐴∥∥𝐴∥ +
∥𝛿𝑏∥
∥𝐴∥∥𝑥̂∥). (A.7)

The quantity 𝜅(𝐴) = ∥𝐴−1∥∥𝐴∥ is the condition number associated with

matrix 𝐴, because equation (A.7) says that it links the relative change in

the answer
∥𝛿𝑥∥
∥𝑥̂∥ to the relative change in the data

∥𝛿𝐴∥
∥𝐴∥ .

The condition number admits another important interpretation: it can be

seen as the (reciprocal of the) distance from singularity, in the sense of

the following theorem:

Theorem A.5.1 Let 𝐴 be a nonsingular matrix, and let 𝛿𝐴 be any perturba-
tion 𝛿𝐴 such that 𝐴 + 𝛿𝐴 is singular. Then

min

{
∥𝛿𝐴∥2

∥𝐴∥2

: 𝐴 + 𝛿𝐴singular
}
=

1

∥𝐴−1∥∥𝐴∥ =
1

𝜅(𝐴) . (A.8)

Proof. Let us first prove that
∥𝛿𝐴∥
∥𝐴∥ ≥

1

𝜅(𝐴) . The definition of singularity

implies that there exists a vector 𝑥 such that (𝐴 + 𝛿𝐴)𝑥 = 0; then, with

simple algebraic manipulations, we obtain

𝛿𝐴𝑥 = −𝐴𝑥

𝐴−1𝛿𝐴𝑥 = −𝑥
∥𝐴−1𝛿𝐴𝑥∥ = ∥𝑥∥

∥𝐴−1∥∥𝛿𝐴∥∥𝑥∥ ≥ ∥𝑥∥

∥𝛿𝐴∥ ≥ 1

∥𝐴−1∥
∥𝛿𝐴∥
∥𝐴∥ ≥ 1

∥𝐴∥∥𝐴−1∥ =
1

𝜅(𝐴)

This part of the proof is valid for any operator norm ∥·∥; if we now restrict

ourselves to the 2-norm, we can prove that the minimum can be attained.

By definition ∥𝐴−1∥2 = max𝑥≠0

∥𝐴−1𝑥∥2

∥𝑥∥2

; since norms are homogeneous,

there exists an 𝑥 with ∥𝑥∥2 = 1 where this maximum is attained. Building

a unit vector 𝑦 = 𝐴−1𝑥
∥𝐴−1𝑥∥2

= 𝐴−1𝑥
∥𝐴−1∥2

, we can construct 𝛿𝐴 = 𝑦 =
−𝑥𝑦𝑇
∥𝐴−1∥2

.

Then

∥𝛿𝐴∥2 = max

𝑧≠0

∥𝑥𝑦𝑇𝑧∥2

∥𝐴−1∥2∥𝑧∥2

= max

𝑧≠0

|𝑦𝑇𝑧|∥𝑥∥2

∥𝑧∥2

∥𝑥∥2

∥𝐴−1∥2

=
1

∥𝐴−1∥2

where the maximum is attained when 𝑧 is a multiple of 𝑦. Finally,

(𝐴 + 𝛿𝐴)𝑦 = 𝐴𝑦 − 𝑥𝑦𝑇𝑦

∥𝐴−1∥2

=
𝑥

∥𝐴−1∥2

− 𝑥𝑦𝑇𝑦

∥𝐴−1∥2

= 0,

hence 𝐴 + 𝛿𝐴 is singular.

A.6 Notes and References 137

A.6 Notes and References

This chapter owes much of its content to the excellent book by Higham [58];

the linear algebra book [60] is also heartily recommended. The IEEE 754

standard official publication is [61]; a readable and comprehensive treat-

ment of its arithmetic properties is found in [62], reprinted in [59]

and [63]. A thorough discussion of many arithmetic algorithms can be

found in [64].

B
Spack

Spack is a flexible package manager designed for high-performance

computing (HPC) environments. It simplifies the process of building,

installing, and managing software dependencies by allowing users to

specify configurations in a highly customizable manner. Spack supports

multiple versions, configurations, and compilers. This kind of tools has

become an essential tool for researchers and developers working on

complex software stacks. Its versatility and ease of use have made it a

popular choice in the scientific computing community.

In the following we make a very brief introduction to Spack and its

basic usage. The Spack documentation is extensive and well writ-

ten, so we recommend to refer to it for more details on the website

spack.readthedocs.io.

B.1 Installation

To install Spack, you can clone the repository from GitHub. Open a

terminal and run the following command:

git clone git@github.com:spack/spack.git

This will create a directory named spack in your current working direc-

tory. You can then add Spack to your shell’s environment by sourcing

the setup-env.sh script:

source ./spack/share/spack/setup-env.sh

This command sets up the necessary environment variables and functions

for Spack to work properly. You can also add the above line to your

shell’s configuration file (e.g., .bashrc) to make the changes permanent;

sometimes you may need to hmi ave more than one installation of Spack

on the same machine, in this case, adding the default loading to he

.bashrc file may not be the best option. In this case, you can create a

script that loads the Spack environment and add it to your .bashrc

file. For example, you can create different aliases for different Spack

installations:

alias spack1='source /path/spack1/share/spack/setup-env.sh'

alias spack2='source /path/spack2/share/spack/setup-env.sh'

alias spack3='source /path/spack3/share/spack/setup-env.sh'

Then, you can load the desired Spack installation by running the corre-

sponding alias command in your terminal.

To verify that Spack is installed correctly, you can run the following

command:

https://spack.readthedocs.io/en/latest/

140 B Spack

1: To discover packages and variants you

can visit the website packages.spack.io.

spack --version

This should display the version of Spack you have installed. You can also

check the available commands by running:

spack help

This will show you a list of available Spack commands and their descrip-

tions.

B.2 Basic Usage

Spack provides a simple command-line interface for managing software

packages. The basic workflow involves searching for packages, installing

them, and managing their dependencies.

In all cases the first thing we have to do is making a compiler available to

Spack, this should be a compiler you have installed on your system. You

can check the available compilers by running:

spack compilers

The typical aspect of the output should be something like:

==> Available compilers

-- gcc ubuntu24.04-x86_64 ------------------------------

gcc@13.3.0

In this case, we have a single compiler available, gcc@13.3.0. To add a

new compiler, you can use the spack compiler add command:

spack compiler add /path/to/your/compiler

This command will add the specified compiler to Spack’s list of available

compilers. You can also let spack detect the compiler automatically by

running:

spack compiler find

This command will search for compilers installed on your system and

add them to Spack’s list of available compilers. In case you plan having

more than one version of Spack installed it is recommended to set the

scope of the compiler to be only available to the current Spack installation.

You can do this by running:

spack compiler find --scope site

As an example, we can think of installing the gcc compiler at version

14.2.0. First we can run the following command to check for the instal-
lation variants1

we can select:

spack info gcc@14.2.0

This will show you the available variants, dependencies, and other

information about the package, e.g., the available variants are:

https://packages.spack.io

B.2 Basic Usage 141

2: The + sign indicates that the variant is

enabled, while the ~ sign indicates that

the variant is disabled. The ^ sign indi-

cates that the package is a dependency

of another package. In this case we are in-

stalling the gcc package with the nvptx

variant enabled which in turns depends

on Cuda, to ensure compatibility, we se-

lect ^cuda@12.8.0.

3: The openmpi package is a popular im-

plementation of the MPI standard. Since

we want to use it conjunction with CUDA,

we need to enable the +cuda variant and

select the CUDA architecture/comput-

ing capabilities, in the case in the ex-

ample we use the compute capabilities

89 which are compatible with the GPU

we are using: to look for the matching

compute capabilities you can visit the

NVIDIA website CUDA GPUs.

binutils [false] false, true

Build via binutils

bootstrap [true] false, true

Enable 3-stage bootstrap

build_system [autotools] autotools

Build systems supported by the package

build_type [RelWithDebInfo] Debug, MinSizeRel,

RelWithDebInfo, Release↩→

CMake-like build type. Debug: -O0 -g; Release: -O3;

RelWithDebInfo: -O2 -g; MinSizeRel: -Os↩→

graphite [false] false, true

Enable Graphite loop optimizations (requires ISL)

languages [c,c++,fortran] ada, brig, c, c++, d,

fortran, go, java, jit, lto, obj-c++, objc↩→

Compilers and runtime libraries to build

nvptx [false] false, true

Target nvptx offloading to NVIDIA GPUs

piclibs [false] false, true

Build PIC versions of libgfortran.a and libstdc++.a

strip [false] false, true

Strip executables to reduce installation size

In our case it would be a good idea to activate the nvptx support to

compile for NVIDIA GPUs, and select a build_type=Release to enable

all the optimizations, so we can run the following command to install

gcc2
:

spack install gcc@14.2.0 +nvptx build_type=Release

^cuda@12.8.0↩→

After the completion of the install procedure—which will require some

time depending on your machine specifics—you can add it to the set of

compilers available to spack by doing:

spack compiler add $(spack find --paths gcc@14.2.0)

--scope=site↩→

which will return

==> Added 1 new compiler to

/home/user/.spack/linux/compilers.yaml↩→

gcc@14.2.0

==> Compilers are defined in the following files:

/home/user/.spack/linux/compilers.yaml

You can now install any other package using the gcc@14.2.0 compiler.

For example, you can install the openblas and openmpi3
libraries by

running:

spack install openblas%gcc@14.2.0

spack install openmpi%gcc@14.2.0 +cuda cuda_arch=89

+legacylaunchers↩→

We can now load the installed modules by running:

spack load gcc@14.2.0

spack load openblas%gcc@14.2.0

spack load openmpi%gcc@14.2.0

https://developer.nvidia.com/cuda-gpus

142 B Spack

4: This is the case for a Spack installed

under an Ubuntu 22.04 system, if you

are using a different system you can

check the path by running: ls /path/ ⌋
to/spack/share/spack/lmod/.

After loading the modules, you can check the GCC version by running:

gcc --version

This should display the version of GCC you have installed and loaded.

gcc (Spack GCC) 14.2.0

Copyright (C) 2024 Free Software Foundation, Inc.

This is free software; see the source for copying

conditions. There is NO↩→

warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.↩→

B.2.1 Environment Modules

To better manage the installed packages and their dependencies, it is

better to use the Environment Modules system. This system allows you

to load and unload different software packages and their dependencies

easily.

To use Environment Modules with Spack the simplest configuration is

to have lmod installed on your system. You can check if it is installed by

running:

module --version

If it is available it should answer something like:

Modules based on Lua: Version 8.6.19 2022-04-16 13:46

-05:00↩→

by Robert McLay mclay@tacc.utexas.edu

If it is not installed, you can install it using the package manager of your

system. For example, on Ubuntu, you can run:

sudo apt-get install lmod

Once you have lmod installed, you can configure Spack to use it by

running:

spack lmod refresh --delete-tree

This command will generate the necessary module files for all installed

packages. You then have to make aware the system about the modules,

e.g., by adding the following line to your .bashrc file
4
:

export MODULEPATH=${MODULEPATH}:/path/to/spack/share/ ⌋
spack/lmod/linux-ubuntu22.04-x86_64/Core↩→

You can then load the modules by running, e.g.,

module load gcc/14.2.0

The way in which the modules are written by the spack lmod refresh

command is configured in themodules.yamlfile located in thespack/etc/spack

directory. An example of configuration is the following:

B.2 Basic Usage 143

modules:

prefix_inspections:

./bin:

- PATH

./include:

- CPATH

./inc:

- CPATH

./lib:

- LIBRARY_PATH

- LD_LIBRARY_PATH

./lib64:

- LIBRARY_PATH

- LD_LIBRARY_PATH

default:

enable:

- lmod

lmod:

hash_length: 0

core_compilers:

- 'gcc@13.3.0'

- 'llvm'

- 'gcc@14.2.0'

hide_implicits: true

hierarchy:

- 'mpi'

- 'compiler'

all:

conflict:

- '{name}'

autoload: direct

You can read more about the configuration options in the Spack docu-

mentation.

https://spack.readthedocs.io/en/latest/module_file_support.html
https://spack.readthedocs.io/en/latest/module_file_support.html

Bibliography

Here are the references in citation order.

[1] Randall J. LeVeque. Finite difference methods for ordinary and partial differential equations. Steady-state and

time-dependent problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,

2007, pp. xvi+341 (cited on page 2).

[2] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element methods. Third. Vol. 15.

Texts in Applied Mathematics. Springer, New York, 2008, pp. xviii+397 (cited on page 2).

[3] Randall J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathe-

matics. Cambridge University Press, Cambridge, 2002, pp. xx+558 (cited on page 2).

[4] John G. Kemeny and J. Laurie Snell. Finite Markov chains. The University Series in Undergraduate

Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960, pp. viii+210

(cited on page 3).

[5] Gene H. Golub and Charles F. Van Loan. Matrix computations. Fourth. Johns Hopkins Studies in the

Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013, pp. xiv+756 (cited on

page 5).

[6] James W. Demmel. Applied Numerical Linear Algebra. Philadelphia, PA: SIAM, 1997 (cited on page 5).

[7] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997 (cited on page 5).

[8] Sheldon Jay Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. New York: Springer,

1997 (cited on page 5).

[9] Roger A. Horn and Charles R. Johnson. Matrix analysis. Second. Cambridge University Press, Cambridge,

2013, pp. xviii+643 (cited on page 5).

[10] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Corrected reprint of the 1991 original.

Cambridge University Press, Cambridge, 1994, pp. viii+607 (cited on page 5).

[11] Jack J. Dongarra et al. LINPACK User’s Guide. Philadelphia, PA: Society for Industrial and Applied

Mathematics, 1979 (cited on pages 7, 111).

[12] Michael Metcalf et al. Modern Fortran Explained: Incorporating Fortran 2023. 6th ed. Numerical Mathe-

matics and Scientific Computation. Oxford, UK: Oxford University Press, 2024 (cited on page 10).

[13] Alessandro Fanfarillo et al. ‘OpenCoarrays: Open-source Transport Layers Supporting Coarray

Fortran Compilers’. In: Proceedings of the 8th International Conference on Partitioned Global Address Space
Programming Models. PGAS ’14. Eugene, OR, USA: Association for Computing Machinery, 2014. doi:

10.1145/2676870.2676876 (cited on page 12).

[14] John Backus. ‘The History of FORTRAN I, II and III’. In: IEEE Ann. Hist. Comput. 1.1 (July 1979),

pp. 21–37. doi: 10.1109/MAHC.1979.10013 (cited on page 25).

[15] M.J. Flynn. ‘Very high-speed computing systems’. In: Proceedings of the IEEE 54.12 (1966), pp. 1901–1909.

doi: 10.1109/PROC.1966.5273 (cited on page 29).

[16] Michael J. Flynn. ‘Some Computer Organizations and Their Effectiveness’. In: IEEE Transactions on
Computers C-21.9 (1972), pp. 948–960. doi: 10.1109/TC.1972.5009071 (cited on page 29).

[17] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing. Mc Graw-Hill, 1998 (cited on pages 34, 35).

[18] Samuel Williams, Andrew Waterman, and David Patterson. ‘Roofline: an insightful visual performance

model for multicore architectures’. In: Commun. ACM 52.4 (Apr. 2009), pp. 65–76. doi: 10.1145/

1498765.1498785 (cited on page 38).

https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1109/MAHC.1979.10013
https://doi.org/10.1109/PROC.1966.5273
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785

[19] John D. McCalpin. ‘Memory Bandwidth and Machine Balance in Current High Performance Computers’.

In: IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter (Dec. 1995),

pp. 19–25 (cited on page 39).

[20] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers. Tech. rep. A

continually updated technical report. http://www.cs.virginia.edu/stream/. Charlottesville, Virginia:

University of Virginia, 1991-2007 (cited on page 39).

[21] David R. Butenhof. Programming with POSIX threads. USA: Addison-Wesley Longman Publishing Co.,

Inc., 1997 (cited on page 44).

[22] OpenMP Architecture Review Board. OpenMP Application Programming Interface Specification 6.0. 2024

(cited on pages 45, 46).

[23] OpenMP Architecture Review Board. OpenMP Application Programming Interface Specification 5.2. Ed. by

Bronis de Supinski and Michael Klemm. 2021 (cited on page 45).

[24] Yun (Helen) He Timothy G. Mattson and Alice E. Koniges. The OpenMP Common Core. MIT Press,

Cambridge, MA, 2019, p. 320 (cited on page 45).

[25] Gabriele Jost Barbara Chapman and Ruud van der Pas. Using OpenMP. MIT Press, Cambridge, MA,

2007, p. 384 (cited on page 45).

[26] Pasqua D’Ambra, Fabio Durastante, and Salvatore Filippone. ‘Parallel Sparse Computation Toolkit’. In:

Software Impacts 15 (2023), p. 100463. doi: https://doi.org/10.1016/j.simpa.2022.100463 (cited

on page 50).

[27] M. Bernaschi and G. Iannello. ‘Collective Communication Operations: Experimental Results vs. Theory’.

In: Concurrency: Practice and Experience 10.5 (1998), pp. 359–386 (cited on page 52).

[28] R. Thakur, R. Rabenseifner, and William Gropp. ‘Optimization of Collective Communication Operations

in MPICH’. In: International Journal of High Performance Computing Applications 19.1 (2005), pp. 49–66

(cited on page 52).

[29] Bo Kågström, Per Ling, and Charles van Loan. ‘GEMM-based level 3 BLAS: high-performance model

implementations and performance evaluation benchmark’. In: ACM Trans. Math. Softw. 24.3 (Sept.

1998), pp. 268–302. doi: 10.1145/292395.292412 (cited on page 85).

[30] T. Davis. ‘Wilkinson’s sparse matrix definition’. In: NA Digest 07.12 (Mar. 2007), pp. 379–401 (cited on

page 87).

[31] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second. Society for Industrial and Applied

Mathematics, 2003 (cited on pages 89, 93, 94).

[32] J. A. Meĳerink and H. A. van der Vorst. ‘An Iterative Solution Method for Linear Systems of Which the

Coefficient Matrix is a Symmetric M-Matrix’. In: Math. Comp 31 (1977), pp. 148–162 (cited on page 93).

[33] Barry F. Smith, Petter E. Bjørstad, and William D. Gropp. Domain decomposition. Parallel multilevel methods
for elliptic partial differential equations. Cambridge, UK: Cambridge University Press, 1996, pp. xii+224

(cited on page 94).

[34] Klaus Stüben. Algebraic Multigrid (AMG): An Introduction with Applications. Tech. rep. 70. Schloss

Birlinghoven, Sankt Augustin, Germany: GMD, 1999 (cited on page 94).

[35] Robert D. Falgout. ‘An Introduction to Algebraic Multigrid’. In: Computing in Science and Engineering
8.3 (2006), pp. 24–33 (cited on page 94).

[36] Pasqua D’Ambra, Fabio Durastante, and Salvatore Filippone. ‘AMG Preconditioners for Linear

Solvers towards Extreme Scale’. In: SIAM Journal on Scientific Computing 43.5 (2021), S679–S703. doi:

10.1137/20M134914X (cited on page 94).

[37] Daniele Bertaccini and Salvatore Filippone. ‘Sparse approximate inverse preconditioners on high

performance GPU platforms’. In: Computers & Mathematics with Applications 71.3 (2016), pp. 693–711.

doi: https://doi.org/10.1016/j.camwa.2015.12.008 (cited on page 94).

[38] Pasqua D’Ambra, Salvatore Filippone, and Panayot S. Vassilevski. ‘BootCMatch: A Software Package

for Bootstrap AMG Based on Graph Weighted Matching’. In: ACM Trans. Math. Softw. 44.4 (June 2018).

doi: 10.1145/3190647 (cited on page 94).

https://doi.org/https://doi.org/10.1016/j.simpa.2022.100463
https://doi.org/10.1145/292395.292412
https://doi.org/10.1137/20M134914X
https://doi.org/https://doi.org/10.1016/j.camwa.2015.12.008
https://doi.org/10.1145/3190647

[39] I.S. Duff et al. ‘Level 3 Basic Linear Algebra Subprograms for Sparse Matrices: a User Level Interface’.

In: 23.3 (1997), pp. 379–401 (cited on page 95).

[40] Salvatore Filippone et al. ‘Sparse matrix-vector multiplication on GPGPUs’. In: ACM Trans. Math.
Software 43.4 (2017), Art. 30, 49 (cited on pages 96, 98).

[41] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Reading, MA: Addison–Wesley,

1983 (cited on page 97).

[42] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995

(cited on page 97).

[43] D. W. I. Rouson, J. Xia, and X. Xu. Scientific Software Design: The Object-Oriented Way. Cambridge

University Press, 2011 (cited on page 97).

[44] S. Filippone and A. Buttari. ‘Object-Oriented Techniques for Sparse Matrix Computations in Fortran

2003’. In: 38.4 (2012), 23:1–23:20 (cited on page 98).

[45] Valeria Cardellini, Salvatore Filippone, and Damian Rouson. ‘Design patterns for sparse-matrix

computations on hybrid CPU/GPU platforms’. In: 22.1 (2014), pp. 1–19 (cited on page 98).

[46] Jack J. Dongarra et al. ‘The Design and Implementation of the PBLAS (Parallel Basic Linear Algebra

Subprograms)’. In: Concurrency: Practice and Experience 7.1 (1995), pp. 23–42. doi: 10.1002/cpe.

4330070104 (cited on page 109).

[47] Jack J. Dongarra, R. Clint Whaley, and Antoine Petitet. ‘Basic Linear Algebra Communication Subpro-

grams (BLACS)’. In: Concurrency: Practice and Experience 9.11 (1997), pp. 875–897. doi: 10.1002/(SICI)

1096-9128(199709)9:11<875::AID-CPE324>3.0.CO;2-9 (cited on page 109).

[48] Brian T. Smith et al. Matrix Eigensystem Routines – EISPACK Guide. Vol. 6. Lecture Notes in Computer

Science. Springer-Verlag, 1976 (cited on page 111).

[49] E. Anderson et al. LAPACK Users’ Guide. 3rd. Philadelphia, PA: Society for Industrial and Applied

Mathematics (SIAM), 1999 (cited on page 111).

[50] L. S. Blackford et al. ScaLAPACK Users’ Guide. Philadelphia, PA: Society for Industrial and Applied

Mathematics (SIAM), 1997 (cited on page 111).

[51] E. Agullo et al. PLASMA Users’ Guide. Tech. rep. Parallel Linear Algebra for Scalable Multi-core

Architectures (PLASMA). University of Tennessee, 2009 (cited on page 111).

[52] S. Tomov, J. Dongarra, A. Haidar, et al. ‘MAGMA: Dense Linear Algebra for Heterogeneous Architec-

tures’. In: International Journal of High Performance Computing Applications 24.3 (2010), pp. 277–288. doi:

10.1177/1094342010369113 (cited on page 111).

[53] M. A. Gates et al. ‘SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library’.

In: ACM Transactions on Mathematical Software 47.2 (2021), pp. 1–29. doi: 10.1145/3437806 (cited on

page 111).

[54] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness
(Series of Books in the Mathematical Sciences). First Edition. W. H. Freeman, 1979 (cited on page 115).

[55] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer Algorithms.
Reading, Mass.: Addison-Wesley, 1974 (cited on page 115).

[56] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965 (cited on page 125).

[57] Donald Ervin Knuth. TEX: The Program. USA: Addison-Wesley Longman Publishing Co., Inc., 1986

(cited on page 126).

[58] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Second. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 2002, pp. xxx+680 (cited on pages 129, 137).

[59] David Goldberg. ‘Appendix A: Computer Arithmetic’. In: Computer Architecture, a Quantitative Approach.

Ed. by John L. Hennessy and David A. Patterson. Vol. 2nd ed. Morgan-Kaufmann, 1996 (cited on

pages 130, 137).

[60] James W. Demmel. Applied numerical linear algebra. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1997, pp. xii+419 (cited on page 137).

https://doi.org/10.1002/cpe.4330070104
https://doi.org/10.1002/cpe.4330070104
https://doi.org/10.1002/(SICI)1096-9128(199709)9:11<875::AID-CPE324>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1096-9128(199709)9:11<875::AID-CPE324>3.0.CO;2-9
https://doi.org/10.1177/1094342010369113
https://doi.org/10.1145/3437806

[61] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic. Revised 1990. A

preliminary draft was published in the January 1980 issue of IEEE Computer, together with several

companion articles [65–71]. The final version was republished in [72, 73]. See also [74]. Also standardized

as IEC 60559 (1989-01) Binary floating-point arithmetic for microprocessor systems. Aug. 1985, p. 20 (cited on

pages 137, 148).

[62] David Goldberg. ‘What every computer scientist should know about floating-point arithmetic’. In:

ACM Computing Surveys 67.1 (1991), pp. 71–92 (cited on page 137).

[63] John L. Hennessy and David A. Patterson. Computer Architecture A Quantitative Approach. Fourth. San

Francisco, CA: Morgan Kaufmann Publishers, Inc., 2007 (cited on page 137).

[64] Donald E. Knuth. The art of computer programming. Vol. 2. Second. Addison-Wesley Series in Computer

Science and Information Processing. Seminumerical algorithms. Addison-Wesley Publishing Co.,

Reading, MA, 1981, pp. xiii+688 (cited on page 137).

[65] William J. Cody, Jr. ‘Analysis of Proposals for the Floating-Point Standard’. In: 14.3 (Mar. 1981), pp. 63–68.

doi: https://doi.org/10.1109/C-M.1981.220379 (cited on page 148).

[66] Jerome T. Coonen. ‘Underflow and the Denormalized Numbers’. In: 14 (1981), pp. 75–87 (cited on

page 148).

[67] Jerome T. Coonen. ‘An Implementation Guide to a Proposed Standard for Floating Point Arithmetic’.

In: 13.1 (Jan. 1980). See errata in [68]., pp. 68–79 (cited on page 148).

[68] Jerome T. Coonen. ‘Errata: An Implementation Guide to a Proposed Standard for Floating Point

Arithmetic’. In: 14.3 (Mar. 1981). See [67]., 62–?? (Cited on page 148).

[69] David Hough. ‘Applications of the Proposed IEEE-754 Standard for Floating Point Arithmetic’. In: 14.3

(Mar. 1981), pp. 70–74 (cited on page 148).

[70] David Stevenson. ‘A Proposed Standard for Binary Floating-Point Arithmetic’. In: 14.3 (Mar. 1981). See

[61, 75]., pp. 51–62 (cited on page 148).

[71] David Stevenson. A proposed standard for binary floating-point arithmetic: draft 8.0 of IEEE Task P754. See

[61, 75]. 1981, p. 36 (cited on page 148).

[72] IEEE. ‘IEEE Standard for Binary Floating-Point Arithmetic’. In: ACM SIGPLAN Notices 22.2 (Feb. 1985),

pp. 9–25 (cited on page 148).

[73] IEEE Computer Society Standards Committee. Working group of the Microprocessor Standards

Subcommittee and American National Standards Institute. IEEE standard for binary floating-point
arithmetic. ANSI/IEEE Std 754-1985. 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA: IEEE

Computer Society Press, 1985, p. 18 (cited on page 148).

[74] Shlomo Waser and Michael J. Flynn. Introduction to Arithmetic for Digital Systems Designers. 1982, pp. xvii

+ 308 (cited on page 148).

[75] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic. A preliminary draft

was published in the January 1980 issue of IEEE Computer, together with several companion articles

[65–71]. Available from the IEEE Service Center, Piscataway, NJ, USA. IEEE, New York. Aug. 1985 (cited

on page 148).

https://doi.org/https://doi.org/10.1109/C-M.1981.220379

	Parallel Linear Algebra
	Preface
	Contents
	Parallel Numerical Linear Algebra: Why?
	The Main Ideas

	The Main Ideas
	A gallery of problems
	How large is large?

	How large is large?
	Parallel Computers

	Parallel Computers
	What tools are we going to use?

	What tools?
	Fortran
	Software Version Control
	Programming tools
	Cluster ecosystem
	Environment Modules
	Parallel Programming Techniques for Linear Algebra
	Programming in action
	The evolution of programming

	The evolution of programming
	General Parallel Programming Issues
	Parallelism: basic concepts

	Parallelism: basic concepts
	Parallelism: Performance metrics

	Parallelism: Performance metrics
	Scalability of a parallel system
	Speed-up and efficiency
	Amdhal's law
	Gustafson's law
	Closure
	Paradigms, models and tools for parallel programming

	Paradigms, models and tools for parallel programming
	Algorithmic paradigms
	Programming models
	Roofline model for multicore architectures
	Intra-node Parallelism
	Intra-node parallelism: advanced architectures

	Advanced architectures
	Intra-node parallelism: tools

	Tools
	OpenMP
	Intra-node parallelism: Accelerators

	Accelerators
	Inter-node Parallelism
	Inter-node parallelism: MPI

	Inter-node parallelism: MPI
	Point-to-point operations
	Collective operations
	Message Passing Errors
	Inter-node parallelism: PGAS

	Inter-node parallelism: PGAS

	Building Blocks for Linear Algebra Programming
	Building Blocks for Dense Linear Algebra
	Introduction

	Introduction
	BLAS

	BLAS
	Level 1 BLAS
	Level 2 BLAS
	Level 3 BLAS
	Performance consideration for the BLAS
	Sparse Matrices and Iterative Solvers
	Introduction

	Introduction
	A simple solver
	Classical iterative solvers
	Krylov solvers and preconditioners
	Preconditioners
	Sparse Matrix-Vector product

	Sparse Matrix-Vector product
	COOrdinate
	Compressed Sparse Rows
	Sparse Matrix-Vector Product considerations
	Design Patterns: the ``State'' Pattern

	Parallel Linear Algebra Software Design and Additional Features
	Where is my data?
	Dense linear algebra data distribution

	Dense data distribution
	Simple LU factorization
	1-dimensional LU
	2-dimensional LU
	Evolution of Parallel Dense Linear Algebra Software

	Evolution of Parallel Dense Linear Algebra Software
	Sparse linear algebra data distribution

	Sparse data distribution
	A simple iterative solver revisited
	Basic observations
	Sparse Matrix-Vector Product in Parallel
	Graph partitioning
	Indices and processes
	Data Exchange

	Appendix
	The Errors of Our Way
	Numbers in a Computer

	Numbers in a Computer
	Floating-point Numbers
	The IEEE 754 Floating-Point Standard
	Floating-point Arithmetic Properties

	Floating-point Arithmetic Properties
	Backward Error Analysis

	Backward Error Analysis
	Vector and Matrix Norms

	Vector and Matrix Norms
	Perturbation Theory for Linear Systems

	Perturbation Theory for Linear Systems
	Notes and References

	Notes and References
	Spack
	Installation

	Installation
	Basic Usage

	Basic Usage
	Environment Modules

	Bibliography

