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Preface

These notes serve as an (admittedly brief) introduction to the world of high performance computing software
for linear algebra problems. They were prepared for the PhD programme in high performance scientific
computing at the University of Pisa: we are grateful for the chance to pass along our accumulated experience.

This specific field of inquiry lies at the intersection between computer science and numerical analysis, but
these two fields extend quite a lot in multiple different directions, hence working at the intersection requires
getting acquainted with multiple topics.

It is impossible to give a full introduction to these fields in the space available, and many excellent specialist
texts are already available on the subject. The present notes should therefore be regarded as a concise
overview, developed primarily from the authors’ own experience.

We hope nonetheless to share our passion for the challenges and intellectual satisfaction that comes with
working in this wonderful field of inquiry, which accounts for a very significant fraction of resources and
time in computing centres around the world.

Pasqua D’Ambra
Fabio Durastante
Salvatore Filippone
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Parallel Numerical Linear
Algebra: Why?

1.1 The Main Ideas

Broadly speaking, Linear Algebra is a branch of mathematics concerned
with vector spaces and the linear transformations between them. It in-
volves the study of lines, planes, and subspaces, but is also fundamental
in understanding systems of linear equations, matrices, and vector
operations. Central concepts in Linear Algebra include vectors, matrices,
tensors, determinants, eigenvalues, singular values and eigenvectors.
While all of these seem to have only a theoretical or mathematical impor-
tance, Linear Algebra has widespread applications across science and
engineering, including computer graphics, machine learning, optimization,
and physics, making it a foundational tool in both theoretical and applied
mathematics.

Numerical Linear Algebra is the study of how Linear Algebra problems
can be solved using numerical methods, particularly on computers; and
in the case of this course parallel computers. This field is crucial when
dealing with large-scale problems where exact solutions, when available,
are impractical or impossible due to limitations in computational re-
sources and data precision. It focuses on the development and analysis
of efficient, stable, and accurate algorithms for matrix computations,
such as solving systems of linear equations, computing eigenvalues, per-
forming matrix factorizations, computing matrix functions, and solving
matrix equations.

1.1.1 A gallery of problems

Just to give you an idea of the kind of problems we need to face in practice,
we will start by going through some examples that routinely appear in
applications.

Linear Systems Let us consider the following partial differential equa-
tion (PDE) problem:
-Au=f inQ,

1.1
u=0 ondQ, @D

where Qisabounded domain in R and f isa given function f : Q — R
The solution u is the function we want to compute. The operator A is the
Laplace operator, which is a second-order differential operator defined
as the divergence of the gradient of a function which can be written in
cartesian coordinate form as

2 2 2
Au:&—u+3—u+~~+8—u. (1.2)
ox?  9x] 9x3

Let us assume that the domain Q) is a d-dimensional unit cube, so that
we may discretize it using a finite difference method. This means that we

1.1 The MainIdeas . ... .. 1
1.1.1 A gallery of problems .. 1
1.2 How largeis large? . ... 5
1.3 Parallel Computers . ... 6
14 Whattools? . ........ 10
141 Fortran. ........... 10
1.4.2 Software Version Control 13
1.4.3 Programming tools . . . . 16
1.4.4 Cluster ecosystem . . . . . 17

1.4.5 Environment Modules . . 20
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Figure 1.1: Pattern of a sparse matrix,
each dot represents a non-zero element
of the matrix.

will replace the continuous problem with a discrete one, where we will
approximate both the solution u by a vector u € RN and the function f
by a vector f € RN. In a concrete way, we build the grid of points in Q
by dividing it into N equal parts, e.g., for d = 3 this means selecting 1,
points in the x1 direction, n, points in the x, direction and n3 points in
the x3 direction. The points are then given by

x1 = {xX1,1,X12, -, X1}, X1, = 1=0,...,n1 -1,

n—1’
i .
X2 = {xz,l/x2,2/”-/x2,n2}/ X2, = —=, 120/--'/7/12_1/
1’12—1
i .
X3 = {x3,1,x3,2,---,x3,n3}, X3i = i=0,...,n3—- 1L
3 —

We then approximate the second-order derivatives in (1.2) via a centered
finite difference scheme, which gives us the following discrete approximation
of the Laplacian operator:

Wiv1,jk — 2Uijk + Ui-1jk

Au,',]',k = h2
1
N Wi j+1k — 2Uijk + Ui j-1k
h2
2
Wi jk+1 — 2Uijk + Ui j k-1
7
3

where h1, hy and hj are the grid spacings in the x1, X, and x3 directions,
respectively. Similarly, we can consider the discrete values of the function
f at the grid points, which we denote by

=(f . N
f= (flr]rk)i,j,k €RY,
where now N = n; - np - n3 is the total number of grid points.

The discretization of the PDE problem leads to a system of linear equa-
tions
Au =f,

where A € RN*N is what we will call a sparse matrix—see Figure 1.1
for a graphical representation of a sparse matrix—that represents the
discretized Laplace operator, and u € RY is the vector of unknowns.
Informally, we can say that a sparse matrix is a matrix in which most
of the elements are zero, we will came back to specialized algorithms
and efficient data structures to store sparse matrices in the second half
of the course. For all interesting PDEs the size N of the linear system
we have to solve is usually large and we need to use efficient algorithms
for it. A good source for reading about finite difference methods is the
book [1], other approaches which generate sparse linear systems with
features similar to the previous one are the finite element method [2],
and the finite volume method [3].

Eigenvalue Problems The second example we want to discuss is the
eigenvalue problem, which is a fundamental problem in linear algebra.
Given a square matrix P € RN*N, the eigenvalue problem consists in



finding a scalar A and a non-zero vector v € R such that
Pv = Av.

The scalar A is called an eigenvalue of the matrix A, and the vector v is
called an eigenvector associated with the eigenvalue A. An example of
application in which we have to compute an eigenvector is the derivation
of the stationary distribution of a Markov chain [4], which is a stochastic
process that undergoes transitions from one state to another within a
finite or countable number of possible states. More formally, we can
define a stochastic process { Xy} 0,1, which takes values in a finite set of
states S = {1,2,..., N}, and is defined by a transition matrix P € RN*N,
where P;j ; is the probability of moving from state i to state j; by this
construction the sum of the elements in each row of P is equal to 1, the
elements of P are nonnegative (P; ; > 0). The evolution of a probability
distribution p € RY is given by the equation

pe+1 = Ppe,

where py is the probability distribution at discrete time ¢. Under suitable
conditions on P, there exists a stationary distribution 7, i.e., a probability
distribution at which the process stabilizes, meaning that the distribution
does not change over time. This means that we have

n' =n'PD,

and "1 = 1. In many application N is large, and we need to find suitable
algorithms to compute the eigenvector 7.

Matrix Equations Another important class of problems involves solving
matrix equations, which arise in various applications such as model
reduction in control theory. For instance, consider the Sylvester equation,
which is a linear matrix equation of the form

AX+XB=C,

where A € R™ B € R, C € R™" are given matrices, and X €
R"™" js the unknown matrix to be solved for. This equation frequently
appears in model reduction techniques, such as balanced truncation,
where the goal is to approximate a high-dimensional dynamical system
with a lower-dimensional one while preserving key properties. Let us
consider a linear time-invariant (LTI) dynamical system described by the

following set of ordinary differential equations (ODEs):
x(t) = Ax(t) + Bu(t), (1.3)

where x(f) € R" is the state vector, u(f) € R™ is the input vector, A € R™"
is the system matrix, and B € R is the input matrix. Additionally, let
the system output be given by:

y(t) = Cx(t), (1.4)

where y(t) € R is the output vector and C € RP*" is the output matrix.
To analyze the system, we are often interested in finding a reduced-
order model that approximates the behavior of the original system.

1.1 The Main Ideas

3
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Tnput Layer
(n features) Hidden Layer
(h neurons) Output Layer
(k classes)

o = XW a2 = softmax(zz)
ar = o(z1)

Figure 1.2: A simple neural network with
one hidden layer.

One common approach is to solve the Sylvester equation, which arises
in model reduction techniques such as balanced truncation. First, we
compute the controllability Gramian P and the observability Gramian Q,
which satisfy the following Lyapunov equations:

AP + PAT +BBT =0, (1.5)

ATQ+QA+CTC=0. (1.6)

Next, we compute a transformation matrix T that simultaneously diago-
nalizes P and Q. This involves solving the Sylvester equation:

AT +TS = B, (1.7)

where S is a diagonal matrix, and T is the transformation matrix that
maps the original state space to the reduced-order state space. The
Sylvester equation (1.7) is a key step in the model reduction process.
Efficient numerical algorithms are used to solve this equation, especially
when the dimensions of A, B, and T are large.

Machine Learning In recent years, machine learning has become an
increasingly important field, with applications in various domains such
as image recognition, natural language processing, and recommendation
systems. Many machine learning algorithms rely heavily on linear algebra
concepts and techniques. For instance, consider the problem of training a
linear regression model, which is a fundamental technique in supervised
learning. Given a dataset with m samples and n features, we can represent
the data as a matrix X € R"*", where each row corresponds to a sample
and each column corresponds to a feature. The target variable can be
represented as a vector y € R”. The goal of linear regression is to find a
vector of coefficients g € R” such that

y = Xp.

This can be formulated as an optimization problem, where we want to
minimize the sum of squared errors between the predicted values and
the actual values:

mﬁinllxﬁ -yl

Another example is the training of neural networks, which are widely
used in deep learning. Neural networks consist of layers of interconnected
nodes, where each node performs a linear transformation followed by a
non-linear activation function.

The training process involves optimizing the weights of the connections
between the nodes, which can be represented as matrices, e.g., consider a
simple feedforward neural network with one hidden layer (Figure1.2). The
input layer has n features, the hidden layer has / neurons, and the output
layer has k classes. The weights between the input layer and the hidden
layer can be represented as a matrix W; € R™", and the weights between
the hidden layer and the output layer can be represented as a matrix
W, € R"™k_ The forward pass of the neural network can be expressed as
a series of matrix multiplications and non-linear activations:

z1 = XW;, ai;=o0(z1), zx=a1W,, a; = softmax(z,),



where o is a non-linear activation function (e.g., ReLU, sigmoid, see
Figure 1.3), and softmax is the softmax function used for multi-class
classification. The training of the neural network involves minimizing a
loss function, such as cross-entropy loss, using optimization algorithms
like stochastic gradient descent. The backpropagation algorithm, which
is used to compute the gradients of the loss function with respect to the
weights, relies heavily on matrix operations and linear algebra concepts.

Take home message

Applied mathematics, after the modeling step, is all about solving a
suitable combination of linear algebra problems. Nowadays people
want to solve ever larger problems, and get reliable results in a
reasonable amount of time. This is the reason why we need to use
accurate and robust numerical algorithms, and write them to be
efficient, scalable and to run on parallel computers.

Sources for Linear Algebra and Numerical Linear Algebra There are
many good books on Linear Algebra and Numerical Linear Algebra, and
we will not try to give you a complete list of them. However, we will
mention a few of them that we found particularly useful. For a general
introduction to Numerical Linear Algebra, we recommend the book by
Golub and Van Loan [5], which is a classic in the field. It covers a wide
range of topics, including matrix factorizations, eigenvalue problems, and
singular value decomposition. Other books covering numerical linear
algebra with their own perspective include [6] and [7]. A somewhat
unusual and refreshing treatment of theoretical topics in Linear Algebra
can be found in the book by Axler [8]; for a compehensive treatment of
the theory we recommend the books by Horn and Johnson [9, 10]. In the
remaining of this note we will focus on the numerical and implementation
aspects of Linear Algebra, and we will not go too deep into the theoretical
aspects of the subject; nevertheless, we will try to give you some references
for the theoretical aspects of the problems we will discuss in the course. If
you feel the need to delve more deeply in the theoretical aspects of Linear
Algebra, we recommend consulting the above mentioned books [5-10]
and the references therein. Some relevant notations and basic facts we
use in the following are given in Appendix A.4.

1.2 How large is large?

In the previous Section Subsection 1.1.1 on page 1 we have seen some
examples of problems in numerical linear algebra, and a recurrent theme

in all of them is that the size of the problems we are dealing with is large.

But how large is large? The answer to this question is “it depends”. It
depends on the problem we are dealing with, the algorithm we are using,
the hardware we are using, and the time we have to solve the problem.
Furthermore, it is also a matter of when we are asking this question: 20
years ago the answer to “how large is large” would have been different
from today, and it will undoubtedly be different yet again 20 years from
now.

1.2 How large is large? | 5

4 JReLU
2
X
-2 2 4
1 (o)
0.5
X
-5 5

Figure 1.3: ReLU and sigmoid activation
functions.
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For instance, if we are dealing with a linear system of equations, the size
of the problem could be given in first approximation by the number of
unknowns we have to solve for. If we are dealing with a sparse matrix,
the size of the problem is a combined information given by the number
of non-zero elements in the matrix and the overall size of the matrix. If
we are dealing with a dense matrix, the size of the problem is given by
the number of rows and columns in the matrix.

Nowadays, we are are able of solving with relative ease sparse linear
systems of equations with several millions of unknowns, and we are
pushing towards solving linear systems with hundreds of billions of
unknowns. The same applies to the eigenvalue problem, where we
are able to compute (few) eigenvalues and eigenvectors of matrices
with several millions of rows and columns. The situation for matrix
equation is more complicated, and to push towards the solution of large
matrix equations we need to be in the case in which the solution of the
matrix equation is a low-rank matrix, e.g., in the case of the Sylvester
equation (1.7) this means that

T =TT,, whereT; € R, T, € R™,

and r < m, n. In general, this idea of exploiting clever structures in
the problem we are solving will permit us to solve problem of larger
size than the ones we would be able to solve without these structures.
For those of you who have a background in computer science, this is
akin to the idea of building data structures that permit us to store and
manipulate large amounts of data in a more efficient way.

1.3 Parallel computers, cluster and
supercomputers

To deal with problem which are large in the sense we have just discussed,
we need to use parallel computers, which are computers that can perform
multiple calculations simultaneously. This is achieved by using multiple
processors or cores that can work together to solve a problem. Parallel
computers can be classified into two main categories:

» Shared memory systems: In these systems, all processors share
a common memory space. This means that they can access the
same data and communicate with each other easily. However, the
amount of memory is limited, and the performance can be affected
by contention for memory access.

» Distributed memory systems: In these systems, each processor
has its own local memory. This means that they cannot directly
access each other’s data, and communication between processors is
done through message passing. This allows for larger amounts of
memory to be used, but it also requires more complex programming
models.

In addition to these two categories, parallel computers can also be
classified based on their architecture:



» Multicore processors: These are processors that have multiple
cores on a single chip. Each core can execute its own thread of
instructions, allowing for parallel execution of tasks.

» Clusters: These are groups of interconnected computers that work
together to solve a problem. Each computer in the cluster is called
a node, and they communicate with each other through a network.

» Supercomputers: These are extremely powerful computers that
are designed to perform complex calculations at high speeds. They
often use thousands of processors working in parallel to solve large
problems.

To have an idea of what a supercomputer is, let us consider the list! of
the top 10 supercomputers in the world as of June 2025 and which we
have summarized in Table 1.1.

The computers in this table are ranked according to Rmax, the maximum
sustained performance; but how is this measured? This is the High
Performance Linpack (HPL) benchmark, which is run according to the
following rules:

1. Generate a (random) linear system Ax = b of size N and solve for
X;

2. Measure the time for the solution process T and define a computa-
tion rate R(N) according to the formula

2N°
R=-—;
3T
3. Let N grow and repeat the process, until you get the best possible

execution rate value Rmax.

Linear algebra problems have been used to benchmark supercomputers
for a very long time, and have influenced their design in multiple ways.

The first information we can extract recover from table 1.1 it is that
these supercomputers have a huge number of cores; the second is that
operating them consumes a lot of power, and the third is that they are all
equipped with accelerators, which are specialized hardware components
designed to perform specific tasks, namely graphical processing units
(GPUs). Of course, all of this complexity pays off when we consider
the Rmax column, where we can see the sustained rate of execution on
High-Performance Linpack benchmark (HPL): the number one machine
El Capitan* is capable of executing 1.7 x 10'® arithmetic operations per
second!

We observe that linear algebra is a primary tool for benchmarking su-
percomputers, since dense linear algebra problems are compute-bound,
meaning that their performance depends mainly on the processing capa-
bility rather than memory access, and enable the hardware to operate
close to its peak performance. Historically, and still today, dense linear
algebra has been central to scientific computing, making it a meaningful
indicator of raw computational performance and a natural choice for
evaluating the capabilities of modern HPC systems. The Linpack bench-
mark originated from example tests included in the LINPACK User’s
Guide [11], which measured the performance of solving a dense linear

*https://en.wikipedia.org/wiki/El_Capitan_(supercomputer), original meaning
https://en.wikipedia.org/wiki/E1l_Capitan
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1: You can access the whole list at
www.top500.org/lists/top500/2025/06/ .
The list has been compiled biannually
since June 1993 and offers a systematic
overview of the most powerful super-
computing systems worldwide, serving
as a key reference for tracking progress
and trends in high-performance
computing.


https://www.top500.org/lists/top500/2025/06/
https://en.wikipedia.org/wiki/El_Capitan_(supercomputer)
https://en.wikipedia.org/wiki/El_Capitan
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system of size 100 using LU factorization with partial pivoting and the
corresponding triangular solvers in double precision. A few years later,
this test evolved into a standardized benchmark designed to compare
computing systems in terms of floating-point performance. In the current
HPL benchmark on which the Top500 list is based, the problem size
and software configuration can be chosen by supercomputer vendors
to achieve the best performance, although certain rules constrain the
operation count — for instance, algorithms such as Strassen’s method for
matrix-matrix multiplication, which reduce computational complexity
below 0(n3), are not permitted. The continuous interaction between
technological advances in supercomputing and the field of linear algebra
has driven the evolution of mathematical algorithms and software for
linear algebra from the 1980s to the present day. Each major architectural
shift — from vector processors to distributed-memory systems, and more
recently to hybrid CPU-GPU and heterogeneous exascale platforms —
has inspired corresponding innovations in algorithmic design, numerical
libraries, and programming models. This co-evolution continues to shape
modern high-performance numerical software, ensuring that algorithmic
strategies remain aligned with emerging architectures, as we will discuss
in the following lectures.



Table 1.1: Top 10 supercomputers from the TOP500 list (June 2025)
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Rank

System Description

Cores

Rmax (PFlop/s)

Rpeak (PFlop/s)

Power (kW)

1

10

El Capitan - HPE Cray EX255a, AMD 4th Gen 11,039,616

EPYC 24C 1.8GHz, AMD Instinct MI300A,
Slingshot-11, TOSS, HPE DOE/NNSA/LLNL
United States

Frontier - HPE Cray EX235a, AMD Optimized
3rd Generation EPYC 64C 2GHz, AMD In-
stinct MI250X, Slingshot-11, HPE Cray OS,
HPE DOE/SC/Oak Ridge National Labora-
tory United States

Aurora - HPE Cray EX - Intel Exascale Com-
pute Blade, Xeon CPU Max 9470 52C 2.4GHz,
Intel Data Center GPU Max, Slingshot-11, In-
tel DOE/SC/Argonne National Laboratory
United States

JUPITER Booster - BullSequana XH3000, GH
Superchip 72C 3GHz, NVIDIA GH200 Super-
chip, Quad-Rail NVIDIA InfiniBand NDR200,
RedHat Enterprise Linux, EVIDEN EuroH-
PC/FZ] Germany

Eagle - Microsoft NDv5, Xeon Platinum
8480C 48C 2GHz, NVIDIA H100, NVIDIA
Infiniband NDR, Microsoft Azure Microsoft
Azure United States

HPC6 - HPE Cray EX235a, AMD Optimized
3rd Generation EPYC 64C 2GHz, AMD In-
stinct MI250X, Slingshot-11, RHEL 8.9, HPE
Eni S.p.A. Italy

Supercomputer Fugaku - Supercomputer Fu-
gaku, A64FX 48C 2.2GHz, Tofu interconnect
D, Fujitsu RIKEN Center for Computational
Science Japan

Alps - HPE Cray EX254n, NVIDIA Grace
72C 3.1GHz, NVIDIA GH200 Superchip,
Slingshot-11, HPE Cray OS, HPE Swiss
National Supercomputing Centre (CSCS)
Switzerland

LUMI - HPE Cray EX235a, AMD Optimized
3rd Generation EPYC 64C 2GHz, AMD In-
stinct MI250X, Slingshot-11, HPE EuroH-
PC/CSC Finland

Leonardo - BullSequana XH2000, Xeon Plat-
inum 8358 32C 2.6GHz, NVIDIA A100 SXM4
64 GB, Quad-rail NVIDIA HDRI100 Infini-
band, EVIDEN EuroHPC/CINECA Italy

9,066,176

9,264,128

4,801,344

2,073,600

3,143,520

7,630,848

2,121,600

2,752,704

1,824,768

1,742.00

1,353.00

1,012.00

793.40

561.20

477.90

442.01

434.90

379.70

241.20

2,746.38

2,055.72

1,980.01

930.00

846.84

606.97

537.21

574.84

531.51

306.31

29,581

24,607

38,698

13,088

8,461

29,899

7,124

7,107

7,494




10 | 1 Parallel Numerical Linear Algebra: Why?

To keep the number of hours of this
course under control we are going to
discuss Fortran and its usage together
with the implementative and algorithmi-
cal aspects of the Parallel Linear Algebra
we set out to study. Most of what we
discuss mutatis mutandis can be ported to
C/C++ or other compiled languages. If
you want to discover more about Fortran
a good sources are the website fortran-
lang.org and the book [12].

1.4 What tools are we going to use?

In the context of this course, we will focus on distributed memory
systems, which are the most common type of parallel computers used in
High-Performance Computing (HPC) environments. These systems are
typically composed of many nodes, each with its own local memory, and
they communicate with each other using message-passing libraries such
as MPI (Message Passing Interface). But before delving into the details of
the programming model we need to use, let us first discuss the tools we
will be using to write our code. We will be using the following tools:

» Modern Fortran: Fortran is a language that has been used for
scientific computing since many years. It is particularly well-suited
for numerical computations and is still widely used in many
scientific applications.

» Software Version Control: git: We will be using git as our version
control system. This will allow us to keep track of changes to our
code and collaborate with others more effectively.

» MPI, OpenMP, OpenACC, CUDA and other enemies: We will
be using MPI for parallel programming, nevertheless all of the
nodes we will deal with will also be equipped by many-core
processors, this will drive uso into looking for OpenMP for shared
memory parallelism. Furthermore, as you have seen in Table 1.1, the
supercomputers we will be using are equipped with accelerators,
namely GPUs, and we will look into OpenACC and CUDA for
accelerator/GPU programming.

» Queue manager: Slurm: We will be using Slurm as our job sched-
uler to manage the execution of our jobs on the cluster.

1.4.1 Fortran

Fortran, short for “Formula Translation”, is one of the oldest high-level
programming languages, originally developed in the 1950s by IBM for
scientific and engineering applications. It was designed to allow easy
translation of mathematical formulas into code, making it particularly
well-suited for numerical and computational tasks. Over the decades,
Fortran has evolved significantly, with modern versions such as Fortran
90, Fortran 95, Fortran 2003, Fortran 2008, Fortran 2018, and Fortran
2023 introducing features like modular programming, array operations,
object-oriented programming, and parallel computing capabilities.

One of the key strengths of Fortran is its performance in numerical
computations. It is highly optimized for array and matrix operations,
which are fundamental in scientific computing. Fortran compilers are
known for their ability to generate efficient machine code, making it a
preferred choice for high-performance computing (HPC) applications.

Modern Fortran supports a variety of programming paradigms, including
procedural, modular, and object-oriented programming. It also includes
features for parallel programming, such as coarrays and integration
with MPI and OpenMP, enabling developers to write scalable code
for distributed and shared memory systems. Despite its age, Fortran
remains widely used in fields like climate modeling, computational


https://fortran-lang.org/
https://fortran-lang.org/
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fluid dynamics, and numerical linear algebra, where performance and
reliability are critical.

In the course, we will be using the GNU Fortran compiler (gfortran),
which is part of the GNU Compiler Collection (GCC). Other, viable
options are the Intel Fortran compiler (ifort), the Cray Fortran compiler
(ftn), the LLVM Fortran compiler (flang), the PGI Fortran compiler
(pgfortran), or the NAG compiler (nagfor). In reality, the choice of
the compiler should also be influenced by the machine and the feature
of the language we want to use. For instance, the Cray compiler is
particularly well-suited for Cray supercomputers, while the Intel compiler
is optimized for Intel architectures. We decided to use gfortran as
it is widely available and is the default compiler on many systems,
furthermore its development is always up to date, or nearly up to date,
with the latest Fortran standards.

How to get gfortran

To check if gfortran is installed on your system, you can run the
following command in your terminal:

gfortran --version

If it is not installed, you can install it using your package manager.
For example, on Ubuntu or Debian, you can use:

sudo apt-get install gfortran
On macOS, you can install it using Homebrew:
brew install gcc

Another viable option is to install it using Spack, which is a package
manager for HPC systems. Spack can be downloaded from spack.io,
or from their GitHub repository.

Information on how to install and use Spack can be found in Ap-
pendix B.

Now that we have installed gfortran, we can start using it to compile
our Fortran code. The basic syntax for compiling a Fortran program is as
follows:

gfortran -o output_file source_file.f90

where output_file is the name of the executable file you want to create—
selected with the -o option, and source_file.f90 is the name of your
Fortran source code file; see Table 1.2 for a list of basic gfortran options.

Let us write a simple Fortran program to test our installation. Create a
file called hello. 90, e.g., by doing

touch hello.f90

and open it with your favorite text editor. Then, copy and paste the
following code into the file:

program hello
use iso_fortran_env, only: output_unit
implicit none

11


https://spack.io/
https://github.com/spack/spack
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Table 1.2: Basic gfortran options.

Option

Description

-0 output_file
-Wall

-g

-00

-01

-02

-03
-fcheck=all
-frecursive
-fPIC

Specify the name of the output executable file.

Enable all compiler warnings.

Generate debug information for debugging.

Disable optimization (default).

Enable basic optimization.

Enable more aggressive optimization.

Enable even more aggressive optimization.

Enable runtime checks for array bounds and other errors.
Enable recursion for subroutines and functions.

Enable position-independent code (PIC) for shared libraries.

2: The caf compiler is a wrapper around
the gfortran compiler. Itis developed by
the OpenCoarrays open-source software
project [13] which produces an applica-
tion binary interface (ABI) used by the
GNU Compiler Collection (GCC) Fortran
front-end to build executable programs
leveraging the parallel programming fea-
tures of Fortran 2018. We will discuss the
coarray programming model in more
detail in Section 5.2.

3: Try to run this piece of code multiple
times, what do you osserve?

write(output_unit,'("Hello, World!")")
end program hello

This program uses the iso_fortran_env module to write the string
"Hello, World!"

to the standard output. The implicit none statement is used to enforce
explicit declaration of all variables, which is a good programming practice
in Fortran. Now, we can compile the program by running the following
command in your terminal:

gfortran -o hello hello.f90

This will create an executable file called hello. To run the program,
simply execute the following command:

./hello
You should see the output:

Hello, World!

Parallel Fortran: coarrays
Fortran is also a parallel language in its own right. A parallel version
hello_par.f90 might look like:

program hello
use iso_fortran_env, only: output_unit
implicit none
write(output_unit,'("Hello world from image ",I0," out
— of ",I0)') this_image(), num_images()
end program hello

The coarray program can be compiled by doing?
caf hello_par.f90 -o hello_par

and run with

cafrun -np 4 hello_par

which will print out something equivalent® to


http://www.opencoarrays.org/
http://www.opencoarrays.org/
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Hello world from image 2 out of 4
Hello world from image 3 out of 4
Hello world from image 4 out of 4
Hello world from image 1 out of 4

We will look at various tools for parallel programming, and weight their
advantages and disadvantages. Specifically, the details explaining what
is happening in this example code are given in Section 5.2.

1.4.2 Software Version Control: git

Software version control is a system that records changes to files over
time so that you can recall specific versions later. It is an essential tool
for software development, allowing multiple developers to work on the
same project simultaneously without overwriting each other’s changes.
Version control systems track changes to files, enabling you to revert to
previous versions, compare changes, and collaborate with others more
effectively. There are two main types of version control systems:

» Centralized Version Control Systems (CVCS): In a CVCS, there
is a central server that stores the repository, and developers check
out files from this central repository. Examples include Subversion
(SVN) and CVS (Concurrent Versions System). The main drawback
of CVCS is that if the central server goes down, no one can work
on the project.

» Distributed Version Control Systems (DVCS): In a DVCS, every
developer has a complete copy of the repository on their local
machine. This allows for offline work and better collaboration.
Examples include Git, Mercurial, and Bazaar. Git is the most widely
used DVCS and is known for its speed, flexibility, and powerful
branching and merging capabilities.

Git is a distributed version control system that allows multiple developers
to work on a project simultaneously. It was created by Linus Torvalds
in 2005 for the development of the Linux kernel. Git is designed to
handle everything from small to very large projects with speed and
efficiency. Git allows you to track changes to files, collaborate with others,
and manage different versions of your codebase. Git is widely used in
software development, and it has become the de facto standard for version
control in many projects. It is used by individual developers, small teams,
and large organizations alike.

Git is a powerful tool that allows you to:

Track changes to files and directories.

Collaborate with others on the same project.

Create branches to work on different features or bug fixes.
Merge changes from different branches.

Revert to previous versions of files.

Share your code with others using remote repositories.
Manage conflicts when multiple developers make changes to the
same file.

Keep a history of all changes made to the codebase.

Tag specific versions of the codebase for release.

» Work offline and synchronize changes later.

vVvyVvYyVvVTVvyyyy

vy

Continuous integration and continuous
deployment (CI/CD) are software devel-
opment practices that aim to improve
the quality and speed of software de-
livery. Continuous integration involves
automatically building and testing code
changes as they are made, ensuring that
new code does not break existing func-
tionality. Continuous deployment takes
this a step further by automatically de-
ploying code changes to production after
passing tests, allowing for rapid and reli-
able software releases. It is a key practice
in modern software development, en-
abling teams to deliver new features by
being relatively sure that the changes do
not break the codebase.
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git: The people from the PHC at the
Mathematics Department of the uni-
versity of Pisa host their own Git
server through an instance of Gitea.
It can be reached at the address
git.phc.dm.unipi.it.

To use GitHub effectively you also
need to generate an ssh key to reg-
ulate and cypher data transfer with
the repository. This can be done by
using the command ssh-keygen -t
ed25519 -C "your_email@unipi.it"
and then copying the content of the
file ~/.ssh/id_ed25519.pub to your
GitHub account settings. Remember
that you also need the key to your
system agente to be able to use it. This
can be done by running the command
ssh-add ~/.ssh/id_ed25519 (assum-
ing that you have selected the default
name and location for the key). If the
system complains that the agent is not
running, you can start it by running
eval “ssh-agent -s-.

» Use hooks to automate tasks during the development process.
» Integrate with other tools and services, such as continuous integra-
tion and deployment (CI/CD) systems.

How to get git

To start using it on your system, you can check if it is installed by
running the following command in your terminal:

git --version

If it is not installed, you can install it using your package manager.
For example, on Ubuntu or Debian, you can use:

sudo apt-get install git
On macOS, you can install it using Homebrew:

brew install git

Git could be ued in a completely local environment, but it is mostly
used in a distributed environment, where multiple developers work
on the same project. In this case, we need to use a remote repository,
which is a version of your project that is hosted on the internet or on a
network. Remote repositories allow you to share your code with others
and collaborate on projects. There are many platforms that provide
hosting for Git repositories, such as:

» GitHub: A web-based platform that provides hosting for Git
repositories. It is widely used for open-source and private projects,
and it offers features like issue tracking, pull requests, and project
management tools.

» GitLab: A web-based platform that provides hosting for Git repos-
itories, similar to GitHub. It also offers features like continuous
integration and deployment (CI/CD), issue tracking, and project
management tools.

» Bitbucket: A web-based platform that provides hosting for Git
repositories, with a focus on team collaboration. It offers features
like pull requests, issue tracking, and integration with other Atlas-
sian products like Jira.

» SourceForge: A web-based platform that provides hosting for Git
repositories, with a focus on open-source projects. It offers features
like issue tracking, project management tools, and a community of
developers.

Another viable option is to use a self-hosted Git repository, which is a
Git repository that you host on your own server®. In our case, we will
assume that we are using a remote repository hosted on GitHub, but the
same principles apply to all the other platforms.

First steps with GitHub

To create a new repository on GitHub, follow these steps:

1. Go to github.com and log in to your account.
2. Click on the New button in the upper right corner of the page.


https://about.gitea.com/
https://git.phc.dm.unipi.it/
https://github.com/
https://github.com/
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3. Fill in the repository name, description, and choose whether it
should be public or private.
4. Click on the Create repository button.

After creating the repository, you can clone it to your local machine using
the following command:

git clone

followed by the ssh address of the repository, which can be found on the
GitHub page of the repository. For example, if your repository is called
my - repo and your user name is user-name the command would be:

git clone git@github.com:user-name/my-repo.git

The first time you clone a repository, you will get a copy of the entire
repository, including all the files, directories, and history. This is a
complete copy of the repository, and you can work on it locally without
needing to be connected to the internet.

Once you have cloned the repository, you can start working on it. You can
create new files, edit existing files, and delete files as needed. When you
are ready to save your changes, you can use the following commands*:

» git add <file>: This command adds the specified file to the
staging area, which is a temporary area where you can prepare
files for commit.

» git commit -m "commit message": This command creates a new
commit with the changes in the staging area and adds a commit
message describing the changes.

» git push: This command pushes your local commits to the remote
repository on GitHub.

You can also use the git status command to check the status of your
repository, which will show you which files have been modified, added,
or deleted. You can use the git log command to view the commit history
of your repository, which will show you a list of all the commits made to
the repository, along with their commit messages and timestamps. You
can also use the git pull command to fetch and merge changes from
the remote repository to your local repository. This is useful when you
are collaborating with others and want to get the latest changes made by
other developers.

Exercise 1.4.1 After having created and cloned your first repository
to your local machine, create a new file called GITCOMMANDS . md in the
repository and use the GitHub Markdown syntax to write a short
description of the git commands you have learned so far. Then add,
commit and push this modification to the remote repository.

We will see more about git in the next lectures, while we need it to store
and share our code.

These notes

Also these notes are stored in a Git repository, which is hosted on
GitHub, and can be found at:

4: The first time you want to make a
commit to the repository, you need
to set your name and email address.
This can be done by running the
following commands: git config
--global user.name "Your Name" and
git config --global user.email
"your_email@unipi.it".
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https://github.com/Cirdans-Home/ParallellLinearAlgebra

You can use the feature of Git to propose changes to the notes, by
creating a pull request to the repository. This is a way to suggest
changes to the notes, and it will be reviewed by the author before
being merged into the main branch of the repository. You can also
use the issues feature to report bugs or suggest new features for the
notes. This is a way to communicate with the author and other users
of the notes, and it will be used to track the progress of the changes.

1.4.3 MPI, OpenMP, OpenACC, CUDA and other enemies

This set of tools represents the backbone and provides the actual imple-
mentations of the parallel programming models we will be using in this
course to make Linear Algebra algorithms run on parallel computers.

» MPI (Message Passing Interface): MPI is a standardized and
portable message-passing system that allows processes to commu-
nicate with each other in a parallel computing environment. It is
widely used in high-performance computing (HPC) applications
and provides a set of functions for point-to-point and collective
communication, synchronization, and data distribution.

» OpenMP: OpenMP is an API that supports multi-platform shared
memory multiprocessing programming. It provides a set of com-
piler directives, library routines, and environment variables that
allow developers to specify parallel regions in their code. OpenMP
is primarily used for parallelizing loops and sections of code that
can be executed concurrently on multiple threads.

» OpenACC: OpenACC is a directive-based programming tool that
allows developers to write parallel code for heterogeneous systems,
including CPUs and GPUs. It provides a set of directives that enable
automatic data movement between the host and device memory,
making it easier to offload computations to accelerators.

» CUDA (Compute Unified Device Architecture): CUDA is a parallel
computing platform and application programming interface (API)
developed by NVIDIA for general-purpose computing on its own
GPUs. It allows developers to write programs that can execute on
NVIDIA GPUs, providing access to the massive parallel processing
power of these devices.

These programming tools are not mutually exclusive, and they can be
used together in a single application. For example, you can use MPI for
inter-node communication and OpenMP for intra-node parallelism. This
framwork is usually described as MPI+X, where X can be OpenMP, Ope-
nACC, or CUDA. There exist research into the possibility of developing
alternatives to the MPI+X framework, and maybe some of you are also
involved in this. Here we will not discuss these alternatives, since virtually
all the large libraries and applications are based on the MPI+X framework.
Nevertheless, porting the ideas and algorithms we will discuss to these
alternatives could be an interesting avenue of research.

Further details on these parallel programming tools are discussed in
Chapter 3 on page 29, Chapter 4 on page 41, and Chapter 4 on page 41.


https://github.com/Cirdans-Home/ParallelLinearAlgebra
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1.4.4 Cluster ecosystem: Slurm and Environment Modules

Our code will need to be run on a cluster, and this means that we need to
use a job scheduler to manage the execution of our jobs. A job scheduler
is a software system that manages the allocation of resources on the
cluster and the execution of jobs. It is responsible for scheduling jobs,
monitoring their progress, and managing the resources of the cluster.
There are many job schedulers available, but we will be using Slurm
(Simple Linux Utility for Resource Management), which is a free and
open-source job scheduler that is widely used in HPC environments.
Slurm is designed to be scalable, flexible, and easy to use. It provides
a simple command-line interface for submitting jobs, monitoring their
progress, and managing resources. Slurm is also highly configurable,
allowing you to customize its behavior to suit your needs. Since this is
not a course on becoming a system administrator, we will not go into the
details of how to install and configure Slurm, we will just focus on how
to use it to submit jobs to the cluster and monitor their progress.

The first thing we can do is checking the information on the cluster which
are available to Slurm. This can be done via the sinfo command, which
will show us the status of the nodes in the cluster. To given few examples,
let us run in on the Toeplitz cluster from the Department of Mathematics
of the University of Pisa:

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

cll up infinite 1 idle lnx1

cl2x up infinite 4 idle lnx[2-5]

all up infinite 3 mix gpul[01,03-04]
all up infinite 1 alloc gpu02

all up infinite 5 idle 1nx[1-5]

gpu up infinite 3 mix gpul[01,03-04]
gpu up infinite 1 alloc gpu02

The output of the command shows us the status of the nodes in the
cluster, including their availability, the time limit for jobs, the number
of nodes in each state, and the list of nodes in each partitionS. When we
have runned this command, the Toeplitz cluster had three partitions:

» cl1: This partition has one node, which is currently idle.

» cl2: This partition has four nodes, which are all idle.

» gpu: This partition has three nodes, which are in a mixed state
(some are idle and some are allocated).

Furthermore there is a partition called all, which is a virtual partition
that includes all the nodes in the cluster.

We can distinguish betweeen two types of jobs: interactive and batch
jobs, they have different purposes and are used in different situations.
An interactive job is a job that runs in the foreground and allows you to
interact with it while it is running, it is usually employed for debugging,
testing, compiling or for running interactive data analysis. A batch job is
a job that runs in the background and does not require user interaction,
it is usually employed for running long computations or simulations.

5: Partition: in the Slurm language a
partition is a set of nodes which can be
used together simultaneously. Usually
in a cluster there are different partition
with different conditions of usage: parti-
tions with few nodes which can run jobs
only for a small amount of time and can
be used for debug purposes, large parti-
tion which can run long jobs and have
large node counts for production runs, and
sometimes partition also collects nodes
with different architectures or specifica-
tions, e.g., nodes equipped with GPUs,
nodes specialized in data transfer jobs,
or containing fat nodes which have large
RAMs and can be used to do data analy-
sis.
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6: Each Slurm job is assigned a unique
job ID, which is used to track the job’s
progress and status.

7: A task is a single instance of a program
that is running on a node. In the case of
an interactive job, we are running a single
task, which is the bash shell. In the case
of a batch job, we will see next We can
run multiple tasks on a single node, or
we can run multiple tasks on multiple
nodes. In our setting tasks will be the
MPI processes we will be using to run
our code.

Interactive jobs let us start investigating how to run an interactive job
on the cluster. To run an interactive job on the Toeplitz cluster, we can
use the srun command, which is used to submit jobs to Slurm. The basic
syntax for running an interactive job is as follows:

srun --partition=cl2 --nodes=1 --ntasks-per-node=1
- --time=00:10:00 --pty bash

After running this command, the bash will write something along the
lines of®:

srun: job 12160 queued and waiting for resources
srun: job 12160 has been allocated resources

This means that the job has been submitted to Slurm and is waiting for
resources to be allocated, once the resources are allocated, the job will
start running, and you will be logged into the node where the job is
running, i.e., you will see your shell change to something like:

durastante@lnx2:~$
Let us look at the options we have used in the command:

» --partition=cl2: This option specifies the partition to use for the
job. In this case, we are using the cl2 partition.

» --nodes=1: This option specifies the number of nodes to use for
the job. In this case, we are using one node.

» --ntasks-per-node=1: This option specifies the number of tasks
to run per node. In this case, we are using one task’ per node.

> --time=00:10:00: This option specifies the time limit for the job.
In this case, we are using a time limit of 10 minutes.

» --pty bash: This option specifies that we want to run an interactive
shell (bash) in the allocated resources.

There are many other options that can be used with the srun command,
another common one which we can use is - -cpus-per-task=4, which
specifies the number of CPUs to use for each task; this is usefuel when
we want to run a multi-threaded program, such as a program which uses
OpenMP or OpenACC, or if we want to compile our code using multiple
threads.

After we are done with the interactive job, we can exit the shell by running
the exit command. This will terminate the interactive job and return us
to our original shell.

Exercise 1.4.2 Use the srun command to run an interactive job on the
Toeplitz cluster. Use the - -cpus-per-task=4 option to allocate four
CPUs for your job. Once you are logged into the node, run the top
command to see the list of processes running on the node. Then, run
the exit command to exit the interactive job.

Batch jobs are used to run long computations or simulations that do
not require user interaction. To run a batch job on the Toeplitz cluster,
we can use the sbatch command, which is used to submit batch jobs to
Slurm. The basic syntax for running a batch job is as follows:

sbatch runscript.sh
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where runscript.sh is a shell script that contains the commands to run
the job. The shell script should contain the following lines:

#!/bin/bash

#SBATCH --partition=cl2
#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1
#SBATCH --time=00:10:00
#SBATCH --cpus-per-task=4
#SBATCH - - job-name=my_job
#SBATCH --output=my_job.out
#SBATCH --error=my_job.err

# Your commands go here
echo "Hello, World!"

The first line of the script is called the shebang line, and it tells the system
which interpreter to use to run the script. In this case, we are using
the bash interpreter. The next lines are called Slurm directives, and they
specify the options for the job. They are analogous to the options we used
in the srun command. The one which are new are

» --job-name=my_job: This option specifies the name of the job. In
this case, we are using the name my_job.

» --output=my_job.out: This option specifies the name of the output
file for the job. In this case, we are using the name my_job.out.

» --error=my_job.err: This option specifies the name of the error
file for the job. In this case, we are using the name my_job.err.

Monitoring jobs is an important part of using a job scheduler, as it
allows you to check the status of your jobs and monitor their progress.
Slurm provides several commands for monitoring jobs, including:

» squeue: This command shows the status of all jobs in the queue,
including their job IDs, user names, partition names, and job states.

» scontrol: This command provides detailed information about a
specific job, including its job ID, user name, partition name, and
job state.

» scancel: This command is used to cancel a job in the queue. You
can use it to cancel a specific job by specifying its job ID.

As an example, if we run the squeue command after submitting our
interactive job, we will see something like:

JOBID PARTITION NAME USER ST TIME NODES
— NODELIST(REASON)
12160 cl2 bash durastan R 1:02 1 1nx2

The output of the command shows us the status of the job, including its
job ID, partition name, user name, and job state. The job state can be one
of the following;:

PENDING: The job is waiting for resources to be allocated.
RUNNING: The job is currently running.

COMPLETED: The job has completed successfully.
FAILED: The job has failed.

CANCELLED: The job has been cancelled by the user.

vVvyyYyyvyy
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8: The PATH variable contains a list of
directories the system checks before run-
ning a command. Updating the PATH
variable enables running any executa-
bles found in the directories mentioned
in PATH from anywhere else on the sys-
tem without typing the absolute file path.
LD_LIBRARY_PATH tells the dynamic link
loader 1d where to search for the dy-
namic shared libraries an application
was linked against. The MANPATH environ-
ment variable specifies where the man
command looks for reference manual
(man) pages.

» TIMEOUT: The job has exceeded its time limit.

The NODELIST column shows the name of the node where the job is
running, and the REASON column shows the reason why the job is in its
current state.

If we want to cancel on or more jobs, we can use the scancel command,
followed by the job ID of the job we want to cancel. For example, if we
want to cancel the job with ID 12160, we can run:

scancel 12160

Thi command can be executed both if the job is running or if it is in the
queue. In the first case, it will terminate the job, by sending a SIGTERM
signal to the process, while in the second case it will remove the job from
the queue. If you are not the administrator of the cluster, you can only
cancel your own jobs, but if you are the administrator, you can cancel
any job in the queue.

1.4.5 Environment Modules

The Environment Modules system is a tool that allows users to dy-
namically modify their environment variables®, such as the PATH, LD_
LIBRARY_PATH, and MANPATH variables. This is useful for managing differ-
ent software packages and versions on a cluster, as it allows users to load
and unload different software packages without having to modify their
shell configuration files. The Environment Modules system provides a
set of commands for loading and unloading software packages, as well
as for displaying the current environment variables.

The classical use cases for the Environment Modules system are when you
have more than one version of a software package installed on the cluster,
or when you have different software packages that depend on different
versions of the same library. For example, if you have two versions of
the gcc compiler installed on the cluster, you can use the Environment
Modules system to load the version you want to use, without having
to modify your shell configuration files. Consequently, you can have
different version of libraries compiled with the different version of the
compiler, and you can use the Environment Modules system to load the
correct combination of software packages and libraries for your job.

The Environment Modules system provides several commands for man-
aging your environment variables:

» module avail: This command shows the list of available software
packages on the cluster.

» module load <package>: This command loads the specified soft-
ware package and modifies the environment variables accordingly.

» module unload <package>: This command unloads the specified
software package and restores the environment variables to their
previous state.

» module list: This command shows the list of currently loaded
software packages.

» module show <package>: This command shows detailed informa-
tion about the specified software package, including its version
and dependencies.
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» module purge: This command unloads all currently loaded soft-
ware packages and restores the environment variables to their
default state.

Again, since this is not a course on becoming a system administrator,
we will not go into the details of how to install, configure and wrirte
Environment Modules, we will just mention them when we need to
change the environment for our jobs. Some information on how to use
them in conjunction with the Spack package manager is discussed in
Appendix B.

Before closing this chapter, let us see how to used the Environment
Modules system to load different version of the gcc compiler on the
Toeplitz cluster. First of all let us see which version of the gcc compiler are
available on the cluster. This can be done by running the module avail
command, which will show us the list of available software packages on
the cluster. The output of the command will be something like:

--- /software/spack/share/spack/modules/linux-ubuntu22.04-broadwell ----
armadillo/12.8.1-openmpi-4.1.6-gcc-13.2.0
cmake/3.27.9-gcc-11.4.0

cmake/3.27.9-gcc-12.3.0

cmake/3.27.9-gcc-13.2.0

gcc/12.3.0

gce/13.2.0

intel-oneapi-compilers/2025.0.4-gcc-11.4.0
intel-oneapi-mkl1/2024.0.0-openmpi-4.1.6-gcc-13.2.0
intel-oneapi-mkl/2024.2.2-intel-oneapi-mpi-2021.14.1-oneapi-2025.0.4
intel-oneapi-mpi/2021.14.1-oneapi-2025.0.4
1likwid/5.3.0-gcc-13.2.0

metis/5.1.0-gcc-12.3.0

metis/5.1.0-gcc-13.2.0

metis/5.1.0-oneapi-2025.0.4
mumps/5.7.3-intel-oneapi-mpi-2021.14.1-oneapi-2025.0.4
mumps/5.7.3-openmpi-4.1.6-gcc-13.2.0
netlib-scalapack/2.2.0-openmpi-4.1.6-gcc-13.2.0
openblas/0.3.26-gcc-12.3.0

openblas/0.3.26-gcc-13.2.0
openblas/0.3.29-oneapi-2025.0.4
openmpi/4.1.6-gcc-12.3.0

openmpi/4.1.6-gcc-13.2.0
parmetis/4.0.3-openmpi-4.1.6-gcc-13.2.0
plasma/23.8.2-gcc-13.2.0

suite-sparse/7.3.1-gcc-13.2.0
suite-sparse/7.8.3-oneapi-2025.0.4
superlu-dist/8.2.1-openmpi-4.1.6-gcc-13.2.0
superlu/5.3.0-gcc-13.2.0

------------------------ /data/software/modules ------------------------
advanpix/4.8.0 cocoa/5.4 julia/1.10.4 julia/gpu-compiled
anaconda3/2024.02 julia/1.8.1 julia/1.11.3 matlab/R2021a

-- /data/software/spackgpu/share/spack/modules/linux-ubuntu22.04-zen3 --
gpu-cmake/3.27.9-gcc-11.4.0

gpu-cmake/3.27.9-gcc-12.3.0

gpu-cmake/3.27.9-gcc-13.2.0

gpu-cmake/3.30.5-gcc-14.2.0

gpu-cuda/12.3.1-gcc-12.2.
gpu-cuda/12.4.0-gcc-13.2.
gpu-cuda/12.6.2-gcc-14.2.
gpu-cuda/12.8.0-gcc-14.2.
gpu-ddd/3.3.12-gcc-12.2.0
gpu-doxygen/1.9.8-gcc-12.2.0
gpu-eigen/3.4.0-gcc-12.3.0
gpu-gcc/12.2.0

gpu-gcc/12.3.0

gpu-gcc/13.2.0

gpu-gcc/14.2.0

gpu-gdb/14.1-gcc-12.2.0
gpu-gmp/6.2.1-gcc-12.3.0
gpu-gnuplot/6.0.0-gcc-12.2.0
gpu-gsl/2.7.1-gcc-13.2.0
gpu-hdf5/1.14.5-openmpi-4.1.6-gcc-14.2.0
gpu-hpcg/3.1-openmpi-4.1.6-gcc-12.2.0

0
0
0
0
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9: This is due to the fact that the nodes
in the c11 and c12 partitions are Intel
nodes, while the nodes in the gpu par-
tition are AMD nodes, hence compilers
target different system architectures. You
can only compile and execute the soft-
ware by the correct combination of com-
piler and architectures. Truth be told,
you could crosscompile but this is a diffi-
cult thing to make work, and why should
you bother?

gpu-kokkos/4.3.00-cuda-12.4.0-gcc-13.2.0
gpu-metis/5.1.0-gcc-12.2.0
gpu-metis/5.1.0-gcc-13.2.0
gpu-metis/5.1.0-gcc-14.2.0
gpu-mpfr/4.2.1-gcc-12.3.0
gpu-mumps/5.7.3-openmpi-4.1.6-gcc-14.2.0
gpu-openblas/0.3.26-gcc-12.2.0
gpu-openblas/0.3.26-gcc-13.2.0
gpu-openblas/0.3.28-gcc-14.2.0

gpu-openmpi/4.1.6-cuda-12.2.0-gcc-14.2.0
gpu-openmpi/4.1.6-cuda-12.3.1-gcc-12.2.0
gpu-openmpi/4.1.6-cuda-12.4.0-gcc-13.2.0
gpu-openmpi/4.1.6-gcc-12.3.0
gpu-openmpi/4.1.6-gcc-13.2.0
gpu-openmpi/4.1.8-cuda-12.8.0-gcc-14.2.0
gpu-valgrind/3.20.0-openmpi-4.1.6-gcc-12.2.0
Key:

modulepath

As you can see from the output, there are many software packages
available on the cluster, including different versions of the gcc compiler.
Observe also that the modules are divided into two blocks. The first block
contains the software packages which can be used on the partitions cl1
and c12, while the second block contains the software packages which
can be used on the gpu partition’. Let us suppose that we want to work on
the c11/c12 partition. We can first use srun to move on a node there:

srun --partition=cl2 --nodes=1 --ntasks-per-node=1
o --time=00:10:00 --pty bash

Then we can load the gcc module we want to use, for example:
module load gcc/12.3.0

and verif y that the module has been loaded correctly by running:
gcc --version

The output of the command will show us the version of the gcc compiler
that is currently loaded in our environment.

If now we want to load a different version of the gcc compiler, we can use
the module unload Command to unload the current version of the gcc
compiler, and then load the new version we want to use. For example:

module unload gcc/12.3.0
module load gcc/13.2.0

We can then verify that the new version of the gcc compiler has been
loaded correctly by running:

gcc --version

The output of the command will show us the version of the gcc compiler
that is currently loaded in our environment.

Finally, if we want to unload all the modules we have loaded, we can use
the module purge command, which will unload all the modules we have
loaded and restore the environment variables to their default state.

In the following chapters we will sometime select the modules we want
to use to compile and run our code.
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Programming in action

We have seen some of the tools that we are going to use, and we have
glanced (in Table 1.1) at the kind of performance we can obtain on
those machines: the most powerul machines in the Top500 can achieve a
computation rate of O(10'®) arithmetic operations per second, providing
an amount of power we could only dream of in past years®.

But, what is a parallel computer, and how do you actually program it?
That is what we are going to discuss in the sequel; in particular, we are
going to define parallelism in Chapter 3 on page 29.

Extracting the best possible performance from a parallel computer re-
quires three ingredients:

1. Having the best possible implementation for the “serial” (local)
parts of the computation;

2. Having an optimal communication strategy;

3. Having a balanced workload distributed across processes.

Therefore after this chapter we will delve into a more detailed discussion
about the first topic in Chapter 6 on page 61 and Chapter 7 on page 87,
how to get good performance from a “normal” computer, whereas the
actual parallelization will be examined later: we will be building from
the ground up.

2.1 The evolution of programming

Before delving into the techniques for “serial” programming, let us
pause briefly to consider the evolution of programming languages and
compilers.

In fact, if we spend a minute for reflection, we realize that the very
existence of compilers is absolutely not to be taken for granted: indeed,
in the beginning of the history of computer science, the possibility of
writing a program capable of translating into machine language with
a satisfactory efficiency was very much in doubt, and everybody did
programming at machine or assembly language level.

The very first “high level” language with its accompanying compiler
was the Fortran programming language in 1954 (see [14] for a historical
perspective); the Fortran language is still being actively developed, al-
though it has changed very substantially from its original form. Still, the
intellectual enterprise of writing a translator from a language closer to
humans into machine language, and producing a final result competitive
from a performance point of view, was a formidable challenge, and it has
led to many developments in computer science.

* When the first Top500 list was announced in 1993, the most powerful machine in the
world was capable of 59 GFLOPS, which is well within reach of a modern workstation
even without an accelerator, and the laptops we are using to write these notes would have
easily made into the list around position 100.

2.1 The evolution of program-

ming
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2 Programming in action

Programming languages are much more constrained than natural lan-
guages; their definition is usually geared towards a certain application
area, and is managed by committees that may be “de facto” standardiza-
tion bodies, or official ones.

Among the languages whose definition falls within the scope of the
International Standards Organisation (ISO https://www.iso.org) we
find:

Ada
Algol
APL
BASIC
C

C++
COBOL
Fortran
Pascal
PL/I
Prolog
Ruby
SQL
UML
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There are a few other popular languages, for instance Java, Julia, Matlab
and Python, which are not standardized by a formal institution.

In any case, each programming language has a “Language Standard” defi-
nition. A language standard constraints both the application programmer
and the compiler developer:

» The application programmer has to submit a source code respecting
the rules laid out in the language document;

» The compiler developer has to produce a compiler that, given
a source code that is “legal” in the above sense, produces an
executable program that behaves according to the specifications.

Note that the precise rules of the language standard may be much more
involved than our intuition tells us, and in some cases thay may give rise
to surprising results; this is the main reason why reporting a bug in a
compiler” is also a nontrivial proposition.

From the above discussion, it follows that for the compiler developer,
the first priority is always the correctness of the translated program:
efficiency in its intended domain must come after correctness. When we
get to efficiency, every language is designed to be convenient in writing
certain applications, therefore any language compiler will be optimized
with certain criteria and applications in mind.

Among the languages mentioned above, three stand out for our purposes:
Fortran, Julia and Matlab. All three languages have been designed for the
development of numerical software; among them, Matlab is designed for
maximal convenience in prototyping, with its interactive environment,
whereas Fortran and Julia are designed to extract maximum performance.
Many choices in the language standard definiton have been made to
allow for the compilers to make decisions favouring fast programs.

t Compilers are, after all, programs, therefore they too exhibit bugs.


https://www.iso.org

2.1 The evolution of programming

Of the other languages mentioned in the lists above, the ones that are
used the most to achieve the level of performance we are interested in are
C and C++; in particular, the C language was designed to write operating
systems, and as such provides facilities to precisely control the behaviour
of the application program, including the ability to closely match the
machine code that is going to be generated. Thus, even if C was never
designed specifically for high performance computing, it is possible to
generate high performance code. This is also true of C++: again, the
language was never designed specifically for HPC, but it can be used
effectively.

Over the years, the quality of the available compilers, and of the code
they are able to generate, has evolved quite a lot: many things that were
done “by hand” with tricky source code constructs in the 90s, can now
be safely delegated to the compiler. Nevertheless, writing a program that
fully exploits the hardware capabilities will always involve a significant
amount of work and ingenuity in finding the best way to express what
the programmer’s intentions are.
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General Parallel Programming
Issues

We call parallelism the ability to have multiple operations completing
their execution at the same time. This definition leaves open what we
mean by operation; depending on the context we might mean a single
machine instruction of any kind, a floating-point operation or something
else. In a scientific or engineering application context, the most important
parameter is likely the number of floating point operations, because this
is usually the limiting factor for the execution speed.

It is possible to have parallelism at multiple levels in a computing system,
such as:

» Within a single machine instruction specifying multiple operations;
examples of this are the SSE instructions available in the Ix86 Intel
processors, or the fused floating-point multiply-and-add available
on many modern architectures;

» Within a single processor capable of completing more than one
instruction per clock cycle; most modern RISC processors have
multiple execution units and are called superscalar;

» Within a single silicon chip hosting multiple CPUs; these archi-
tectures are known as multicore processors®, a core being each
complete CPU;

» Within a single computer containing multiple processors;

» Using multiple computers connected through some sort of com-
munication device.

From the application programmer’s point of view the first two kinds of
parallelism are mostly handled through the compiler and in the libraries
implementing the heaviest computational kernels, and are “almost”
transparent; in the following we will concentrate on the last three kinds
of parallel computing systems.

In classifying the high performance parallel computers currently in com-
mon use the discriminating factor is the memory subsystem configuration;
thus we distinguish two main kinds of parallel systems:

1. shared memory systems;
2. distributed memory systems.

3.1 Parallelism: basic concepts

Since its introduction in the early Seventies, the Flynn taxonomy [15, 16]
has been broadly used to classify computer architectures. According to
this scheme, computers belong to one these four categories:

SISD (Single Instruction Single Data): this category includes sequential
computers where a single stream of data is processed by a single
stream of instructions.

* This usage is slightly confusing, since we are calling processor both a single CPU and a chip
hosting multiple cores; hopefully the context will be sufficient to avoid any major trouble.
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SIMD (Single Instruction Multiple Data): this category mostly includes
vector processors capable of handling, with a single instruction,
multiple data presented in the form of a vector. The probably most
notable example of such machines is the Cray-1 computer equipped
with vector registers of length 64.

MISD (Multiple Instruction Single Data): no significant example of
such architectures has ever been built. Flynn places in this category
ancient plug-board machines; according to other authors, examples
of these architectures are represented by some embedded devices
where the same instruction is redundantly executed in multiple
streams on the same data in order to achieve fault tolerance by
verifying accordance of the results.

MIMD (Multiple Instruction Multiple Data): here, multiple instruction
streams concurrently operate on different (sub)sets of data. To this
category belongs the vast majority of the parallel computers built
in the last 30 years including both shared and distributed memory
multiprocessors.

This simple taxonomy can still be used to roughly categorize modern
architectures; however the current landscape of high performance com-
puters is much more complex and modern parallel supercomputers can
commonly be described as hybrid combinations of different types of
architectures. A typical modern supercomputer is composed of several
nodes communicating through a network interconnect; nodes include
several processors eventually arranged in a shared-memory NUMA
(Non-Uniform Memory Access) fashion; each processor is a multicore;
each core is equipped with SIMD units like the SSE units in x86 processors
or the AltiVec in Power processors capable of executing floating-point
vector instructions of size two or four; finally, nodes can be equipped
with multiple accelerators such as GPU devices that have their own
memory system and are connected to the other processor(s) (commonly
referred to as hosts) through a PCI link or a high-speed interconnect
which is typically hardware specific, e.g., the NVLink in NVIDIA GPUs.
Exploiting the considerable computational power of such computers
clearly demands programming models and algorithms that are capable of
matching their hierarchical structure and heterogeneity. In the following
Chapter 4 on page 41 and Chapter 5 on page 47 we will discuss the paral-
lel programming models that can be used to exploit the computational
power of modern supercomputers. In this chapter we will discuss the
basic concepts of parallel programming and the performance metrics
that can be used to evaluate the performance of parallel programs.

3.2 Parallelism: Performance metrics

Since there are countless alternatives in parallel computing, in terms
of hardware architectures, programming paradigms and applications,
it is necessary to define some metrics to evaluate the performance of a
parallel system.

There exists no single criterion that would be meaningful to all users. For
instance a computer scientist might be interested in the pure algorithmic
speed-up, while a computational scientist would be more interested in
the time to completion and in the maximum size of the problem that
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can be analyzed, and a system administrator just wants to maximize
system utilization.

We add a word of caution against any published performance measures:
there is no real substitute for an actual test with the workload we are
interested in. All benchmarks are indicators that are only as good as their
relation to our intended usage of a parallel computer; procurement of a
machine that will be used to run a single critical application day in, day
out, is very different from procurement of a machine that will be installed
in a computing center serving a wide community of researchers.

3.2.1 Scalability of a parallel system

A parallel system may be defined as the implementation of a parallel algorithm
on a given parallel architecture. With the scalability theory we want to organize
the evaluation of performance of parallel systems, taking into account
all possible usage aspects. Specifically we need to define the appropriate
metric to use when tackling the following questions:

» How do we measure the raw performance of a system?

» How do we compare measurements obtained on different ma-
chines?

» How does the metric respond to the programming paradigm
employed?

» Do we want raw performance or value for money?

Given the variety of questions to be answered, we may only give a general
criterion, and not a single, precisely defined measurement procedure.

We say that a parallel system is scalable if it gives the same performance per
processor while growing the number of processors involved and/or the
size of the problem to be solved. We also say that a program is scalable if
we improve its performance when increasing the number of processors
employed from p — 1 to p.

3.2.2 Speed-up and efficiency

Let us first define the size of a problem W as the number of basic operations
necessary for the best sequential algorithm known to solve the problem.

A given problem of size W may be solved by a program on one or more
processors, running in parallel; we may thus define:

» Serial execution time T;: the time between the start and the end of
the program execution on one processor;

» DParallel execution time on p processors Tj: the time between the
start of the execution and the completion of execution on the last
processor.

We note explicitly the influence of I/O operations on the total execution
time; most of the I/O is normally executed once at the start of the simu-
lation, and later operations are typically rather infrequent; depending
on our main modeling objective and measurement procedures, we may
include them or we may want to look at the scalability of the computa-
tional kernel in isolation. However if the I/O is an essential part of the
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1: This a sector quite distinct from par-
allel linear algebra, there exists several
libraries that permits handling Paral-
lel I/O operations and this is an ac-
tive area of research see, e.g., the ROOT
library from CERN root.cern or the
CAPIO framework O)High-Performance-
10/ capio.

application, then it is advisable to look at schemes for parallelizing the
1/0 operation themselves!.

Given the previous considerations, T; will be essentially a function of the
size of the problem and of the processor speed, while T, will additionally
depend on the number of processors, on the parallel system architecture
and on the balance between the communication speed and the processor
speed. Thus:

> T = f(W)
» T, = f(W,p,arch)

It is not possible to define a parallel system performance in an absolute
sense, without referring to a specific kind of application. An example is
the Top500 list of the most powerful computers in the world from Table ??:
its rules are very specific on the way to measure and report computing
power using a predeterimined application, i.e., the factorization of a large
dense matrix.

We now define a widely used performance index: the speed-up on a
problem S(W, p), which is the ratio between:

» T;(W): Sequential execution time for the best algorithm known to
solve the problem;
» T,(W, p): Parallel execution time on p processors.

Thus we have:
T;(W)

T,(W,p)

According to the value attained by S(W, p) we distinguish the situa-
tions:

S(W,p) = (3.1)

1. S(W, p) = p: linear speed-up
2. S(W,p) < p: sub-linear speed-up
3. S(W, p) > p: super-linear speed-up

A linear speed-up is usually the goal to aim for: having a speed-up
of p while using p processors means that all parts of the application
have been perfectly parallelized with no penalization from the necessary
communication.

There exist a few codes for which it is possible to partition the computa-
tion in substantial tasks that can proceed with little or no communication
among them, and they are often called “embarassingly” parallel; how-
ever in most cases an increase in the number of processors entails an
increase of:

» startup times,
» data communication times,
» synchronization overhead.

We may therefore expect that with growing p we will see a growing
distance from the ideal linear speedup.

In a few cases it is possible to have a super-linear speed-up, i.e. S(W, p) >
p; this may happen for two reasons:


https://root.cern/
https://github.com/High-Performance-IO/capio
https://github.com/High-Performance-IO/capio
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1. A serial program may be confronted with a problem instance so
large that it cannot exploit efficiently the memory hierarchy (see
Section Subsection 3.3.3 on page 37 for some details on this aspect),
in terms of cache memory and/or central memory; in this case a
partition of the problem on multiple processors may well bring the
memory load on each one of them within the hardware resources,
thus improving the computational speed;

2. In some graph search algorithms the partition of the problem in
multiple subproblems may drastically alter the search sequence, so
that the solution may be found much earlier; in these cases, if there
is enough memory available, we might even experience a speed-up
while running a parallel program on a single processor!

The possible speed-up behaviours vs. number of processors are shown in
Figure Figure 3.1; we show a realistic situation for the case of sub-linear
speed-up, in that the distance from the linear case grows with p, because
with a fixed problem size W the communication overhead increases in
percentage.

Since the speed-up S(W, p) is a function of both number of processors p
as well as problem size W, we often want to look at the behaviour of S
varying W with a fixed machine size p; the behaviour in such a case is
shown in Figure Figure 3.2.

From the figure we may see that we do have a benefit from a parallel
run only in a certain range of problem sizes [Win, Wmax]. For small
problem sizes we have that the communication overhead is so large
that S < 1; the actual crossing point is dependent on the ratio between
the speed of the processor and the speed of the network, and on the
specific algorithm we are considering. The speedup reaches a peak at
Waat, levels off, and then after Wi,y it drops rapidly; this is a typical
behaviour if the memory per node grows with W, because the underlying
computing node performance degrades rapidly as soon as the available
node memory is overflowed.

A closely related metrics is the efficiency of a parallel system, defined as
the ratio between the speed-up and the number of processors:

S(W,p)
EW,p) = 22 (3.2)
p
or, substituting the definition (3.1):
S(W,p) T,(W
Ew,p) = 2P LOY) (33)

p TLW,p)-p

If we rule out the odd cases of superlinear speed-up, we normally have
that E(W,p) € (1/p,1).

3.2.3 Amdhal’s law

Let us consider the following definitions based on the serial execution
time T;(W):

The serial fraction f; of a program is the ratio between the time spent in
code sections that are intrinsically serial and the total time T;(W).

super-linear,

, linear
.

Speed-up

|
| sub-linee

Popt P

Figure 3.1: Speed-up vs. number of pro-
cessors

Speed-up

Wi Waat W max W
Figure 3.2: Speed-up vs. problem size
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The parallel fraction f, of a program is the ratio between the time spent
in code sections that are parallelizable and T;(W).

Obviously we have f; = (1 — f,); we can now state the Amdhal’s law:

LW)

Tp(wlp)sz(W)'fs + f]ﬂ (3.4)

that is, the parallel executin time T,(W, p) is an average between T;(W) e

@, weighted with the serial and parallel fractions, respectively.

Using this relation we may derive a simple relation between the speed-up
S(W, p), the number of processors p and the serial fraction f;. We have:

LW)
S(W, —
(W, p) W, p)
_ LW)
= v
T for 24 g
p
= 3.5
T+ -1 f &)
Considering the limit for p — +oo we obtain:
S(W,p) = lim P ! (3.6)

ol (-1 f f

This result is quite important, because it gives a hard limit for the results
that can be obtained by parallelizing an application. If, for instance, a
code has a sequential fraction of 5%, then no matter how much effort we
put int, it is impossible to get a speed-up larger than 20.

If we want to have absolute performance, it is then clear that we have to
leave no stone unturned in attacking an application code; unfortunately
in many cases, especially at fixed problem sizes, the overhead added in
terms of synchronization and data exchange is such that the speed-up is
not really growing even if we parallelize every line of code.

It is however important not to overestimate the negative conclusions that
could be drawn from Amdhal’s law. First of all, only a few application
context require to get performance at all costs; these kind of applications
(e.g. weather forecasts) are among the driving forces in the evolution
of computing techniques. On the other hand, in most application areas
we are really interested in scaling up the size of the machine when we
want to handle much larger problem instances: we don't (usually) fire
100 processors at a linear system of size 1000. Since the linear algebra
applications are usually of this kind, the limits defined by Amdhal’s law
are not as constraining as they seem.

3.2.4 Gustafson’s law

As noted, the outlook from Amdhal’s law is too pessimistic, and the
reason should (by now) be clear: normally we use parallelism to solve
big problems, not small ones, and each problem will have a “natural”
range beyond which it does not make sense to add processors. To account
for this we may use Gustafson’s law [17]; if a serial program has a
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sequential fraction « and a parallel fraction (1 — @) then, as we grow the
number of processor, we scale the parallel part of the workload to have
W(n) = aW + (1 — a)nW, thus obtaining

_Wn)=aW+ 1 -a)ynW _

S;, W =a+(1-amn (3.7)

Even if this is a much better measure of the possibilities of parallel
computers, it still has some problems; the reason is that we are assuming
that the serial fraction a remains the same as we scale the program.

3.2.5 Closure

What happens in practice is that the workload is composed of:

» A serial part;
» A parallel part;
» A parallelization/communication overhead.

To estimate precisely the speedup we need to account for all these parts,
and this is something very application dependent.

3.3 Paradigms, models and tools for parallel
programming

Having given a brief overview of the architectural features important to
parallel computing, let us turn our attention to the problems to be tackled
when we actually try to implement a parallel application. First of all let
us note that the use of a parallel machine does not necessarily mean the
use of parallel application; it is quite possible that the machine is needed
to run multiple independent instances of a given serial application. In
this case the machine is used to maximize the throughput, i.e. the number
of user requests completed per unit time; this scenario has some analogy
with the work pool paradigm discussed later, but is nonetheless outside
our main interests.

At this point we introduce a distinction between paradigms, models and
tools for parallel programming, following [17]:

Paradigm: the logical structure imposed on a parallel algorithm;

Model: the mechanism by which parallelism is expressed in the code;

Tool: the software instrument employed to implement the program code
(compiler, library, etc.).

We thus have three different levels related to the problem we are facing?.
Choices made at these three levels may combine in various ways, although
some programming tools “encourage” certain strategies more than others;
moreover, any choice at the software level has still to take into account
the hardware architecture on which the application will run.

In this section we give an overview of the alternatives that have been
experimented in the last few decades; in the current practice two pro-
gramming tools, and the models they embody, dominate the field, and
will be detailed in Chapter 4 on page 41 and Chapter 5 on page 47.

2: In an interview (“Dr. Dobb’s Journal”,
April 1996, www.ddj.com/184409858)
Donald E. Knuth, one of the most influ-
ential computer scientists in the world,
states: ... the psychological profiling [of
a computer scientist] is mostly the ability
to shift levels of abstraction, from low
level to high level. To see something in
the small and to see something in the
large.”


http://www.ddj.com/184409858
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3.3.1 Algorithmic paradigms

In Figure Figure 3.3 we illustrate some important parallel programming
paradigms:

Phase parallel: the computation is organized in a succession of phases
in which the tasks alternate between doing their own indepen-
dent computations and synchronization phases during which the
necessary interactions take place;

Divide and conquer: Each task divides its own problem in two or more
subproblems, and assigns them to “children” tasks, who in turn will
do the same recursively; when all “children” tasks have completed,
their “parent” will collect their solutions and combine them to
build the solution to its own problem to be sent to its parent, and
so on;

Owner computes: there exists a “natural” partitioning of data, with
each subset of the partition assigned to a task, such that each task
will execute (mostly) the same operations on the subset of data it
owns;

Master-worker: one of the tasks takes on the role of controller, distributes
parts of the job to the controlled tasks and collects the partial
solutions combining them to build the problem solution;

Work pool: there is a shared data structure containing a queue of jobs
to be executed; each free task accesses the queue and takes charge
of one of the jobs; when the job is completed, it may happen that,
given the results, the task has to add more jobs to the queue before
taking charge of a new one. This process goes on until all tasks are
free and the queue is empty.

The algorithms typical of CSE, and specifically those for fluid dynamics
problems, usually lend themselves to a phase parallel structure, with
the partitioning of the computing load driven by a partitioning of the
simulation domain according to the “owner computes” scheme. This is
the natural approach for most applications based on finite difference,
volumes or elements discretizations of partial differential equations.

It is however possible to have hybrid situations; consider for instance
an application aiming at the optimization of the design of some device.
In principle this is a maximization problem for a certain function in the
space of all possible design points; the evaluation of the function on
a given point is a (potentially very) complex simulation of the device.
In this case it may be appropriate to employ a master-worker scheme,
where the master task organizes the search in the configuration space,
delegating each function evaluation to the worker tasks.

3.3.2 Programming models

We will concentrate on the parallel programming models most relevant
to our application domains:

Implicit parallelism: in this model the programmer delegates to the
compiler the exploitation of the available parallelism. This is a very
difficult task for the compiler, consequently the efficiency attained
is usually quite low.
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Data parallel: the parallel program contains one control flux (i.e. a single
stream of high-level instructions), and the parallelism is available
because those instruction are applied to data sets that may be
partitioned and operated upon independently. It implies a logically
shared memory; perhaps the best example of this model is the
use of the HPF (High Performance Fortran) language. The main
difference with respect to the previous model is that there are
language constructs (e.g.: FORALL) and directives guiding the
compiler in the process of parallelizing the source code.

Message passing: The parallel application is built out of a set of pro-
cesses that may only interact through the exchange of messages, i.e.
packets of data, under the explicit programmer control. In principle
each process may execute a different program, thus guaranteeing
the maximal algorithmic flexibility. In practice we see the common
usage of the SPMD (Single Program Multiple Data) technique, in
which all processes execute a copy of the same program; this is a
natural implementation of the owner computes paradigm, similar to
the data parallel, but having a greater flexibility because different
tasks may be executing different sections of code;

Shared variable: in this model we assume a logically shared memory,
just as in the data parallel programming, but we may have multiple
control fluxes and private data areas as in the message passing
model.

The data parallel approach and HPF have generated a strong interest
in the past, because of the compiler based approach and because of the
upward compatibility with respect to serial Fortran applications; however
HPF has not been very successful in the marketplace and its usage is
declining to the point of disappearing.

The message-passing model is the most popular today for applications
needing scalability to a large number of processors; the main disadvan-
tage is the need for the programmer to explicitly insert all necessary
communications. If the user does not apply a coherent programming
discipline, it may lead to applications written at too “low” a level, hard
to reuse and maintain. Message passing is implemented with the usage
of subroutine libraries.

The shared-variable approach may be programmed explicitly by the
user, but becomes really interesting when it can be implemented through
a compiler; similarly to the data-parallel case, the programmer then
inserts directives into the source code to guide the compiler in the desired
parallelization.

3.3.3 Roofline model for multicore architectures

Modern computer architectures are organized around a memory hi-
erarchy designed to balance speed, capacity, and cost. At the top of
this hierarchy are the registers and cache memories (L1, L2, and L3),
which provide extremely fast access to the data most frequently used
by a processor. Below them lies the main memory (RAM), followed by
secondary storage such as solid-state drives (SSD) or hard disk drives
(HDD), and finally tertiary storage for long-term or archival data.
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Figure 3.4: Roofline model for a hypo-
thetical architecture with a peak per-
formance of 100 GFLOP/s and a mem-
ory bandwidth of 25 GB/s. The ridge
point is at an operational intensity of 4
FLOP/Byte.

A critical performance parameter across this hierarchy is the memory
bandwidth, which represents the rate at which data can be transferred
between memory and the processor. As processors have become faster
and more parallel, improvements in computational speed have far out-
paced increases in memory bandwidth. This imbalance has led to what is
known as the memory wall — the point at which the latency and limited
bandwidth of memory become the primary bottleneck to overall system
performance. To better understand this limitation, the roofline model [18]
is often employed as a visual framework that relates a system’s computa-
tional throughput to its memory bandwidth. It is a visual performance
model that provides an insightful way to bound the performance of
a kernel on a given architecture. The roofline model is based on two
key hardware characteristics: the peak floating-point performance of
the processor (Perf, in FLOP/s) and the peak memory bandwidth (BW,
in Bytes/s). It also requires the operational intensity (OI) of the kernel,
defined as the ratio of the number of floating-point operations to the
number of bytes accessed from memory (in FLOP/Byte). The model is
represented as a log-log plot of the attainable performance as a function
of the operational intensity; see Figure 3.4. Note that we have:

_FLOP FLOP Byte
- "~ Byte

Perf = OI-BW.

The plot consists of two regions: a memory-bound region and a compute-

1023 5 ; :
Ridge Point (4 FLOP/Byte)
102 | »
»
~
[
®)
—
=
g 101 |
&
—— Memory Bandwidth (25 GB/s)
—— Peak Performance (100 GFLOP/s)
100 ] ] >
107! 10° 10! 102

Operational Intensity (FLOP/Byte)

bound region. The memory-bound region is characterized by a linear
increase in performance with increasing operational intensity, limited by
the memory bandwidth. The compute-bound region is characterized by a
horizontal line at the peak floating-point performance, indicating that the
performance is limited by the processor’s computational capabilities. The
intersection of the two regions is called the ridge point, which represents
the minimum operational intensity required to achieve peak performance.
The roofline model can be used to analyze the performance of different
kernels on a given architecture, identify performance bottlenecks, and
guide optimization efforts. By comparing the operational intensity of a
kernel to the ridge point, one can determine whether the kernel is memory-
bound or compute-bound, and focus optimization efforts accordingly.
More specifically, since the achievable performance of an application
depends linearly on both its operational intensity (OI) and the available
memory bandwidth (BW), algorithmic optimization techniques that
improve operational intensity and data locality are crucial for enhancing
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performance. These principles have guided the evolution of optimization
strategies in dense linear algebra programming, as exemplified by the
progression of the Basic Linear Algebra Subprograms (BLAS) from Level
1to Level 3 routines (see Chapter 6 on page 61 for details). Higher-level
BLAS operations, such as matrix-matrix multiplication, achieve much
higher operational intensity by reusing data in fast memory, thereby
significantly reducing memory traffic and approaching the compute-
bound regime of the roofline model.

To obtain a measure of the bandwidth available to a given application we
may use the STREAM® benchmark [19, 20], which measures the sustainable
memory bandwidth (in GB/s) and the corresponding computation rate
for simple vector kernels. The benchmark is composed of four simple
vector kernels: COPY, SCALE, SUM, and TRIAD. The COPY kernel copies a
vector from one location to another, the SCALE kernel scales a vector
by a constant factor, the SUM kernel adds two vectors together, and the
TRIAD kernel performs a scaled vector addition. Each kernel is executed
multiple times to obtain a reliable measure of the memory bandwidth.
The benchmark is designed to be simple and easy to understand, while
still providing a good measure of the memory bandwidth available
to real-world applications. The STREAM benchmark is widely used in
the high-performance computing community to evaluate the memory
performance of different architectures and to compare the performance
of different systems.

To obtain a measure of the peak floating-point performance of a given
architecture this is more difficult, since it depends on the specific instruc-
tions used, the vectorization capabilities of the processor, the number of
cores, the clock frequency, and other factors. A simple way to estimate
the peak floating-point performance is to use the following formula:

FLOP/s = Number of CoresxClock Frequency (GHz)XFLOP per Cycle

where FLOP per Cycle is the number of floating-point operations that can
be performed in a single clock cycle. This value depends on the specific
architecture and can be obtained from the processor’s documentation. For
example, a modern x86 processor with AVX2 instructions can perform 8
double-precision floating-point operations per cycle. This means that a
processor with 4 cores running at 3 GHz can achieve a peak performance
of:
Peak FLOP/s = 4 x 3 x 8 = 96 GFLOP/s

However, this is just an estimate, and the actual peak performance may
be lower due to various factors such as memory bandwidth limitations,
cache misses, and other overheads. Vendors usually provide a theoretical
peak performance value for their processors, which can be used as a
reference point for performance analysis.

3: The
can be

STREAM
obtained

benchmark
from  http:
//www.cs.virginia.edu/stream/
or installed via Spack with the
command spack install stream
stream_type=double, usually we are
interested in an multicore architecture
and on using an OpenMP drive, this
can be installed with the command
spack install stream_type=double
+openmp.


http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/




Intra-node Parallelism

During the last decades, the performance of computer microprocessors
managed to keep the pace with Moore’s law! mostly thanks to higher and
higher clock frequencies—the result of the deep exploitation of micro-
architectural techniques such as pipelining, out-of-order, speculative or
superscalar execution or branch prediction that are commonly gathered
under the generic name of Instruction Level Parallelism (ILP) techniques.
At the beginning of the last decade, this trend has reached the point of
diminishing returns mostly due to two hard limits:

» Concurrence limit: despite the fact that ILP techniques can be
very sophisticated and complex, there is a limit to the level of
concurrence that can be achieved through them: even the most
advanced and modern microprocessors cannot issue more than
four or five instructions per clock cycle whereas the concurrence
available in a wide range of operations is much larger.

» Power limit: reducing the microprocessors power consumption
and heat dissipation is an issue of considerable importance for
the computer industry; for example, it is crucial for extending the
battery life of mobile devices and for limiting the operational costs
of large scale supercomputers (as a reference, consider that the
highest-ranked computers in the Top500 list consume around 30
MW-—the equivalent of a small town, or at least, the equivalent
of a small town which is not housing a supercomputing center).
Increasing the processors clock speed brought the processors
power consumption and heat dissipation to unsustainable limits
due to the fact that power depends on the cube of the frequency.

In order to work around these issues, the microprocessors industry
abruptly steered towards Thread Level Parallelism (TLP) techniques
which gave birth to a new generation of computer processors, commonly
known as multicores or Chip Multi-Processors (CMP). Conceptually, these
processors simply pack onto the same die multiple independent Process-
ing Units (i.e., cores) capable of handling different instructions and data
streams. As a result, they are capable of sustaining much higher levels of
concurrence. At the same time, considerable performance improvements
can be achieved at a much smaller cost in terms of power consumption
and heat dissipation. As a matter of fact, increasing the numbers of cores
on a chip only increases the power consumption by the same factor due to
its linear dependence on the number of transistors. Likewise, by slightly
reducing the operational frequency and increasing the number of cores,
performance can be improved and power consumption reduced at the
same time. A few years from this technological revolution, multicore
processors are nowadays ubiquitous and the evolution of computers is
driven by a run towards higher and higher numbers of cores per chip.

4.1 Advanced architectures . 42
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1: Moore’s law, named after Gordon E.
Moore, co-founder of Intel, is the obser-
vation that the number of transistors on a
microchip doubles approximately every
two years, leading to a corresponding
increase in computational power and a
decrease in relative cost. This empirical
trend, first articulated in 1965, has driven
the exponential growth of the semicon-
ductor industry and has been a key en-
abler of technological advancements in
computing, from personal computers to
modern supercomputers. However, as
transistor sizes approach physical limits,
maintaining this pace of progress has be-
come increasingly challenging, prompt-
ing innovations in alternative computing
paradigms and architectures: which is
why we are now discussing parallelism.

IBM Power 4

Core 0 Core 1
L1l cache L1 cache1
L2 cache

L3 cache and
main memory

Figure 4.1: The architecture of the IBM
POWER4 processor.
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To obtain the analogous of Fig-
ure 4.2 for your processor you
can use the following command:
lstopo --no-attrs --no-factorize
--no-collapse --no-cpukinds
--no-legend topology.pdf The
1stopo command is part of the hwloc
package which is available on most
Linux distributions, e.g., on Ubuntu you
can install it with the command: sudo
apt-get install hwloc.

4.1 Intra-node parallelism: advanced
architectures

The first general-purpose, multicore processors was the POWER4, re-
leased by IBM in 2001. This chip, whose architecture is sketched in Figure
Figure 4.1 on the preceding page, shipped two cores, each with its own
L1 cache memory; L2 cache is shared among the two cores as well as the
L3 one which lies off the chip. The two cores access the main memory
through a shared bus.

The POWER4 chip can be roughly described as two processors glued
together on the same die. This idea is at the base of most of the multi-
core processors developed so far. Last generation multicore processors
commercialized by the major chip producers (e.g., AMD or Intel) can
pack up to larger numbers of cores on the same die. For example, the
AMD EPYC 9655P processor, released in 2023, is a processor with 96
cores and 192 threads; while Intel Xeon w9-3595X processor, released
in 2024, is a processor with 60 cores and 120 threads. On a lower scale,
the are processors with different kind of cores like the Intel 19-14900HX
processor packing 24 Cores and 32 Threads divided into 8 performance
cores (16 Threads, 2.2 GHz) and 16 efficient cores (16 Threads, 1.6 GHz)
which is depicted in Figure 4.2

Machine

Package L#0

|

B

Figure 4.2: The architecture of the Intel 19-14900HX processor, on the left part of the figure we see the eight performance cores, each with
is dedicated L2 cache, while on the right part of the figure we see the sixteen efficient cores which shares one L2 cache every four cores.
The L3 cache is shared among all the cores, while the L1 cache is private to each core.

Modern CPUs are equipped with a hi-
erarchy of special-purpose cache mem-
ories designed to mitigate the perfor-
mance bottlenecks associated with ac-
cessing main memory. These caches are
built using static random-access mem-
ory (SRAM), a type of memory that
is significantly faster than the dynamic
random-access memory (DRAM) used in
main system memory. Although SRAM
is faster and more power-efficient for
frequent accesses, it is also more expen-
sive and occupies more physical space
per bit than DRAM. As a result, caches
are relatively small in capacity but ex-
tremely fast, enabling quick access to the
most frequently used data. To balance
speed, cost, and capacity, CPU caches are
typically structured into multiple levels,
commonly referred to as L1, L2, and L3.
The L1 cache is the smallest and fastest,
located closest to the processor core, and
usually split into separate instruction
and data caches.

A careful analysis of the architecture of the modern processor archi-
tectures reveals a detail that shows how limited the scalability can
be on certain operations. In light of the EPYC 9655P’s simultaneous
capabilities—710 GFLOP/s of peak double-precision throughput versus
a fixed 614 GB/s of socket memory bandwidth—it becomes clear why
workloads naturally bifurcate into compute-bound and memory-bound
regimes:

» memory-bound: for these are the operations the ratio between num-
ber of computations and number of data transfers from the main
memory is close to one or smaller. Because no data reuse is possible
(i.e., data brought into cache memories are never reused), these
operations cannot run any faster than the speed at which data is
transferred from the main memory. Since, as shown before, one or
a few cores are typically sufficient to saturate the available memory
bandwidth, parallelizing these operations for multicore processors
only provides a marginal benefit (mostly due to a better utilization
of the memory bus) if any at all. One notable operations in this
family is the sparse matrix-vector product that performs 6(nnz)
floating-point operations on O(nnz) data, nnz being the number
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of nonzeroes in the matrix; this operation is the computational
kernel of iterative methods for the solution of linear sparse systems.
Levell (e.g., the sum of two vectors) and Level 2 (e.g., the dense
matrix-vector product) BLAS operations perform, respectively, ©(n)
floating-point operations on 6(n) data and 6(n?) floating-point
operations on 0(12) data and are, therefore, another example of
operations belonging to this family.

» computation-bound: for these operations, the amount of computa-
tions is much higher than the amount of data transfer from memory.
This property provides a very high temporal locality of data, i.e.,
data that are read from main memory and brought into caches can
be reused in multiple instructions over time. Because each core
is equipped with one or more levels of exclusive cache, most of
the memory traffic happens in parallel without using the main
memory bus. In this case performance scalability can be very good
up to relatively high number of cores. To this family belong, for
example, the Level 3 BLAS routines (e.g., the dense matrix-matrix
product) that perform 6(1%) floating-point operations on 6(12)
coefficients. Some very common algorithms, such as the dense LU
factorization described in Section Subsection 6.2.3 on page 80, rely
on these routines and therefore benefit from the same property.

This memory bottleneck (sometimes referred to as the memory wall in
literature) which hinders the performance of memory-bound operations
is clearly a hard constraint towards the scalability of multicore processor,
indeed in our AMD EPYC 9655P when an algorithm’s operational
intensity (FLOPs per byte transferred) exceeds roughly 1.16 FLOP /byte,
the processor’s arithmetic units throttle performance (compute-bound),
whereas below that knee, data-movement across the memory subsystem
saturates first (memory-bound). This divergence underpins the “memory-
wall”: as core counts and aggregate compute grow, the relatively static
bandwidth imposes diminishing returns on memory-heavy kernels,
making cache reuse or higher bandwidth essential for scaling beyond
today’s multicore ceilings.

One technological approach for improving on this limitation consists in
adding an on-chip interconnect to multicore processors: because cores
can directly and efficiently exchange data through this interconnect,
the traffic towards main memory can be reduced and the memory
bottleneck relieved. Historically, one notable example of this approach
has been the Cell Broadband Engine (CBE) processor released by the
STI (Sony Toshiba IBM) consortium in November 2006. The CBE was
equipped with one PowerPC core and eight SIMD vector cores connected
through a ring interconnect with an aggregated bandwidth of 204.8
GB/s. Another distinctive feature of the CBE processor was that cores are
not equipped with cache memories but with local scratchpad memories
that are explicitly handled by the programmer. Because of its substantial
computing power (204.8 Gflop/s for single-precision computations)
the CBE processor gained a considerable popularity in the scientific
computing community and was chosen as the main computational engine
of the RoadRunner supercomputer, the first to cross the 1 Petaflop/s
barrier, ranked number 1 on the June 2008 Top500 list?. Because of its
difficult programming model, much more similar to the one used for
distributed memory parallel computers rather than shared memory ones,

If the processor needs a piece of data,
it first checks the L1 cache. If the data
is not found there—a situation known
as a cache miss—it proceeds to check
the L2 cache, which is larger but slightly
slower. If the data is still not found, the
search continues to the L3 cache, which
is larger still but with higher latency.
If none of the caches contain the re-
quired data, the CPU finally accesses
main memory, which is much slower
but has much greater capacity. This hier-
archical approach provides an effective
compromise: it allows the processor to
access frequently used data with mini-
mal delay, while still supporting access
to the full range of memory available in
the system. By organizing caches into
multiple levels, the CPU can take ad-
vantage of fast, low-capacity storage for
immediate needs, while relying on larger,
slower caches and eventually main mem-
ory for less frequently accessed data. This
structure significantly reduces the av-
erage time required to access memory,
thereby improving overall system perfor-
mance. The rationale behind this layered
design stems from the trade-offs inherent
in memory technology. A single, large
cache made entirely of fast SRAM would
be prohibitively expensive and consume
excessive power and space. Conversely,
using only DRAM would result in un-
acceptable delays for many applications.
Multi-level caches enable the CPU to nav-
igate these trade-offs effectively, ensur-
ing that performance remains high even
as data sets and workloads grow. Thus,
the cache hierarchy is a cornerstone of
modern processor architecture, essential
for bridging the gap between processor
speed and memory latency.

2: See the list on the TOP500 website
top500.org/lists/top500/2008/06/.
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Figure 4.3: A process.

Instruction flows

Data area

Figure 4.4: A set of threads within a

process.

the interest around the CBE processor for scientific computing has rapidly
decreased.

Another approach to overcome the memory wall consists in using 3D
stacked memory and has become the object of an hectic research activity.
Currently used memory layouts can be roughly described as the processor
and the memory modules being side-by-side and connected through
a wire (the memory bus) in a 2D configuration; this novel approach,
instead, disposes memory cells into arrays stacked one on top of the
other and then all together on top of the multicore chip in a 3D layout.

4.2 Intra-node parallelism: tools

We are now at a crucial point in our discussion: how do we harness the
available computing capabilities of the advanced architectures we have
seen in the previous sections? One of the most common answers relies
on the concept of a thread, which in turn requires the introduction of the
concept of a process.

All modern computers support multiprogramming, that is, the ability
of the system of having multiple programs in execution at the same
time. From a microscopic point of view you obviously cannot have more
programs executing than there are available execution cores, but from a
macroscopic (that is, on a human time scale) point of view there can be
many programs executing at the same time. In this context, the process is
a basic unit of execution consisting of an instance of a program being run,
together with the data it operates upon; thus, it is a dynamic entity, as
opposed to a static entity such as a program (and you can have multiple
processes running the same program). The data part is private to the
process owning it; we will return to the process concept in Chapter 5.

What happens when you have multiple execution cores? One possibility
is to have multiple independent fluxes of instruction, each one of them
executing part of the program, each one of them with a certain private
data area, but all of them sharing the overall program data. These units of
execution/instruction fluxes are called threads; for scientific applications,
we typically aim at having as many active threads as there are available
processing cores®.

From a programmer’s point of view, handling threads requires some
software support; on most modern systems you can use POSIX threads
(see e.g. [21]) to implement what you need, but they are a very low-
level tool, and not particularly attuned to the needs of computational
scientists.

The most popular programming tool used for scientific applications in
conjunction with languages such as Fortran and C is OpenMP.

4.2.1 OpenMP

OpenMP is a de-facto standard API (Application Program Interface)
for writing shared memory parallel scientific applications in Fortran,

* Other classes of applications, such as databases and web servers, also use threads, but
their usage constraints and the programming and tuning techniques are quite different.
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C and C++; it was first conceived in 1997, and its specification is main-
tained by the OpenMP Architecture Review Board (www.openmp.org),
an organization to which anybody can contributed.

An OpenMP compilation system requires a compiler that supports it, and
consists of:

» Compiler directives,
» Run time routines,
» Environment variables.

A compiler directive is a statement that can be interpreted in two ways:

1. As an instruction to the compiler to do something, or a notification
that a compiler is allowed to do something under the responsibility
of the programmer;

2. As a comment, for all compilers that do not support the directive
system that is being used.

Thus, it is broadly possible to insert OpenMP parallelization statements
in the source code whilst at the same time maintaining the original
behaviour of the program. The instructions to the compiler can be
supplemented by environment variables and/or specific function calls.

In its original conception, OpenMP was concerned mostly with splitting
the workload of do loops, based on the concept of fork-join, shown in Figure
4.5:

1. Upon entering execution of a certain block of code, for instance a
do loop, multiple threads are activated, and the workload for that
block of code is split among them;

2. The threads may interact among them during the execution by
using shared memory areas;

3. Upon completion of the block of code, all threads but one are
deactivated, and execution proceeds as in a serial program.

We have described programming with OpenMP referring to threads,
meaning that with a logical sharing of memory we have a natural match
in shared memory systems, even though this is not mandated by the
OpenMP standard. Indeed, there have been attempts at providing a shared
memory logical programming view of distributed memory systems, but
no such attempt has been particularly successful in practice.

The OpenMP standard has been updated multiple times; at the time of
this writing, version 6.0 has been recently released, and version 5.2 is
broadly supported by many compilers; in particular, it has been extended
with:

» Support for irregular and data-driven dispatching of workload;

» Source-to-source transformations to improve memory hierachy
handling and workload splitting among threads;

» Support for novel architectural features such as SIMD extensions
and accelerators.

We will show some OpenMP code in the sequel; for a complete presenta-
tion see [22-25]. OpenMP is also frequently used in conjunction with MPI,
which we will see in Section 5.1, in what is called nested parallelism.

Master thread execution

Parallel do (fork)

Sincronization (join)

Master thread execution (resumed)

Figure 4.5: The fork-join execution
model.
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4.3 Intra-node parallelism: Accelerators

In relatively recent years the computing world has seen the widespread
adoption of GPUs, with the most common ones being the devices built
by NVIDIA corporation. These devices were originally designed to
handle graphics computations, but were soon coopted to perform general
purpose tasks, which are commonly described as GPGPU (general
purpose programming on graphics programming units); currently there
are multiple companies building similar devices, and because of the way
they are used they are normally referred to as accelerators.

We now very briefly describe some of the features of the NVIDIA
devices, especially from a programmer’s point of view. The NVIDIA
GPGPU architectural model is based on a scalable array of multi-threaded,
streaming multi-processors, each composed of a fixed number of scalar
processors, one or more instruction fetch units, on-chip fast memory,
which is split between shared memory and cache, plus additional special-
function hardware.

CUDA is the programming model provided by NVIDIA for its GPGPUs;
a CUDA program consists of a host program that runs on the CPU host,
and a kernel program that executes on the GPU device.

The computation is carried on by threads grouped into blocks. More
than one block can execute on the same multiprocessor, and each block
executes concurrently. During the invocation (also called grid) of a kernel,
the host program defines the execution configuration, that is:

» how many blocks of threads should be executed;
» the number of threads per block.

Each thread has an identifier within the block and an identifier of its
block within the grid (see Figure 4.6). All threads share the same entry
point in the kernel; the thread ID can then be used to specialize the thread
action and coordinate with that of the other threads.

Figures 4.7 and 4.8 describe the underlying SIMT architecture. Note that a
single host may be connected with multiple devices. Each GPU device is
made up by an array of multiprocessors and a global memory. The host is
connected to devices using a bus, often having a much smaller bandwidth
than that of the device global memory. Multiprocessors execute only
vector instructions; a vector instruction specifies the execution on a set
of threads (called warp) with contiguous identifiers inside the block.
The warp size is a characteristic constant of the architecture; its value is
currently 32 for NVIDIA’s GPUs. Programming GPUs is a very specialized
activity, and many research efforts are currently devoted to improving
their usage. Besides the support available in the latest version of the
OpenMP standard [22], there s also the OpenACC programming interface
standard https://www.openacc.org/specification, and a number of
efforts such as SYCL and Kokkos.


https://www.openacc.org/specification

Inter-node Parallelism

The most powerful computers in the world listed in the Top500* are
all clusters: a number of computer nodes, most of them equipped with
multicore processors and possibily with accelerators, connected through
a high-speed network.

The main question from a user’s point of view is then: how do you
program such a machine? This is what we will (relatively briefly) describe
here.

5.1 Inter-node parallelism: MPI

When dealing with clusters, the most common programming tool is the
“Message Passing Interface”, or MPL

This project started in the early "90s to consolidate the experience gathered
in developing distributed memory applications, and to provide with a
unified programming interface to simplify developers’ life. It is a de-facto
standard, and anybody can participate in its development (see https:
//www.mpi-forum.org/); there exist multiple implementations, from
vendors as well as open-source from research projects such as

» MPICH https://www.mpich.org/
» OpenMPI https://www.open-mpi.org/
» MVAPICH https://mvapich.cse.ohio-state.edu/

The current stable version is 4.1, and work is underway to define version
5.0.

What is exactly MPI?

From the MPI 4.1 standard document

MPI (Message-Passing Interface) is a message-passing
library interface specification.

All parts of this definition are significant.

» MPI addresses primarily the message-passing parallel program-
ming model, in which data is moved from the address space of one
process to that of another process through cooperative operations
on each process.

» MPI is a specification, not an implementation; there are multiple
implementations of MPL

» This specification is for a library interface; MPI is not a language,
and all MPI operations are expressed as functions, subroutines, or
methods, according to the appropriate language bindings which,
for C and Fortran, are part of the MPI standard.

*You can access the whole list at www.top500.org/lists/top500/2024 /11/.
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» Extensions to the “classical” message-passing model are provided
in collective operations, remote-memory access operations, dy-
namic process creation, and parallel I/O.

The first item is very important: message passing programming is about
having multiple cooperating processes. By definition each process has
its own private address space, therefore other processes cannot access
data directly; hence the need for messages, in which the two processes
cooperate to exchange data.

Every message passing environment thus has a core that comprises at
least the following basic functionalities:

» Environment start and stop;
» Identification of participating processes;
» Send and receive data.

In principle, anything you need to cover in your programming can be
implemented through these simple functionalities; in practice, as already
mentioned, many extensions have been included in the MPI interface
specification, because:

» Even if many functionalities can be covered with simple send/re-
ceives, robust and efficient implementations require much more
sophisticated data structures and algorithms that require special-
ized knowledge, and it is much better to delegate them to the MPI
library implementors behind a unified interface;

» Some issues are purposedly left partially or wholly undefined,
such as how to start multiple processes, often interacting with the
management system of the cluster we are running on; in some
versions of MP1 it is even possible to have a number of processes
that changes dynamically at runtime;

» Access to some hardware features, such as I/O and direct remote
memory access, require specialized interface and/or extensions
beyond the programming model defined above.

What does an MPI program look like? An MPI version of “Hello, world”
hello_mpi. f90 might look like:

program hello
use iso_fortran_env, only: output_unit
use mpi_mod
implicit none

character(len=40) :: message
integer :: myrank, np, ierror, i
integer :: status(MPI_STATUS_SIZE)
integer, parameter :: tag=123

call MPI_Init(ierror)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierror)
call MPI_Comm_size(MPI_COMM_WORLD,np,ierror)
write(message, &
&' ("Hello world from image ",IO0," out of ",I0)')
— myrank,np
if (myrank == 0) then
write(output_unit,'(a)') message
do i=1,np-1
call MPI_Recv(message,40,MPI_CHARACTER,1i,tag,&
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& MPI_COMM_WORLD, status,ierror)
write(output_unit,'(a)') message
end do
else
call MPI_Send(message,40,MPI_CHARACTER, O, tag,&
& MPI_COMM_WORLD,ierror)
end if
call MPI_Barrier(MPI_COMM_WORLD,ierror)
call MPI_Finalize(ierror)
end program hello

A few observations are in order:

» The type of the data being sent is specified by one of the argu-
ments; in most clusters where the nodes are homogeneous, the
data is transferred directly, but in principle it would possible, in-
deed required, for the MPI implementation to translate the data
representation if we are running on a heterogeneous system;

» Every message has an envelope consisting of the following;:

1. Source process;

2. Destination process;
3. Tag;

4. Communicator.

The standard mandates that two messages with the same envelope
must be delivered in the order they were sent;

» The tag is an arbitrary user-defined attribute; it allows different
kinds of messages to be exchanged; in particular, a message with a
certain tag might be received before a message with a different tag
even if it was sent later and has an otherwise identical envelope;

» The communicator is an extremely important argument because it
allows for a clean separation of the messaging space in different
portions, each one corresponding to a different communicator
object:

e If the program uses a library, you clearly do not want to the
messages defined and exchanged within the library to be
erroneously matched to the messages in the user’s program;
to this purpose, libraries will (very likely) create a new private
communicator upon initialization;

* You may define communicators for groups of processes, to
limit the exchange of data; for instance, if you have a 2-
dimensional arrangement of processes in rows and columns,
it is possible to define communicators for each row /column.

In our “hello world” example we are using the MPI_COMM_WORLD
communicator, which is predefined by the MPI implementation
at the start of every application, but a realistic application would
immediately duplicate it into its own private communicator, even
for the user part, via the appropriate environment functions.

» Send and receive functions appearing in the above example are
the default ones, but there exist much more sophisticated versions
allowing for fine-grained control of the application behaviour.

» We have seen one example of collective operation in the call to
MPI_Barrier, but many other collectives exist and they are very
often essential to achieve good performance.
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As you can see, there are a number of issues that the user has to take
care of when handling the communications among different processes.
MPI gives very fine-grained control over the operations of your parallel
program, but that control come with the responsibility of properly using
the facilities from the library.

5.1.1 Point-to-point operations

Point-to-point operations are the simplest form of data exchange: one pro-
cess sends a packet of data to another one. Not surprisingly the interfaces
to the relevant library functions contain the words send/receive.

The description above is deceptively simple: many, many details must
be considered. For instance, what happens if a process wants to send
a message to another that is unaware (perhaps because it has not yet
reached a certain point in the computation)? Do we want the data to flow
anyway and be handled by the operating system, perhaps up to a limited
size? When is the sender process free to reuse the data area holding
the contents to be sent? Do we want to wait until the receiving process
becomes ready and prepares a data area sufficient for storing the incoming
message? Do we want maximum performance or ease of use? These and
many other questions are handled by the MPI standard in a general way
defining different modes for communicating data, thereby allowing a great
flexibility in tailoring the communication to the application needs.

In our PSCToolkit library [26] (and in most of our presentation) we will
use a subset of modes:

1. The SEND operation is “locally blocking”: as soon as the subroutine
returns the application code may freely reuse the data buffer, but
this does not necessarily mean that the message has even started its
trip, let alone arrived to destination. This is a useful feature when
calling the message passing environment from Fortran, where we
might want to send data using a “natural” expression which implies
that it is held in a compiler-generated temporary variable: it would
be highly undesirable to depend on the contents of a temporary
not to change until some unrelated event (i.e. the actual message
delivery) has happened. On the other hand it would be equally
undesirable to only use transmission modes in which the sender
waits for the receiver to actually handle the incoming message: not
only this provides lower performance, it also makes it harder to
write code that does not go into deadlock. In practice the library will
perform a copy to an internal buffer and will start an asynchronous
send on the copy, returning as soon as the send operation has been
requested to the communication subsystem (but not necessarily
performed). Given this behaviour, a timing of a send routine is
much less than the time it takes for the message to travel to its
destination®;

2. The RECV operation performed on the receiver side is “globally
blocking”: the call completes only when the data has actually been
received and put in the user designated data buffer;

 To measure the actual performance of a point-to-point operation the common method
is to time a ping—pong between two processes: the first sends, the second receives, then
sends back to the first, who in its turn receives; the measured time is then assumed to be
twice the amount it takes for a one-way trip.
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3. The call to the RECV operation is not tightly synchronized; it may
be placed before or after the matching SEND. In practice this means
that we rely, at least to some extent, to the MPI implementation to
provide buffer space for incoming messages for which no RECV
has been posted yet;

4. Ifataskisendstwo successive messages to task j, we are guaranteed
that delivery will happen in exactly the same order, and thus the
order of the RECV should match that of the SENDs; we are giving
up the availability of the explicit tag that enables MPI messages
to be received out of order. However it is still possible for task j to
receive a message sent after i’s message by some other task k # i.

We will also make heavy use of the overloading capabilities of the Fortran
language, trying to simplify the calling sequences; for each kind of oper-
ation we will define a single generic interface that accounts for all specific
versions. The correct underlying implementation is chosen automatically
by the compiler according to the data type (integer, real, complex, char-
acter, logical), and to the rank (0 =scalar, 1 =vector, 2 =matrix) of the
variable being used. Thus we are guaranteed that it is impossible to incur
in a mismatch between the subroutine being called and the data type of
the variable.

Other modes available in MPI for point-to-point SEND operations in-
clude:

Standard: the MPI library decides whether to use internal buffering or
wait for a matching receive;

Buffered: the message is stored in an outgoing buffer, and the operation
returns independently of a receive;

Synchronous: the send operation may be started, but it will be completed
only after a matching receive has been posted;

Ready: asend may only be issued if a matching receive has already been
issued.

Moreover, the send/receive operations may also be issued in their non-
blocking version: the calling process initiates the operation, and receives
a handle to test for successful completion at a later point. This is quite
useful, and indeed we provide this facility for the halo data exchange of
Sec. 8.3.6.

MPI and OpenMP: which one to choose?

The MPI model makes very minimal assumptions on the underlying
hardware architecture, especially for what concerns the memory
model; thus it can be used on parallel machines up to thousands of
processors, and has been implemented on practically all architectures
in common use today.

Even though the initial cost of the parallelization is quite higher
than with OpenMP, the scaling up of the application is usually less
problematic from a software point of view.

Thus MPI would be the tool of choice when:

» The architecture is a multicomputer (e.g. a Linux cluster);
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» the problem potentially requires a massive amount of computing
power;

» we want to have a highly scalable and flexible application;

» we have enough time and resources to write the parallel code.

To conclude our comparison between OpenMP and MPI, we state on
the basis of our experience an 80/20 heuristics: the total investment
needed to have a fully optimized application is generally the same,
but is distributed in a different way, 80 % initial parallelization and
20 % tuning for MPI, exactly the opposite for OpenMP.

In parallel programming, just like in many other human enterprises,
the devil is in the details.

5.1.2 Collective operations

Collective operations by definition involve (and must be called by) all
processes participating to a given context, i.e. all tasks in a certain virtual
parallel machine; actually we have already seen one example with the
synchronization operator mpi_barrier.

All functionalities provided with collective operations may be described,
and might be implemented, with a sequence of send/receive to/from a root
process; examples of these naive implementations will be given below.
Even in this case there would be an incentive to define a specific calling
sequence to avoid code duplications for the most common operations.

However the main reason for defining specific routines is performance:
the optimal implementation of a collective operation may be much faster
(and complex) than the naive one. Finding the optimal implementation
is an extremely complex enterprise, and we cannot expect the general
user to do it; without entering into details [27, 28], we explicitly note that
the optimal algorithm for a given operation will depend not only on the
number of tasks involved, but also on the performance of the network,
on its topology and on the size of the data to be processed, and a quality
implementation will automatically choose among multiple algorithms
the best one for any given call.

Note also that collective operations introduce new possibilities for dead-
locks, such as only a subset of the processes entering a call, or passing to
the subroutine arguments that are inconsistent across processes.

Broadcast

The operation of broadcast propagates the value of a certain data item
from a root task to the set of all those participating in the same context.
The PSCToolkit interface is as follows:

call psb_bcast(icontxt, a, root=root)

where the optional argument root specifies the source task, with a default
of 0. After a successful completion the contents of A will be the same
for all tasks, and will be equal to the contents that were available on
task root before the call. Thus the functionality of the operation may be
achieved by the following naive implementation:
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if (iam == root) then
do i=0,np-1
if (i /= iam) then
call psb_snd(icontxt,a,i)
end if
end do
else
call psb_rcv(icontxt,a, root)
end if

which is, of course, not optimal.

The value for the root argument must be the same for all participating
processes; otherwise results are unpredictable, with deadlock a very
likely outcome. As in the send /receive case the data A may be:

» A scalar of type integer, real, complex, logical, character; for charac-
ter data there is an additional optional argument length to override
the size of the string to be exchanged;

» A rank-1 or rank-2 array of type integer, real or complex.

A simple and immediate example of the use of a broadcast is a typical
application structure in which the initial data input for a simulation is
performed on just one processor, which then propagates the relevant
values to all others. This is common practice, and is mandatory if data is
not available on a shared file system.

Combine

The combine operations (in MPI jargon reduce) perform a distributed
arithmetic or logical operation which combines values present on different
tasks to give a single instance of the data which is the result, available
on a single destination task. A naive implementation would be all
tasks sending their data to the destination task, which applies locally
the required arithmetic operation; in some sense this is the opposite
of a broadcast. In our environment we provide the operations of sum,
maximum, minimum, maximum absolute value and minimum absolute
value; the underlying MPI layer allows very general versions and can be
used with any associative arithmetic operation.

The PSCToolkit calling interfaces are:

call psb_sum(icontxt, a, root=root)
call psb_amx(icontxt, a, root=root, ia=ia)
call psb_amn(icontxt, a, root=root, ia=ia)

where A is the integer, real or complex data as before, whereas root is
the identifier of the destination task. We also have:

call psb_max(icontxt, a, root=root, ia=ia)
call psb_min(icontxt, a, root=root, ia=ia)

similar to the previous, but available only for integer and real data. If Ais an
array, the implied operation is performed element by element, consistently
with the Fortran array semantics. The default value is root = -1, which
is interpreted as meaning that the result should be available to all tasks;
this is functionally equivalent to performing a broadcast immediately
after the combine operation, although (as noted before) there may exist
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a faster implementation. Thus the functionality of the sum might be
achieved by the following naive implementation:

if (root==-1) then

root_=0

else
root_=root

end if

if (iam == root_) then
do i=0,np-1

if (i /= iam) then
call psb_rcv(icontxt,tmp,i)
a=a+ tmp
end if
end do
else
call psb_snd(icontxt,a,root_)
end if
if (root==-1) then
call psb_bcast(icontxt,a, root_)
end if

which is, of course, not optimal.

Notice that depending on the data type this collective function will often
be based on floating-point operations; since floating-point addition is not
associative (see appendix A), a change in the sequence of sends/receive
will change the result. This has the implication that it is not reasonable
to expect bit-identical results between the naive implementation and
an optimized library implementation; another implication is that an
operation involving a global sum, such as a dot product, will produce
different results when run on a different number of processors on
otherwise identical input data. However we should be careful to avoid
an unfortunate situation which might exist in some implementations; if
a given process issues a receive for the first available message, regardless
of the sender process, fluctuations in timings across the network may
cause the messages to arrive in a different relative order, thus forcing the
floating point operations to be executed in a different order between two
successive runs on an otherwise identical machine configuration. While
we may accept numerical results (and convergence histories) to vary
with the number of processors, since we are effectively using a different
machine, it is highly desirable that they should be reproducible once we
fix the configuration and the input data: any collective communication
implementation ought, at the very least, to provide the means for the
user to force a communication pattern that gives reproducible results, if
not make it the default.

In the maximum/minimum absolute value case it is possible to specify
an optional argument ia, an integer of the same rank and size of the data
A; it will keep track, for each entry of the result A, of the identifier of the
task the result comes from.

An example of use may be given as follows: find an extravagantly
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expensive way to compute the sum of the series
n
S
k=1

A possible solution consists in launching a parallel job with 7 tasks, with
each one computing one term of the series then delegating the sum to a
combinet:

call psb_init(icontxt)
call psb_info(icontxt,iam,np)

temp = dble(iam) * dble(iam)
call psb_sum(icontxt,temp)
if (iam == 0) then
write(6,+*) 'total sum for n = ',np,' is ', temp
endif

A more realistic example would be the search for the maximum element
of a distributed vector to check convergence of an iterative method. If the
vector is partitioned among tasks, we can first search for the maximum
in the local part on each task, then we apply a combine to get the global
maximum; if root=-1 (as is the default), all tasks will have the (same)
result, and will be able to take a coherent decision on whether to proceed
or stop the iterations.

5.1.3 Multiple interacting processes: what could possibly
go wrong?

How do errors manifest themselves in a message-passing program?

First of all, there are errors detected and reported by the MPI library
itself; in most cases these are related to the underlying network, or the
operating environment, and there is very little, if anything, to be done at
the application level to improve the situation.

Probably more interesting for our readers are programming mistakes in
the message-passing application itself; these obviously include the errors
that are possible with a serial application. Whether related to the serial
part or the message passing statements, you may think of the dreaded
segmentation fault error message as being a very unfortunate event;
however, in some sense it is actually a good thing, in that it is giving a
very clear alert that something is deeply wrong.

In practice, there are two things that are more insidious during execu-
tion:

1. Race conditions, where the outcome of a code is not fully deter-
mined and might change from one run to the next;

2. Deadlocks: (a subset of) the processes in the application are waiting
for a certain event, but because of the structure of the code this
event will never materialize, and no progress is possible.

t Actually the code shown, albeit working, is not a completely correct answer to the problem
as stated; are you able to spot the error?
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To illustrate a deadlock, let us go back to the example of a simple sequence
of send/receive operations. The order of send/receive pairs in the source
code must take into account the blocking semantics of the receive opera-
tions, discussed above; this feature provides an implicit synchronization
among processors, but may also cause a deadlock. Consider the very
simple case in which task 0 must send an integer to task 1, and vice-versa;
the most reliable way is the following:

if (iam == 0) then
call psb_snd(icontxt,n,1)
call psb_rcv(icontxt,k,1)
else if (iam == 1) then
call psb_rcv(icontxt,n,0)
call psb_snd(icontxt,k,0)
endif

The above code will certainly complete (barring a catastrophic failure in
the underlying network or operating system layers).

The following scheme, relying on the “locally blocking” semantics, is
also very likely to work:

if (iam == 0) then
call psb_snd(icontxt,n,1)
call psb_rcv(icontxt,k,1)
else if (iam == 1) then
call psb_snd(icontxt,k,0Q)
call psb_rcv(icontxt,n,0Q)
endif

at least if the operating system does not run out of memory space for
pending messagesS.

However if we do write the exchange as follows:

if (iam == 0) then
call psb_rcv(icontxt,k,1)
call psb_snd(icontxt,n,1)
else if (iam == 1) then
call psb_rcv(icontxt,n,0)
call psb_snd(icontxt,k,0)
endif

each task will wait for the message coming from the other, and will never
reach the call to the send routine(s). We thus have a deadlock: we are
waiting for an event that cannot possibly happen; the computer is busy,
but no useful work is performed.

In CSE applications the most likely error causing this kind of problem is
to enter a section of code containing the send/receive operations according
to a variable whose value is slightly different on different processes: if one
process chooses the branch with the receive and the other does not choose
a branch with a matching send, the first process is blocked indefinitely.

Thus variables that may alter the control flux of a program must be care-
fully controlled, and preferrably computed through collective operations,
so as to make sure that all processes have exactly the same reference
value and the selection of different execution paths happens in a coherent
fashion.

§ Admittedly an unlikely event if we are dealing with just a single integer!
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Building Blocks for Dense Linear
Algebra

6.1 Introduction

To introduce properly the problem at hand, let us consider a simple
code for computing the Cholesky factorization A = UTU. It is easy

Algorithm 1: Cholesky factorization

forj=1ton do
fori=1tok—1do

.. A (4. _ vi-1 )
t Uij < 5 (aij = 22y tkittij);

. it
Ujj < (“11 Zkzlukj)’

to see that this code can be translated into open code in any common
programming language. However you may notice that the resulting
code has the appearance of “reinventing the wheel”, that is, it is but
one example of similar code resurfacing over and over again in the
implementation of these kind of algorithms.

This observation suggests an immediate strategy:

“Define a set of operators such that any algorithm can be
expressed as their application to the data at hand.”

Some languages define some of these as native operators; this is true to
a varying extent of Matlab, Fortran and Julia. Writing code with them
consists of combining the appropriate sequence of calls to the primitive
operators.

It would therefore be appropriate to define a set of functions/subrou-
tines to implement these operators: this would guarantee that the same
code is written once but reused multiple times, thereby offering the
opportunity to amortize the cost of a quality implementation. We have
taken the Cholesky factorization algorithm as a reference for simplicity
in presentation; however, the same kind of reasoning applies to many
other algorithms, in both dense and sparse linear algebra. Encapsulating
the operators inside standardized code and interfaces enables develop-
ers to explore alternative implementations while preserving the overall
behaviour of the code.

Moreover, restructuring the code in this way may (and does) suggest
alternative ways of exploiting the characteristics of computing archi-
tectures, such as for example the possibility of using building blocks
involving submatrices and not just vectors.

These topics will be explored in the following and in Chapter 7.
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6.2 BLAS

The Basic Linear Algebra Subprograms (BLAS) are a set of low-level
routines that perform common linear algebra operations such as vector
and matrix multiplication. The BLAS is divided into three levels:

» Level 1: Vector operations (e.g., dot product, vector addition)

» Level 2: Matrix-vector operations (e.g., matrix-vector multiplica-
tion)

» Level 3: Matrix-matrix operations (e.g., matrix-matrix multiplica-
tion)

The BLAS is designed to be efficient and portable, making it a popular
choice for high-performance computing applications. The BLAS is often
used as a building block for higher-level libraries and applications, such as
LAPACK (Linear Algebra PACKage) and ScaLAPACK (Scalable LAPACK).
The BLAS is implemented in many programming languages, including
C, Fortran, and Python. In this chapter, we will focus on the dense BLAS,
which is a set of routines for performing dense linear algebra operations
on matrices and vectors.

There are several implementations of the BLAS, including:

OpenBLAS: An open-source implementation of the BLAS and LAPACK
libraries.

ATLAS: Automatically Tuned Linear Algebra Software, an open-source
implementation of the BLAS and LAPACK libraries.

Intel MKL: A high-performance implementation of the BLAS and LA-
PACK libraries optimized for Intel processors.

cuBLAS: A GPU-accelerated implementation of the BLAS library for
NVIDIA GPUs.

BLIS: A portable and high-performance implementation of the BLAS
library.

6.2.1 Level 1 BLAS

Level 1 BLAS routines operate on vectors and include operations such as
vector addition, scalar multiplication, and dot products. The following
are some of the most commonly used Level 1 BLAS routines:

» AXPY: Computes the vector sum y = ax + y, where « is a scalar,
and x and y are vectors.
» DOT: Computes the dot product of two vectors x and y,i.e., y = x " y.
» NRM2: Computes the Euclidean norm of a vector x, i.e., ||x||2 =
xTx.
» ASUM: Computes the sum of the absolute values of the elements in
avector x,i.e., 27, |xil.

Let us start by writing a simple Fortran program that uses the Level 1
BLAS routines to compute the AXPY operation. The AXPY operation is
defined as:

y=ax+y

where « is a scalar, and x and y are vectors. The following Fortran code
demonstrates how to use the AXPY routine from the BLAS library:



program axpy_example
use iso_fortran_env, only: int64, real64, output_unit
implicit none
integer(kind=int64), parameter :: n =5
real(kind=real64) :: x(n), y(n), alpha
integer(kind=int64) :: i
! Initialize the vectors and scalar
x =[1.0, 2.0, 3.0, 4.0, 5.0]
y [10.0, 20.0, 30.0, 40.0, 50.0]
alpha = 2.0
! Call the AXPY routine
call daxpy(n, alpha, x, 1, vy, 1)
! Print the result
write(output_unit,
doi=1,n

write(output_unit,

end do
write(output_unit,
return

end program axpy_example

"("Resulting vector y:")"')
'(F6.2)', advance='no') y(i)

("))

The routine which executes the AXPY operation is daxpy, where the first
argument is the length of the vectors, the second argument is the scalar
a, and the third and fourth arguments are the input vectors x and y. The
last argument is the increment for the input vectors:

call daxpy(n, alpha, x, incx, y, incy)

Observe also that the AXPY routine is called with the d prefix, which
indicates that the routine operates on double-precision floating-point
numbers. BLAS are strongly typed, and the prefix indicates the type of
the data being used! To compile this program we need to have acces to a
BLAS library. In this case we will use OpenBLAS, which is an open-source
implementation of the BLAS and LAPACK libraries?. We compile the
program using the following command:

gfortran -o axpy_example axpy_example.f90 -lopenblas
and we run the program using the following command:
./axpy_example

The program will output the result of the AXPY operation, which is the
vector y after the operation has been performed:

Resulting vector y:
12.00 24.00 36.00 48.00 60.00

AXPY in OpenMP

This is a quite simple routine, and is a good starting point for thinking
about exploiting parallelism. Indeed the AXPY operation can be par-
allelized by splitting the input vectors into chunks and computing the
AXPY operation on each chunk in parallel.

In the context of multi-core processors, the AXPY operation can be
parallelized using OpenMP. The OpenMP API is a set of compiler
directives®, library routines, and environment variables that influence
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1: The other prefixes are:

» s:single precision,

» d: double precision,

» c: complex single precision,
» z: complex double precision.

2: The OpenBLAS library can be
installed on most Linux distribu-
tions using the package manager,
for example on Ubuntu it can be
installed using the following command
apt-get install libopenblas-dev.
One can always build OpenBLAS from
source, or use Spack to install it (see
Appendix B).

3: Compiler directives are special com-
ments in the source code that are inter-
preted by the compiler if the paralleliza-
tion flags are enabled. They are used to
specify how the code should be paral-
lelized.
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4: In OpenMP, a thread is an indepen-
dent execution unit within a program
that can run concurrently with other
threads. Each thread has its own ex-
ecution context, including a program
counter and machine registers, but
shares the process’s address space and
resources. Threads also have execution-
specific attributes, such as the cores they
can utilize and performance metrics like
CPU time usage.

run-time behavior. It is designed for parallel programming in C, C++, and
Fortran. OpenMP provides a portable and scalable model for developers
of shared memory parallel applications.

Let us first write a simple OpenMP program that computes the AXPY
operation in parallel, and then discuss what is happening in the code.

program axpy_opm_example
use iso_fortran_env, only: int64, real64, output_unit
use omp_lib
implicit none
integer(kind=int64), parameter :: n =5
real(kind=real64) :: x(n), y(n), alpha
integer(kind=int64) :: i
! Initialize the vectors and scalar
X [1.0, 2.0, 3.0, 4.0, 5.0]
y [10.0, 20.0, 30.0, 40.0, 50.0]
alpha = 2.0
! Write the OpenMP directive to parallelize the for loop
I$omp parallel do
doi=1,n
y(i) = y(i) + alpha * x(i)
end do
!$omp end parallel do
! Print the result
write(output_unit, '("Resulting vector y:")"')
doi=1,n
write(output_unit, '(F6.2)', advance='no') y(i)
end do
write(output_unit, '("")")
! Return
return
end program axpy_opm_example

This sample program can be compiled using the following command:
gfortran -o axpy_omp_example axpy_omp_example.f90 -fopenmp
and then run using the following command:

./axpy_omp_example

You can compare the ouput of this program with the previous one and
observe that the result is the same.

So, what is happening in the code? The first thing to notice is that we have
included the OpenMP header file

use omp_1lib

This header file contains the definitions of the OpenMP routines and
directives. The next thing to notice is the !$omp parallel do directive,
which tells the compiler to parallelize the following loop. But how
things are being parallelized? The !$omp parallel do directive tells the
compiler to spawn a team of threads* and distribute the loop iterations
among them. of the loop among them.

But how many threads are created? The number of threads created is
determined by the OMP_NUM_THREADS environment variable, which can



be set before running the program, for example to set the number of
threads to 4, we can run the following command:

export OMP_NUM_THREADS=4
./axpy_omp_example

The number of threads can also be set in the code using the OpenMP
function: omp_set_num_threads, observe that for some task we may have
a limitation of the number of usable threads, hence it may be useful to
set the number of threads in the code instead of using the environment
variable.

A good idea would be for our test program of printing in input the
number of threads being used so that we can see how many threads
are being used. We can do this by adding the following code to our
program:

! Discover the number of threads
integer(kind=int64) :: nthreads
I'$omp parallel
I'$omp single
nthreads = omp_get_num_threads()
!'$omp end single
!'$omp end parallel
! Print the number of threads
write(output_unit, '("Number of threads: ", I2)') nthreads

This code uses the omp_get_num_threads routine to get the number of
threads, observe that we need to use the !$omp parallel directive to
create a parallel region and then use the /$omp end parallel directive
to end the parallel region to ask for the number of threads. Moreover, it
uses the !$omp single directive since there is no need for all threads to
repeatedly update the variable nthreads.

There are two important questions that we need to answer:

1. How the threads are scheduled?
2. Who owns what data?

The OpenMP API provides several scheduling policies to control how
the iterations of the loop are distributed among the threads. The schedul-
ing policies are specified using the schedule clause on the parallel
directive:

» static: Iterations are divided into chunks of equal size, and each
thread is assigned a chunk. This is the default scheduling policy.
It is predictable and easy to understand, but may not be the most
efficient for all loops.

» static, chunk_size: Similar to static scheduling, but the size
of the chunks can be specified. This provides more control over the
distribution of iterations.

» dynamic:Iterations are assigned to threads as they become available.
This allows for load balancing among threads and can improve
performance for irregular loops, but it may introduce overhead
due to scheduling and make the code less predictable.

» guided: Similar to dynamic scheduling, but the size of the chunks
decreases over time. This improves load balancing while reducing
scheduling overhead.

6.2 BLAS
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» runtime: The scheduling policy is determined at runtime based on
the value of the OMP_SCHEDULE environment variable. This provides
flexibility in choosing the scheduling policy without modifying
the code.

» auto: The scheduling policy is determined by the compiler. This
allows the compiler to optimize the scheduling based on the specific
loop and system characteristics.

As an example, consider the following scheduling policy for the AXPY
operation:

!$omp parallel do schedule(static, chunk_size)
doi=1,n
y(i) = alpha * x(i) + y(i)
end do
!$omp end parallel do

where chunk_size is the size of the chunks assigned to each thread.

The OpenMP API provides several clauses to control the visibility of data
between threads, which can be specified on a parallel directive:

» shared: A variable declared as shared is visible to all threads in
the team. There is a single instance of the variable that each thread
can access.

» private: A variable declared as private is only visible to a single
thread. Each thread creates its own uninitialized instance of the
variable, and only the creating thread has that instance in scope.

» firstprivate: Similar to private, but the private instance is initial-
ized with the value of the original variable from the thread that
created the parallel region.

» lastprivate: Each thread has a private instance of the variable. At
the end of the parallel region, the variable in the thread that created
the parallel region is updated with the value from the private
instance of the thread that executed the last iteration of the loop or
the lexically last section.

In our example program, the variables which are shared between the
threads are the input vectors x and y, and the scalar a, while the i variable
has a single value for each thread. Hence we can be more precise and
rewrite the OMP directive as:

!$omp parallel do shared(x, y, alpha) private(i) schedule(dynamic)
doi=1,n
y(i) = alpha * x(i) + y(i)
end do
I$omp end parallel do

If we compile and run this program, we will see that the result is the
same as before.

Let us try to write a version of these codes that we can use to measure
performance. As a firt time measuring step we will use the cpu_time
function, which returns the CPU time in seconds. To get a more reliable
measure of the time taken we need to do the following:

» Run the code several times and take the average time.
» Use a large enough problem size to get a reliable measure of the
time taken.



Let us start by modifying the code using BLAS to read the size of the

problem from the command line and add the time measurement code.

The following code does this:

program axpy_blas_time

use iso_fortran_env, only: int64, real64, output_unit, &
error_unit

implicit none

integer(kind=int64) :: n

real(kind=real64), dimension(:), allocatable :: x, y

character(len=100) :: arg

real (kind=real64) :: alpha, tl, t2, elapsed_time, &
average_time

integer(kind=int64) :: i,info

! Read the size of the vector from command line arguments
if (command_argument_count() < 1) then
write(error_unit, '("Usage: ./axpy_blas_ time <size>")')
stop
end if
! Read the size of the vector
call get_command_argument(1l, arg)
read(arg, *) n
! Allocate the vectors
allocate(x(n), y(n), stat=info)
if (info /= 0) then
write(error_unit, '("Error allocating memory")"')
stop
end if
! Initialize the vectors and scalar
x = [(real(i), i=1,n)]
y = [(sqrt(real(i)), i=1,n)]
alpha = 2.0
! Call the AXPY routine many times
do i =1, 1000
elapsed_time = 0.0
call cpu_time(tl) ! Start the timer
call daxpy(n, alpha, x, 1, vy, 1)
call cpu_time(t2) ! Stop the timer
elapsed_time = elapsed_time + (t2 - t1)
end do
! Calculate the average time
average_time = elapsed_time / 1000.0
! Print the elapsed and average time:
write(output_unit, '("Elapsed time: ", 1PE12.6, " s")') &
elapsed_time
write(output_unit,
average_time

("Average time: ", 1PE12.6, " s")') &

! Deallocate the vectors

deallocate(x, y, stat=info)

if (info /= 0) then
write(error_unit, '("Error deallocating memory")"')
stop

end if

return

end program axpy_blas_time

To compile the code we use the following command:
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The allocate routine is used to allocate
memory for the allocatable arrays. An
allocatable array is an object that can
be dynamically associated with mem-
ory, but such that it always has a well-
defined status (either allocated or not);
together with some other semantics fea-
tures, it is guaranteed never to generate
a memory leak. The size of the array is
determined by the user-provided input
n, which is read from the command-line
arguments. The stat argument in the
allocate statement is used to capture
any errors during memory allocation. If
the allocation fails, the program writes
an error message to the error_unit and
stops execution. The deallocate routine
is used to release the memory allocated
for the arrays when they are no longer
needed. Similar to allocation, the stat ar-
gument is used to check for errors during
deallocation. If deallocation fails, an er-
ror message is written, and the program
stops execution. The program initializes
the x and y arrays with specific values
and performs the AXPY operation mul-
tiple times to measure its execution time.
The cpu_time intrinsic is used to mea-
sure the time taken for the operation. The
average execution time is calculated and
printed to the output.
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gfortran -03 -march=native -mtune=alderlake -o axpy_blas
— axpy_blas_time.f90 -lopenblas

differently from before, since we want to try and measure the performance
of the code, we activate the optimization flags. We are going to run this
example on a Laptop which has a Intel® Core™ i9-14900HX processor.
To set the tuning flags for the compiler to the right architecture we run
the command:

gcc -mtune=native -Q --help=target|grep mtune

and we get the following output:

-mgather -mtune-ctrl=use_gather
-mscatter -mtune-ctrl=use_scatter
-mtune-ctrl=

-mtune= alderlake

The -mtune=alderlake flag is the one we are looking for, and we can use
it to set the tuning flags for the compiler, different processors will have
different tuning flags, and you can find the right one for your processor
using a combination of the command above and a quick search on the
internet.

Having done this, we can now adapt the version using OpenMP to
measure also the relevant performance metrics. To this end it suffices to
use omp_Llib code, and the OpenMP directives we have seen before:

do i =1, 1000
elapsed_time = 0.0
tl = omp_get_wtime() !/ Start the timer
! Write the OpenMP directive to parallelize the for loop
!$omp parallel do shared(x, y, alpha) private(j)
— schedule(static)
do j=1,n
y(j) = alpha * x(j) + y(j)
end do
!$omp end parallel do
t2 = omp_get_wtime() ! Stop the timer
elapsed_time = elapsed_time + (t2 - t1)
end do

As before, we can compile the code by doing

gfortran -03 -march=native -mtune=alderlake -o axpy_omp
— axpy_omp_time.f90 -fopenmp

We are now ready to run the code and measure the performance. To do
this a good idea is to write a small script that runs the code for different
thread counts and problem sizes and writes the results to a file. The
following script does this:

#!/bin/bash

# This script runs the AXPY BLAS benchmark with different
# sizes and threads. The axpy_blas runs the BLAS (0OpenBLAS)
# implementation of the AXPY operation. The axpy_omp

# runs the OpenMP implementation of the AXPY operation.
module load openblas

SIZE=1000000

# Run the BLAS version

./axpy_blas ${SIZE} >> axpy_blas.log 2>&1
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# Run the OpenMP version with different thread counts
for threads in 1 2 4 8 16 32; do

export OMP_NUM_THREADS=$threads

./axpy_omp ${SIZE} >> axpy_blas.log 2>&1
done

We can run it using the following command:

chmod +x axpy_blas.sh
./axpy_blas.sh

The script will create a file called axpy_blas. log with the results of the
runs. To analyze the results we can write a small Python script that reads
the file and plots the results, the following script does this:

import re
import matplotlib.pyplot as plt
import numpy as np

filename = "code/axpy_blas.log"
# Lists to hold extracted values
elapsed_times = []
average_times = []
# Regular expression pattern for scientific notation floats
pattern = r" ([-+]1?2\d*\ . \d+E[-+]\d+)"
# Read and parse the file
with open(filename, 'r') as file:
for line in file:
match = re.search(pattern, line)
if match:
value = float(match.group(l))
if "Elapsed time" in line:
elapsed_times.append(value)
elif "Average time" in line:
average_times.append(value)

# Custom x-axis labels

x_labels = ["BLAS", "1", "2", "4", "8", "16", "32"]
indices = np.arange(len(x_labels))

# Create side-by-side bar plots

fig, axes = plt.subplots(2, 1, figsize=(14, 5))

# Elapsed time bar plot

axes[0].bar(indices, elapsed_times, color='skyblue')
axes[0].set_title("Bar Plot of Elapsed Times")
axes[0].set_xlabel("Thread Count")
axes[0].set_ylabel("Time (s)")
axes[0].set_xticks(indices)
axes[0].set_xticklabels(x_labels)

# Average time bar plot

axes[1l].bar(indices, average_times, color='salmon')
axes[1l].set_title("Bar Plot of Average Times")
axes[1].set_xlabel("Thread Count")
axes[1l].set_ylabel("Time (s)")
axes[1l].set_xticks(indices)
axes[1l].set_xticklabels(x_labels)

plt.tight_layout()

plt.show()

# Save the figure to a file as EPS
fig.savefig("axpy_times.eps", format='eps')
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We can run it using the following command:

python3 axpy_time.py

The script will create a file called axpy_time. eps, which we have included
in Figure 6.1. The plot shows the performance of the AXPY operation

Bar Plot of Elapsed Times
0.00030

0.00025

0.00020

)

(

2 0.00015

Time

0.00010

0.00005

0.00000
BLAS 1 2 4
Thread Count

S0 de7 Bar Plot of Average Times

25

2.0

15

Time (s)

1.0
05

Figure 6.1: Performance of the AXPY 00 BLAS T y " - — -
operation using OpenMP and BLAS

using BLAS and OpenMP with different number of threads. The x-axis
shows if the problem has been solved by BLAS or by the OpenMP
implementation with a given number of threads, while the y-axis shows
the time taken to compute the AXPY operation in seconds.

From this experiment we observe that the performance of the AXPY
operation using 8 threads is the one that achieves better performance
for this problem size. In all cases the performance of the OpenMP
implementation is better than the BLAS implementation. Although for
this example we cheated a little, since we used a version of OpenBLAS
installed via Spack and which does not have multithreading enabled.

Exercise 6.2.1 Adapt the code we have already written to run on the
Toeplitz cluster. This means selecting the right compiler and the right
flags to compile the code from the available nodes. You can use the
module command to load the right compiler and the right flags. You
can use the module avail command to see the available modules. You
can use the module load command to load the right module.

Then to run the code you have to produce a job script that will run the
code on the cluster. You can use the sbatch command to submit the
job script to the cluster. The job script will have to be a job script to run
on a single node of the cluster, and a single task, with a number of
cpus per task equal to the number of threads you want to use.

Adapt the Python script to read the output of the job script and plot
the results.

Exercise 6.2.2 Explore the different scheduling policies available in
OpenMP and how they affect the performance of the AXPY operation.
You can do this by modifying the scheduling policy in the OpenMP
directive and measuring the performance of the AXPY operation.



The dot and the nrm?2 operations

Another important operation is the dot product, which is defined as:
n
c=x"y =D\ xiyi
i=1

The dot product is a scalar product of two vectors, and it is defined as the

sum of the products of the corresponding elements of the two vectors.

The dot product can be computed using the BLAS routine ddot, which
computes the dot product of two vectors x and y of size n:

c = ddot(n, x, incx, y, incy)
where incx and incy are the increments for the input vectors x and y.

What kind of parallelism can we exploit in this case? The dot productis a
what is called a reduction operation, which means that we can compute
the dot product in parallel by splitting the input vectors into chunks
and computing the dot product on each chunk in parallel. The results of
the dot products on each chunk can then be added together to get the
final result. This is a good example of a reduction operation that can be
parallelized using OpenMP. The following code shows how to do this®:

program dot_omp
use iso_fortran_env, only: output_unit, real64
use omp_lib
implicit none

integer :: i

integer, parameter :: n = 10000
integer :: nthreads
real(real64) :: x(n), y(n)
real(real64) :: sum, ¢

real(real64) :: start_time, end_time
real(real64) :: ddot
!'$omp parallel
I$omp single
nthreads = omp_get_num_threads()
I$omp end single
I'$omp end parallel
write(output_unit, ' ("Number of threads: ",I0)') nthreads
I Initialize arrays
x = 1.0
y =2.0
c=0.0
start_time = omp_get_wtime()
!'$omp parallel do private(i) shared(x,y) reduction(+:c)
doi=1,n
c=c+ x(1) * y(i)
end do
!$omp end parallel do
end_time = omp_get_wtime()
write(output_unit,'("Dot product: ",F0.2)') sum
write(output_unit,'("Time taken: ",E0.2)') end_time -
— start_time
! Check the result with blas
call cpu_time(start_time)
sum = ddot(n, x, 1, y, 1)
call cpu_time(end_time)
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5: Observe that in the code we have
added a declaration for the variable ddot
asareal(real64) variable, which is the
type of the result of the d variant of the
dot product routine. This is due to the
fact that ddot is a function that returns a
value. We need to let the compiler know
what to expect when it sees the ddot
function. This is also due to the fact that
BLAS and their interfaces comes from
before the Fortran 90 standard, and hence
they do not have a module we can use to
import the routines. The same will apply
in the following for the dnrm2 routine,
which is the double precision version of
the 2-norm routine. Try to run the code
without the declaration of the variable
ddot and see what happens. You will get
a compilation error, since the compiler
does not know what to expect when it
sees the ddot function.
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if (abs(c - sum) > 1.0e-12) then

write(output_unit,'("Abs. Error: ",F0.2)"') abs(c - sum)
else

write(output_unit,'("Result is correct")')
end if

write(output_unit, ' ("BLAS time: ",E0.2)') end_time -
— start_time
end program dot_omp

The code uses again the !$omp parallel do directive to create a parallel
region and distribute the iterations of the loop among the threads, the
reduction clause is used to specify that the variable c is a reduction
variable, which means that each thread will have its own private copy
of the variable ¢, and at the end of the parallel region the values of the
private copies will be added together to get the final result. We have
used again the /shared(x,y) and !private(i) clauses to specify the
visibility of the data between the threads.

The code for the computation of the 2-norm of a vector which is defined

as:
n

¢ =llxlla = [ >5 7
i=1

is similar, we can use the dnrm2 routine to compute the 2-norm of a vector
x of size n:

c = dnrm2(n, X, incx)

where incx is as usual the increment for the input vector x. Also the
implementation using OpenMP is similar to the one we have seen before,
it suffices to change the do loop as

c=0.0
!$omp parallel do reduction(+:c) shared(x) private(i)
doi=1,n
C = cC + x(i)*x2
end do
!$omp end parallel do
c = sqrt(c)

Exercise 6.2.3 Write a program analogous to the one computing
the dot product to compute instead the 2-norm of a vector using
OpenMP and the BLAS routine dnrm2 to verify the results. Measure
the performance of the code and compare it with the performance
of the BLAS implementation. You can use the same script we have
used to measure the performance of the AXPY operation to measure
the performance of the 2-norm operation. You can again plain around
with the scheduling policies to see how they affect the performance of
the code.

All the other Level 1 BLAS operations

In addition to the BLAS we have discussed, the 1st level BLAS operations
include the operations reported in Table 6.1. The operations are all vector
operations, and they are all defined in the BLAS standard.
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types name (size arguments) description equation flops data
s,d, ¢,z axpy(n, alpha, x, incx, y, incy) update vector y=y+ax 2n 2n
s,d, c,z, scal(n, alpha, x, incx) scale vector y=ay n n
cs, zd
s,d, ¢,z copy(n, x, incx, y, incy) copy vector y=x 0 2n
s,d,c,z swap(n, x, incx, y, incy) swap vectors xXey 0 2n
s, d dot(n, x, incx, y, incy) dot product xTy 2n 2n
cz cdotu(n, x, incx, y, incy) (complex) xTy 2n 2n
Cz cdotc(n, x, incx, y, incy) (complex conj) xHy 2n 2n
sds,ds  dot(n, x, incx, y, incy) (internally double xTy 2n 2n
precision)
s, d, sc, nrm2(n, x, incx) 2-norm | x]|2 2n n
dz
s, d, sc, asum(n, x, incx) 1-norm || x]|1 n n
dz
s,d, ¢,z iamax(n, x, incx) co-norm E9|PS n n
s,d,c,z rotg(a, b, c, s) generate  plane o(1) 0@
(Givens’) rotation
(c real, s complex)
s,d,c,z+ rot(n, x, incx, y, incy, c, s) apply plane rota- 6n 2n
t tion (c real, s com-
plex)
cs, zd rot(n, x, incx, y, incy, c, s) apply plane rota- 6n 2n
tion (c & s real)
s, d rotmg(dl, d2, a, b, param) generate modified o) 0O(@1)
plane rotation
s, d rotm(n, x, incx, y, incy, param) apply modified 6n 2n

plane rotation

6.2.2 Level 2 BLAS

The level 2 BLAS define operators that involve vectors and matrices,
such as

GEMYV : Computes the vector sum y = aAx + py, where «, § are scalars,
x and y are vectors. and A is a two-dimensional matrix;

GER : Computes the rank-1 update A = axy ™ + A, where «a is a scalar,
x,y are vectors and A is a two-dimensional matrix;

TPSV and [TRSV]: Solve a triangular system of equations Ax = b, where
A is a triangular matrix and b is a vector;

If the vectors involved are of size n and the matrices of size n X n, then
the level 2 BLAS operators involve O(nz) arithmetic operations, hence
the name.

Let us try to write a simple Fortran program that uses the Level 2 BLAS
routines to compute the GEMV operation. The GEMV operation, in its
general form, is defined as:

y = aAx + By (6.1)

where @ and f are scalars, and A is a matrix of size m X n, x is a vector
of size n, and y is a vector of size m.

The following Fortran code demonstrates how to use the GEMV routine
from the BLAS library:
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program gemv_blas
use iso_fortran_env, only: real64, output_unit, error_unit
implicit none
integer :: m, n, lda
real(real64) :: alpha, beta
real(real64), allocatable :: A(:,:), x(:), y(:)

character(len=100) :: m_str, n_str
real(real64) :: start_time, end_time, elapsed_time
integer :: i,j,info

! Read m and n from command line arguments

if (command_argument_count() < 2) then
write(error_unit, '("Usage: gemv_blas <m> <n>")")
stop

end if

call get _command_argument(l, m_str, status=info)

call get_command_argument(2, n_str, status=info)

if (info /= 0) then
write(error_unit, '("Error reading command line
— arguments")')
stop

end if

read(m_str, *) m

read(n_str, *) n

! set parameters

lda =m
alpha = 1.0d0
beta = 1.0d0

allocate(A(lda, n), x(n), y(m),stat=info)
if (info /= 0) then
write(error_unit, '("Error allocating memory")")
stop
end if
! Initialize matrix A and vectors x and y
doi=1,m

doj=1,n
A(i, j) = real(i + j, kind=real64)
end do
end do

doi=1,n
x(1) = real(i, kind=real64)
end do
doi=1,m
y(i) = real(i, kind=real64)
end do
! Compute the matrix-vector product using BLAS gemv
call cpu_time(start_time)
call dgemv('N', m, n, alpha, A, lda, x, 1, beta, y, 1)
call cpu_time(end_time)
elapsed_time = end_time - start_time
write(output_unit, '("BLAS dgemv time: ", E0.6)') elapsed_time
! Free allocated memory
deallocate(A, x, y, stat=info)
if (info /= 0) then
write(error_unit, '("Error deallocating memory")')
stop
end if
end program gemv_blas

The routine which executes the GEMV operation is dgemv, where the first



argument is the transposition flag, the second argument is the size of the
matrix, the third argument is the size of the vector, the fourth argument
is the scalar a, and the fifth and sixth arguments are the input matrix
A and vector x. The seventh argument is the increment for the input
vector x, and the eighth argument is the scalar . The ninth argument is
the input vector y, and the last argument is the increment for the input
vector y:

call dgemv('N', n, m, alpha, A, lda, x, incx, beta, vy,
< incy)

Observe also that the GEMYV routine is called with the d prefix, which
indicates that the routine operates on double-precision floating-point
numbers. The 1da argument is the leading dimension of the matrix A,
which is the size of the first dimension of the array that stores the matrix
A. The leading dimension is used to specify the memory layout of the
matrix, and it is used to access the elements of the matrix in memory, i.e.,
it needs to be the actual size of the first dimension of the array that stores
the matrix A.

Let us look at how the GEMV operation can be parallelized employing
OpenMP directives®.

First we need to write (6.1) in a form that is more suitable for paralleliza-
tion:

yi=a >, Aijxj + By (6.2)

j=1
wherei =1,...,mand j = 1,...,n. The first idea we may have is to
parallelize the outer loop, i.e., the loop over i. This seems a good idea,
since the computation of y; does not depend on the computation of y;
for j # i, using the OpenMP directive we have alread seen we can write
a subroutine:

subroutine gemv_openmp_n(m, n, alpha, A, lda, x, beta, y)
use iso_fortran_env, only: real64
use omp_lib
implicit none

integer, intent(in) m, n, lda
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda, *)
real(real64), intent(in) :: x(*)
real(real64), intent(inout) :: y(x)
real(real64) :: ddot

integer :: i

real(real64) :: temp

!'$omp parallel do private(i,temp) shared(m, n, A, x, y, alpha,
— beta)
doi=1,m
temp = ddot(n, A(i,1:n), 1, x, 1)
y(i) = alpha * temp + beta * y(i)
end do
I'$omp end parallel do
end subroutine gemv_openmp_n

The question is: how are we accessing the memory? We are processing
the memory in n-blocks with a stride of m—see Figure Figure 6.2—which
is suboptimal as it leads to inefficient memory bandwidth utilization. The
vector y is accessed sequentially, allowing it to be stored in registers. If n
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6: The next example of codes are differ-
ent implementations of the GEMV rou-
tine, it could be a good idea to creaet
a Fotran module which contains them,
and then use the use statement to import
the module in the code that will run the
performance (and correctness) tests. This
will allow us to have a cleaner code, and
to reuse the code in different programs.
The module can be created using the
module statement and the end module
statement.

Listing 6.1: Example of Fortran module
to house the GEMV operation.

module gemvmod
use iso_fortran_env
use omp_lib
implicit none
private
public ::

contains

Here we define the

! subroutine that will

! compute the GEMV

! operation and whose

]

]

1

! subroutine names

name will be put
after the public
I statement
end module gemvmod

y A X

n

Figure 6.2: The GEMV operation. The
matrix A is of size m X n, the vector x
is of size n, and the vector y is of size
m. The shaded cells are the ones that
are accessed in the computation of the
GEMYV operation.
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n

Figure 6.3: The GEMV operation. The
matrix A is of size m X n, the vector x
is of size n, and the vector y is of size
m. The shaded cells are the ones that
are accessed in the computation of the
GEMYV operation.

is small, the vector x can be reused efficiently at the cache level. However,
due to the irregular access pattern of the matrix A, this approach is not
well-suited for column-major matrices, which are the default storage
format in Fortran. To improve performance, we can start by considering
a different scheduling and blocking policy while first maintaining the
same looping structure:

subroutine gemv_openmp_n_block(m, n, alpha, A, lda, x, beta, y)
use, intrinsic :: iso_fortran_env, only: real64
use omp_lib
implicit none

integer, intent(in) trm, n
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda, *)
integer, intent(in) :: lda
real(real64), intent(in) troX(*)
real(real64), intent(inout) :: y(x*)

! Local variables

integer :: i, j

real(real64) :: temp

real(real64) :: ddot

!$omp parallel do schedule(dynamic,32) private(i,j,temp)
— Sshared(m,n,A,x,y,alpha, beta)

doi=1,m

temp = ddot(n, A(i,1l:n), 1, x, 1)
y(i) = alpha * temp + beta * y(i) ! scale-add update
end do

I$omp end parallel do
end subroutine gemv_openmp_n_block

The code above uses the !$omp schedule directive to specify that the
iterations of the loop over i should be scheduled dynamically in chunks
of 32 iterations. This means that each thread will process a chunk of 32
iterations at a time, and when it finishes processing the chunk, it will
request another chunk of 32 iterations to process. This allows the threads
to balance the workload dynamically, and it can improve the performance
of the code. The choice of the chunk size is important, and it can affect
the performance of the code. A chunk size that is too small can lead to
overhead due to the scheduling of the threads, while a chunk size that is
too large can lead to load imbalance among the threads due to caching
effects. The optimal chunk size depends on the size of the problem and
the size of the cache. One can experiment with different chunk sizes to
find the optimal one for a given problem size/machine configuration.

An alternative approach involves swapping the order of the loops,
effectively computing the entries by m-blocking—see Figure Figure 6.3.
Since the matrix A is stored in column-major order, this allows A to be
read sequentially, optimizing memory access. Each element of the vector
x is loaded into registers and reused efficiently. The vector y is accessed
in every iteration, but if its size is smaller than the cache capacity, it can
be reused at the cache level. This approach is particularly well-suited for
GEMV operations with small m, as it takes advantage of the memory
hierarchy for better performance, this can be coded as:

subroutine gemv_openmp_m(m, n, alpha, A, lda, x, beta, y)
use iso_fortran_env, only: real64
use omp_lib
implicit none



integer, intent(in) :: m, n, lda
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda, *)

real(real64), intent(in) :: x(n)
real(real64), intent(inout) :: y(m)
integer :: i

y = beta * y ! Update y with beta * y
!$omp parallel do private(i) shared(A, x, alpha)
— reduction(+:y)
doi=1,n
call daxpy(m, alpha*x(i), A(l:m,i), 1, vy, 1)
end do
!$omp end parallel do
end subroutine gemv_openmp_m

The third approach would be to tile the matrix A into blocks of size
1y X1y, and then compute the GEMV operation on each block; see Figure
Figure 6.4. This is a good approach if the matrix A is large enough, and
it allows us to take advantage of the cache hierarchy. The code for this
approach is similar to the one we have seen before, but we need to add
an outer loop that iterates over the blocks of the matrix A. The code
for this approach is a simple example of divide-and-conquer approach,
where we divide the problem into smaller subproblems and solve each
subproblem by a call to the sequetial GEMV operation. An example of
this approach can be coded as’:

subroutine gemv_openmp_tiled(m, n, alpha, A, lda, x, beta, y, n_x,
- n.y)

use iso_fortran_env, only: real64

use omp_Llib

implicit none

integer, intent(in) :: m, n, lda

real(real64), intent(in) :: alpha, beta

real(real64), intent(in) :: A(lda, =)

real(real64), intent(in) :: x(n)
real(real64), intent(inout) :: y(m)
integer, intent(in), optional :: n_x, n_y

real(real64), allocatable :: yloc(:)
! local variables

integer :: n_x_, n_y_

integer :: i, j, ti, mb, nb

! set tile sizes or defaults

if (.not. present(n_x)) then

n_x_ = 32
else

n_X_ = n_X
end if
if (.not. present(n_y)) then

n_y_ = 32
else

n_y_ = n.y
end if
! scale y by beta
y = beta * vy

!'$omp parallel default(none) &
I'$omp shared(A, x, y, m, n, lda, alpha, n_x_, n_y_) &
I$omp private(i,j,ti,tj,mb,nb,yloc)

allocate(yloc(m))
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n

Figure 6.4: The GEMV operation. The
matrix A is of size m X n, the vector x
is of size n, and the vector y is of size
m. The shaded cells are the ones that
are accessed in the computation of the
GEMYV operation.

7: Observe that in general the tile sizes
ny and n, may not divide exactly the
matrix size m and n, hence we need to
handle the case where the last tile is
smaller than 71, and 7y, This can be done
by using the min function to compute the
size of the last tile.



We havd used in the code the optional
keyword in the subroutine argument list,
whyB aflows Baleg BloHRs! e
guments n_x and n_y are optional. This
means that we can call the subroutine
without specifying these arguments, and
the default values will be used. To check
if the arguments are present, we can
use the present function, which returns
.true. if the argument is present, and
.false. otherwise. Another important
point we had alread remarked is that the
BLAS DGEMYV routine expects its LDA
argument to be the first dimension of
the original array A(lda, =), not the local
tile height, since this is used internally to
ensure that each tile addresses memory
correctly.

Listing 6.2: Forward substitution algo-
rithm.

subroutine fwd_subs(A, b, x)
implicit none

integer :: i, j
real(real64), intent(in) ::
- A(:,:)

real(real64), intent(in) :: b(:)
real(real64), intent(out) ::
— x(size(b))
integer :: n
n = size(b)
x(1) = b(1)/A(1,1)
doi=2,n
x(1) = b(i)
doj =1, i-1
x(i) = x(i) -
end do
x(1i) = x(i)/A(i,1)
end do
end subroutine fwd_subs

A(1,3)*x(3)

e Dense Linear Algebra

yloc = 0.0_real64
! Tile the i-j loops; collapse for better load balance
!$omp do collapse(2) schedule(static)
doi=1, m,
do j =1, n, n_y_
mb = min(n_x_, m - i + 1) ! handle edge tiles
nb = min(n_y_, n - j + 1)
! perform the small GEMV into the thread-local yloc
call dgemv('N', mb, nb, alpha, &
A(i, j), lda, &
x(j), 1, &
1.0_real64, yloc(i), 1)

n_x_

end do
end do
!'$omp end do
! Safely accumulate thread-local yloc into global y
do ti =1, m
I$omp atomic
y(ti) = y(ti) + yloc(ti)
end do
deallocate(yloc)
I$omp end parallel
end subroutine gemv_openmp_tiled

With respect to the previous example, we have exploited new OpenMP
directives, first we have used the /collapse(2) directive, which allows
us to collapse the two loops into a single loop, this allows us to have a
better load balance between the threads, and to use a better scheduling
policy. We have also used the /omp atomic directive, which allows us
to safely update the global vector y with the local vector yloc. This is
important since we are updating the global vector y in parallel, and
we need to ensure that the updates are done in a safe manner. The
lomp atomic directive ensures that the update is done in a safe manner,
and that the updates are done in the correct order.

Observe also that for the default tile sizes we have used the values 32 for
both 1, and 1y, the way in which this value should be set is not trivial,
and follows consideration about the cache size and the memory hierarchy
of the machine. The idea is to use a tile size that is small enough to fit in
the cache, but large enough to allow for good memory access patterns.
The tile size should be chosen based on the size of the cache, the size
of the matrix, and the size of the vector. As a first approximation, 32 is
usually a good guess, but if your objective is to squeeze the last drop of
performance out of your machine, you should experiment with different
tile sizes to find the optimal one for your machine.

Exercise 6.2.4 Write a program that uses the BLAS GEMV routine
to compute the GEMV operation, and compare the performance of
the BLAS implementation with the performance of the OpenMP
implementations. You can adapt the same Python script we have used
to measure the performance of the AXPY operation to measure the
performance of the GEMV. It is also a good idea to play around with
the scheduling policies to see how they affect the performance of the
code.

Not all the Level 2 BLAS operations are amenable to parallelization, for



example the trsv operation, which solves the system of equations

(ay, 0 0 - 0
a1 dapp 0 s 0
Ax=b, A= . . ) . .| or
an1  Ap2  an3 Ann
a1 41 43 A1n
0 asn 0 0
A= 0 0 as 0
0 0 0 Ann

where A is a triangular matrix, x is the solution vector, and b is the
right-hand side vector. The trsv operation is not parallelizable since
the solution of the system of equations is done in a sequential manner,
i.e., we need to solve the system of equations for x; before we can solve
the system of equations for x;,;—if the matrix A is lower triangular
Listing 6.2—or we need to solve the system of equations for x; before
we can solve the system of equations for x;_;—if the matrix A is upper
triangular Listing 6.3. The are options for treating the case of sparse (lower
or upper) triangular matrices via iterative methods, or other specialized
algorithms. We will come back to this in Chapter 7 on page 87.

In general, when we have to design an algorithm which we expect to
be parallelizable, it is a good idea to avoid as much as possible solution
of triangular systems since this is a classical example of bottleneck in
parallel algorithms.

All the other Level 2 BLAS operations

As we have seen, expressing parallelism at the level of the Level 2 BLAS is
already more challenging than at the level of the Level 1 BLAS. The reason
is that the Level 2 BLAS operations are all matrix-vector operations, and
the dependencies between the elements of the matrix and the vector
are more complex than the dependencies between the elements of the
vector in the Level 1 BLAS operations, i.e., this gave us the opportunity
to discuss the treatment of different data layouts, and the impact of the
memory hierarchy on the performance of the code.

The level 2 BLAS operations include more operations than the one we
have discussed, as we have done for the Level 1 BLAS, we report in Table
Table 6.3 on the following page the full list of operations. As you can see,
the level 2 BLAS operations are all matrix-vector operations and are all
of quadratic complexity.

We also need to mention the existence of a special case of the level 2 BLAS
which involves the use of band storage. This is a special case of the level
2 BLAS which is used to store banded matrices. In BLAS, packed storage
formats are used for banded and triangular banded matrices to improve
efficiency by storing only the nonzero elements. A banded matrix has
nonzero entries confined to a diagonal band around the main diagonal.
If a matrix has kI sub-diagonals (below the main diagonal) and ku super-
diagonals (above the main diagonal), it is stored in a two-dimensional
array of size (kI + ku + 1) X n, where n is the number of columns. The
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Table 6.3: Level 2 BLAS Operations

types name (size arguments) description equation flops data

s, d, ¢ z gemv(trans, m, n, alpha, A, general matrix-vector y =aAx +py 2mn mn
lda, x, incx, beta, vy, multiply
incy)

C z hemv(uplo, n, alpha, A, lda, Hermitian y = aAx + By 2n? n?/2
x, incx, beta, y, incy) matrix-vector mul.

s,d+t symv(uplo, n, alpha, A, lda, symmetric Yy = aAx + By 2n? n?/2
X, incx, beta, y, incy) matrix-vector mul.

s,d, ¢ z trmv(uplo, trans, diag, n, triangular x=ATx n? n2/2
A, lda, x, incx) matrix-vector mul.

s, d, c z trsv(uplo, trans, diag, n, triangular solve x=Alx n? n2/2
A, lda, x, incx)

s, d, c ger(m, n, alpha, x, incx, y, general rank-1update A=A +axy’ 2mn mn
incy, A, lda)

s, d geru(m, n, alpha, x, incx, general rank-1 A=A+axy’ 2mn mn
y, incy, A, lda) update(complex)

C,z gerc(m, n, alpha, x, incx, general rank-1 A:A+axyH 2mn mn
y, incy, A, lda) update(complex conj)

s, d+t syr(uplo, n, alpha, x, incx, symmetric rank-1 A=A+axxT n? n2/2
A, lda) update

c,z her(uplo, n, alpha, x, incx, Hermitian rank-1 A=A+ axxl n2 n2/2
A, lda) update

s, d syr2(uplo, n, alpha, x, symmetric rank-2 A= 212 n2/2
incx, y, incy, A, lda) update A+ axyl + ayxT

I/ her2(uplo, n, alpha, x, Hermitian rank-2 A= 212 n2/2
incx, y, incy, A, lda) update A+axyH +y(xH)

Figure 6.5: Banded matrix with kI sub-
diagonals and ku super-diagonals.

main diagonal is stored in row ku of the packed array. Super-diagonals
are stored above row ku, and sub-diagonals below. For a matrix element
A(i, j), the corresponding element in the packed array AB is located at
AB(ku +i—7j,j).

A triangular banded matrix is either upper or lower triangular with a
specified bandwidth k. For an upper triangular banded matrix, the main
diagonal and up to k super-diagonals are stored; for a lower triangular
banded matrix, the main diagonal and up to k sub-diagonals are stored.
The storage array has dimensions (k + 1) X n. In the upper triangular
case, the packed mapping is AB(k+i—j,j) fori < jand j —i < k; in the
lower triangular case, itis AB(i —f,j) fori > jand i — j < k. In ?? we
show the list of the level 2 BLAS operations that are defined for banded
matrices and require the use of packed storage.

6.2.3 Level 3 BLAS

The level 3 BLAS define operators that involve matrices, such as

GEMM : Computes the matrix C = aAB + fC, where a, f are scalars,
and A, B, C are matrices;

SYR2K : Computes the symmetrix rank-2 update C = ¢ABT + aBA™ +
BC, where « is a scalars and A, B, C are matrices;

If the matrices involved are of size n X 1, then the level 3 BLAS operators
involve O(n®) arithmetic operations (given O(12) accesses to data), hence
the name.

We are going to look into the GEMM operation in more detail, since it
is the one which is most amenable to parallelization, and it is one of
the most used in practice. As we have done for the level 2 BLAS GEMV
operation, let us start from the mathematical formulation of the GEMM
operation, which is given by



B = 0.0, and the result is stored in C. The following code shows how to
call the GEMM operation in Fortran:

program gemm_blass

use iso_fortran_env, only: real64, output_unit, error_unit

implicit none

character(len=100) :: n_str, m_str, k_str

integer :: n, m, k, info

real(real64), allocatable :: a(:,:), b(:,:), c(:,:)

! Read from command line arguments n, m, Kk

if (command_argument_count() < 3) then
write(error_unit, =) "Usage: gemm_blass n m k"
stop

end if

call get_command_argument(1l, n_str)

call get_command_argument(2, m_str)

call get_command_argument(3, k_str)

read(n_str, *) n

read(m_str, *) m

read(k_str, =) k

! Check if n, m, k are positive integers

if (n <= 0 .or. m <= 0 .or. k <= 0) then

write(error_unit, '("n = ",I10,", m = ",I0,", k = ",I0,"
— must be positive integers")') n,m,k
stop

else
write(output_unit, '("n = ",I10,", m = ",I0,", k = ",I0)")
— n,m,k

end if

! Allocate matrices

allocate(a(n,k), b(k,m), c(n,m), stat=info)

if (info /= 0) then
write(error_unit, %) "Error allocating matrices"
stop

end if

! Initialize matrices

call random_number(a)

call random_number(b)

call random_number(c)

! Perform matrix multiplication using BLAS

call dgemm('N', 'N', n, m, k, 1.0d0, a, n, b, k, 1.0d0, c, n)

! Free matrices

deallocate(a, b, c, stat=info)

if (info /= 0) then
write(error_unit, *) "Error deallocating matrices"
stop

end if

end program gemm_blass

The code is very simple, and it is similar to the one we have seen for the
GEMYV operation, it also uses the dgemm routine, which is the one that
implements the GEMM operation in the BLAS library and is called as
follows:

call dgemm(transa, transb, m, n, k, alpha, A, lda, B, ldb, beta,
— C, ldc)

where transaand transb are the transposition options for the matrices A
and B, respectively, m, n, and k are the dimensions of the matrices, alpha
and beta are the scalars, and 1da, 1db, and ldc are the leading dimensions
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of the matrices A, B, and C, respectively. The leading dimension is the
first dimension of the array that stores the matrix in memory.

To see how the GEMM operation can be parallelized, we need to look at
the mathematical formulation of the GEMM operation, which is given

by

k
Cij = (XZA,‘]BU +,3Cij; i=1,...,m,j=1,...,n. (6.4)
I=1
First of all, let us express the GEMM operation as a looped operation
plainly in Fortran:

subroutine matmul_ijl(n,m,k,alpha,A,6B,beta,C)
use iso_fortran_env, only: real64

implicit none

integer, intent(in) :: n, m, k

real(real64), intent(in) :: alpha
real(real64), intent(in) :: A(n,k)
real(real64), intent(in) :: B(k,m)

real(real64), intent(in) :: beta
real(real64), intent(inout) :: C(n,m)
! Local variables

integer :: i, j, 1

real(real64) :: sum

! Matrix multiplication
! C = alpha *x A x B + beta * C
doi=1,m

doj=1,n
C(i,j) = beta * C(1i,j)
do 1l =1, k
C(i,j) = C(i,j) + alpha * A(i,1) * B(l,j)
end do
end do
end do

end subroutine matmul_ijl

The above code is a straight formula-to-code implementation of the
GEMM operation as we have writte in (6.4). If we look at the code, we
can observe that we can swap the order of the outer two loops, i.e., we
can loop over the columns of the matrix C first, and then over the rows
of the matrix C, i.e.,

subroutine matmul_jil(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64

implicit none

integer, intent(in) :: n, m, k

real(real64), intent(in) :: alpha
real(real64), intent(in) :: A(n,k)
real(real64), intent(in) :: B(k,m)

real(real64), intent(in) :: beta
real(real64), intent(inout) :: C(n,m)
! Local variables

integer :: i, j, 1

real(real64) :: sum

! Matrix multiplication
! C = alpha * A * B + beta x C
doj=1,m
doi=1,n
C(i,j) = beta * C(i,j)



do 1 =1, k
C(i,j) = C(i,j) + alpha = A(i,1) = B(1,j)
end do
end do

end do
end subroutine matmul_jil

Do you think this is a good idea? Let us try and measure the performance
of the two variants of the code. We can write a simple wrapper calling
the two subroutines on three randomly generated matrices, and measure
the time over 100 repetitions:

program matmul_sequential
use iso_fortran_env, only: real64, output_unit
implicit none
integer, parameter :: n = 1000
real(real64) :: A(n,n), B(n,n), C(n,n)
real(real64) :: alpha, beta
real(real64) :: start_time, end_time, elapsed_time
integer :: rep
! Initialize matrices A and B
call random_number(A)
call random_number(B)
call random_number(C)
! Set alpha and beta
alpha = 1.0d0
beta = 1.0d0
! Perform matrix multiplication with matmul
elapsed_time = 0.0d0
do rep = 1, 100
call cpu_time(start_time)
call matmul_ijl(n,n,n,alpha,A,B,beta,C)
call cpu_time(end_time)
elapsed_time = elapsed_time + (end_time - start_time)
end do
write(output_unit,*) 'Average time for matmul_ijl:"',
— elapsed_time/100.0d0
elapsed_time = 0.0d0
do rep = 1, 100
call cpu_time(start_time)
call matmul_jil(n,n,n,alpha,A,B,beta,C)
call cpu_time(end_time)
elapsed_time = elapsed_time + (end_time - start_time)
end do
write(output_unit,*) 'Average time for matmul_jil:',
— elapsed_time/100.0d0
! Exit the program with a success status
stop
end program matmul_sequential

Since we are looking for performance, we compile the code with the
-03 optimization flag, and the -mtune=native and -march=alderlake
flags, which are used to optimize the code for the specific architecture of
the machine we are using. After running the code, we get the following
output:

Average time for matmul_ijl: 0.37526105999999992
Average time for matmul_jil: 0.15405741999999961
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As you can see, the second version of the code is about 2.6 times faster
than the first one. Indeed, in the second version of the code, we have
improved the memory access pattern by accessing the elements of the
matrix C in a column-major order, which is the same order in which
the elements are stored in memory. As we have discussed in Section 4.1,
modern CPUs fetch memory in cache lines and benefit when loops stride
through memory sequentially. In this regard, the second version of the
code is better than the first one, nevertheless, we can still improve the
performance of the code by using a yet better memory access pattern. If
we select the (j, [, i)-ordering of the loops:

» The innermost loop is i, so each iteration reads A(i, ) and C(i, j)
contiguously (first index varies);

» B(l, j) is constant inside the inner loop (with fixed ! and j), so it
can be held in a register (or broadcast) while sweeping through a
whole column of A and C;

» Over I (middle loop), A(:, 1) (column of A) and B(:, j) (column of
B) are accessed sequentially; both are contiguous in memory for
fixed j;

» Over j (outer loop), each column of C is computed in turn.

Namely, we can write the code as follows:

subroutine matmul_jli(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha
real(real64), intent(in) :: A(n,k)
real(real64), intent(in) :: B(k,m)

real(real64), intent(in) :: beta
real(real64), intent(inout) :: C(n,m)
! Local variables
integer :: i, j, 1
! Matrix multiplication
C = beta * C
! Compute C += alpha * A * B
do j=1,n
do 1 =1, k

doi=1,m
C(i,j) = C(i,j) + alpha = A(i,1l) =* B(1l,j)
end do
end do
end do
end subroutine matmul_jli

This order achieves unit-stride access on all arrays by using memory
in cache-line order, in Fortran terms, the first index (row) is looped
innermost, which maximizes locality. Indeed if repeat the previous
experiment by adding the measure for the new code, we get:

Average time for matmul_ijl: 0.37526105999999992
Average time for matmul_jil: 0.15405741999999961
Average time for matmul_jli: 9.1884539999999792E-002

The new code is about 1.5 times faster than the previous one, and
about 4 times faster than the first one; see Figure 6.6 for a graphical



representation of the performance of the three versions of the code and
the time measured for the OpenBLAS implementation of the DGEMM.

Exercise 6.2.5 Reimplement this experiment on your own machine, and
measure the performance of the three versions of the code and version
of the BLAS you have installed. You can use the -03 optimization flag,
and the -mtune=native and -march=<- - - -> flags, which are used to
optimize the code for the specific architecture of the machine you are
using. Try also other computing loads by varying the size of the matrices,
and see how the performance of the code changes.

Please note that with these examples we have just begun to explore the
coding techniques that are needed to achieve peak performance: a very
substantial amount of work would still be necessary to arrive at a level of
performance comparable to that of most BLAS implementations.

6.2.4 Performance consideration for the BLAS

The BLAS were designed to solve a major problem: different computer
architectures typically require different coding techniques to achieve
optimal performance. This entails the need to recode algorithms for every
new major computing platform, which is clearly unsustainable in the
long term given the complexity of coding algorithms in an efficient and
stable manner.

The solution to this major problem revolves arount the idea of the BLAS:

1. Design and code algorithms based on the BLAS operators;
2. Reimplement “only” the BLAS operators for new computer archi-
tectures.

By and large, the above strategy has worked effectively, indeed the
success of LAPACK is based precisely on the peformance portability of
the BLAS.

Note that most modern computer architectures are based on proces-
sors connected to a memory hierarchy, designed to alleviate the speed
differential beween the processor and the main memory access; these
hierarchies are based on the idea of reusing data as much as possible
whenever it has been accessed. This concept of data reuse naturally
matches the design of the level 3 BLAS, where we access O(n?) data to
perform O(n®) operations, thus providing the potential to reuse each
data item # times.

Itis also possible to build the entire BLAS library around an efficient imple-
mentation of GEMM plus a few additional support routines, see [29].
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three different ordering of the do loops
together with the DGEMM implementa-
tion of the OpenBLAS.

Modern compilers are very sophisticated,
and some of the techniques that once
were necessarily implemented “by hand”
can now be delegated to the compiler,
possibly under the control of directives
as in OpenMP






Sparse Matrices and Iterative
Solvers

7.1 Introduction

What is a sparse matrix? The most famous definition of “sparse matrix” is
attributed to James Wilkinson, one of the founding fathers of numerical
linear algebra [30]:

Any matrix with enough zeros that it pays to take advantage
of them.

Sparse linear systems (and sparse eigenvalue problems) often arise in
the solution of Partial Differential Equations, and in the sequel we will
almost always assume that this is the case; other sources exist, but they
often exhibit somewhat different features, and we will not discuss them
in detail.

Solving PDEs in a closed, analytic form is almost always impossible,
and even when it is possible, it is by no means guaranteed that this will
lead to the most accurate solution. Therefore, when faced with PDEs,
we typically have to discretize and linearize them; there are multiple
techniques to perform these steps, but for the most part they share the
same general appearance:

» The original PDE domain is partitioned, and only O(1) variables
and equations are associated with each partition;

» Each equation only contains a limited number of nonzero coeffi-
cients k; moreover, k is bounded independently of the size n of
the domain (and of the linear system), and is determined by local
topological features.

These facts tend to push towards a different way of organizing the data
layout, as well as handling the interaction with the discretization mesh
these problems come from.

Another extremely important point about sparse problems is that they
almost always require iterative solution strategies. To see why this is the
case, we need to consider two major factors.

The first one is that when an n X 1 matrix A is sparse, its storage requires
much less than n? memory; indeed, if the number of nonzeros per
row is O(1), that is, it is bounded independently of n, it is possible to
store A using only O(n) memory by storing explicitly only the non-zero
coefficients together with their indices, and this is very often the case in
a PDE context.

The fact that matrix A only takes up O(n) memory is extremely important
in that 7 is typically related to the degree of refinement of the mathemati-
cal model; thus, a linear storage cost will encourage the use of much more
refined models (given the same amount of memory available), entailing
much larger values for n.

The second factor emerges from the factorization strategies we describe
in Section 6.2 and Section 8.1: the update steps in Algorithm 7 tend to
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introduce non-zeros into positions that in the original matrix where zeros
(and thus not stored explicitly). This phenomenon is called fill-in and
ultimately limits the effectiveness of factorization strategies when applied
to sparse problems: since a cheap storage footprint O(n) encourages to
use much larger values of 7, fill-in leads to excessive memory pressure
by growing the number of nonzeros.

The ideal situation would be to require that the storage associated with
A remains the same throughout the solution process: this is exactly
what happens with iterative solvers, where the matrix is only employed to
perform operations that do not alter its structure such as matrix-vector
multiplications.

7.1.1 A simple iterative solver

Let us consider the following iteration (Richardson):
Xpi1 = Xg + w(b — Axy). (7.1)

If the scalar w is such that ||I — wA|| < 1, then the iteration converges
and the residual (b — Axy) becomes negligible, or

X = lim xy, Ax =D,
k—co
with the obvious caveat that in practice we stop the iteration as soon as
Xk is “good enough”.

The notion of “good enough” is usually implemented by computing the
norm of the residual, typically scaled against the norm of the RHS, and
comparing it with a tolerance:

[[b = Axl

—— <1 (7.2)
l1oll

Thus the basic ingredients of any simple iterative solver can be listed as

follows:

1. Matrix-vector products;
2. Vector sums;

3. Vector norms;

4. Vector dot products.

There are many possible ways to combine these ingredients in defining
an iterative solver; the previous method 7.1 is just a very simple example,
and much more sophisticated methods have been developed over the
years.

7.1.2 Classical iterative solvers
Let us now state a slightly modified version of of 7.1
Xke1 = Xk + M7H(b — Axy), (7.3)

where M is a linear operator (preconditioner) that formally transforms
Ax = b into MAx = Mb, and ideally satisfies the properties:



1. M is easy to compute;
2. M~ is easy to apply;
3. MTTA~ I

Different choices for M give rise to many iterative methods, including
common ones like Jacobi, Gauss-Seidel, Chebychev. From the point of
view of the software kernels that we need to develop for a complete
implementation we have practically covered all of them (save for the
sparse triangular system solution, which however can be easily derived
from the matrix-vector code).

7.1.3 Krylov solvers and preconditioners

Unfortunately the methods that can be derived from 7.3 are not efficient
enough for large scale problems. The algorithms of choice to solve
very large scale problems are currently drawn from the class of Krylov
subspace iterations, preconditioned with many different strategies. We
will very briefly recall here two of the main Krylov methods, Conjugate
Gradients (CG) and Generalized Minimum Residual (GMRES), and give
some ideas about preconditioning; for a thorough introduction to the
subject see [31].

Conjugate Gradients

The first method we describe is the famous Conjugate Gradients method,
which is applicable when the matrix A is symmetric positive definite
(SPD). We start from its original derivation by defining an equivalent
minimzation problem:

min ¢(x) = %xTAx —xTh. (7.4)
X

That this is equivalent to our linear system can be easily seen by applying
the conditions for the minimizer x.:

ming(x) = Vé(x.) =0,
X
and computing the gradient of the function we come back to
Ax,—-b=0,

which is our original problem. An obvious idea is then to start from
an arbitrary point and move along the gradient, which is, after all, the
direction along which the function changes most rapidly:

-Vo(x)=b-Ax=r,

since we want to have a reduction in ¢. If the residual r is nonzero, there
exists & such that

d(xi +ar;) < ¢(x;)

and it can be easily seen that

— T 1T A
a=r;ri[r; Ar;.

7.1 Introduction
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10
11

This is the steepest descent method, which is however not satisfactory
beacuse the gradient at each step is constrained to be orthogonal to the
gradient at the previous step

T —
Tk = 0,

and this may slow down convergence significantly. If we now modify the
search direction as in

Pk = Tk=1 + PkPr-1,

and apply a little bit of algebra, we arrive at the conjugate gradients
method, which has the property that

plApi =0  k#j,

or, the search directions are orthogonal in the inner product induced by the
matrix A. Note that by properly sequencing the operations and providing

Algorithm 2: Conjugate Gradients

Compute r® b — Ax© ;

while r; # 0 do

i—i+1;

if i = 1 then

L p(l) — 0.

else
Bi — —pl | Arii1/pl Api-;
p(l) — r(i_l) + ﬁlp(l_l)/

a; — plria/pl Api;

x(l) «— x(i_l) + alp(l)/

rD — =D — a; Ap;;

some additional storage, the method only requires one matrix-vector
product per iteration.

GMRES

What should we do when the matrix A is not SPD? One possible method
is GMRES, which computes at each step the solution to the minimization
problem

min|[b — Ax||z,

from the vector space Vi built by successive multiplications by A
Vi = span{r, Ar, A%r,..., Akr}.

GMRES requires keeping track explicitly of Vi and therefore is quite
expensive in terms of memory; it is usually implemented in its restarted
(RGMRES) varian, that is, builds Vi up to a certain size m then restarts
the process.
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Algorithm 3: GMRES(m)

1 Compute 1y «— b — Axg, B < ||7rol| and v1 < ro/B;
2 forj=1,...,mdo

Compute wj Av]-;

fori=1,...,jdo

L hij « (wj, v);

wj «— w; — hjjv;;

& G o W

hj1,j < llwjll2. If hjy1,; = 0 then m < jand go to 9;
| Uj+1 < wj/hj+1,j}

@ 3

9 Define the (m + 1) X m Hessenberg matrix H;, = {hij}1<y<m+1,1<j<m ;
10 Compute y,,, the minimizer of ||fe; — Hy y||2 and set
Xm <= X0 + Vm]/m/'

Other Krylov methods

There are many other variants of Krylov subspace methods, among which
we can list BCG, CGS, BiCGSTAB, BiCGSTAB(l), OMR, TFQMR and so
on.

No method is universally better than all the others; the proper choice
will require some experimentation and/or an analysis of the spectral
properties of the linear system matrix A.

7.1.4 Preconditioners

In the method 7.3 we mentioned the use of a linear transformation M
called a preconditioner. An appropriate choice of preconditioner is often
essential to achieve convergence in a reasonable amount of effort. A
preconditioner is a preprocessing for the linear algebraic system

Ax =D, x,beR", Aec R"™", (7.5)

that transforms it into an equivalent one by applying a nonsingular
transformation, for example:

M 'Ax = M7 'b. (7.6)

The choice of the transformation M is usually made so that certain
spectral properties of the coefficient matrix M1 A are more favourable
for the convergence properties of the Krylov methods applied to the
system at hand. Equation (7.6) shows a left preconditioning approach; it
is also possible to apply a right preconditioning,

AMu=b, x=M"1u 7.7)
or a split preconditioning
M{'"AM; 'u = M, x = M u. (7.8)

In the case of A sparse, the transformed matrix MtAis usually not built
explicitly, because

1. The inverse of a sparse matrix is in general dense
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2. The product of two sparse matrices is denser than either of the
factors.

So, what normally happens is that the operator M~ is applied after
matrix A at each step in the method requiring an explicit inversion and a
product.

The preconditioner matrix M should then satisfy three conflicting re-
quirements:

» It should be computed cheaply from A (cfr the setup time in
equation (7.9));

» It should be cheap to apply M~!;

» We should have ||A — M||, |M7}|| and ||I = M~'A|| “small” for
some norm depending on the problem at hand.

The number of iterations needed to attain a prescribed tolerance is a
very important factor but we also need to consider the cost of each
iteration as well as the preprocessing cost. If the choice of M finds a good
tradeoff between the quality of the approximation of A and the cost to
compute and apply M, then the benefit in the number of iterations j can
compensate the setup time and computational overhead per iteration
needed to implement the preconditioning strategy. For example we often
have that the time to solution T, is given by:

T = setup t Nit X Ty, (7.9)

where Tty is the time to build the preconditioner, Nj; the number of
iterations and Tj; the time per iteration.

On the other hand, if either the setup or the application of the M~
operator is too expensive, then the total time may grow.

Taking two extreme examples, if we choose M = I, then both setup and
application are very fast, but the convergence is no better than before.
If, on the other hand, if we choose M = A, then the setup is very easy
and the convergence is very fast, but at each step we would need to solve
the very same problem we started from, and therefore we would end up
with an application phase that costs just as much as the full solution.

The art of preconditioning lies therefore in finding a reasonable trade-off
amonyg all of the previous factors.

Stationary Iterations as Preconditioners

While stationary iteration methods such as the Richardson iteration 7.1
are not very effective in comparison with Krylov subspace methods, the
splittings on which they are based can be used to provide a preconditioner
M. The simplest preconditioner is the (point) Jacobi preconditioner in
which we invert the diagonal D of matrix A. When using these kind of
splittings we usually specify a fixed (and small) number of iterations to
be performed.

Note that to implement the Jacobi iteration we need to implement
multiplication by a vector element by element, whereas to implement
the Gauss-Seidel iteration we need to implement a triangular system
solution for a sparse coefficient matrix.
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Incomplete Factorizations

For a general sparse matrix A the application of a direct solution method
often means computing its LU factorization: if we can afford the compu-
tation of the triangular factors, we can also solve (exactly) a linear system
having A as a coefficient matrix, and we also have a “preconditioner”
that guarantees immediate convergence of iterative methods. The catch
is obvious: the triangular factors are too expensive because of fill-in, i.e.
they contain many more nonzeroes than the original matrix A, and we
can rarely afford their exact computation.

However we can trade the exactness of the factorization for the memory
space, by defining an incomplete factorization as

A=LU0-

where we throw the fill-in onto the residual R (which is dlscarded)
to keep an acceptable sparsity structure in the triangular matrices LU.
Thus a general incomplete factorization may be stated as Algorithm 4 by
referring to a pattern P which discriminates the accepted factorization
entries. Algorithm 4 is written in the customary form overwriting the

Algorithm 4: General Incomplete LU Factorization

fori=2,...,ndo
fork=1,...,i—1do
if (i, k) € P then
Aik < Aik/akk ;
forj=k+1,...,ndo
if (i,j) € P then
L L aij < 4ij — Aikdkj ;

entries of A with the entries of . and U ; in practice, since the iterative
methods will require A for the matrix-vector product, the factors are
stored separately.

That a matrix A admits an incomplete factorization and that the factor-
ization is a good preconditioner are entirely non-trivial propositions;
however there exists a vast class, the so-called M-matrices, for which it
can be proven that such a factorization exists [31, 32], and gives rise to a
convergent splitting, thus guaranteeing a good quality preconditioner.

Algebraic Multigrid Preconditioners

Multilevel methods are often used to build preconditioners for the matrix
A, and are coupled with Krylov methods to solve a linear system Ax = b.
Generally speaking, a multilevel method provides an approximate inverse
of A by suitably combining approximate inverses of a hierarchy of
matrices that represent A in increasingly coarser spaces. This is achieved
by recursively applying two main processes: smoothing, which provides
an approximate inverse of a single matrix in the hierarchy, usually by a
simple iteration, and coarse-space correction, which computes a correction
to the approximate inverse by transferring suitable information from the

7.1 Introduction
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current space to the next coarser one and vice versa, and by computing,
through smoothing, an approximate inverse of the coarse matrix (see [33—
35]).

Our software framework for multigrid preconditioner is detailed in [36].

Final observations

The literature on preconditioners is immense, and it is impossible to do it
justice in these brief notes; some good starting points include [31, 33-35],
whilst our own contributions can be found in e.g. [36-38]. We will not
discuss preconditioners in any further details here, except to underline
that, as we have seen, from a software point of view they require the
availability of two additional kernels:

1. Multiplication/division of two vectors element by element;
2. Solution of a triangular linear system with a sparse coefficient
matrix.

7.2 Sparse Matrix-Vector product

Let us return to the sparse matrix definition by Wilkinson:

Any matrix with enough zeros that it pays to take advantage
of them.

This definition implicitly refers to some operation in the context of which
we are “taking advantage” of the zeros; experience shows that it is
impossible to exploit the matrix structure in a way that is uniformly good
across multiple operators, let alone multiple computing architectures.
The usual two-dimensional array storage is a linear mapping that stores
the coefficient A(I,]) of an M X N matrix at position (] —1) X M + I
of a linear array. This formula assumes column-major ordering used in
Fortran, Matlab and Julia; an analogous formula applies for row-major
storage used in C and Java. Thus representing a matrix in memory
requires just one linear array, and two integer values detailing the size of
the matrix.

Now enter sparse matrices: “taking advantage” of the zeros essentially
means avoiding their explicit storage. But this means that the simple
mapping between the index pair (I, ) and the position of the coefficient
in memory is destroyed. Therefore, all sparse matrix storage formats
are devised around means of rebuilding this map using auxiliary index
information: a pair of dimensions does not suffice any longer. How
costly this rebuilding is in the context of the operations we want to
perform is the critical issue we need to investigate. Indeed, performance
of sparse matrix kernels is typically much less than that of their dense
counterparts, precisely because of the need to retrieve index information
and the associated memory traffic. Moreover, whereas normal storage
formats allow for sequential and/or blocked accesses to memory in the
input and output vectors x and y, sparse storage means that coefficients
stored in adjacent positions in the sparse matrix may operate on vector
entries that are quite far apart, depending on the pattern of nonzeros
contained in the matrix.
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By now it should be clear that the performance of sparse matrix compu-
tations depends critically on the specific representation chosen. Multiple
factors contribute to determine the overall performance:

» the match between the data structure and the underlying com-
puting architecture, including the possibility of exploiting special
hardware instructions;

» the suitability of the data structure to decomposition into indepen-
dent, load-balanced work units;

» the amount of overhead due to the explicit storage of indices;

» the amount of padding with explicit zeros that may be necessary;

» the interaction between the data structure and the distribution of
nonzeros (pattern) within the sparse matrix;

» the relation between the sparsity pattern and the sequence of
memory accesses especially into the x vector.

Many storage formats have been invented over the years; a number of
attempts have also been directed at standardizing the interface to these
data formats for convenient usage (see e.g., [39]).

We will now review two very simple and widely-used data formats:
COOrdinate (COO) and Compressed Sparse Rows (CSR). These two
formats are probably the closest we can get to a “general purpose” sparse
matrix representation. For each format, we will show the representation
of the example matrix in Figure 7.1.

Name Description

M Number of rows in matrix

N Number of columns in matrix

NZ Number of nonzeros in matrix
AVGNZR  Average number of nonzeros per row
MAXNZR  Maximum number of nonzeros per row
NDIAG Number of nonzero diagonals

AS Coefficients array

IA Row indices array

JA Column indices array

IRP Row start pointers array

jcp Column start pointers array

NZR Number of nonzeros per row array
OFFSET Offset for diagonals

7.2.1 COOrdinate

The COO format is a particularly simple storage scheme, defined by the
three scalars M, N, NZ and the three arrays IA, JA and AS. By definition of
number of rows we have 1 < IA(7) < M, and likewise for the columns; a
graphical description is given in Figure 7.2.

Algorithm 5: Matrix-Vector product in COO format

do i=1,nz

ir ia(1i)

jc = ja(i)

y(ir) = y(ir) + as(i)=*x(jc)
end do

Table 7.1: Notation for parameters de-
scribing a sparse matrix

rgif. o |
E siiiisd

Figure 7.1: Example of sparse matrix

AS ARRAY O®®e@o®....

JA ARRAY 1 281 3 9 2 8 «--

IA ARRAY 111222 33 -

Figure 7.2: COO compression of matrix
in Figure 7.1
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ASARRAY O DO P O % @ ---

JA ARRAY 112781139l 2/8]---
IRP ARRAY 114/7/10/14) -

Figure 7.3: CSR compression of matrix
in Figure 7.1

The code to compute the matrix-vector product y = Ax is shown in
Alg. 5; it costs five memory reads, one memory write and two floating-
point operations per iteration, that is, per nonzero coefficient. Note that
the code will produce the result y (to within floating-point rounding
tolerance) even if the coefficients and their indices appear in an arbitrary
order inside the COO data structure.

7.2.2 Compressed Sparse Rows

The CSR format is perhaps the most popular sparse matrix representation.
It explicitly stores column indices and nonzero values in two arrays
JA and AS and uses a third array of row pointers IRP, to mark the
boundaries of each row. The name is based on the fact that the row index
information is compressed with respect to the COO format, after having
sorted the coefficients in row-major order. Figure 7.3 illustrates the CSR
representation of the example matrix shown in Figure 7.1.

Algorithm 6: Matrix-Vector product in CSR format

do i=1,m
t=0
do j=irp(i),irp(i+1l)-1
t =1t + as(j)*x(ja(j))
end do
y(i) =t
end do

The code to compute the matrix-vector product y = Ax is shown in
Alg. 6; it requires three memory reads and two floating-point operations
per iteration of the inner loop, i.e., per nonzero coefficient; the cost of
the access to x(ja(j)) is highly dependent on the matrix pattern and
on its interaction with the memory hierarchy and cache structure. In
addition, each iteration of the outer loop, i.e., each row of the matrix,
requires reading the pointer values irp(i) and irp(i+1), with one of
them available from the previous iteration, and one memory write for
the result.

7.2.3 Sparse Matrix-Vector Product considerations

The previous discussion of COO and CSR has barely scratched the surface
of the possible implementations of the kernels for sparse matrices; as
an example, the article [40] lists 67 different variations, just for usage on
GPUs, and all of them published in just the four preceding years.

From a user point of view, the variability is therefore bewildering; it is also
quite problematic to hardwire a data storage format into your software,
since this will inevitably make the end product inflexible, hard to evolve
and to adapt to new computing architectures and usage conditions.

Moreover, it is a fact that even on a single, given computing architecture,
no individual storage format is likely to be uniformly better than all
others when considering different operations involving the matrix itself.
Encapsulating storage format variations under a uniform outer shell
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allows for having a single entry point with no need for conditional
compilation in the case in which the user is actually running in serial
mode.

The usefulness of having an object with the ability to switch among
different types was recognized long ago; as early as 1983 we find the
following statement in [41], Section 4.12:

Often a seemingly simple representation problem for a set
or mapping presents a difficult problem of data structure
choice. Picking one data structure for the set makes certain
operations easy, but others take too much time and it seems
that there is no one data structure that makes all the opera-
tions easy. In that case the solution often turns out to be the
use of two or more different structures for the same set or

mapping.

It is therefore desirable to have a flexible framework that allows to switch
among different formats as needed, even at runtime.

7.2.4 Design Patterns: the “State” Pattern

In the Object Oriented Design of software, the term “Design Pattern”
denotes an accepted best practice in the form of a common solution to a
software design problem that recurs in multiple contexts [42, 43].

The State pattern in Object Oriented Design is a behavioral pattern that
involves encapsulating an object’s state behind an interface in order to
facilitate varying the object’s type at runtime. Figure 7.4 shows a UML
class diagram of the State pattern, including the class relationships and
the public methods. The methods described in an OOD typically map to
the type-bound procedures in Fortran OOP.

Let us consider the problem of switching among different storage formats
for a given object. Before the dawn of OOP, a common solution involved
defining a data structure containing integer values that drive the inter-
pretation and dispatching of the various operations on the data. This
older route complicates software maintenance by requiring the rewriting
and recompiling of previously working code every time one incorporates
a new storage format. A more modern, object-oriented strategy builds
the dispatching information into a type system, thereby enabling the
compiler to perform the switching. However, most OOP languages do
not allow for a given object to change its type dynamically (there do exist
dynamically typed languages, but they are not in common use). This
poses the dilemma of how to reference the object and yet allow for the
type being referenced to vary.

The solution lies in adding a layer of indirection by encapsulating the
object inside another object serving only as an interface that provides a
handle to the object in a given context. All code in the desired context
references the handle but never directly references the actual object. This
solution enables the compiler to delay until runtime the determination
of the actual object type (what Fortran calls the “dynamic type”). The
sample code in Figure 7.5 demonstrates the State pattern in a sparse-
matrix context, wherein a base_sparse_mat type plays the role of “State”
from Figure 7.4 and spmat_type serves as the “Context” also depicted in

State

+ handle ()

|
1

|

1

|

|
-1

A

ConcreteStated|  [ConcreteStateB

+ handle ()

-+ handle ()
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Context

o ageregates

+ request ()

Figure 7.4: State design pattern
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module base_mod
! The base class for STATE objects
type :: base_sparse_mat
! data components here
contains
procedure, pass(a) :: foo => base_foo
end type base_sparse_mat
contains
subroutine base_foo(a)
class(base_sparse_mat) :: a
! Actual implementation
write(*,*) 'This the F00ing of a base sparse matrix'
end subroutine base_foo
end module base_mod

module coo_mod
! A derived class for STATE objects in C00
use base_mod

type, extends(base_sparse_mat) :: coo_sparse_mat
integer :: nnz=0 !> Number of nonzeros.
integer, allocatable :: ia(:) /> Row indices.
integer, allocatable :: ja(:) /> Column indices
real, allocatable :: val(:) !> Coefficient values.

contains
procedure, pass(a) :: foo => coo_foo

end type coo_sparse_mat

contains

subroutine coo_foo(a)

class(coo_sparse_mat) :: a

! Actual implementation
write(*,*) 'This the F00ing of a coo sparse matrix with',&
& a%nnz,' nonzero entries'
end subroutine coo_foo
Figure 7.5: Code for the State pattern — end module coo_mod
inner object

Figure 7.4. The methods of the outer class delegate all operations to the
inner-class methods. The inner class serves as the actual workhorse.

An interesting side effect for the State pattern is that is allows easy
handling of heterogeneous computing platforms: the application program
making use of the computational kernels will see a uniform outer data
type, but the inner data type can be easily adjusted according to the
specific features of the processing element that the current process is
running on.

In our software, we implement such a flexible architecture based on the
techniques outlined in [44]. In particular, it is possible to add support
for accelerator devices resulting in the data structures described in [40,
45].



module spmat_mod
! The class for CONTEXT objects
use base_mod
type :: spmat_type

class(base_sparse_mat), allocatable ::

contains

procedure, pass(a) :: foo => spmat_foo

end type spmat_type
contains
subroutine spmat_foo(a)
class(spmat_type) :: a
call a%a%foo()
end subroutine spmat_foo
end module spmat_mod

! Simple example

program try
use spmat_mod
use coo_mod
type(spmat_type) :: a
! Start with the base STATE
allocate(a%a)
call foobar(a)
! Switch to C0O0
deallocate(a%a)
allocate(coo_sparse_mat :: a%a)
call foobar(a)

contains
! Workhorse
subroutine foobar(a)
type(spmat_type) :: a
call a%foo()
end subroutine foobar
end program try
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Figure 7.6: Code for the State pattern —
outer context
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Where is my data?

As everybody knows, there are three important factors for parallel
performance: data location, data location and data location®. This is due
to a fact we already mentioned briefly in Chapter 1: it is an unfortunate
feature of the technological evolution that memory speed does not keep
up with the speed of processors. Hence, the placement of data and its
management play a significant role in determining the performance of
software; moreover, the placement of data in the case of dense vs sparse
linear algebra is driven by somewhat different considerations, and results
in quite different layouts.

The basic principle when choosing a data layout is always the same: find
the best possible tradeoff between the performance local to a given node
and the communication behaviour of the algorithms, whilst at the same
time keeping the best possible load balancing.

This objective requires quite a bit of analysis and work to be achieved;
moreovet, even if we apply the same basic principle, the actual outcome
is very problem and algorithm dependent, as we shall soon see.

8.1 Dense linear algebra data distribution

To distribute data for dense linear algebra we have to keep track of the
following issues:

1. The need to account for the data reuse techniques of the level
3 BLAS (blocking) and for the surface-to-volume effect, which
expresses the trade-off between communication (“surface”) and
computation (“volume”) when data are distributed across multi-
ple processes. Although no explicit spatial geometry is involved
here, the underlying principle of the surface-to-volume effect still
influences data distribution strategies and is implicitly taken into
account;

2. The load balancing features of the various algorithms (we’ll use
the LU factorization as a reference);

3. The need to choose the best possible process grid configuration
(for MPI programs).

8.1.1 Simple LU factorization

Let’s begin our discussion taking as a reference the LU factorization
algorithm in its most elementary form with a concrete example of size 3
(we are ignoring pivoting for the time being):

* The phrase “location, location, location” used in reference to real estate is commonly
attributed to the british real estate tycoon Harold Samuel (1912-1987), but is probably
much older.
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Figure 8.1: A simple LU factorization
algorithm

Figure 8.2: A BLOCK 1-D data distribu-
tion

=W N =

» Factor the diagonal (auxiliary constraint: /;; = 1)

Compute ( a11 ) = ( h1 ) (u11)
» Update the first column:

( In ) - ( as1 )(un)—l
I3 a3
» Update the first row:
(w2 wz ) e ()" (an a)

» Update the lower-right submatrix;

Gy A ayp a3 I>y
A ~ — - Up Uiz
( 43 ds3 ) ( azx as; ) ( I31 )( )
» Apply recursively to lower-right submatrix;

As we can see, the algorithm proceeds column by column, and the
amount of work to be performed at each step diminishes steadily over the
course of the execution. Before proceeding, we can recast the previous
considerations in a more formal setting where 4; ; is the generic entry
of the linear system matrix A, 4; . is the i-th row and similarly for the
columns, as shown in algorithm 7; similar notation is used for the factors
L and U. Note that the update of the row ()™ (a12 a3 )isclearlya
no-op in this formulation since I1; = 1.

Algorithm 7: Simple LU factorization

fori — 1tondo
lij <1
Ui < Aii;

-1.
livin,i = @igvn,i - U; ;5

Aitton,ittn € Aisln,ivln — livtm,i * Ui ivln;

Let us now consider how we could parallelize the above program in a
distributed memory environment.

8.1.2 A 1-dimensional layout for LU

We start with the simplest posssible arrangement of 1, processes (MPI
tasks): a 1-dimensional array. To begin with, we allocate to each process a
chunk of n, = n/n, consecutive columns (assuming they divide exactly),
and let the algorithm 7 execute. In other words, each process p,p =
0...n, — 1 owns a vertical stripe of the input matrix 1., (p.u)+1:(p+1)-1,-1-
This is also known as a BLOCK data layout Figure Figure 8.2.

Given that in this configuration any column a.; is owned by a single
process, that process can perform the first two steps of the algorithm;
then, it has to communicate to all others the value of /;11., ; so that each
process can proceed to update its own stripe of the result as shown
in algorithm 8. This algorithm gives a first view of what a parallel
algorithm typically looks like: it alternates between computations and
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Algorithm 8: 1-D parallel LU factorization

Every process has index i;
Every process owns 1y, < n/n, columns;
fori «— 1ton do
ip = (i=1)/(np);
if I am iy (I own column i) then
lii < 1;
Ui < Aii;
livtin,i € Qistn,i U7}
Broadcast send l;y1. i;
else
L Broadcast receive li41. ;

Jst < max(i, - np + 1,1 + 1) (first column I own);
Jen < min((i, +1) - np — 1, n) (last column I own);

Aitln,jspjon € Aitln,jspjon — li+1:n,i “Uijsiijens

communication phases. Naturally, to optimize the runtime of an algorithm
it is necessary to achieve that:

1. The computational phases are as efficient and as balanced as
possible;

2. The communication phases are kept to a minimum, and if at all
possible shuld be overlapped with the computations.

In this particular formulation of the LU algorithm we can immediately
notice that the only part of the computation that is really happening in
parallel is the rank-1 update of the lower-right submatrix a;+1.1,j,,:j.,,
Aisln,joyjon — Livlm,i * Uijyjo, s fOrtunately, this is also the most expensive
part.

—

There is one major point that needs to be highlighted though: as the
loop index i progresses, it will eventually be the case that i > n;. At this
point, process 0 will stop doing any work, and the rest of the calculation
will be carried out by processes 1 through 1, — 1, that is, the degree
of parallelism will reduce. A similar phenomenon will happen every
time the index i crosses the boundary between one process and the next;
therefore, the efficiency of the parallel algorithm is greatly diminished.

A CYCLIC layout for LU

Is it possibile to improve? Let’s rethink the data layout. When we describe
the algorithm for the LU factorization as in 7 we are naturally inclined
to think of columns i and i + 1 as being next to each other in the matrix
layout, which is what happens in the memory of a single node for a
serial implementation. And yet, this is by no means necessary: all that is
required is that the order of processing follows the index i in the logical
view of the underlying matrix A.

In other words, if column i + 1 is stored in a memory space that is not
adjacent to that for column i, we can still apply the same algorithm
provided that we can figure out where exactly columns i and i + 1 are
located. This is a first example of a general concept: an index space
FJ ={i,i =1...n} canbedistributed over a set of processes, but this does
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not prevent our algorithms from working as long as we can figure out
the mapping between the abstract index i and its physical counterpart,
say local index j on process p.

As an example of this, we can store column 1 on the first process,
column 2 on the second, and so on, with column i being assigned
to process mod (i — 1,7,) where the -1 is needed to adjust for the
range of processes being {0,...n, — 1}. Thus, each process will have
a bunch of columns that can be stored adjacently, because the step
Aitln,ivln < Aixlm,i+ln — Listn,i - Ui iv1:n does not really depend on the
ordering of columns, as long as the physical position of i and i + 1 can
be computed. The distribution we have discussed above, corresponding

Algorithm 9: CYCLIC 1-D parallel LU factorization

Every process has index ip;

Columns are assigned to processes in a round-robin fashion;
Thus, column i is owned by process mod ((i — 1), np);

fori «— 1ton do

ip = mod ((i —1),np);

jst first column I own that is > i;

jen last column I own ;

if Iam iy (I own column i) then

lii <1,

Ui < ii;

-1,
livin,i = @isvn,i - U; ;5

Broadcast send liy1.1,i;

| 0j=1
else
Broadcast receive lit1.5,i;
0;=0;

ai+1:n,j5,+6j:jm — ai+1:n,j5t+6j:jm - li+1:n,i . ui,js,+6,':jgn;

to a round-robin assignment, is called a CYCLIC distribution of data.

In the context of the present discussion, the main advantage with respect
to the BLOCK distribution is that process 0 only stops doing useful
computations in the last 1, iterations of the main factorization loop;
therefore all processes remain active up until the very end of the algorithm,
and there is an imbalance only in the last few iterations. Since 7 is usually
much larger than n,, the resulting imbalance is negligibile.

A BLOCK-CYCLIC 1D layout for LU

The previous arrangement is very good for one of the main performance
factors, that is, load balancing; however, it relies on the level-2 update
kernel implementing the operation

Qittn,ittn € Bisln,ivln — Livtm,i * Wi i+l

which is to be understood as being applied to the reordered columns of
matrix A in a split fashion, with each process updating its own part.
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This strategy is not satisfactory because it does not apply the level-3
BLAS kernels, which we know are necessary to achieve best performance
on available processing cores.

A cure for this problem is readily available: apply a CYCLIC distribution
not to individual columns, but to sections of ny, adjacent columns.

If the value for n; is chosen properly, we can achieve a good tradeoff
between the need to have optimal “local” performance, that is use level
3 computations, and optimal “parallel” performance, that is achieving
load balancing and good surface-to-volume ratio.

The price to be paid is that the update of u; ;11., which was a no-op in the
scalar algorithm, requires now the solution of a triangular system with
multiple right-hand sides (TRSM). Most of the computations happen in

Algorithm 10: Block-Cyclic 1-D parallel LU factorization

Every process has index i;
Every process owns a certain number of blocks of 1; columns;
fork «— 1ton/n, do
i<—(k—1)-nb+1;
ip — mod (k-1,n,);
Let jg the first column I own beyond i + 1, — 1;
Let je, the last column I own (the range js; : je, might be empty);
if I am process i, (I own block column k) then
Factor block column
Ainizitny-1 = (Lim,izivny 1, Uisitny—1,i:i4ny—1);
Broadcast send Lj.j1y,—1,i:i+n,~1;
else
L Broadcast receive L;.j1p,—1,i:i+n,~1;

-1 . S
On my block row execute Li:i+nh—1,i:i+nb—1 Uiitny—=1,jstjens

Aivnynjsrsjen < Aivnyn,jorijen — Livny=1on,izitny—1 * Uisivny—1,jp:jens

the last two steps of the algorithm, which can be formulated as calls to
TRSM and GEMM.

8.1.3 A 2-dimensional layout for LU

The final step is to look again at the balance between communications
and computations. As we have seen, algorithms 8, 9 and 10 require at

each iteration the execution of a BROADCAST collective communication.

The optimal implementation of collective operations is a very fascinating
and complicated issue in itself; suffice it to say that the optimal choice
changes depending on the amount of data being treated, on the network
connectivity and on the network parameters. All collective algorithms
will however have a completion time that depends on the number of
processes involved, in our case 7.

A better balance between communication and computation can be
achieved by adopting a blocked version of the LU factorization, in
which the involved matrices are partitioned into square blocks rather

107
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A 2D block-cyclic distribution provides
good load balancing and an efficient
computation-to-communication ratio, es-
pecially in algorithms where the active
matrix shrinks (e.g., LU, QR, Cholesky).
A 1D block-cyclic distribution can be ad-
vantageous on heterogeneous nodes, en-
abling efficient use of local accelerators
such as GPUs. Finally, pure block distri-
butions (1D or 2D, non-cyclic) are often
preferable for uniform workloads like
GEMM, where communication overhead
is minimal and perfect balance is easily
maintained.

than vertical block panels, with each block of size 1, X 1y, as illustrated
in the following example with 3 X 3 blocks:

An A A L Ui U U
Ay Axn Axn|=|La Lxn Uy Uy
Az Az Asz L3 Lap Las Uss

Suppose that red is the factorized panel, blue is the row-block to be
updated, black is the “active" matrix to be updated and then factorized.
It holds:

An =Luln, A =Luln, Ap=Luls
therefore, we can update the blue blocks by solving triangular systems
with multiple right-hand sides (TRSM):

Upp = (L11) 1A Uiz = (L11) ' Ass

and update the “active" matrix by matrix-matrix multiplications (GEMM):

Ay — Loyl — Ap

A Az = Lylz — 1‘}23
Az — Lzl — Az

Aszz — LUz — Az

If we now consider a logical two-dimensional process grid, the processes
can be arranged in a matrix-like topology with P, rows and P, columns.
A block-cyclic distribution can then be applied both along the rows and
along the columns of the global matrix. In this scheme, the global matrix
is partitioned into square or rectangular blocks, which are assigned to
the processes in a cyclic manner both horizontally and vertically across
the process grid. We now have to modify the algorithm by including not
only a broadcast of the L block-column (along the rows of the process
grid), but also a broadcast of the U block-row (along the columns). The
advantage is obviously that each broadcast should now involve only

O(y/mp) processes.

An interesting side effect is that we need to be a bit more careful with
the choice of the process arrangement. If we have 16 processes, they can
be arranged as 1 X 16,2 X 8,4 X 4, 8 X2 or 16 X 1 process grids, and
the optimum arrangement providing the fastest execution is likely to be
either 4 X 4 or 2 X 8. If we now want to increase the degree of parallelism
we might add 1 process, but since 17 is a prime number, we would be
stuck with either a 1 X 17 or a 17 X 1 grid, and this is likely to be worse
in terms of performance; so we would really like to grow the number of
processes in a balanced way.

The final version of the LU factorization can now be presented in algo-
rithm 11.

Obviously a number of details have to be taken care of, such as the precise
computation of all the block boundaries, accounting for a size n that is not
exactly divisible by the size of the process grid (times 1;), and possibly
for a matrix storage that has its starting position (1, 1) stored in a process
different from (0, 0). Moreover, we have not discussed explicitly the use
of partial pivoting, which is of course necessary for the LU algorithm to
proceed as is normal in the serial version.
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All of these “details” are handled in the ScaLAPACK software, and you can
learn many tricks of the trade by looking at how that software is organized.
It is worth to note that, following the modular software design principles
established with BLAS standard operations, ScaLAPACK was conceived
as a portable and extensible library for dense linear algebra on distributed-
memory architectures. To achieve this goal, its developers introduced
two fundamental building blocks: the Parallel Basic Linear Algebra
Subprograms (PBLAS) and the Basic Linear Algebra Communication
Subprograms (BLACS) [46, 47]. The PBLAS extend the functionality of
the sequential BLAS to distributed environments by operating on block-
cyclically distributed matrices, allowing for scalable implementations of
matrix-matrix and matrix—vector operations across multiple processes.
The BLACS, in turn, provide a uniform communication layer built on
top of a message-passing interface, such as MPI or vendor-specific
communication libraries, defining communication contexts, process
grids, and point-to-point or collective data transfers in a consistent and
hardware-independent way.
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Algorithm 11: Block-Cyclic 2-D parallel LU factorization

1 Every process has a 2D index (ip, j,) in the range

(0:my —1,0:n, —1);
2 Every process owns a certain number of blocks of size n, X ny;
3 fork «— 1ton/n, do

4 ie—(k=1)-ny+1;
5 i.p — mod (k-1,m,);
6 jp & mod (k —1,np);
7 Let ig; the first row I own which is > i;
8 if my process row index is i, then
9 L 8; — nyp;
10 else
11 L 0; « 0;
12 Let i,, the last row I own ;
13 Let js; the first column I own which is > i;
14 if my process col index is j, then
15 L oj — ny;
16 else
17 L 0j «0;
18 Let ¢y, the last column I own;
19 if my process col index is j, then
20 With all processes in my column j,, factor block column
Aist:ien/jst3j5t+nb_1 = (Listiievtzjst:jst+”b_1’ uist3ist+”b_1/jst:jst+nh_1);
21 Copy the L blOCk List:ienrl:nb A List:ienrjst:jst+nb_1 ;
22 Broadcast send L;,.;,, 1:1,;
23 else
24 L Broadcast receive L;,:i,, 1:n,;
25 if my process row index is iy then
-1 . L.
26 On my block row execute L; .y 1 Uigysiggtny=1,jursjens
27 COpy the U block ul:"b/jsiﬁiwt « uisf5ist+nb_1:jsf3jen;
28 Broadcast send Ux.p, ;.5
29 else
30 L Broadcast receive U1y, j,;:je, s
31 Aist"'éi:ien rj5f+bj5jen — Aist+‘5i1ienrjst+6j1fen _Li5f+bi5ien:15nh .Ul:nbrj5f+6j:j€n;
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8.2 Evolution of Parallel Dense Linear Algebra
Software

As we already pointed out in the introduction, the evolution of dense
linear algebra software has not only mirrored advances in computer
architectures but has also driven theoretical progress in numerical linear
algebra, encouraging researchers to reformulate classical algorithms to
better exploit modern hardware while preserving numerical stability.
The earliest libraries, EISPACK and LINPACK, developed in the 1970s
and early 1980s, provided standard solutions for eigenvalue problems
and linear systems on vector and serial architectures, using Fortran
implementations and column-major storage schemes [11, 48].

As hierarchical memory systems became dominant, the community
recognized the need for algorithms that minimized data movement
and improved cache reuse. This led to the development of LAPACK
(Linear Algebra PACKage) [49], which reimplemented EISPACK and
LINPACK in a blocked form. The blocking technique enabled the use of
Level 3 BLAS operations, significantly improving performance on shared-
memory architectures. The shift from vector to cache-based machines
also inspired extensive numerical analysis studies on the reformulation
of Gaussian elimination and orthogonal factorizations, emphasizing both
computational efficiency and algorithmic stability.

With the emergence of distributed-memory architectures in the 1990s,
ScaLAPACK extended LAPACK's concepts to large-scale parallel systems,
employing MPI-based message passing and block-cyclic data distribution
to balance computation and communication [50]. These developments
further stimulated the analysis of communication-avoiding algorithms,
a major research direction that linked algorithmic theory and parallel
performance.

The rise of multicore and manycore architectures in the 2000s prompted
a shift toward fine-grained, task-based parallelism. PLASMA (Parallel
Linear Algebra for Scalable Multi-core Architectures) introduced dynam-
ically scheduled tile algorithms to fully exploit multicore systems [51],
while MAGMA (Matrix Algebra on GPU and Multicore Architectures)
extended these ideas to heterogeneous CPU-GPU systems, merging
algorithmic redesign with hardware-aware optimization [52].

The latest generation, SLATE (Software for Linear Algebra Targeting
Exascale), represents a comprehensive rethinking of dense linear algebra
for exascale and heterogeneous systems, incorporating asynchronous ex-
ecution, fault tolerance, and communication-avoiding strategies. Beyond
software engineering, SLATE and related efforts embody decades of co-
evolution between numerical analysis and high-performance computing,
where concerns for accuracy, stability, and scalability remain central to
algorithmic innovation [53].
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8.3 Sparse linear algebra data distribution

The data layout for sparse matrix problems in parallel is driven by the
same considerations for parallel efficiency that we have seen before, but
the outcome of the analysis will be very different.

8.3.1 A simple iterative solver revisited

Let us now go back to the Richardson iteration 7.1:
Xp41 = Xk + w(b — Axg). (8.1)

As we have seen, the convergence is measured against the norm of
the residual, and the other operators needed are sums of vectors and
matrix-vector products.

Thus we need to figure out a way to perform these kernels, and most
importantly the matrix-vector product y <~ Ax, and choosing a parallel
data layout will be critical in this regard’.

It is now time to point out a few things:

» When we compute entry i of the output vector, we are multiplying
row A; . of the matrix by the vector x, and this multiplication will
only need to involve the nonzero coefficients;

» By the same token, for each entry i of the output vector y, only a
subset of the entries of the x vector will actually be involved in the
computation.

We will distribute the coefficient matrix for the linear system based
on the “owner computes” rule: the variable associated to each mesh
point is assigned to a process that will own the corresponding row in
the coefficient matrix and will carry out all related computations. This
allocation strategy is equivalent to a partition of the discretization mesh
into sub-domains, and is naturally associated with a 1-dimensional process
grid structure, with the matrix being allocated to processes by (blocks of)
rows.

Is this a sensible idea?

Well, actually yes (in most cases). Indeed, when we discussed the 1-
dimensional distribution of section 8.1.2, we split the matrix by columns:
this strategy will most likely not work here because (as already mentioned)
each row of the sparse matrix has a number of nonzero entries that is
typically bounded by a constant k, independently of nn. Whenever that
constant is small, and for most PDE discretization schemes k is only a
few tens at most, there are too few arithmetic operations to make it worth
splitting them between different processes. Thus we will distribute rows
of the matrix onto our parallel processest.

¥ This is a very simple iteration, and for the time being we will not search for alternatives
with faster convergence; anyway, other parallel iterative algorithms tend to share the same
considerations discussed in the sequel.

¥ There are cases where the number of nonzeros per row warrants distribution across
multiple processes, but they tend to come from different application domains and require
different problem solution strategies.
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8.3.2 Basic observations

Our computational model implies that the data allocation on the parallel
distributed memory machine is guided by the structure of the physical
model, and specifically by the discretization mesh of the PDE.

Each point of the discretization mesh will have (at least) one associated
equation/variable, and therefore one index i. We say that point i depends
on point j if the equation for a variable associated with i contains a term
in j, or equivalently if a;; # 0. After the partition of the discretization
mesh into sub-domains assigned to the parallel processes, we classify the
points of a given sub-domain as following.

Internal. An internal point of a given domain depends only on points
of the same domain. If all points of a domain are assigned to one
process, then a computational step (e.g., a matrix-vector product)
of the equations associated with the internal points requires no
data items from other domains and no communications.

Boundary. A point of a given domain is a boundary point if it depends
on points belonging to other domains.

Halo. A halo point for a given domain is a point belonging to another
domain such that there is a boundary point which depends on it.
Whenever performing a computational step, such as a matrix-vector
product, the values associated with halo points are requested from
other domains. A boundary point of a given domain is usually a
halo point for some other domain$; therefore the cardinality of the
boundary points set determines the amount of data sent to other
domains.

Overlap. An overlap point is a boundary point assigned to multiple
domains. Any operation that involves an overlap point has to be
replicated for each assignment.

Overlap points do not usually exist in the basic data distributions; however
they are a feature of Domain Decomposition Schwarz preconditioners
which are the subject of related research work.

We denote the sets of internal, boundary and halo points for a given
subdomain by .¥, % and #. Each subdomain is assigned to one process;
each process usually owns one subdomain, although the user may choose
to assign more than one subdomain to a process. If each process i owns
one subdomain, the number of rows in the local sparse matrix is | %;| +| %],
and the number of local columns (i.e. those for which there exists at least
one non-zero entry in the local rows) is |.%;| + |%i| + | #i].

This classification of mesh points guides the naming scheme that we
adopted in the library internals and in the data structures. We explicitly
note that “Halo” points are also often called “ghost” points in the
literature.

§ This is the normal situation when the pattern of the sparse matrix is symmetric, which is
equivalent to say that the interaction between two variables is reciprocal. If the matrix
pattern is non-symmetric we may have one-way interactions, and these could cause a
situation in which a boundary point is not a halo point for its neighbour.

b L & &
' 3 ' ' 'S
L] Internal Domain 1
o Boundary
. Halo
Figure 8.3: Point classfication.
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Figure 8.4: Matrix structure.

Figure 8.5: A (partitioned) graph.

Figure 8.6: A structured mesh.

N\
N\
N\
N\
N\

Figure 8.7: The resulting pattern.

p5

8.3.3 Sparse Matrix-Vector Product in Parallel

The classification of points that we saw before in Fig. 8.3 formulated in
terms of the discretization mesh can be carried over in terms of matrix
structure as in Fig. 8.4. The pink area corresponds to the local coefficients,
the green area corresponds to the halo. There exist a Surface to Volume effect:
for “sensible” data distributions, most of the nonzeros are in the pink
area, whilst the green area is almost empty. In particular, the green area
contains many column sections that are completely empty, meaning that
their nonzeros are outside the range of rows. So, even if it looks like the
matrix-vector product requires a copy of the full vector x, what is really
needed is only a small subset of the entries of x from other processes
(since obviously there is no actual need to perform multiplication by
Zeros).

To compute the SpMV, we then have to retrieve values of X corresponding
to entries in the green area with a halo data exchange.

What constitutes a “sensible” data distribution?

8.3.4 Graph partitioning

We begin by looking at the implications of the “owner computes”
paradigm as applied to parallel computations of sparse matrix-vector
products.

Let us first recall the notion of a graph which is an entity composed of
two sets: € = {7, €}, where

v {vl,...,vn}
€ C VUXT.

The set 7/ is called the vertex set, whereas € is the edge set; every edge
connects two vertices. The degree of a vertex is defined by the number of
edges having that vertex as an endpoint.

We can now state a rather simple fact: there is an isomorphism between
a (square) matrix and a graph where

» To each row (column) i there corresponds a vertex v;;
» To each coefficient a;; there corresponds an edge e;; = (vi,v ]-) ;

A sparse matrix will then be associated with a graph that is not fully
connected, that is, there exist (many) pairs of vertices that are not linked
directly by an edge. In some cases a graph may have a value associated
with either the nodes or the edges.

The correspondence between a matrix and a graph is established once we
associate an index i, the variable x; and the matrix row a; . with one of
the graph nodes; using this association, we can easily see that the amount
of work needed to compute y; in a matrix-vector product is proportional
to the number of entries in rows 4; ., that is, to the degree of node i.

The first objective in establishing an allocation of data to multiple pro-
cesses should by now be clear: we want to allocate vertices (rows of the
matrix) to processes in such a way that the sum of their degrees (the
number of nonzeros) and therefore the amount of work in a matrix-vector
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product is spread uniformly across the processes. If the number of nonze-
ros per row is roughly constant, this is essentially equivalent to allocating
an equal number of vertices to each process.

If we now look back at Fig. 8.3, we can immediately see the second
objective we have to strive for: every boundary point needs to know the
value of the entry of x associated with (at least) one halo point. Thus, we
will need to exchange an amount of data proportional to the number of
halo points, and we clearly want to minimize this overhead.

We can now state our problem:

Given a graph € = {7,%}, find a partition of 7 into
subsets ¥; such that 7 = |J %, and define a set # = {e =
(i,/))€€:1€Y,j€Y;, p#q}suchthat:

> |l =17l Vi

» |#| is minimized.

Note that the first criterion, equal distribution of vertices, may not be
attainable in practice; if the number of nonzeros per row has a large
variance, we may associate a weight to each vertex, and the partition
of the vertices should then strive to obtain a uniform distribution of
weight.

This is called a graph partitioning problem, and it is unfortunately an
N P-complete problem, meaning that it is too expensive to solve exactly;
it is therefore necessary to employ heuristics to get at a reasonable solution
in a reasonable amount of time (fig 8.10).

A discussion of the properties of N/ %-complete problems is outside the
scope of the present work; more details can be found in [54, 55].1

What is the effect of a graph partition algorithm? Essentially it splits
the matrix into multiple blocks of rows, but there may be multiple
blocks assigned to a given process; if we list the matrix rows in the
order of the processes we have implicitly applied a renumbering of the
equations/variables (fig 8.11).

For example, if we have a 2-dimensional rectangular domain, then the
obvious way to partition the domain is to split into subrectangles, and
actuall this is what a graph partitioner heuristics will likely do (see
Fig. 8.12); however, if we apply a natural numbering to the mesh points
(say, by rows or by columns), then each subdomain will receive many
blocks of rows.

Applying a renumbering of the mesh points is equivalent to applying
a symmetric permutation to the coefficient matrix A; this has only very
minor effects on the numerical convergence of an iterative solver, but it
could affect performance in rather significant ways. In any case, applying
a graph partitioner is equivalent to applying a renumbering and then
cutting the matrix into stripes.

T Strictly speaking, it is not known whether any W %-complete problem admits an efficient
algorithm for its solution, but it can be proven that if such an efficient algorithm exists for
any one of the problems in this very large class, then an efficient algorithm exists for all
other problems; since none is known, it is deemed very unlikely that any such algorithm
actually exists. The question of the existence of an efficient algorithm, that is, whether we
actually have = NP, is the most famous open problem in theoretical computer science.

Figure 8.8: An unstructured mesh.

Figure 8.9: The resulting pattern.

Figure 8.10: A graph partition.

Figure 8.11: A matrix partition.



116 | 8 Where is my data?

Figure 8.12: A 2D domain partition.

Figure 8.13: A complex domain partition.

Figure 8.14: A rather silly domain parti-
tion.

Generating a discretization mesh is a non trivial matter in its own
right, and many algorithms generate a numbering that may appear
rather strange and involved; in any case, it is worth remembering that
partitioning a graph requires usage of heuristics, and these may well
depend on the initial numbering. An example of a partition is shown
in fig. 8.13, for a mesh designed to study the thermal diffusion in a
mechanical part.

A final observation is now in order. If we look at “sensible” data dis-
tributions, such as those in fig. 8.12 and 8.13, we can notice that the
data exchange happens at the boundaries of the subdomains, and these
boundaries grow as the “surface” of the subdomain, whereas the amount
of computations grows as the “volume” of the subdomain. This ratio
between communication and computation, known as the surface-to-
volume effect, is a fundamental factor influencing the scalability and
overall efficiency of parallel algorithms. What is a “non-sensible” data
distribution? We show one in fig. 8.14: all of the definitions and strategies
we have discussed will “work” (from a logical point of view), but the
communication overhead will be ridiculous.

8.3.5 The correspondence between indices and processes

As mentioned before, an index space J = {i,i = 1...n} canbe distributed
over a set of processes, as long as we can figure out the mapping between
the abstract index 7 and its physical counterpart, say local index j on
process p. As we shall see, this is particularly important for sparse
matrices.

Let us begin by restating our situation: There exists an index set spanning a
problem space, and this index set is partitioned among multiple processors. This
partition can be realized in many different ways, for example:

» serial/replicated distribution, where each process owns a full copy
and no communication is needed (this also cover the case of a serial
run);

» block distribution, where each process owns a subrange of the
indices;

» list assignment, where we have for each process a list specifying
the indices it owns;

» global list assignment, where we have a list specifying for each
index its owner process, replicated on all processes.

Encapsulating these variations under a uniform outer shell allows for
having a single entry point with no need for conditional compilation in
the case in which the user is actually running in serial mode.

Given a data distribution, we need to answer questions that hinge upon
relating the “global” indices to their “local” counterparts:

1. Which global index is the image of a certain local one?
2. Which processor owns a certain global index, and to what local
index does it correspond?

Notice that the first question is much easier to answer, because when we
assign a set of indices to a process, and define their local counterparts, we
also keep track of their global counterpart; this only requires an amount



8.3 Sparse linear algebra data distribution

of memory that is proportional to the local number of points, and is
therefore scalable. The second question is instead much more complex,
and can be split in three parts:

1. If a global index is owned by a certain process, that process can
answer the query provided it has a mapping from global to local
indices; however, finding any one of the global indices may require
searching through a set that is potentially disordered, therefore
proper data structures should be designed to facilitate this task;

2. If the query originated from a process such that the global index
corresponds to one of the halo indices, then the process will likely
also know which other process owns it, but it will not necessarily
know what local index is in use on that other process;

3. If the query is about an arbitrary global index that may be owned
by any process, it may be necessary to have an expensive search
phase in which all processes cooperate.

Knowing the location of indices is necessary to retrieve the values
associated with the halo of any given subdomain; thus, it is normally the
case that the halo indices are listed in a preprocessing step, defining a set
of communications that need to take place at every matrix-vector product
to guarantee that each process has access to the entries of x it needs, and
these entries are up to date. A very useful set of auxiliary information for
this purpose would be building a subdomain adjacency graph, that is, a
graph that has one vertex for each subdomain, and one edge between
two subdomains whenever there is a direct exchange between the two.

8.3.6 Data Exchange for Matrix-Vector Products

We mentioned in Sec. 8.3.3 the need to retrieve entries of the x vector from
the other processes (see also fig. 8.4). The sparse case is however quite
different from the dense parallel BLAS operations: we want to transfer
the minimum possibile amount of data, but the minimum set of entries
that needs to be transferred depends on the pattern of the sparse matrix
A, that is, on the nummber and location of the nonzero coefficients. For
“sensible” matrix patterns and data distributions, this minimum amount
of data is much smaller than the total number of entries in the vector x;
moreover, the positions of the entries remain the same for as long as we
are dealing with the same matrix pattern.

In the context of an iterative solver, the data exchange will happen at
every matrix-vector product, which happens at least once per iteration;
it is therefore convenient to prepare auxiliary data structures detailing
the exact locations of the entries to be sent/received, and to organize the
send /receive operations between each pair of processes. The time it takes
to prepare the auxiliary structure will be amortized over the multiple
matrix-vector products in the course of the system solution process.

In the MPI jargon, this operation might be called a persistent variable
all-to-all neighborhood collective communication:

All-to-all: Each process may send and receive to/from any other;

Variable: The amount of data is specific to any given send/receive pair;

Persistent: The operation is repeated involving the values associated
with the same set of vector indices, multiple times;
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Figure 8.15: Halo exchange.

P1

PO

Neighborhood: Many pairs of processes would exchange an empty set
of data, and we can obviously drop the send/receive pair; thus,
each process will only actually communicate with a subset of the
other processes (its neighborhood).

In our library this is called a Halo data exchange.

The exact details, such as the specific lists of indices, are determined by the
pattern of the sparse matrix A; this pattern will be common to all matrices
built on the same discretization mesh with the same discretization
method. In our software, the lists needed to organize the data exchange
are stored together with the index map in a communication descriptor object,
which therefore encapsulates all the necessary information.

Since the communication descriptor depends on the matrix pattern, it
cannot be fully set up when we initially allocate indices to processes, but
requires going over all the indices in the sparse matrix pattern, either
implicitly (during the build phase of the matrix itself including the
coefficients), or explicitly (listing just the positions of the entries).

Consider the discretization mesh depicted in fig. 8.15, partitioned among
two processes as shown by the dashed line; the data distribution is such
that each process will own 32 entries in the index space, with a halo made
of 8 entries placed at local indices 33 through 40. If process 0 assigns
an initial value of 1 to its entries in the x vector, and process 1 assigns a
value of 2, then after a call to psb_halo the contents of the local vectors
will be as shown in table ??.
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10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

X(1)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

GLOB(I)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
25
26
27
28
29
30
31
32

X(I)
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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The Errors of Our Way

When a physical problem goes through the modeling process to be solved
on a computer, it is almost always the case that the computed solution
will be only an approximation to the “true” mathematical solution. Many
different factors concur to this result:

» The mathematical model, that is, the set of equations describ-
ing the phenomenon, is only valid to within a certain degree of
approximation;

» The inputs to the problem consist of experimental data, known
through measurements which are inherently affected by a certain
amount of error;

» The data from the measurements is taken into the computer, where
real numbers are represented in the floating-point number system,
with its limitations;

» The techniques employed to solve the problem may require:

1. Truncation of a series which is capable of giving the exact
solution only in an asymptotic sense;

2. Usage of a heuristics which produces only an approximate
solution, because the strategy needed to attain the exact
solution is too expensive.

» The process of executing an algorithm undergoes rounding errors,
thereby introducing further uncertainty.

These statements are only qualitative in nature; to give them a more
precise, quantitative meaning, it is necessary to present some material
on computer arithmetic and on error analysis.

First of all it is necessary to define formally the very basic concepts of ab-
solute and relative errors. Given an exact quantity x and an approximation
£ = x + 0x we define:

Absolute error:
Eabs(%) = |x — £[ =[0x|

Relative error: R
[x—X| |ox]|

| x| |x|
Among the two, the relative error is more useful in most scientific
calculations, because it is scale-independent: scaling both x — ax and
£ — axX leaves E,e (%) invariant.

Erel(ﬁ) =

Most engineers will discuss of computed quantities by stating that they
have a certain number p of correct significant digits. This concept is
intuitively clear; and yet, a formal definition is surprisingly difficult. First
of all, let us recall that the significant digits are digits from the first
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nonzero to the last; thus 1.123 has four, while 0.012 has two significant
digits. Consider now the following two examples:

x = 1.00000, % =1.00499, E(%) =4.99 1073,
x = 9.00000, £ =8.99899, E.i(%) = 1.12x 107%;

by any reasonable definition we should have three correct significant
digits in both cases, yet the relative error differs by a factor of 44.

A seemingly sensible definition would be: an approximation £ has p correct
significant digits if x and X rounded to p digits produce the same result.

However this definition leaves the door open to some rather curious
situations; consider in fact the two numbers

x =0.9949, £ =0.9951.

Using the previous definition, we have that £ has either one or three
correct digits but not two!

Thus, while the number of correct significant digits can be a useful tool
in visualizing the situation, it is at best a crude quantitative measure, and
for precise statements it is far better to use the relative error.

A.1 Numbers in a Computer

Numbers in a computer are represented as finite strings of binary digits,
or bits. Since the strings of digits are finite, it is obviously impossible
to store arbitrary real numbers; at most, it will be possible to store in a
computer a subset of the reals, indeed a subset of the rationals.

Consider first a simple representation method in which the numbers are
composed of a string of digits in a certain base § as follows:

r=tdiy - dido.dd_s - d_y, (A1)

with k digits for the integer part and ¢ digits for the fractionary part,
where for each digit we have 0 < d < 8. Now, by definition the value is
given (apart from the sign) by the following expression:

r=dp g X B dp o x B dy x B0+ d T -+ d B
Let us now ask the question:

Which numbers are exactly represented in this number
system?

The answer should be quite clear: those rational numbers whose expan-
sion in base f is finite, with a number of digits after the point less than or
equal to ¢. Ignoring for the time being the integer part, a direct translation
of the above statement implies that:

r=P . d;

q
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now, if this is exact, it means that multiplying by an appropriate power
of the base we should get an integer number:

rxplez.

This simple fact also translates into
p t
- xXp e’
q

but since p/q is a reduced representation of a rational number, i.e. p and
g are mutually prime, it follows that
t
i €.
q

For this to be true we must have that

The prime factors of g form a subset of the prime factors
of B.
This simple observation implies that it is impossible to represent exactly
the number 1/10 on a binary computer (8 = 2)!

The simple representation of equation (A.1) is called fixed-point and it
was used in the early days of electronic computing. Indeed, the seminal
book [56] contains many examples of error analysis in the context of
fixed-point operations. At first sight it appears to be a very natural choice,
but a more careful consideration (aided by practical experience) shows
some rather substantial disadvantages. To appreciate this point, let us
first notice that given a finite number of digits available p = k + ¢, it is
clear that the range of the representable numbers

FXPF = [-(B* - p7"), (B* = p7)I,

is substantially smaller than the set of integers that can be represented
with the same number of digits

INTS = [-(BF - 1), (B" - 1)];

we have paid a price in the range to achieve the finer = spacing between
any two consecutive fixed point numbers accrued by the t fractional
digits. Fixed point numbers are usually defined with k = 0, so that the
range is [—1, 1]; this is exceedingly cumbersome by modern standards,
since all data must be preprocessed and scaled to fit into this range.

Another less evident problem is the issue of how much error do we
actually have in the representation of data. Since only a subset of the real
numbers is represented, it is necessary to approximate each real number
(within the range) with a fixed-point number; taking the obvious step
of rounding to the nearest neighbour, we find that the absolute error is
bounded by

1 _
|ox] < 5p :

over the entire range. The relative error, however, tells us a different story;
consider the first nonzero fixed-point number f7!; the absolute error in its
representation is bounded by 1/2~, which means that the relative error
can be up to 0.5, or 50%. The relative error slowly decreases until at the



126

A The Errors of Our Way

other extreme of the range, the largest fractional number representable is
1— B!, and its associated relative error is practically equal to the absolute
error 1/ 2‘8”f ; if t is large, then the difference between the largest and
smallest value of the relative error can be very significant. If we now ask
the question of how best to use an increase in hardware resources, and
specifically how best to allocate P available digits within a number, we
have to choose between improving the error by increasing ¢ or improving
the range by increasing k. While the absolute error will improve with
increasing ¢, the relative error will improve unequally over the range: at
large values, an already small relative error is further diminished, while
there is little to no effect at small values.

The above considerations make it clear that it is desirable to have a better
scheme for representing real numbers on a digital computer, which
will be introduced in the next subsection. Fixed-point number systems
survive today only in selected application areas, for instance in special
processors for Digital Signal Processing (DSP). One interesting usage of
fixed point numbers is in the TgX typesetting system used to typeset this
work and most articles and books in mathematics [57].

A.1.1 Floating-point Numbers

The floating-point representation of real numbers is today used univer-
sally on general purpose computing devices. Its origin may be traced
to the scientific notation for real numbers; it is based on the idea of
normalization of a real number. As an example, the (base 10) number
—2.71828 can be represented in scientific notation as

—.271828 x 10°,
with the following components:

— is the sign of the number;

.271828 is the fractional part; it is shifted so that the first nonzero digit
comes right after the point;

1 is the exponent.

In principle any base can be chosen; of course electronic computers are
binary, but this would not rule out the choice of, say, f = 8; indeed, the
IBM 360 mainframe architecture defined its native floating-point format
with g = 16, with each hexadecimal digit being composed of four bits.

Formally, a floating point number is represented as follows:

di dy dt)

(s,e/f):iﬁe (ﬁ_l ot

+ E +... ﬁ :
with f < 1 represented on t figures. This is actually equivalent to the
representation

(s,e, f)= ifxﬁe_t,

a form perhaps easier to work with. The number is supposed to be
normalized, i.e. d; # 0. To see the advantage of this system in terms of
maximizing the effective range with the available digits, consider that



if we are using k digits for the exponent, then the largest representable
number would be

(1-p)xpf!

a large improvement over the limit 8% — 1 that would apply to fixed-point
numbers with k integer digits. Notice that the range of the floating-
point numbers is logically partitioned into sections corresponding to
the different values of the exponent e¢; when f = 2 these sections are
called octaves®. Also, normally the k digits of the exponent fields are
employed to represent negative exponents as well as positive ones; thus,
the effective range would be closer to ‘BﬁH_l. In the sequel fl(x) will be
used to denote the best approximation to x in the floating-point number
system in use; the set of all floating point numbers will be denoted by
F.

An example will now help visualize the situation; if we choose § = 2, = 3,
emin = —1, emax = 3 we can represent the following set of numbers:

0,0.25,0.3125,0.3750, 0.4375, 0.5, 0.625,0.750, 0.875
1.0,1.25,1.50,1.75,2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0,

depicted graphically in Figure A.1 The relative error in the machine
representation of numbers can be bounded in terms of the quantity €,
or machine epsilon, which is the distance between the number 1.0 and
the next floating point number 1.0%. In a normalized number system we
must have

f1(1.0) Bl x (.10---0;)
f(1.0Y) = B'x(.10---1;)

hence
€n=1.0"=1.0=p"x(.00---1;) = 1. (A.2)

In the sample floating point system we are using, we have €, = 2073 =
0.25, which can be confirmed visually. Let us now consider the relative
error in the floating point representation; assuming that the process of
approximating the number x by fl(x) is performed by rounding to the
nearest neighbour, it is easy to see that the largest relative error will be
incurred when we approximate with 1.0 the number 1.0 + €, /2; for this
number we have

fl(x) — x

1
< Loaon
X 2‘8 ’

The smallest error will be incurred at the other extreme of the octave
where we approximate 2.0 — €,,/2 with 2.0, thus giving

1

fi(x)—x| 1,
]y

X

* The name octave is derived from musical notation: two notes with the same name in
consecutive octaves have a base frequency in the ratio 1 : 2.
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Figure A.1: An example floating-point
number system
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From the above considerations we may derive the following rule
fl(x) = x(1+0) |0] < u,

where u is the unit roundoff, and we have
1
— (1-t)
u=c .
P

Moving from one section to the next implies that the absolute spacing
among the numbers will be multiplied by a factor of 8, but the relative
error for two floating-point numbers with the same f and different e will
be exactly the same. Put it another way, the relative error in a section will
vary by a factor of §, decreasing over the section, and this pattern will
be repeated identically over the various section composing the range of
the floating-point numbers. The variation between the relative error at
the beginning and at the end of a section is called “wobbling”; since the
wobble factor is equal to f3, it is advantageous to have as small a value as
possible, so that the relative error oscillates in a band as tight as possible.
This is a very important reason to prefer systems with § = 2.

A problem with this sort of number system is apparent from Figure A.1:
there is a “hole” around the origin, which is caused by the requirement
for the numbers to be normalized, i.e. for d; to be nonzero. Relaxing this
requirement allows to obtain a uniform spacing around the origin, and
introduces the so-called “denormalized” numbers having e = emin, do =
0; in our example these are

0.0625,0.125, 0.1875.

|
Figure A.2: An example floating-point l »Q‘? QS\TJ I qi,) I “ (\(,J l
number system with highlighted denor- ’ ©
malized numbers

A.1.2 The IEEE 754 Floating-Point Standard

The IEEE Standard 754 was published in 1985, at the end of a design
process that lasted through many years. It defines a binary floating
point system designed to enable the development of robust and portable
numerical software; it is the floating-point format of choice for practically
all computers in common use.

The IEEE format conforms to the model described in section A.1.1. It is
a binary system, that is § = 2; therefore the first digit for a normalized
number can only be 1and can be assumed. For this reason it is often called
a “phantom” bit, since it is not stored explicitly. The format currently
specifies four variations of differing size:

Single precision (32 bits) t = 23 + 1 eyin = =127, epgr = 127, u =
6.0 X 1078, range 103

Double precision (64 bits) t = 52 + 1 e, = —1023, epax = 1023, u =
1.1 x 1071, range 10+3%8

Extended precision (80 bits) t = 63 + 1 eyiy, = —16383, eyar = 16383,
1 =>54x10"%
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Quad precision (128 bits) t = 112 + 1 e,y = —16383, eax = 16383,
u=9.6x10"%

The exponent is represented with an unsigned number to which a
displacement is implicitly subtracted; as an example, in single precision
the exponent field is 8-bits wide, and the displacement is -127, so that the
minimum representable value is -127. The maximum normalized value is
given by e = 254 — 127 = 127. When the exponent part is at its minimum
possible value the phantom bit is assumed to be 0, and therefore we are
including unnormalized numbers, often called “denormals”.

The standard provides means to represent so-called “symbols”, which
comprise infinity and “Not a Number” (NaN). An infinite value is
represented by a number having the maximum possible value for the
exponent field and a fractional part equal to O; for a single precision
number this happens when the actual exponent is e = 255 — 127 = 128.
When the exponent is at its maximum value but the fractional part is
nonzero, then the bit pattern is interpreted as a NaN (Not a Number);
this is used to signal the result of an invalid operation. The following list
summarizes the possible occurrences of these exceptional values:

» 1/0=(-1)/(-0)o0
> (“1)/0 = 1/(~0) = —c0
> 0/0:oo—oo:oo/oo=0><oo=\/—_=NaN.

As we can se the sign of zero influences the outcome of a division,
whereas it is not detectable in e.g. a comparison. IS THIS COMPLETELY
CORRECT???.

A.2 Floating-point Arithmetic Properties

Floating point arithmetic is universally employed in modern computer
systems; thus the error analysis of algorithms is usually carried out
referring to a model of its behaviour. The most widely used is the so-
called standard model which is summarized in the following equation:

fi(x@p)y) = (x@Y)(1+0), [0] <u, @p)=+-+/x,y€F. (A3)

Note that the assumption that the operands x, y belong to F does not
guarantee that the exact result will also belong to F. That the result is exactly
representable in F is a fact that is only true for certain combinations of
operation and operands. In particular it is obiously true of multiplications
and divisions by g, since these operations amount to adding/subtracting
into the exponent field (barring overflow or underflow). A less immediate
result, in base 2, is the following

Theorem A.2.1 (Sterbenz) If x and y are floating point numbers with
y/2 < x < 2y and x — y does not underflow, then fl(x —y) = x — y.

Proof. See [58]. O

In any case, let us repeat that any occurrence of an exact result is a very
rare exception among floating computations.
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The IEEE 754 arithmetic standard requires that the result of any individual
aritmetic operatiom be the same as the rounding of the exact result, for
instance:

u ® v =round(u + v);

this requirement is more stringent than that of the standard model
summarized in (A.3). It also implies that if the “true” result is exactly
representable, it must be correctly reproduced.

An implication of the rounding requirement is that the implementor of
the arithmetic subsystem needs to provide more digits for storing the
intermediate results than are specified in the floating point format. This
can be shown by a rather simple example, employing the same sample
floating point format presented in sec. A.1.1. Consider the computation of
1.0-0.875; employing 4 bits for the intermediate results, the computation
is carried out as:

21%0.100 - 21%x0.100 -
20 % 0.111 — 21x0.0111
21%0.0001 = 271x0.010.

Without the extra bit in the intermediate quantitites, the computation
would proceed as follows:

21%0.100 - 21%0.100 -
20 % 0.111 — 21x0.011
21%0.001 = 271x%0.100,

thereby producing a final result in error by 100 %, despite the fact that
the “true” result is exactly representable! This extra digit is called a guard
digit. In the history of computing, many machines, among them several
models from Cray, have been designed without a guard digit; the early
IBM 360 computers also lacked a guard (hexadecimal) digit, but pressure
from the users led to a correction of this feature, with some installed
machines being retrofitted in the field. Surprisingly, the requirement
of rounding of the exact result in IEEE 754 can be satisfied for floating
point addition with just three extra bits; see [59] for a proof and a full
discussion of computer arithmetic.

Floating-point operations are:
Commutative (where it makes sense)

udbv = vdu

uRuv = ovuU

Non associative
xey)@z+x®(Y®2)

Non distributive
r@(ydz)+(xQy)d (x®2)

The breaking of associative and distributive properties is perhaps the
most important feature of floating-point arithmetic, and certainly one
that gives rise to many surprising results.

One immediate example of this statement is that if sums are not asso-
ciative, then the order of summation can alter the result. Consider for
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instance the computations detailed below in single precision IEEE 754,
with about 7-8 decimal digits (24 binary digits):

1.092.08 3.0 4.0 ® 2.68435456 x 10° ® —2.68435456 x 10° = 0.0
2083.00 4.0 2.68435456 x 10° @ —2.68435456 x 10°@® 1.0 = 1.0
3.0891.0® 2.68435456 x 10° @ 4.0 ® —2.68435456 x 10°@ 2.0 = 2.0
3.0 4.0 @ 2.68435456 x 108 @ —2.68435456 x 108 ® 1.092.0 = 3.0
2.00 4.0 ® 2.68435456 x 10° @ —2.68435456 X 10°® 1.093.0 = 4.0
1.0 @ 2.68435456 X 10° @ 4.0 ® —2.68435456 x 10° ®3.092.0 = 5.0
4.0 ® 2.68435456 x 108 @ —2.68435456 x 10°® 1.092.083.0 = 6.0
2.68435456 x 108 @ —2.68435456 x 10° ® 1.0© 2.0 3.094.0 = 10.0
—2.68435456 x 10° © 1.0 © 2.0 ® 3.0 ® 4.0 ® 2.68435456 x 10 = 0.0

From the point of view of strict adherence to the standard, all of the
above results are equally correct, even though they do not satisfy our
intuitive expectations. In the first instance, where the result is zero, the
blame is often put on the subtraction

—2.68435456 x 10°,
but the real culprit is the previous sum
1.09 2.0 3.0 4.0 ® 2.68435456 x 10°,

because the number of significant digits is such that the contribution of
the small numbers is lost; the subsequent subtraction simply exposes
this problem. This is an example of an unstable calculation, one in which
our expectations run too high with respect to the real capabilities of the
underlying number system. A more formal and quantitative analysis of
such phenomena is the subject of the next section.

A.3 Backward Error Analysis

Backward error analysis is one of the most useful tools in the evaluation of
accuracy of algorithms; this despite the fact that its basic idea is extremely
simple. To see it, consider again the standard model of floating point
computations (A.3):

fl(x©Ep)y) = (x@Epy)(1 + 0).

If (op) is distributive, a seemingly trivial rewriting gives us the basis for a
very important insight:

@) = (@I +0) = (- L+ )@y 1+0).  (Ad)

In plain english, the rounded result of the floating point operation is
equal to the exact result of the operation applied to perturbed data; note
that the perturbed data might not be exactly representable. This is an
extremely important shift in the point of view regarding the error, for
the following reasons:
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» Interpreting the error as the effect of perturbation in the input
allows us to draw on the rich mathematical theory of perturbations;

» For realistic problems, perturbations are already present in the
input data anyway, both because of measurement errors and also
because of the approximation inherent in storing the numbers in
finite precision.

Let us then formally define the backward error:

Definition A.3.1 Given the function y = f(x), and its computed ap-
proximation §j = f(x), the backward error is the perturbation 6x such
that

7= f(x + ox).

The basic tenet of backward error analysis can be thus stated as:

Definition A.3.2 An algorithm is stable in the sense of backward error
analysis (or for short backward stable) if the perturbation dx introduced in
the data is not too large compared to the uncertainty with which the original
data x was known.

Now the obvious question arises: is it possible to expect a small error in
the result given a small backward error?

The link between the forward error (i.e. the error in the function result)
and the backward error is provided by the condition number. Let us
consider the computation of f(x) where f is a real differentiable function;
expanding in Taylor series we have

f(x) = f(x+0x) = f(x)+ f'(x)ox + O(6x?%);

this is equivalent to stating that

|f(x +6x) = f(0) = [ f'(x)][0x].

Therefore: if the error in the computed value can be interpreted as the
effect of a perturbation in the input, then the perturbation is amplified
by a factor |f’(x)| that depends only on the true function f, not the
approximate f .

Moving to relative errors, simple algebraic manipulations give

[f(x +0x) — f(l 6] |f7(0)] - ||
|f ()l lx| ()l

where the quantity | f'(x)| - |x|/| f (x)| is called the relative condition number.
A problem is well conditioned if its condition number is small, ill-
conditioned if it is large, and ill-posed if its condition number is infinite’.
This formulation achieves two very important goals:

(A.5)

1. It separates neatly the effect of the algorithm (which is felt mainly
through 6x) from the features of the “true” function f(x);

2. It allows to draw from the powerful analytical tools of the theory
of perturbations.

*Ill-posed problems also include those for which the solution is not differentiable.
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The first point can hardly be overemphasized. Given that perturbations
in the data are completely unavoidable, in most situations what we can
reasonably ask for is that the method employed for the solution should
introduce an uncertainty not significantly larger than that which was
already present. Whether this is sufficient to get a good solution is a
completely different question; in particular, it is extremely ill-advised to
expect a reliable answer to a severely ill-conditioned problem.

To give a concrete example, let us analyze the simple task of computing
the sum of n floating-point numbers:

S = Zn: X;. (A.6)
i=1

If we compute the sum in the natural order we have forn = 3
S = ((X1 + Xz)(l + 61) + X3)(1 + (52)

and generalizing

n max(1,i-1)
SO xi [ (+6w.
i=1 k=1

The bound |§| < u carries over to the following result

ﬁ(l +0r)=(1+0)
k=1

with -
|9| <Vn=

1-nu
under the hypothesis that nu < 1.

In the IEEE single precision arithmetic we have 1 = 6.0 X 107%; this means
that a sum involving 107 terms can be expected to have very significant
perturbations. Such sums are necessary to compute scalar products in
the context of iterative solvers; it is therefore clear that very large systems,
of the order of hundreds of millions of unknowns, need careful attention,
and usually double precision arithmetic, to be solved reliably.

A.4 Vector and Matrix Norms

We have seen how we can build an understanding of the effects of
errors on computations of function values; quantitative statements about
simple scalar functions can be formulated by relying on the concept of
the absolute value of a number.

Since most of this book will deal with linear systems, matrices and
vectors, it is natural to ask how can we carry over to this new context of
linear spaces the concepts of error and conditioning we have just seen; to
achieve this goal we need to generalize the concepts of absolute value and
distance into the concepts of norm and metric on a linear space.

Definition A.4.1 Let V be a linear space on the real or complex numbers,
e.g. R™. A metric (or distance) is a function d(:,-) : (V' X V) — R that
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satisfies all of the following properties:
» d(x,y) > 0, with equality if and only if x = y (positive definiteness);

» d(x,y) =d(y, x) (simmetry);
> d(x,y) < d(x,z)+d(z,y) (triangle inequality).

Definition A.4.2 Let V be a linear space on the real or complex numbers,
e.g. R". Anorm on %V is a function || - || : ¥ — R that satisfies all of the
following properties:

» ||x|| = 0, and ||x|| = 0if and only if x = 0 (positive definiteness);
> Ilax]l = all12ll (homogeneity);
> |lx +yll < ||x|| + ||yl (triangle inequality).

The most familiar example is the Euclidean norm

1/2
x| = (leilz) ,
i

which is readily generalized to the p-norm

1

Il = (Zw)w.

In the limit we obtain the infinity-norm || x|/ = max;(|x;]). Note that
any norm induces a metric function via the formula d(x, y) = ||x — y||,
whereas a metric does not necessarily correspond to a norm because it
lacks the homogeneity property. Thus we will always in the sequel make
use of norms and norm-induced distances.

Definition A.4.3 Let V be a linear space on the real or complex numbers.
An inner product is a function (-,-) : (V' X V') — R that satisfies all of
the following properties:

1 {x,y)=(y,x)inR or(y,—x) in C (simmetry);
2 (x,y +2) = (x,9) +{x,2);

3. {ax,y) = alx, y) for any real or complex a;

4. (x,x) > 0, with equality if and only if x = 0.

The usual scalar product among vectors in C"
(x,yy =y'x = >\ Yixi
i

is an inner product; two vectors are said to be orthogonal if their in-
ner product is zero. Any inner product satisfies the Cauchy-Schwartz

inequality
|<x/}/>| < V(X,X) : <y’y>

Any inner product induces a norm:

llxll = V(x, x),

but not all norms are induced by an inner product, e.g. the infinity norm
does not correspond to any inner product.
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Definition A.4.4 A real symmetric (complex Hermitian) matrix is positive
definite if xT Ax > 0 (x*Ax > 0) for all x # 0.

A positive definite matrix induces an inner product and a norm via the
formulae

(X, ¥)a Yy Ax
[xlla = Vx*Ax

The A-norm is sometimes called the energy norm.

Since the space of all m X n matrices is itself a linear space, we can
define a matrix norm on it just like the norms we have already seen in
Definition A.4.2. However it is useful to define a particular class of norms
that takes into account the fact that a matrix is a representation of an
operator linking two vectors spaces.

Definition A.4.5 Let A be an m X n matrix, || - |
I - |7 a norm on R™. Then

w a norm on R™ and

Ax||
1Al = max 1Al
e Tl

is called an operator norm, or induced norm, or subordinate matrix
norm.

Any operator norm is also a matrix norm. Operator norms satisfy the
following additional properties:

L[| Ax]] < [| Al ]l
2. ||ABI| < |lA[lIIBII

For the norm induced by the Euclidean 2-norm we have || QAZ|| = || A||
for all orthogonal or unitary Q and Z. Other useful facts about norms
are:

> [ Allo = maxcso Ll = maxi(3; |agl);

> 1Al = maxyso I = max;(; |aij]) = | ATl

» ||All2 = max,zo ”lﬁ’ﬂliz = VAmax(A*A) where Amay is the largest
eigenvalue;

> [[All2 = |AT]l2.

A.5 Perturbation Theory for Linear Systems
Considering a linear system Ax = b, its computed solution £ will in
general satisfy a backward error result of the type

(A +6A)(x + 6x) = (b + ODb).

Subtracting Ax = b and assuming that A is nonsingular, i.e. A~! exists,
we obtain
ox = ATH(—=0A% + 6b).
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Applying any operator norm we get
loxll < IIATH I (1o A £] +[l6b1l),
and by simple algebraic manipulations

[[oxl
IED

The quantity x(A) = ||A7Y|||| A|| is the condition number associated with

matrix A, because equation (A.7) says that it links the relative change in

the answer ”” JLH to the relative change in the data ””6 f””

oAl _Ilobll

< IAT AN GG 5
DARALE]

). (A7)

The condition number admits another important interpretation: it can be
seen as the (reciprocal of the) distance from singularity, in the sense of
the following theorem:

Theorem A.5.1 Let A be a nonsingular matrix, and let 0A be any perturba-
tion 6 A such that A + 0 A is singular. Then

1 1
TA=TIIIAT ~ *(A)’

in { 1oAll2 A+ 6Aszngular} (A.8)

IAll2

Proof. Let us first prove that Hléz:lqllll > - ((1A). The definition of singularity

implies that there exists a vector x such that (A + 0A)x = 0; then, with
simple algebraic manipulations, we obtain

0Ax = -—-Ax
A16Ax = —x
AT A = |lx]|
IATYIsANNXN > |lx]]
1
oAl =
loAll 11
AL~ NAIAZH x(A)

This part of the proof is valid for any operator norm || - ||; if we now restrict

ourselves to the 2-norm, we can prove that the minimum can be attained.

By definition || A7!||2 = max,xo I4 T=h s, ; since norms are homogeneous,

there exists an x with || x||2 = 1 where this maximum is attained. Building

- B T
a unit vector y = “1?71];”2 _ ”’2 T we can construct 0A = y= _HAXXHZ_
Then
oAl - max lxyTzll, _ max ly"zlllxll2 lixllz 1
L= =
o [[A7lallzll2 =20zl [[ATHl2 [[A7H2

where the maximum is attained when z is a multiple of y. Finally,

T T
Xy y X Xy 'y
(A+06A)y = Ay — = - =0,
YA AT, T AT A,

hence A + 6A is singular. O



A.6 Notes and References

This chapter owes much of its content to the excellent book by Higham [58];
the linear algebra book [60] is also heartily recommended. The IEEE 754
standard official publication is [61]; a readable and comprehensive treat-
ment of its arithmetic properties is found in [62], reprinted in [59]
and [63]. A thorough discussion of many arithmetic algorithms can be
found in [64].
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Spack

Spack is a flexible package manager designed for high-performance
computing (HPC) environments. It simplifies the process of building,
installing, and managing software dependencies by allowing users to
specify configurations in a highly customizable manner. Spack supports
multiple versions, configurations, and compilers. This kind of tools has
become an essential tool for researchers and developers working on
complex software stacks. Its versatility and ease of use have made it a
popular choice in the scientific computing community.

In the following we make a very brief introduction to Spack and its
basic usage. The Spack documentation is extensive and well writ-
ten, so we recommend to refer to it for more details on the website
spack.readthedocs.io.

B.1 Installation

To install Spack, you can clone the repository from GitHub. Open a
terminal and run the following command:

git clone git@github.com:spack/spack.git

This will create a directory named spack in your current working direc-
tory. You can then add Spack to your shell’s environment by sourcing
the setup-env.sh script:

source ./spack/share/spack/setup-env.sh

This command sets up the necessary environment variables and functions
for Spack to work properly. You can also add the above line to your
shell’s configuration file (e.g., . bashrc) to make the changes permanent;
sometimes you may need to hmi ave more than one installation of Spack
on the same machine, in this case, adding the default loading to he
.bashrc file may not be the best option. In this case, you can create a
script that loads the Spack environment and add it to your .bashrc
file. For example, you can create different aliases for different Spack
installations:

alias spackl='source /path/spackl/share/spack/setup-env.sh'
alias spack2='source /path/spack2/share/spack/setup-env.sh'
alias spack3='source /path/spack3/share/spack/setup-env.sh'

Then, you can load the desired Spack installation by running the corre-
sponding alias command in your terminal.

To verify that Spack is installed correctly, you can run the following
command:


https://spack.readthedocs.io/en/latest/
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1: To discover packages and variants you
can visit the website packages.spack.io.

spack --version

This should display the version of Spack you have installed. You can also
check the available commands by running:

spack help

This will show you a list of available Spack commands and their descrip-
tions.

B.2 Basic Usage

Spack provides a simple command-line interface for managing software
packages. The basic workflow involves searching for packages, installing
them, and managing their dependencies.

In all cases the first thing we have to do is making a compiler available to
Spack, this should be a compiler you have installed on your system. You
can check the available compilers by running:

spack compilers
The typical aspect of the output should be something like:

==> Available compilers
-- gcc ubuntu24.04-x86_64 ------------- o
gcc@l3.3.0

In this case, we have a single compiler available, gcc@13.3.0. To add a
new compiler, you can use the spack compiler add command:

spack compiler add /path/to/your/compiler

This command will add the specified compiler to Spack’s list of available
compilers. You can also let spack detect the compiler automatically by
running:

spack compiler find

This command will search for compilers installed on your system and
add them to Spack’s list of available compilers. In case you plan having
more than one version of Spack installed it is recommended to set the
scope of the compiler to be only available to the current Spack installation.
You can do this by running;:

spack compiler find --scope site

As an example, we can think of installing the gcc compiler at version
14.2.0. First we can run the following command to check for the instal-
lation variants' we can select:

spack info gcc@l4.2.0

This will show you the available variants, dependencies, and other
information about the package, e.g., the available variants are:


https://packages.spack.io

binutils [false]

Build via binutils
bootstrap [true]

Enable 3-stage bootstrap
build_system [autotools] autotools

Build systems supported by the package
build_type [RelWithDebInfo] Debug, MinSizeRel,
— RelWithDebInfo, Release

CMake-1like build type. Debug: -00 -g; Release: -03;

— RelWithDebInfo: -02 -g; MinSizeRel: -0s
graphite [false] false, true

Enable Graphite loop optimizations (requires ISL)
languages [c,c++,fortran] ada, brig, c, c++, d,
— fortran, go, java, jit, lto, obj-c++, objc

Compilers and runtime libraries to build
nvptx [false] false, true

Target nvptx offloading to NVIDIA GPUs
piclibs [false] false, true

Build PIC versions of libgfortran.a and libstdc++.a
strip [false] false, true

Strip executables to reduce installation size

false, true

false, true

In our case it would be a good idea to activate the nvptx support to
compile for NVIDIA GPUs, and select a build_type=Release to enable
all the optimizations, so we can run the following command to install

gcc?:

spack install gcc@l4.2.0 +nvptx build_type=Release
— “cuda@l2.8.0

After the completion of the install procedure—which will require some
time depending on your machine specifics—you can add it to the set of
compilers available to spack by doing;:

spack compiler add $(spack find --paths gcc@l4.2.0)
— --scope=site

which will return

==> Added 1 new compiler to

— /home/user/.spack/linux/compilers.yaml
gcc@l4.2.0

==> Compilers are defined in the following files:
/home/user/.spack/linux/compilers.yaml

You can now install any other package using the gcc@14.2.0 compiler.

For example, you can install the openblas and openmpi? libraries by
running:

spack install openblas%gcc@l4.2.0
spack install openmpi%gcc@l4.2.0 +cuda cuda_arch=89
— +legacylaunchers

We can now load the installed modules by running;

spack load gcc@l4.2.0
spack load openblas%gcc@l4.2.0
spack load openmpi%gcc@l4.2.0
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2: The +sign indicates that the variant is
enabled, while the ~ sign indicates that
the variant is disabled. The ~ sign indi-
cates that the package is a dependency
of another package. In this case we are in-
stalling the gcc package with the nvptx
variant enabled which in turns depends
on Cuda, to ensure compatibility, we se-
lect ~cuda@12.8.0.

3: The openmpi package is a popular im-
plementation of the MPI standard. Since
we want to use it conjunction with CUDA,
we need to enable the +cuda variant and
select the CUDA architecture/comput-
ing capabilities, in the case in the ex-
ample we use the compute capabilities
89 which are compatible with the GPU
we are using: to look for the matching
compute capabilities you can visit the
NVIDIA website CUDA GPUs.


https://developer.nvidia.com/cuda-gpus
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After loading the modules, you can check the GCC version by running:
gcc --version
This should display the version of GCC you have installed and loaded.

gcc (Spack GCC) 14.2.0

Copyright (C) 2024 Free Software Foundation, Inc.

This is free software; see the source for copying

— conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A
— PARTICULAR PURPOSE.

B.2.1 Environment Modules

To better manage the installed packages and their dependencies, it is
better to use the Environment Modules system. This system allows you
to load and unload different software packages and their dependencies
easily.

To use Environment Modules with Spack the simplest configuration is
to have lmod installed on your system. You can check if it is installed by
running:

module --version
If it is available it should answer something like:

Modules based on Lua: Version 8.6.19 2022-04-16 13:46
- -05:00
by Robert McLay mclay@tacc.utexas.edu

If it is not installed, you can install it using the package manager of your
system. For example, on Ubuntu, you can run:

sudo apt-get install lmod

Once you have lmod installed, you can configure Spack to use it by
running:
4: This is the case for a Spack installed
under an Ubuntu 22.04 system, if you spack lmod refresh --delete-tree
are using a different system you can
check the path by running: 1s /path/

This command will generate the necessary module files for all installed
to/spack/share/spack/lmod/.

packages. You then have to make aware the system about the modules,
e.g., by adding the following line to your .bashrc file*:

export MODULEPATH=${MODULEPATH}:/path/to/spack/share/
— spack/lmod/linux-ubuntu22.04-x86_64/Core

You can then load the modules by running, e.g.,
module load gcc/14.2.0

The way in which the modules are written by the spack lmod refresh
command is configured in themodules. yaml filelocated in the spack/etc/spack
directory. An example of configuration is the following:
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modules:
prefix_inspections:
./bin:
- PATH
./include:
- CPATH
./inc:
- CPATH
./lib:
- LIBRARY_PATH
- LD_LIBRARY_PATH
./1ib64:
- LIBRARY_PATH
- LD_LIBRARY_PATH
default:
enable:
- lmod
lmod:
hash_length: 0
core_compilers:

- 'gcc@l3.3.0'

- '1lvm'

- 'gcc@eld.2.0!
hide_implicits: true
hierarchy:

- 'mpi

- 'compiler'
all:

conflict:

- '{name}"'
autoload: direct

You can read more about the configuration options in the Spack docu-
mentation.


https://spack.readthedocs.io/en/latest/module_file_support.html
https://spack.readthedocs.io/en/latest/module_file_support.html
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