High Performance Linear Algebra
Lecture 1: Introduction and Overview

Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

November 10, 2025 — 14:00 to 16:00

1/64

\‘"'/‘

W

Dipartimento
di Matematica
Universita di Pisa

mailto:fabio.durastante@unipi.it

Table of Contents

1 Introduction

» Introduction
Why high-performance Linear Algebra?
A gallery of problems

2/64

\\‘ 'I»A

ﬂk\V About this course: general information

1 Introduction

First some bureaucratic information about the course:
e Course webpage: fdurastante.github.io/courses/hpla2025.html
e Lecture slides: fdurastante.github.io/courses/hpla2025.html#lectures

The exam will consist in a project work to be presented at the end of the course. This will
involve the implementation and performance analysis of some linear algebra algorithms,
or the performance analysis of existing libraries, possibly in relation to a specific
application. The choice of the project topic will also depend on your Ph.D. research topic,
so to make it more interesting and useful for you.

3/64

http://fdurastante.github.io/courses/hpla2025.html#about
http://fdurastante.github.io/courses/hpla2025.html#lectures

\‘ '[,‘

4‘\\\ What is Linear Algebra?

1 Introduction

Linear Algebra is a branch of mathematics concerned with:
e Vector spaces and linear transformations
e Systems of linear equations, matrices, vectors
e Key concepts: determinants, eigenvalues, eigenvectors, singular values

Applications: computer graphics, machine learning, optimization, physics

Numerical Linear Algebra focuses on:
e Solving LA problems using numerical methods on computers
o Development of efficient, stable, and accurate algorithms

e Essential for large-scale problems where exact solutions are impractical

4/64

Problem 1: Linear Systems

1 Introduction

Consider the Poisson equation (PDE):

—Au=f inQ, u=0 onodQ2

Discretization approach: 0
e Divide domain into grid: N = ny x ny x ng points 200
e Use finite difference approximation for derivatives
e Results in sparse linear system: Au = f 400
o A c RNV is sparse 0 200 400
e Most elements are zero nz=1247
e Nis typically very large Sparse matrix pattern

5/64

Problem 2: Eigenvalue Problems

1 Introduction

Example: Markov Chains
e Transition matrix P € RN*N (P;; > 0, rows sum to 1)

e Evolution: p;41 = Ppy
e Stationary distribution 7 satisfies:

ml = 7TTP, w'1=1

e Finding 7r is an eigenvalue problem for large N

6/64

Problem 3: Matrix Equations
1 Introduction

Sylvester equation: AX +XB=C

Application: Model Reduction in Control Theory
LTI dynamical system:

x(t) = Ax(t) + Bu(t), y(t) = Cx(t)

Balanced truncation approach:
1. Compute Gramians via Lyapunov equations:

AP+PA"T +BB" =0 (controllability)
ATQ+0QA+C'C=0 (observability)

2. Solve Sylvester equation: AT + TS = B
3. Efficient algorithms needed for large dimensions

7/64

Problem 4: Machine Learning

1 Introduction

Linear Regression:
e Data: X € R™*" targets: y € R™
e Find coefficients: ming || X3 — y/|3

Neural Networks:

Input Layer
(n features) Hidden Layer

(h neurons) Output Layer
e Weights as matrices: W; € R, W, ¢ Rh>k

(k classes)

e Forward pass:

a; = U(XWl)

a, = softmax(a; Ws)

L. . . . z1 = XW, ap = softmax(zz)
e Training relies on matrix operations

a; = o(z1)

Neural network
8/64

Take Home Message

1 Introduction

Key Point

Applied mathematics is fundamentally about solving combinations of linear algebra
problems.

Modern challenges:
e Ever larger problem sizes
o Need for reliable results in reasonable time

e Requirements: efficient, scalable, parallel algorithms

= This motivates high-performance numerical linear algebra!

9/64

Recommended Reading

1 Introduction

Recommended books on Linear Algebra and Numerical Linear Algebra include:

e Golub and Van Loan [4] - a classic covering matrix factorizations, eigenvalue
problems, and singular value decomposition.

e Other notable works: [2], [8].
e Axler [1] offers an operative introduction to the theory of linear algebra.
e For comprehensive theory, see Horn and Johnson [5, 6].

We will focus on numerical and implementation aspects, with references for deeper
theoretical insights.

10/64

Table of Contents

2 What does it mean large-scale?

» What does it mean large-scale?

11/64

NP

?/A\$ What does “large-scale” mean?

2 What does it mean large-scale?

In the previous section we have seen examples of problems in numerical linear algebra,
where a recurrent theme is that the problem sizes are large.

But how large is large?

The answer: It depends!

It depends on:
e The problem we are dealing with
e The algorithm we are using
e The hardware we are using
e The time we have to solve the problem

12/64

\‘ '[,‘

qﬂ\\ What does “large-scale” mean?

2 What does it mean large-scale?

In the previous section we have seen examples of problems in numerical linear algebra,
where a recurrent theme is that the problem sizes are large.

But how large is large?
Furthermore, it's a matter of when we are asking this question:

e 20 years ago: different answer
e Today: different answer

e 20 years from now: yet again different!

12/64

Problem size: different perspectives

2 What does it mean large-scale?

The notion of “size” varies by problem type:

Linear systems:

e First approximation: number of unknowns
e Sparse matrices: combined information

— Number of non-zero elements
— Overall matrix dimensions

e Dense matrices: number of rows and columns

13/64

Current capabilities

2 What does it mean large-scale?

Sparse linear systems:
e Solved with relative ease: several millions of unknowns

e Current frontier: hundreds of billions of unknowns

Eigenvalue problems:
e Compute few eigenvalues/eigenvectors

e Matrices with several millions of rows and columns

Matrix equations:
e More complicated situation

o Need to exploit special structure for large-scale problems

14/64

Exploiting structure: low-rank solutions

2 What does it mean large-scale?

For large matrix equations, we need solutions with special structure.
Example: Sylvester equation with low-rank solution

T=TT,, whereT; € R™" T, c R
withr < m,n

Key principle

Exploiting clever structures in the problem permits us to solve problems of larger size
than we would be able to without these structures.

Computer science analogy: Building data structures that permit us to store and
manipulate large amounts of data more efficiently.

15/64

Table of Contents

3 Where do we solve such large problems?

» Where do we solve such large problems?
The TOP500 list
The EuroHPC Joint Undertaking: www.eurohpc-ju.europa.eu

16/64

Solving large problems: parallel computers

3 Where do we solve such large problems?

To deal with problems which are large in the sense we have just discussed, we need to use
parallel computers.

Parallel computers perform multiple calculations simultaneously by using multiple
processors or cores working together.

17/64

\\"'»A
Memory organization

3 Where do we solve such large problems?

w,

Parallel computers are classified by memory organization:

e Shared memory systems:

— All processors share common memory space
— Easy data access and communication
— Limited by memory size and contention

e Distributed memory systems:

— Each processor has local memory
— Communication via message passing
— Allows larger memory, but requires complex programming

18/64

Parallel architectures

3 Where do we solve such large problems?

Common parallel computing architectures:

e Multicore processors:

— Multiple cores on single chip
— Each core executes independent thread

e Clusters:

— Interconnected computers (nodes)
— Communication through network

e Supercomputers:

— Extremely powerful systems
— Thousands of processors working in parallel
— Designed for high-speed complex calculations

19/64

The TOP500 list: top500.0rg

3 Where do we solve such large problems?

The TOP500 list ranks the 500 most powerful supercomputers worldwide.

e Updated biannually (June and November)
e Ranks based on LINPACK benchmark performance

e Provides insights into trends in high-performance computing

Current leader (as of 2025): El Capitan (USA) with a performance of over 1 exaFLOP (108
floating-point operations per second).

20/64

https://top500.org/lists/top500/2025/06/

TOP500 List (June 2025) - Part 1

3 Where do we solve such large problems?

Rank System Cores Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kW)
1 El Capitan, HPE Cray EX255a, AMD 11,039,616 1,742.00 2,746.38 29,581
EPYC 24C, DOE/NNSA/LLNL, United
States
2 Frontier, HPE Cray EX235a, AMD 9,066,176 1,353.00 2,055.72 24,607
EPYC 64C, DOE/SC/ORNL, United
States
3 Aurora, HPE Cray EX, Intel Xeon 9,264,128 1,012.00 1,980.01 38,698

Max 9470, DOE/SC/ANL, United
States

21/64

TOP500 List (June 2025) - Part 2

3 Where do we solve such large problems?

Rank System Cores Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kw)
4 JUPITER Booster, BullSequana 4,801,344 793.40 930.00 13,088
XH3000, NVIDIA GH200, Eu-
roHPC/FZJ, Germany
5 Eagle, Microsoft NDv5, Xeon Plat- 2,073,600 561.20 846.84 —
inum 8480C, Microsoft Azure,
United States
6 HPC6, HPE Cray EX235a, AMD EPYC 3,143,520 477.90 606.97 8,461

64C, Eni S.p.A., Italy

22/64

TOP500 List (June 2025) - Part 3

3 Where do we solve such large problems?

Rank System Cores Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kW)

7 Supercomputer Fugaku, Fujitsu, 7,630,848 442.01 537.21 29,899
A64FX 48C 2.2GHz, RIKEN CCS,
Japan

8 Alps, HPE Cray EX254n, NVIDIA 2,121,600 434.90 574.84 7,124
Grace 72C, CSCS, Switzerland

9 LUMI, HPE Cray EX235a, AMD EPYC 2,752,704 379.70 531.51 7,107
64C, EuroHPC/CSC, Finland

10 Leonardo, BullSequana XH2000, 1,824,768 241.20 306.31 7,494
Xeon Platinum, EuroHPC/CINECA,
Italy

23/64

High Performance Linpack (HPL) Benchmark

3 Where do we solve such large problems?

The computers in this table are ranked according to Rmax, the maximum sustained
performance; but how is this measured? This is the High Performance Linpack (HPL)
benchmark, which is run according to the following rules:

1. Generate a (random) linear system Ax = b of size N and solve for x;

2. Measure the time for the solution process T and define a computation rate R(N)
according to the formula

2 N3
R=——;
3T
3. Let N grow and repeat the process, until you get the best possible execution rate

value Rmax.

24/64

Importance of Linear Algebra in Benchmarking

3 Where do we solve such large problems?

Linear algebra problems have been used to benchmark supercomputers for a very long
time, influencing their design in multiple ways.
Key observations:

e Supercomputers have a huge number of cores.
e Operating them consumes a lot of power.

e They are equipped with accelerators, specifically graphical processing units (GPUs).

25/64

Sustained Performance and Historical Context

3 Where do we solve such large problems?

The sustained rate of execution on the HPL benchmark shows that the number one
machine, El Capitan, is capable of executing 1.7 x 10'® arithmetic operations per second!

e Linear algebra is a primary tool for benchmarking supercomputers.

e Dense linear algebra problems are compute-bound, enabling hardware to operate
close to peak performance.

26/64

Evolution of HPL Benchmark

3 Where do we solve such large problems?

The Linpack benchmark originated from tests in the LINPACK User’s Guide [3].
e |t has evolved into a standardized benchmark for comparing computing systems.

e The current HPL benchmark allows vendors to choose problem size and software
configuration for optimal performance.

e Continuous interaction between supercomputing advances and linear algebra has
driven innovations in algorithms and software.

27/64

The EuroHPC Joint Undertaking

3 Where do we solve such large problems?

EuroHPC JU is a European initiative to develop a world-class supercomputing ecosystem
in Europe.

e Established in 2018
e Partnership between the European Union, European countries, and private sector

e Aims to provide access to high-performance computing resources for research,
industry, and public sector

Key objectives:
e Deploy and operate supercomputers in Europe
e Foster research and innovation in HPC technologies
e Support development of HPC applications across various sectors

28/64

P 2
ALICE RECOQUE

EuroHPC L

MareNostrum 5 -~
Barcel
“ISPAIN P aupen
u p e I ‘ " LEONARDO GERMANY
S r Bologna
m p u e s e
<
”:y\‘\
y Lo
- >
Deucalion
Gumartes Qﬁf
PORTUGAL
!\ 4“‘0
-~ X
MeluXi Vega o
eluXina Maribor
issen SLOVENIA “, e
LUXEMBOURG ey,
< LuMi
\ = Kajaani
Discovergg FINLAND
AMOIED
BULGARIA
DAEDALUS R
REeE Arrhenius
S - 2€ D
SWEDEN
S Karolina
ostrava
| CzECHIA

*
*
*

3
N
* *

EuroHPC

Joint Undertaking

T
[Tl ﬁ !:\‘_\—\
[/; %
%
*

**
N
L
WL

The EuroHPC Pre-exascale Machines

3 Where do we solve such large problems?

e JUPITER (Germany) - First European exascale system
— NVIDIA GH200 Grace Hopper GPUs
— 793.4 PFlop/s (Rmax)
e LUMI (Finland) - One of world’s fastest and most energy-efficient
— AMD Instinct MI250X GPUs
— 379.7 PFlop/s (Rmax)
e Leonardo (Italy) - General-purpose HPC system

— NVIDIA A100 GPUs
— 241.2 PFlop/s (Rmax)

30/64

The EuroHPC Petascale Machines

3 Where do we solve such large problems?

e MELUXINA (Luxembourg) - Modular supercomputing architecture
— NVIDIA A100 GPUs
— 18.2 PFlop/s (Rmax)
Vega (Slovenia) - First EuroHPC system in Eastern Europe
— NVIDIA A100 GPUs
— 6.9 PFlop/s (Rmax)
Karolina (Czech Republic) - Accelerated computing platform
— NVIDIA A100 GPUs
— 15.2 PFlop/s (Rmax)
Discoverer (Bulgaria) - Supporting research and innovation
— NVIDIA A100 GPUs
— 3.0 PFlop/s (Rmax)
MareNostrum 5 (Spain) - Upgrade of iconic BSC system
— NVIDIA Hopper GPUs
— 314.0 PFlop/s (Rmax)

31/64

Table of Contents

4 What tools are we going to use?

» What tools are we going to use?
(Modern) Fortran
Git

32/64

Programming Distributed Memory Systems

4 What tools are we going to use?

In this course, we focus on distributed memory systems:

e Most common in High-Performance Computing (HPC)
e Composed of many nodes, each with local memory

e Communication via message-passing libraries (e.g., MPI)

Before diving into the programming model, let’s discuss the tools we'll use to write
efficient parallel code.

33/64

Tools for High-Performance Linear Algebra

4 What tools are we going to use?

Modern Fortran
e Long-standing language for scientific computing
e Well-suited for numerical computations

e Still widely used in scientific applications

Software Version Control: git
e Track changes to code
e Collaborate effectively with others

e Essential for team development

34/64

Parallel Programming Tools

4 What tools are we going to use?

MPI, OpenMP, OpenACC, CUDA and other tools
e MPI (Message Passing Interface): Distributed memory parallelism
e OpenMP: Shared memory parallelism for many-core processors

e OpenACC and CUDA: Accelerator/GPU programming
— Modern supercomputers are equipped with GPUs
— Essential for leveraging full system capabilities

Job Scheduler: Slurm
e Manage execution of jobs on the cluster

e Resource allocation and job queuing

35/64

“"'A

ﬂl\w What is Fortran?

4 What tools are we going to use?

Fortran (“Formula Translation”) is one of the oldest high-level programming languages:
e Originally developed in the 1950s by IBM
e Designed for scientific and engineering applications
e Easy translation of mathematical formulas into code

Modern versions include:
e Fortran 90, 95, 2003, 2008, 2018, 2023
e Features: modular programming, array operations, OOP, parallel computing

Most concepts discussed can be ported to C/C++ or other compiled languages. For more
on Fortran, see fortran-lang.org and [7].

36/64

https://fortran-lang.org/

\\‘ 'I»A

4‘\\\ Why Fortran for HPC?

4 What tools are we going to use?
Key strengths:
e High performance in numerical computations
e Highly optimized for array and matrix operations
e Efficient machine code generation
e Preferred choice for HPC applications

Programming paradigms supported:
e Procedural, modular, and object-oriented programming
e Parallel programming features (coarrays, MPIl, OpenMP)
e Scalable code for distributed and shared memory systems

Applications: Climate modeling, computational fluid dynamics, numerical linear algebra

37/64

Fortran Compilers

4 What tools are we going to use?

Available compilers:
¢ GNU Fortran (gfortran) - Part of GCC
e Intel Fortran (ifort) - Optimized for Intel architectures
Cray Fortran (ftn) - For Cray supercomputers
LLVM Fortran (flang)
PGl Fortran (pgfortran)
NAG compiler (nagfor)

Our choice: gfortran
e Widely available and default on many systems
e Up to date with latest Fortran standards
e Free and open source

38/64

Installing gfortran

4 What tools are we going to use?

Checking installation

To check if gfortran is installed:

gfortran --version

Installation options:

¢ Ubuntu/Debian:
sudo apt-get install gfortran

e macOS (via Homebrew):
brew install gcc

e Using Spack: Download from spack.io or GitHub

39/64

https://spack.io/
https://github.com/spack/spack

Basic gfortran Usage

4 What tools are we going to use?

Basic compilation syntax:

gfortran -o output_file source_file.f90

Common options:
e -0 output_file - Specify output executable name
e -Wall - Enable all compiler warnings
e —g - Generate debug information
-00, -01, -02, -03-Optimization levels
-fcheck=all - Enable runtime checks

e —frecursive - Enable recursion

-fPIC - Position-independent code for shared libraries

40/64

<N%ul

ﬂk\V Your First Fortran Program

4 What tools are we going to use?

Create a file hello.f90:

program hello
use iso_fortran_env, only: output_unit
implicit none
write(output_unit,'("Hello, World!")"')

end program hello

Compile and run:
gfortran -o hello hello.f90
./hello

Output:
Hello, World!

Note: implicit none enforces explicit variable declaration (good practice!)

41/64

\‘ '[,‘

//A\\ What is Version Control?

4 What tools are we going to use?

Version control is a system that records changes to files over time:

Recall specific versions later

Track changes to files and code
Enable collaboration without conflicts

Revert to previous versions when needed

Benefits:
e Multiple developers work simultaneously
e Compare changes over time

e Collaborate more effectively

42/64

Types of Version Control Systems

4 What tools are we going to use?

¢ Centralized Version Control Systems (CVCS)
— Central server stores the repository
— Developers check out files from central location
— Examples: Subversion (SVN), CVS
— Drawback: Server failure stops all work

e Distributed Version Control Systems (DVCS)
— Complete repository copy on each developer’s machine
— Enables offline work
— Better collaboration capabilities
— Examples: Git, Mercurial, Bazaar

43/64

\‘ '[,‘

//A\\ What is Git?

4 What tools are we going to use?

Git is a distributed version control system:
e Created by Linus Torvalds in 2005 for Linux kernel development
e Designed for speed and efficiency
e Handles projects from small to very large

Key features:
e Track changes to files
e Collaborate with others

Manage different versions of codebase

Powerful branching and merging capabilities

Current status: De facto standard for version control in software development

44/64

Basic Git Workflow

4 What tools are we going to use?

Initialize a new repository:

git init my_project

cd my_project

Create or add files to the repository, e.g., hello.f£90 Check repository status:
git status

Stage changes for commit:

git add hello.£f90

Commit changes with a message:

git commit -m "Add hello.f90 program"
View commit history:

git log

45/64

Cloning a Remote Repository or add a Remote

4 What tools are we going to use?

Clone a remote repository:

git clone <repository-url>
cd <repository-name>

Add a remote to an existing repository:

git remote add origin <repository-url>
Push local commits to remote:

git push origin main

Pull changes from remote repository:

git pull origin main

46/64

Branching and Merging

4 What tools are we going to use?

Branching allows you to create a separate line of development:
e [solate features or bug fixes
e Experiment without affecting the main codebase

Main tip

v

i)

Common base

47/64

Branching and Merging

4 What tools are we going to use?

Merging combines changes from different branches:
e Integrate new features or fixes
e Resolve conflicts when changes overlap

commit
N N

/]\

Common base

1\

47/64

Branching and Merging: Example

4 What tools are we going to use?

Create a new branch:
git checkout -b new-feature
Make changes and commit:

git add .
git commit -m "Implement new feature"

Switch back to main branch:
git checkout main

Merge changes from new-feature branch:

git merge new-feature

48/64

Services that use Git

4 What tools are we going to use?

Popular platforms for hosting Git repositories:
e GitHub (github.com)
e GitLab (gitlab.com)
¢ Bitbucket (bitbucket.org)
We also have a Gitea instance installed at the Math Department: git.phc.dm.unipi.it.

Exercise

Explore the features of the mentioned Git hosting platforms and create an account on
GitHub. This will require you to setup SSH keys for secure access to your repositories.

ssh-keygen -t ed25519 -C "your_email@example.com"
ssh-add ~/.ssh/id_ed25519
cat ~/.ssh/id_ed25519.pub

After you have done it, tell me the username and I'll add you to the course organization.

49/64

https://github.com
https://gitlab.com
https://bitbucket.org
https://git.phc.dm.unipi.it/
https://github.com/High-Performance-Linear-Algebra

\\‘ 'I»A

4‘\\\ What is CI/CD?

4 What tools are we going to use?

Continuous Integration (Cl) and Continuous Deployment (CD) are practices in software
development that automate the process of integrating code changes and deploying
applications.
Continuous Integration (Cl):

e Developers frequently merge code changes into a shared repository

e Automated builds and tests run to detect issues early

Continuous Deployment (CD):
e Automatically deploys code changes to production after passing tests
e Ensures rapid delivery of new features and bug fixes

50/64

Benefits of CI/CD

4 What tools are we going to use?

Key benefits:
e Early bug detection: Automated tests catch issues before they reach production
o Faster development cycles: Rapid integration and deployment of changes

¢ Improved collaboration: Teams work together more effectively with shared
codebase

¢ Higher quality software: Consistent testing and deployment processes

Popular CI/CD tools:
e GitHub Actions
e GitLab CI/CD
e Jenkins
e Travis Cl

51/64

<N%ul

ﬂk\w An example of CI/CD with GitHub Actions

4 What tools are we going to use?

Setting up a simple Cl workflow: we will use GitHub Actions to automatically build and
test our Fortran code whenever we push changes to the repository
First, ensure your Fortran project has a Makefile with appropriate build and test targets.
This can be as simple as:
all:

gfortran -o hello hello.f90
test:

./hello
We recall that a Makefile is a file that defines a set of tasks to be executed. It is commonly
used to automate the build process of software projects.

52/64

\"/,‘
Makefile basics

4 What tools are we going to use?

w,

A Makefile consists of rules with the following structure:
target: dependencies

command
Example:
hello: hello.f90

gfortran -o hello hello.f90
Here, hello is the target, hello.f90 is the dependency, and the command compiles the
Fortran source file into an executable named hello.
For small projects, a simple Makefile like this is sufficient to automate the build and test
process. For larger projects, it is better to also have the Makefile programmatically
generated using tools like CMake or Autotools.

53/64

Creating a workflow on GitHub Actions

4 What tools are we going to use?

GitHub Actions allows you to automate workflows directly in your GitHub repository.

Key components:
e Workflows: Automated processes defined in YAML files
e Jobs: A set of steps that execute on the same runner

e Steps: Individual tasks within a job (e.g., running commands, setting up
environments)

In GitHub, workflows are stored in the . github/workflows/ directory of your
repository as YAML (.ym1, Yet Another Markup Language) files.

54/64

<N%ul

ﬂk\w An example of CI/CD with GitHub Actions

4 What tools are we going to use?

Create a file . github/workflows/ci.yml in your repository:

name: CI
on:
push:
branches:
- main
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Fortran

55/64

\‘ ’[,‘

ﬂk\w An example of CI/CD with GitHub Actions

4 What tools are we going to use?

run: |
sudo apt-get update
sudo apt-get install -y gfortran
- name: Test
run: make test

Explanation:

e Triggered on pushes to the main branch

on:
push:

branches:

- main

e Runs on the latest Ubuntu environment

56/64

NP

?/A\$ An example of CI/CD with GitHub Actions

4 What tools are we going to use?

e Defines a job named build with several steps:
— Checkout code from the repository
- name: Checkout code
uses: actions/checkout@v4
— Install gfortran
- name: Set up Fortran
run: |
sudo apt-get update
sudo apt-get install -y gfortran

— Build the project using make

- name: Build
run: make

57/64

\‘ '[,‘

ﬂk\w An example of CI/CD with GitHub Actions

4 What tools are we going to use?

— Run tests using make test
- name: Test
run: make test
You can change the “manual installation” of gfortran with a pre-built action from the
GitHub Marketplace, such as setup-fortran:

- name: Setup Fortran
uses: fortran-lang/setup-fortran@vl.8.0
with:
compiler: gcc
version: 'latest'
update-environment: true

58/64

https://github.com/marketplace/actions/setup-fortran

If everything has gone well:

4 What tools are we going to use?

From the top menu of your GitHub repository, click on the Actions tab. You should see
your workflow running, and if everything is set up correctly, it should complete
successfully, indicating that your Fortran code has been built and tested automatically.

build
succee

search logs
ceeded now in 195 Q 9 8

> @ setupjob os
> @ Checkout code 1s
> @ setupFortran 135
> @ Build

> @ Test os
> @ Post Checkout code

> @ Complete job

Example: github.com/High-Performance-Linear-Algebra/hello-fortran-world

59/64

https://github.com/High-Performance-Linear-Algebra/hello-fortran-world

Learning by doing:

4 What tools are we going to use?

Explore the setup-fortran action and modify the provided example workflow to include
additional steps, such as:

e Running on different operating systems (e.g., Windows, macOS)
e Running on different Fortran compilers (e.g., Intel Fortran, NVIDIA HPC SDK)

Question: How would you modify the Makefile so that it does not call gfortran directly,
but uses instead the compiler available in the environment?

Moving to CMake: To automate the search for the compiler, configuration, and building
of projects, a good practice is to use CMake.

60/64

https://github.com/marketplace/actions/setup-fortran

Further informations on the GitHub Actions

4 What tools are we going to use?

For more information on GitHub Actions, refer to the official documentation:
e GitHub Actions Documentation
¢ Introduction to GitHub Actions
e Workflow syntax for GitHub Actions

They can help you explore more advanced features and customize your Cl/CD
workflowsm, such as:

e Running tests on multiple operating systems

¢ Integrating with other services

e Deploying applications automatically

e Setting up notifications for build status

e Deploying Documentation, artifacts, and more

61/64

https://docs.github.com/en/actions
https://docs.github.com/en/actions/learn-github-actions/introduction-to-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions

Summary

5 Summary

Key takeaways from this lecture:
e High-performance computing relies heavily on linear algebra
The TOP500 list ranks the most powerful supercomputers using the HPL benchmark

We will use Modern Fortran and Git for programming and version control

Cl/CD practices, such as GitHub Actions, help automate testing and deployment

Next steps:

e Set up your Fortran development environment

e Familiarize yourself with Git and version control

e Explore CI/CD tools for automating workflows
Next lecture will cover: introduction to parallel computing from a theoretical standpoint,
including models and paradigms, but in relation to linear algebra problems.

62/64

[3]

[4]

[5]

63/64

References
6 Bibliography

S.). Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. New
York: Springer, 1997. ISBN: 0387982582. URL: http://linear.axler.net/.

J. W. Demmel. Applied Numerical Linear Algebra. Philadelphia, PA: SIAM, 1997. ISBN:
0-89871-389-7.

J. J. Dongarra et al. LINPACK User’s Guide. Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1979. ISBN: 0-89871-172-X. DOI: 10.1137/1.9781611971811.

G. H. Golub and C. F. Van Loan. Matrix computations. Fourth. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013,
pp. Xiv+756. ISBN: 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

R. A. Horn and C. R. Johnson. Matrix analysis. Second. Cambridge University Press,
Cambridge, 2013, pp. xviii+643. ISBN: 978-0-521-54823-6.

http://linear.axler.net/
https://doi.org/10.1137/1.9781611971811

[6]

[7]

8]

64/64

References
6 Bibliography

R. A. Horn and C. R. Johnson. Topics in matrix analysis. Corrected reprint of the 1991
original. Cambridge University Press, Cambridge, 1994, pp. viii+607. ISBN:
0-521-46713-6.

M. Metcalf et al. Modern Fortran Explained: Incorporating Fortran 2023. 6th ed.
Numerical Mathematics and Scientific Computation. Oxford, UK: Oxford University
Press, 2024. ISBN: 978-0198876588.

L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

	Introduction
	Why high-performance Linear Algebra?
	A gallery of problems

	What does it mean large-scale?
	Where do we solve such large problems?
	The TOP500 list
	The EuroHPC Joint Undertaking: www.eurohpc-ju.europa.eu

	What tools are we going to use?
	(Modern) Fortran
	Git

	Summary
	Bibliography

