
High Performance Linear Algebra
Lecture Ŵų: Distributed BLAS
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

January ŵŵ, ŵųŵŹ — ŴŹ.ųų:ŴŻ.ųų

Ŵ/ŷź

mailto:fabio.durastante@unipi.it

Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

Up to now we have seen:
How to implement basic MPI programs in Fortran,
Environement setup for MPI development,
Point-to-point and collective communication,
How to distribute vectors across MPI ranks,

We are now ready to implement distributed linear algebra routines, we will start from the
Level-Ŵ BLAS.

ŵ/ŷź

Table of Contents
ŵ Distributed Level-Ŵ BLAS

▶ Distributed Level-Ŵ BLAS
Level Ŵ: the scaling operation
Level Ŵ: the axpy operation
Level Ŵ: the scalar product
Level Ŵ: the norm operation
Performance considerations for Level-Ŵ BLAS

Scaling of the dot product and norm operations

Ŷ/ŷź

Last time we had implemented a distributed vector type
ŵ Distributed Level-Ŵ BLAS

We have constructed the following distributed vector type:
type :: mpi_ddistributed_vector

integer :: n_local ! number of local elements
integer :: n_global ! total number of global elements
integer :: comm ! MPI communicator
real(real64), allocatable :: data(:) ! local data array

contains
procedure, pass(this) :: dinit
final :: dfinalize

end type mpi_ddistributed_vector
We have now to enrich this type with the Level-Ŵ BLAS operations.

ŷ/ŷź

Level Ŵ: the scaling operation
ŵ Distributed Level-Ŵ BLAS

The first Level-Ŵ BLAS operation we are going to implement is the vector scaling:

y← α y, α ∈ R, y ∈ RN.

This operation is embarrassingly parallel, since each element of the vector can be scaled
independently from the others.

We can therefore implement this operation as amethod of the distributed vector type, as
before we add the method signature to the type definition:
type :: mpi_ddistributed_vector
...

contains
...
procedure, pass(this) :: dscal_dist

end type mpi_ddistributed_vector

Ÿ/ŷź

Level Ŵ: the scaling operation
ŵ Distributed Level-Ŵ BLAS

Then we can implement the method using the BLAS dscal routine on the local data:
subroutine dscal_dist(this, alpha)

implicit none
class(mpi_ddistributed_vector), intent(inout) :: this
real(real64), intent(in) :: alpha
call dscal(this%n_local, alpha, this%data, 1)

end subroutine dscal_dist
We remind that the dscal routine has the following signature:
dscal(n, alpha, x, incx)
where n is the number of elements to scale, alpha is the scaling factor,

Ź/ŷź

Compiling and linking the distributed BLAS library
ŵ Distributed Level-Ŵ BLAS

To compile and link the distributed BLAS library we need to link against both the MPI
library and the BLAS library. The compilation command is:

mpifort -c -I<path_to_blas_include> mpi_ddistributed_vector.f90 -o
mpi_ddistributed_vector.o↪→

and the linking command is:
mpifort mpi_ddistributed_vector.o -L<path_to_blas_lib>

-l<blas_library_name> -o libmpi_ddistributed_blas.a↪→

As usual, it is convenient to create a Makefile or even better a CMakeLists.txt to
automate the compilation and linking process. For the latter we need to look for both MPI
and BLAS using the find_package() command.

ź/ŷź

Compiling and linking the distributed BLAS library
ŵ Distributed Level-Ŵ BLAS

This is an example of a CMakeLists.txt file to compile and link the distributed BLAS
library:
cmake_minimum_required(VERSION 3.10)
project(mpi_ddistributed_blas LANGUAGES Fortran)
find_package(MPI REQUIRED COMPONENTS Fortran)
find_package(BLAS REQUIRED)

add_library(mpi_ddistributed_blas mpi_ddistributed_vector.f90)
target_link_libraries(mpi_ddistributed_blas MPI::MPI_Fortran

BLAS::BLAS)↪→

Ż/ŷź

Level Ŵ: the axpy operation
ŵ Distributed Level-Ŵ BLAS

The second Level-Ŵ BLAS operation we are going to implement is the axpy operation:

y← α x+ y, α ∈ R, x, y ∈ RN.

This operation is again embarrassingly parallel, since each element of the vectors can be
updated independently from the others.
The implementation pathway is the same as before, we add the method signature to the
type definition:

type :: mpi_ddistributed_vector
...

contains
...
procedure, pass(this) :: daxpy_dist

end type mpi_ddistributed_vector

ż/ŷź

Level Ŵ: the axpy operation
ŵ Distributed Level-Ŵ BLAS

Then we can implement the method using the BLAS daxpy routine on the local data, but
before we have two checks to perform:

Check that the vector x is distributed over the same communicator as this,
Check that the local sizes of the two vectors are the same.

The communicator check can be performed using the MPI_Comm_compare routine:
MPI_Comm_compare(comm1, comm2, result, ierr)
and then check that result == MPI_IDENT.
The local size check is simply an if statement on the n_local attribute of the two
vectors.

Ŵų/ŷź

Level Ŵ: the axpy operation
ŵ Distributed Level-Ŵ BLAS

subroutine daxpy_dist(this, alpha, x)
implicit none
class(mpi_ddistributed_vector), intent(inout) :: this
real(real64), intent(in) :: alpha
class(mpi_ddistributed_vector), intent(in) :: x
integer :: ierr, are_comm_compatible
if (this%n_local /= x%n_local) then

write(error_unit, *) "Error: Local sizes do not match in daxpy_dist"
call MPI_Abort(this%comm, 1, ierr)

end if
call MPI_Comm_compare(this%comm, x%comm, are_comm_compatible, ierr)
if (are_comm_compatible /= MPI_IDENT) then

write(error_unit, *) "Error: Communicators do not match in daxpy_dist"
call MPI_Abort(this%comm, 1, ierr)

end if
call daxpy(this%n_local, alpha, x%data, 1, this%data, 1)

end subroutine daxpy_dist
ŴŴ/ŷź

Level Ŵ: the scalar product
ŵ Distributed Level-Ŵ BLAS

The third Level-Ŵ BLAS operation we are going to implement is the scalar product:

α = x⊤y =

N∑
i=1

xiyi, x, y ∈ RN.

This operation is not embarrassingly parallel, since we need to reduce the contributions
from all the processes to compute the final result.

We can therefore implement this operation as amethod of the distributed vector type, as
before we add the method signature to the type definition:
type :: mpi_ddistributed_vector
...

contains
...
procedure, pass(this) :: ddot_dist

end type mpi_ddistributed_vector
Ŵŵ/ŷź

Level Ŵ: the scalar product
ŵ Distributed Level-Ŵ BLAS

Then we can implement the method using the BLAS ddot routine on the local data, but
before we have two checks to perform:

Check that the vector x is distributed over the same communicator as this,
Check that the local sizes of the two vectors are the same.

And we have to perform a global reduction of the local contributions to compute the final
result, but we have a decision to make:

Do we want to return the result to all processes?
Do we want to return the result only to the root process?

ŴŶ/ŷź

Level Ŵ: the scalar product
ŵ Distributed Level-Ŵ BLAS

The prototype to delegate the choice of the reduction strategy to the user is:
subroutine ddot_dist(this, x, result, rank)

implicit none
class(mpi_ddistributed_vector), intent(in) :: this
class(mpi_ddistributed_vector), intent(in) :: x
integer, intent(in), optional :: rank
real(real64), intent(out) :: result

end subroutine ddot_dist
If the user provides the rank argument, then the result is returned only to the specified
rank, otherwise it is returned to all ranks.
We can then implement the method using the BLAS ddot routine on the local data and
then performing the reduction using MPI_Reduce or MPI_Allreduce.

Ŵŷ/ŷź

Level Ŵ: the scalar product
ŵ Distributed Level-Ŵ BLAS

The two checks are the same as before, and we don’t rewrite them here, then we
compute the local dot product:
local_dot = ddot(this%n_local, this%data, 1, x%data, 1)
and then we perform the reduction:
if (present(rank)) then

call MPI_Reduce(local_dot, result, 1, MPI_REAL8, MPI_SUM, rank,
this%comm, ierr)↪→

else
call MPI_Allreduce(local_dot, result, 1, MPI_REAL8, MPI_SUM,

this%comm, ierr)↪→

end if

ŴŸ/ŷź

Level Ŵ: the norm operation
ŵ Distributed Level-Ŵ BLAS

The fourth Level-Ŵ BLAS operation we are going to implement is the vector norm:

∥x∥2 =
√
x⊤x =

(
N∑

i=1

x2i

)1/2

, x ∈ RN.

This operation is similar to the scalar product, since we need to reduce the contributions
from all the processes to compute the final result.

We can therefore implement this operation as amethod of the distributed vector type, as
before we add the method signature to the type definition:
type :: mpi_ddistributed_vector
...

contains
...
procedure, pass(this) :: dnrm2_dist

end type mpi_ddistributed_vector
ŴŹ/ŷź

Level Ŵ: the norm operation
ŵ Distributed Level-Ŵ BLAS

Then we can implement the method using the BLAS dnrm2 routine on the local data, and
then performing a global reduction of the local contributions to compute the final result,
using the same strategy as before.

The prototype of the method is:
subroutine dnrm2_dist(this, result, rank)

implicit none
class(mpi_ddistributed_vector), intent(in) :: this
integer, intent(in), optional :: rank
real(real64), intent(out) :: result

end subroutine dnrm2_dist

Ŵź/ŷź

Level Ŵ: the norm operation
ŵ Distributed Level-Ŵ BLAS

The local norm computation is performed using the dnrm2 routine:
local_norm = dnrm2(this%n_local, this%data, 1)**2
and then we perform the reduction:
if (present(rank)) then

call MPI_Reduce(local_norm, result, 1, MPI_REAL8, MPI_SUM, rank,
this%comm, ierr)↪→

else
call MPI_Allreduce(local_norm, result, 1, MPI_REAL8, MPI_SUM,

this%comm, ierr)↪→

end if
Finally we take the square root of the result to obtain the final norm, if we are on the root
process (or on all processes if no root was specified).

ŴŻ/ŷź

Level Ŵ: the norm operation
ŵ Distributed Level-Ŵ BLAS

The final step is to take the square root of the result:
if (present(rank)) then

if (myrank == rank) then
result = sqrt(global_sum)

end if
else

result = sqrt(global_sum)
end if

With this we have completed the implementation of the Level-Ŵ BLAS operations for our
distributed vector type.

Ŵż/ŷź

Performance considerations for Level-Ŵ BLAS
ŵ Distributed Level-Ŵ BLAS

The Level-Ŵ BLAS operations we have implemented are allmemory-bound, since they
require a lot of data movement compared to the number of floating-point operations
performed.

In a distributed memory setting, the performance of these operations is further limited by
the communication overhead introduced by the MPI routines used for data distribution
and reduction.

Let us try to analyze the performance of the
• axpy,
• dot product,
• norm.

What models can we use?

ŵų/ŷź

Distributed axpy performance model
ŵ Distributed Level-Ŵ BLAS

The distributed axpy operation requires:
Reading the local parts of vectors x and y from memory,
Writing the updated local part of vector y to memory.

Therefore, the total data movement is:

Data Movement = 2 · nlocal · sizeof(realŹŷ).

The number of floating-point operations is:

FLOPs = 2 · nlocal.

Thus, the operational intensity is:

I =
FLOPs

Data Movement
=

2 · nlocal
2 · nlocal · sizeof(realŹŷ)

=
1

sizeof(realŹŷ)
.

This has not changed from the shared memory case.

ŵŴ/ŷź

The communication cost in distributed axpy
ŵ Distributed Level-Ŵ BLAS

In addition to the memory access costs, the distributed axpy operation incurs a
communication cost due to the distribution of vectors across MPI processes.

However, since the axpy operation is embarrassingly parallel, there is no need for
inter-process communication during the computation itself.

Therefore, the communication cost is negligible for the axpy operation, and the
performance is primarily determined by the memory bandwidth of the local memory.

Let us run some experiments to confirm this.

ŵŵ/ŷź

axpy performance bechmark
ŵ Distributed Level-Ŵ BLAS

We can write a single benchmark program to test the performance of the distributed axpy
operation for both strong and weak scaling.
We read the type of experiment from the command line arguments:
if (rank == 0) then

call get_command_argument(1, scaling_type)
call get_command_argument(2, arg_buffer)
read(arg_buffer, *) n_size_input

if (trim(scaling_type) /= 'strong' .and. trim(scaling_type) /= 'weak') then
write(error_unit, '(A)') "Error: scaling_type must be 'strong' or 'weak'"
call MPI_Abort(MPI_COMM_WORLD, 1, ierr)

end if
end if

ŵŶ/ŷź

axpy performance bechmark
ŵ Distributed Level-Ŵ BLAS

Then we set the global vector size based on the scaling type:
! Broadcast arguments to all ranks
call MPI_Bcast(scaling_type, 20, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
call MPI_Bcast(n_size_input, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

! Compute global size based on scaling type
if (trim(scaling_type) == 'strong') then

n_global = n_size_input
else ! weak scaling

n_global = n_size_input * nprocs
end if

Recall: strong scalingmeans fixed problem size, weak scalingmeans fixed problem size
per process.

ŵŷ/ŷź

axpy performance bechmark
ŵ Distributed Level-Ŵ BLAS

We are now ready to create the distributed vectors and run the benchmark:
! Initialize vectors and data
call x%dinit(MPI_COMM_WORLD, n_global)
call y%dinit(MPI_COMM_WORLD, n_global)
x%data = 1.0_real64
y%data = 2.0_real64
call MPI_Barrier(MPI_COMM_WORLD, ierr)
call y%daxpy_dist(alpha, x) ! Warmup run
call MPI_Barrier(MPI_COMM_WORLD, ierr)
! Timing runs
start_time = MPI_Wtime()
do i = 1, num_trials

call y%daxpy_dist(alpha, x)
end do
end_time = MPI_Wtime()
elapsed_time = (end_time - start_time) / num_trials

ŵŸ/ŷź

axpy performance bechmark
ŵ Distributed Level-Ŵ BLAS

Finally we gather the results:
! Gather timing statistics
call MPI_Reduce(elapsed_time, max_time, 1, MPI_REAL8, MPI_MAX, 0, MPI_COMM_WORLD, ierr)
call MPI_Reduce(elapsed_time, min_time, 1, MPI_REAL8, MPI_MIN, 0, MPI_COMM_WORLD, ierr)
call MPI_Reduce(elapsed_time, avg_time, 1, MPI_REAL8, MPI_SUM, 0, MPI_COMM_WORLD, ierr)
Which we can then print from the root process:
avg_time = avg_time / nprocs
write(output_unit, *)
write(output_unit, '(A, I12)') "Global vector size: ", n_global
write(output_unit, '(A, I12)') "Local vector size: ", x%n_local
write(output_unit, '(A, F12.6, A)') "Average time: ", avg_time * 1000, " ms"
write(output_unit, '(A, F12.6, A)') "Min time: ", min_time * 1000, " ms"
write(output_unit, '(A, F12.6, A)') "Max time: ", max_time * 1000, " ms"
write(output_unit, '(A, F12.2, A)') "Throughput: ", &

(n_global * 3.0_real64 * 8.0_real64) / (avg_time * 1.0e9), " GB/s"
write(output_unit, '(A, F12.2, A)') "Performance: ", &

(n_global * 2.0_real64) / (avg_time * 1.0e9), " GFLOP/s"

ŵŹ/ŷź

axpy performance experiment setup
ŵ Distributed Level-Ŵ BLAS

We run the benchmark on the AMELIA cluster at IAC-CNR, which is the same we used to
measure network performance.
#!/bin/bash
#SBATCH --job-name=axpy_scaling_64ppn
#SBATCH --nodes=20
#SBATCH --ntasks-per-node=64
#SBATCH --time=00:30:00
#SBATCH --partition=prod-gn
#SBATCH --mem=900Gb
#SBATCH --output=axpy_%j.out
#SBATCH --error=axpy_%j.err

Load Intel oneAPI modules
module load intel/oneapi/intel_MKL-2023.2.0 intel/oneapi/intel_MPI-2023.2.0

ŵź/ŷź

axpy performance experiment setup
ŵ Distributed Level-Ŵ BLAS

For the strong scaling we launch the benchmark:
N_GLOBAL_STRONG=100000 # fixed total vector size
echo " STRONG SCALING TEST"
echo " Global vector size = ${N_GLOBAL_STRONG}"
for NODES in $(seq 1 20); do

NTASKS=$((NODES * 64))
echo
echo "Strong scaling run:"
echo " Nodes : $NODES"
echo " MPI ranks: $NTASKS"
echo " N_global : $N_GLOBAL_STRONG"
mpirun -np $NTASKS ./mpi_axpy_scaling strong $N_GLOBAL_STRONG
echo "--"

done

ŵŻ/ŷź

axpy performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210

10−3.6

10−3.4

10−3.2

MPI ranks

Av
er
ag
e
tim

e
[m

s]

Strong scaling: DAXPY average time N = 105

ŵż/ŷź

axpy performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210

400

600

800

MPI ranks

Pe
rfo

rm
an

ce
[G
FL
O
P/
s]

Strong scaling: DAXPY performance N = 105

ŵż/ŷź

Strong scaling analysis
ŵ Distributed Level-Ŵ BLAS

The strong scaling results show that the execution time decreases as we increase the
number of MPI ranks, which is the expected behavior. However, the rate of decrease
slows down significantly after ŵŸŹ ranks.

Key observations:
From Źŷ to ŵŸŹ ranks: execution time decreases from ų.ŹŴŹ ms to ų.ŶŷŶ ms (≈ 45%
reduction),
From ŵŸŹ to ŴŵŻų ranks: execution time decreases from ų.ŶŷŶ ms to ų.ŵŵų ms
(≈ 36% reduction).

This indicates that we are approaching the communication and memory bandwidth
limits of the system.

Ŷų/ŷź

Strong scaling efficiency
ŵ Distributed Level-Ŵ BLAS

The performance per rank (in GFLOP/s) shows a significant improvement from Źŷ to Ŷŵų
ranks, increasing from≈ 324 GFLOP/s to≈ 845 GFLOP/s.

Beyond Ŷŵų ranks, the performance stabilizes around żųų GFLOP/s with minor
fluctuations.

This behavior is typical for memory-bound operations:
Initial improvement due to better cache utilization and memory bandwidth
saturation,
Plateau effect due to the inherent memory bandwidth limitation of individual
compute nodes.

ŶŴ/ŷź

Strong scaling saturation
ŵ Distributed Level-Ŵ BLAS

The saturation in performance suggests that we have reached the memory bandwidth
limit of the underlying hardware at approximately żųų GFLOP/s.

This is consistent with the memory-bound nature of the axpy operation, where:
The operational intensity is very low (I = 1/8 for Źŷ-bit floats),
The computation is limited by memory bandwidth, not floating-point performance.

Further improvements would require either:
Increasing the problem size (to improve cache reuse), and let’s do it!

Ŷŵ/ŷź

axpy performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210

10−2

10−1

MPI ranks

Av
er
ag
e
tim

e
[m

s]

Strong scaling of MPI DAXPY (Nglobal = 107)

ŶŶ/ŷź

axpy performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210
102

103

104

MPI ranks

Pe
rfo

rm
an

ce
[G
FL
O
P/
s]

Strong scaling performance of MPI DAXPY (Nglobal = 107)

ŶŶ/ŷź

axpy performance experiment: weak scaling setup
ŵ Distributed Level-Ŵ BLAS

For the weak scaling we launch the benchmark:
N_LOCAL_WEAK=1562 # local size per MPI rank
echo " WEAK SCALING TEST"
echo " Local vector size per rank = ${N_LOCAL_WEAK}"
for NODES in $(seq 1 20); do

NTASKS=$((NODES * 64))
N_GLOBAL_WEAK=$((NTASKS * N_LOCAL_WEAK))
echo
echo "Weak scaling run:"
echo " Nodes : $NODES"
echo " MPI ranks: $NTASKS"
echo " N_global : $N_GLOBAL_WEAK (${N_LOCAL_WEAK} per rank)"
mpirun -np $NTASKS ./mpi_axpy_scaling weak $N_LOCAL_WEAK
echo "--"

done

Ŷŷ/ŷź

axpy performance experiment: weak scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210
10−3.3

10−3.25

MPI ranks

Av
er
ag
e
tim

e
[m

s]

Weak scaling: DAXPY average time

ŶŸ/ŷź

axpy performance experiment: weak scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210

103

104

MPI ranks

Pe
rfo

rm
an

ce
[G
FL
O
P/
s]

Weak scaling: DAXPY performance

ŶŸ/ŷź

Weak Scaling Results Analysis
ŵ Distributed Level-Ŵ BLAS

The weak scaling results for the distributed axpy operation demonstrate that as we
increase the number of MPI ranks while maintaining a constant local vector size per rank,
the execution time remains relatively stable at approximately ų.Ÿ ms.

From Źŷ to ŴŵŻų ranks: execution time fluctuates between ų.ŸŴ and ų.ŹŴ ms, showing
excellent stability,
The performance in GFLOP/s scales nearly linearly with the number of ranks,
indicating efficient distributed memory utilization,
This demonstrates that the embarrassingly parallel nature of the axpy operation is
preserved in the distributed implementation.

This behavior is ideal for weak scaling scenarios, where the problem size grows
proportionally with the number of processes. The stable execution time confirms that
there is no significant communication overhead in the distributed axpy operation.

ŶŹ/ŷź

Weak Scaling Performance Insights
ŵ Distributed Level-Ŵ BLAS

The weak scaling results for the distributed axpy operation highlight several key insights:
The constant local computation time across all ranks confirms that the distributed
axpy implementation has negligible communication overhead,
The linear increase in total GFLOP/s (from≈ 328 to≈ 7807 GFLOP/s) demonstrates
perfect computational scaling,
The local memory bandwidth utilization remains constant, indicating that each rank
operates independently without interference from inter-process communication.

Overall, the weak scaling results validate that the distributed axpy operation is well-suited
for large-scale parallel computations, with minimal communication overhead and
excellent scalability properties.

Ŷź/ŷź

Scaling of the dot product and norm operations
ŵ Distributed Level-Ŵ BLAS

We can now investigate the scaling behavior of the dot product and norm operations,
which involve global reductions and are therefore expected to exhibit different scaling
characteristics compared to the axpy operation.

The dot product and norm operations require communication between MPI processes to
aggregate local results, which can introduce significant overhead, especially as the
number of processes increases.

We will analyze both strong and weak scaling for these operations to understand their
performance limits.

ŶŻ/ŷź

Writing the benchmark
ŵ Distributed Level-Ŵ BLAS

The initial part of the benchmark program is similar to the axpy benchmark, decide the
scaling type and set the global vector size accordingly. The main difference is in the timing

section, where we replace the axpy call with either the dot product or norm call:
call x%dinit(MPI_COMM_WORLD, n_global)
call y%dinit(MPI_COMM_WORLD, n_global)
x%data = 1.0_real64
y%data = 2.0_real64
call MPI_Barrier(MPI_COMM_WORLD, ierr)
call x%ddot_dist(y, dot_value)
call MPI_Barrier(MPI_COMM_WORLD, ierr)
start_time = MPI_Wtime()
do i = 1, num_trials

call x%ddot_dist(y, dot_value)
end do
end_time = MPI_Wtime()
elapsed_time = (end_time - start_time) / num_trials
Ŷż/ŷź

ddot performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210

10−1.5

10−1

MPI ranks

Av
er
ag
e
tim

e
[m

s]

Strong scaling of MPI DDOT (Nglobal = 107)

ŷų/ŷź

ddot performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210

102

103

MPI ranks

Pe
rfo

rm
an

ce
[G
FL
O
P/
s]

Strong scaling performance of MPI DDOT (Nglobal = 107)

ŷų/ŷź

Strong Scaling Analysis: MPI DDOT (Nglobal = 107)
ŵ Distributed Level-Ŵ BLAS

The strong scaling results for the distributed dot product reveal interesting behavior
patterns:

Initial strong scaling (Źŷ–ŸźŹ ranks): Execution time decreases from ų.ŵŴŵ ms to
ų.ųŵų ms, showing nearly ideal scaling behavior.
Peak performance (ŸŴŵ–ŸźŹ ranks): Approximately Ŵųųų GFLOP/s, indicating efficient
local computation and reduction.
Performance degradation (źųŷ+ ranks): Significant variability and performance
drops appear, suggesting communication overhead dominates.

The critical observation is that performance becomes unstable beyond ŸźŹ ranks, with
execution time fluctuating between ų.ųŵų ms and ų.ųŻź ms.

ŷŴ/ŷź

Understanding the Scaling Breakdown
ŵ Distributed Level-Ŵ BLAS

Why does performance degrade at high
rank counts?

Local vector size: nlocal = 107

Nranks

At ŴŵŻų ranks: nlocal ≈ 7800 elements
Too small for effective cache utilization

Communication cost dominates:
MPI reduction becomes a bottleneck
Synchronization overhead exceeds
computation time
Network latency not fully hidden by
computation

Key insight: Unlike embarrassingly parallel axpy, dot product requires global
synchronization via MPI_Allreduce, which becomes increasingly expensive as rank count
grows.

ŷŵ/ŷź

Recommendations for Practical Use
ŵ Distributed Level-Ŵ BLAS

Optimal configuration: ŵŸŹ–ŸźŹ ranks with problem size N ≥ 106 per rank
— Maintains local vector size large enough for efficient computation
— Communication overhead remains manageable

Weak scaling preferred: For dot product and norm operations, weak scaling
(constant work per rank) provides better performance predictability
Avoid extreme decomposition: Do not distribute to more ranks than necessary;
overhead grows quadratically with rank count for global reductions

ŷŶ/ŷź

ddot performance experiment: weak scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210

10−2

10−1.5

MPI ranks

Av
er
ag
e
tim

e
[m

s]

Weak scaling of MPI DDOT

ŷŷ/ŷź

ddot performance experiment: weak scaling
ŵ Distributed Level-Ŵ BLAS

26 27 28 29 210

101.5

102

MPI ranks

Pe
rfo

rm
an

ce
[G
FL
O
P/
s]

Weak scaling performance of MPI DDOT

ŷŷ/ŷź

Weak Scaling of Distributed DDOT with MPI_Allreduce
ŵ Distributed Level-Ŵ BLAS

Setup: Each MPI rank maintains a fixed local vector of ŴŸŹŵ elements. The global dot
product requires MPI_Allreduce to aggregate local contributions across all ranks.
Execution time behavior:
— Scales well up to≈Ŷŵų ranks with gradual time increase
— Significant spikes at ŶŻŷ–ŷŷŻ and Ŵųŵŷ+ ranks indicate communication bottlenecks
— Variability suggests network congestion and synchronization overhead

Performance scaling:
— Peak performance≈ŴŸų GFLOP/s around żŹų ranks
— Drops align with execution time spikes, confirming communication dominates
— Unlike axpy, performance is latency-bound, not compute-bound

ŷŸ/ŷź

Weak Scaling of Distributed DDOT with MPI_Allreduce
ŵ Distributed Level-Ŵ BLAS

Key insight: At high rank counts, each rank’s local vector is too small to hide the cost
of the global all-reduce operation. The computation time becomes negligible
compared to synchronization overhead.

Communication avoiding algorithms
To mitigate these issues, research has moved towards communication-avoiding
algorithms that try to reduce the number of global synchronizations required, for
example by restructuring computations to perform more local work before
communicating, or by reformulating algorithms to reduce the frequency of reductions.

ŷŹ/ŷź

Conclusion and next steps
Ŷ Conclusion and next steps

We have
Implemented Level-Ŵ BLAS operations for distributed vectors using MPI,
Analyzed performance characteristics for axpy, dot product, and norm,
Identified scaling limits due to communication overhead in reduction operations

Next steps:
Explore Level-ŵ and Level-Ŷ BLAS operations in distributed settings.

ŷź/ŷź

	Last time on High Performance Linear Algebra
	Distributed Level-1 BLAS
	Level 1: the scaling operation
	Level 1: the axpy operation
	Level 1: the scalar product
	Level 1: the norm operation
	Performance considerations for Level-1 BLAS

	Conclusion and next steps

