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Summary of previous lecture

1 Summary of previous lecture

e Taxonomy of computer architectures
e Performance metrics: FLOP/s, speedup, efficiency, scalability

e Performance modeling: weak and strong scaling
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2 The roofline model

» The roofline model
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N

Modern Memory Hierarchy

2 The roofline model

U,

e Computer architectures organized around a memory hierarchy

e Designed to balance speed, capacity, and cost

Memory Hierarchy Levels

1. Registers and cache (L1, L2, L3) — extremely fast
2. Main memory (RAM) — moderate speed

3. Secondary storage (SSD/HDD) — slower

4. Tertiary storage — archival

Key parameter: Memory bandwidth — rate of data transfer between memory and
processor
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The Memory Wall

2 The roofline model

The Problem
Processor speeds have grown much faster than memory bandwidth improvements

e Memory wall: memory latency and bandwidth become the primary bottleneck
¢ Need tools to understand and visualize this limitation
e Enter: the Roofline Model [7]
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The Roofline Model: Concept

2 The roofline model

A visual performance model relating computational throughput to memory bandwidth

Key hardware characteristics:
e Peak floating-point performance: Perf (FLOP/s)
e Peak memory bandwidth: BW (Bytes/s)
Key application characteristic:
e Operational Intensity (Ol): FLOP/Byte
e Ratio of floating-point ops to bytes accessed from memory
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Roofline Model: The Relationship

2 The roofline model

Fundamental equation

FLOP  FLOP Byte
Perf = = . =

= Ol - BW
S Byte s

e Performance depends linearly on both Ol and BW
e Plotted as log-log graph: performance vs operational intensity
e Creates a characteristic “roofline” shape
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2 The roofline model

Roofline Model: Visual Representation
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Figure: Roofline model: 100 GFLOP/s peak, 25 GB/s bandwidth



Understanding the Roofline Plot

2 The roofline model

Two regions:

1. Memory-bound (left) Ridge point:
_ Linear increase with Ol e Intersection of two regions
— Limited by bandwidth e Minimum Ol to reach peak
2. Compute-bound (right) performance
— Horizontal line ¢ In example: 4 FLOP/Byte

— Limited by peak FLOP/s

9/69



Using the Roofline Model

2 The roofline model

Applications:
e Analyze kernel performance on given architecture
¢ |dentify performance bottlenecks

e Guide optimization efforts

Optimization strategy

Compare kernel’s Ol to ridge point:
e Below ridge = memory-bound — improve data locality
e Above ridge = compute-bound — optimize computations
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Roofline and Linear Algebra Evolution

2 The roofline model

e Algorithmic optimization improves Ol and data locality

e Example: Evolution of BLAS (Basic Linear Algebra Subprograms)
— Level 1: vector operations (low Ol)
— Level 2: matrix-vector operations (medium Ol)
— Level 3: matrix-matrix operations (high Ol)

e Higher-level BLAS operations:

— Reuse data in fast memory
— Reduce memory traffic
— Approach compute-bound regime

More details on BLAS in upcoming lectures
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R
Measuring Memory Bandwidth: STREAM

2 The roofline model

STREAM Benchmark [4, 5]

Measures sustainable memory bandwidth (GB/s) for simple vector kernels

U,

Four kernels:
COPY Copy vector from one location to another
SCALE Scale vector by constant factor
SUM Add two vectors
TRIAD Scaled vector addition
e Simple, easy to understand
e Provides reliable bandwidth measure
e Widely used in HPC community

Info: http://www.cs.virginia.edu/stream/
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w,

Let us run try the STREAM benchmark on your machine:
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Measuring Memory Bandwidth: Example

2 The roofline model

Download the STREAM benchmark fromhttp://www.cs.virginia.edu/stream/

mkdir -p stream && cd stream

wget -r -np -nH --cut-dirs=2 -e robots=off -R "index.htmlx" \
https://www.cs.virginia.edu/stream/FTP/Code/

There is a Makefile provided; you can compile with make

The standard configuration requires g77, but you can edit the Makefile to use
gfortran, or any other compiler you have available:

FF = gfortran
FFLAGS = -02

Run the benchmark by doing: ./stream_f.exe


http://www.cs.virginia.edu/stream/

Example output of STREAM benchmark

2 The roofline model

Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word

Array size = 2000000

Offset 0

The total memory requirement is 45 MB
You are running each test 10 times

The *best* time for each test is used
*EXCLUDING* the first and last iterations



Example output of STREAM benchmark

2 The roofline model

Your clock granularity/precision appears to be 1 microseconds
Function Rate (MB/s) Avg time Min time Max time
Copy: 19300.7949 0.0017 0.0017 0.0019
Scale: 16737 .4645 0.0019 0.0019 0.0020
Add: 20691.3250 0.0024 0.0023 0.0025
Triad: 19599.55614 0.0025 0.0024 0.0025
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How to obtain correct results from STREAM

2 The roofline model

e Ensure the array size is large enough to exceed cache sizes

Compile with optimizations enabled (e.g., -02 or higher)

Run multiple iterations and take the best time

Validate results to ensure correctness

Note

Reported bandwidth may vary based on system load, compiler optimizations, and other
factors. Always run multiple trials for reliable measurements.

16/69



How to obtain correct results from STREAM: Example

2 The roofline model

We can extract the right way to perform the test by looking at the size of the level 3 cache
of our machine and ensuring that the array size is large enough to exceed it. This number
can be found by running the command:

lscpu | grep "L3"
On my machine, this returns:
L3 cache: 36 MiB (1 instance)
So | should set the array size to be larger than 36 MiB. Since each double-precision
number takes 8 bytes, | can calculate the minimum number of elements needed:
MIN_SIZE=$(echo "36 * 1024 * 1024 / 8" | bc)
echo $MIN SIZE

This gives me 4,718,592 elements. To be safe, | can set the array size to 5,000,000
elements in the STREAM benchmark code before compiling and running it
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How to obtain correct results from STREAM: Modifying
the Makefile

2 The roofline model

Using awk
A nice way to automate the modification of the array size in the STREAM benchmark code
is to use awk to edit the source file directly from the command line.
L3CACHE=$(1scpu | awk -F: '/L3 cache/ {match($2, /[0-9]+/); print
— substr($2, RSTART, RLENGTH)}')
MIN_SIZE=$(echo "${L3CACHE} * 1024 * 1024 / 8" | bc)
echo $MIN_SIZE

Then, you can modify the FFLAGS variable in the Makefile to use the new array size:

FFLAGS="-03 -march=native -mtune=native
< -DSTREAM_ARRAY SIZE=${MIN_SIZE}"
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AV
Measuring Peak Performance

2 The roofline model

|
AN,

Peak FLOP/s = Cores x Clock (GHz) x FLOP/Cycle

Example: x86 processor with AVX2
e 8 double-precision FLOP per cycle
e 4 cores at 3 GHz
e Peak: 4 x 3 x 8 = 96 GFLOP/s

Note

This is theoretical peak; actual performance may be lower due to: bandwidth limitations,
cache misses, other overheads. It always best to get this number from the manufacturer
datasheet when possible.
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Table of Contents

3 Intra-node parallelism

» Intra-node parallelism
Intra-node parallelism: advanced architectures
Intra-node parallelism: tools
OpenMP
Using CMake and doing Cl with OpenMP
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From Moore’s Law to Parallelism

3 Intra-node parallelism

e For decades, performance grew via Moore's Law

— Higher clock frequencies
— Instruction Level Parallelism (ILP): pipelining, out-of-order execution, branch prediction

e Early 2000s: this trend hit fundamental limits

Moore’s Law

Number of transistors on a microchip doubles approximately every two years, leading to
increased computational power and decreased relative cost (Gordon E. Moore, 1965)
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Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count
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Computational capacity of the fastest supercomputers

The number of floating-point operations® carried out per second by the fastest supercomputer in any given
year. This is expressed in gigaFLOPS, equivalent to 10’ floating-point operations per second.
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Data source: Dongarra et al. (2024) OurWorldinData.org/technological-change | CC BY

1. Floating-point operation A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation
involving floating-point numbers, such as addition, subtraction, multiplication, or division.



Hard Limits to ILP

3 Intra-node parallelism

Concurrence Limit
e |LP techniques are sophisticated but
limited
e Modern processors: max 4-5
instructions per cycle

e Available concurrence is much larger
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Power Limit

Power consumption o frequency?
Critical for mobile devices (battery life)
Critical for supercomputers (operational
costs)

Top500 systems: ~30 MW (small
town!)



The Shift to Thread Level Parallelism (TLP)

3 Intra-node parallelism

e Industry shifted from ILP to TLP techniques
e Birth of multicores / Chip Multi-Processors (CMP)
e Multiple independent cores on the same die

e Each core handles different instructions and data streams

Key Advantages

e Higher concurrence levels
e Power consumption oc number of cores (linear)

e Lower frequency + more cores = better performance + less power
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The Multicore Era

3 Intra-node parallelism

e Multicore processors are now ubiquitous
e Evolution driven by increasing core counts per chip

e Paradigm shift: parallel programming is essential

Performance no longer comes from faster cores,
but from more cores working together
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POWER4: first mainstream multicore (2001)

3 Intra-node parallelism

IBEM Power 4

Two general-purpose cores on the same die Core 0 Core 1

Per-core private L1 caches
Shared L2; off-chip shared L3

Cores access DRAM via a shared memory

bus L2 cache
Template for many subsequent multicore

designs

L1l cache] Ll cac he|

L3 cache and
rmain memory
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Modern CPU examples

3 Intra-node parallelism

w,

e AMD EPYC 9655P (2023): 96 cores, 192 threads

e Intel Xeon w9-3595X (2024): 60 cores, 120 threads
¢ Intel i9-14900HX (hybrid, 24 cores / 32 threads)

— 8 P-cores (16 threads), each with dedicated L2
— 16 E-cores (16 threads), L2 shared across clusters of 4
— L3 shared among all cores; L1 private per core
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CPU cache hierarchy (L1, L2, L3)

3 Intra-node parallelism

e Caches use SRAM (fast, low latency, small, costly)

e DRAM in main memory is larger but slower

e Multi-level design balances speed, capacity, and cost
e L1: smallest/fastest, usually split I/D caches, per-core
e L2: larger/slower than L1, per-core or per-cluster

e L3: largest on-chip, shared across cores

e Miss path: L1 = L2 = L3 = DRAM (increasing latency)

Exercise: topology

Use 1scpu and the following command to inspect your CPU topology:

1stopo -—no-attrs --no-factorize --no-collapse --no-cpukinds --no-legend
— topology.pdf
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Memory-bound vs compute-bound workloads

3 Intra-node parallelism

w,

Memory-bound Compute-bound
e Low arithmetic intensity; little/no data e High arithmetic intensity; strong data
reuse reuse
e Performance limited by memory e Performance limited by peak FLOP/s
bandwidth e Scales well across cores (cache-friendly)
e Parallel speedups saturate early e Examples:
e Examples: — BLAS-3 (e.g., GEMM): O(n®) FLOPs on
— SpMV: O(nnz) FLOPs on O(nnz) data O(n?) data
— BLAS-1: O(n) FLOPs on O(n) data — Dense factorizations leveraging
— BLAS-2: O(n?) FLOPs on O(n?) data BLAS-3
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ﬂk\w Operational intensity and the memory wall

3 Intra-node parallelism

e Example (EPYC 9655P): peak 710 GFLOP/s vs 614 GB/s bandwidth
e Roofline knee: 710/614 = 1.16 FLOP/byte

— Ol < 1.16: memory-bound (bandwidth limits performance)
— Ol > 1.16: compute-bound (FLOP/s limits performance)

e As core counts grow, static bandwidth limits memory-heavy kernels

e Remedies: improve cache reuse, increase bandwidth, or both
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Multiprogramming and processes

3 Intra-node parallelism

Modern systems support multiprogramming: many programs appear to run
concurrently.

Microscopic view: you cannot execute more programs than available cores.
Macroscopic view: time sharing makes many programs seem concurrent.

A process is a running instance of a program plus its data.

Processes are dynamic; multiple processes can run the same program.

Each process has a private address space (its data are private).



Processes and threads: visual

3 Intra-node parallelism

Ingtruction  flows
Instruction
flow
Dataarea Dataarea

e Code + private memory + execution e Execution streams within a process.

context. e Share address space and program data.
¢ OS schedules processes on cores. e Own stack and registers; often one per
¢ No shared memory by default. core.
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Programming tools for threads

3 Intra-node parallelism

e POSIX threads (pthreads): low-level API, fine-grained control, portable.
e OpenMP: high-level, directive-based, widely used in C/C++/Fortran.
e Typical workflow: start with OpenMP; use pthreads only when necessary.

Will start describing some OpenMP basics, and decline it in the context of linear algebra
routines.
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?/A\$ OpenMP: overview

3 Intra-node parallelism
e De-facto standard API for shared-memory parallel programming.

e Languages: Fortran, C, C++; introduced in 1997.

e Maintained by the OpenMP Architecture Review Board (openmp.org).
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https://www.openmp.org
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//A\w OpenMP: overview

3 Intra-node parallelism

e De-facto standard API for shared-memory parallel programming.

e Languages: Fortran, C, C++; introduced in 1997.

e Maintained by the OpenMP Architecture Review Board (openmp.org).
Components: e Compiler directives (pragmas)

e Run-time library routines
e Environment variables

Directives behave as:

1. Actual instructions for OpenMP-aware compilers
2. Comments for non-supporting compilers (keeps serial behavior)
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3 Intra-node parallelism

e Serial region executed by a single
master thread.

e Hitting a parallel region: fork into
multiple threads.

e Threads share address space; may
coordinate via shared data.

e End of region: threads join back to
one thread.

36/69

Fork-join execution model

fork

(Thread1)  (Thread 2) [Thread 3] [Thread 4}

”

Master




\\‘ 'I»A

ﬂk\V Original focus: loop parallelism

3 Intra-node parallelism

e Split workload of loops (e.g., do) across threads.

1. Enter a loop/region: activate multiple threads and partition iterations.
2. Threads may communicate via shared variables/memory.

3. On completion: synchronize; deactivate all but one thread and continue serially.
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ﬂk\V Original focus: loop parallelism

3 Intra-node parallelism

e Split workload of loops (e.g., do) across threads.

RN

Enter a loop/region: activate multiple threads and partition iterations.

Threads may communicate via shared variables/memory.

w »

On completion: synchronize; deactivate all but one thread and continue serially.

e Programming model: threads with shared logical address space.
e Natural fit for shared-memory systems; not mandated by the standard.

e Attempts to map the same model to distributed-memory exist, but limited success in
practice.
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WK\V OpenMP today

3 Intra-node parallelism

e Standard evolves regularly; 6.0 recently released, 5.2 widely supported.
e Key additions:
— Irregular and data-driven workload dispatching

— Transformations to improve memory hierarchy usage and work sharing
— Support for SIMD extensions and accelerators

OpenMP in practice

e Will show concrete OpenMP code next.
e Often combined with MPI for hybrid/nested parallelism.
e Further reading: [1, 2, 3, 6]
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ﬂk\V OpenMP example: let us start from an hello world

3 Intra-node parallelism

The standard Fortran hello world program:

program hello
use, intrinsic :: iso_fortran_env,
— only: output_unit
write (output_unit, '("Hello,
— world!")")
end program hello
which can be compiled and run as:

gfortran -o hello hello.f90
./hello

Getting the output:
Hello, world!
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ﬂk\V OpenMP example: let us start from an hello world

3 Intra-node parallelism

The standard Fortran hello world program: We now want to implement the same
program hello program using OpenMP, and getting an
use, intrinsic :: iso_fortran_env, outputfron1eachthread.

— only: output_unit
write (output_unit, '("Hello,
— world!")")

end program hello

program hello
use, intrinsic :: iso_fortran_env,
— only: output_unit
use omp_lib

which can be compiled and run as: integer :: tid, nthreads
gfortran -o hello hello.£90 nthreads = omp_get_max_threads()
_/hello !$omp parallel private(tid)

tid = omp_get_thread_num()
Getting the output: write (output_unit, '("Hello, world!
Hello, world! — from thread ", I0)') tid

!$omp end parallel
end program hello
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Compiling the OpenMP hello world

3 Intra-node parallelism

To compile the OpenMP version, we need to add the ‘-fopenmp’ flag:
gfortran -o hello hello.f90 -fopenmp

./hello
Getting the output (on my Laptop):
Hello, world! from thread 3 e FEach thread prints its ID.
Hello, world! from thread 20
Hello, world! from thread 31 e Order of output may vary due to thread

Hello, world! from thread scheduling.
Hello, world! from thread
Hello, world! from thread

Hello, world! from thread

e By default, uses all available threads.

~N o=

e Control number of threads via
OMP_NUM_THREADS=<num> environment

Hello, world! from thread 29 variable.
Hello, world! from thread 16
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Compiling the OpenMP hello world

3 Intra-node parallelism

To compile the OpenMP version, we need to add the ‘-fopenmp’ flag:
gfortran -o hello hello.f90 -fopenmp

./hello
Getting the output (on my Laptop):
Hello, world! from thread 3 e FEach thread prints its ID.
Hello, world! from thread 20
Hello, world! from thread 31 e Order of output may vary due to thread

Hello, world! from thread scheduling.
Hello, world! from thread
Hello, world! from thread

Hello, world! from thread

e By default, uses all available threads.

~N o=

e Control number of threads via
OMP_NUM_THREADS=<num> environment

Hello, world! from thread 29 variable.
Hello, world! from thread 16 e Let us have a better look at the code, line by line.
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3 Intra-node parallelism

program hello
use, intrinsic ::

— 1iso_fortran_env, only:

— output_unit

use omp_lib

integer ::

nthreads =

tid, nthreads

— omp_get_max_threads()
!$omp parallel private(tid)
tid = omp_get_thread_num()
write (output_unit, '("Hello,
«— world! from thread ",
— I0)') tid
!$omp end parallel

end program hello
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OpenMP hello world:

code walkthrough

use omp_lib: imports OpenMP
functions/constants

nthreads = omp_get_max_threads(): gets
max available threads

!$omp parallel private(tid): starts
parallel region; each thread has private tid

tid = omp_get_thread_num(): each thread
gets its unique ID

!$omp end parallel: ends parallel region;
threads synchronize



Compilation flag for other compilers

3 Intra-node parallelism

e GCC/ GFortran: —fopenmp

e Intel ICC / IFORT: ~qopenmp or —openmp

e Clang / Flang: —fopenmp (requires OpenMP library)
e PGl / NVIDIA HPC SDK: -mp

Ensure the compiler supports OpenMP and is properly configured.

Mixing compilers

There exist a few cases where mixing compilers is possible (e.g., Intel and GCC), but in
general it is not recommended to mix different compilers when dealing with OpenMP
code.
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Using CMake to build a Fortran project

3 Intra-node parallelism

As we have seen from the previous slide, and from the question on managing different
compilers in the previous lecture, it is often useful to use a build system to manage the
complexity of building a project.
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Using CMake to build a Fortran project

3 Intra-node parallelism

As we have seen from the previous slide, and from the question on managing different

compilers in the previous lecture, it is often useful to use a build system to manage the
complexity of building a project.

There exists several build systems:
Make / GNU Make / Autotools: classic, widely used, but low-level
& https://www.gnu.org/software/make/
CMake: popular, cross-platform, higher-level
& https://cmake.org/
Ninja: fast, modern, often used as a backend for CMake
& https://ninja-build.org/
Meson: high-level, fast, modern
& https://mesonbuild.com/
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Using CMake to build a Fortran project

3 Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
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Using CMake to build a Fortran project

3 Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.

1. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp
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Using CMake to build a Fortran project

3 Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
1. Create a folder for the project and enter it:
mkdir hello_openmp
cd hello_openmp
2. Create a git repository inside:
git init
git branch -m main
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Using CMake to build a Fortran project

3 Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.

1. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

2. Create a git repository inside:
git init
git branch -m main

3. Create the Fortran source file hello.f90 with the OpenMP code seen before.
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Using CMake to build a Fortran project

3 Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.

1. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

2. Create a git repository inside:

git init

git branch -m main
3. Create the Fortran source file hello.f90 with the OpenMP code seen before.
4. Create the CMakeLists.txt file:

touch CMakeLists.txt
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Editing the CMakelists.txt file

3 Intra-node parallelism

The content of the CMakeLists. txt file should be as follows:
cmake_minimum_required (VERSION 3.23)
project (hello-openmp LANGUAGES Fortran)

find_package(OpenMP REQUIRED COMPONENTS
— Fortran)

Specify minimum CMake version

Define project name and language

Find OpenMP package for Fortran

# Exzecutable from the single source file
add_executable(hello-openmp hello-openmp.£90)
# Link OpenMP
target_link_libraries(hello-openmp PRIVATE

< OpenMP: :0penMP_Fortran)

Add executable target
Link OpenMP libraries to the target
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The CMake instructions explained

3 Intra-node parallelism

The roject name and the programming language used, it also take further optional

arguments:
Specify:
_ e project name
project (<PROJECT-NAME>
[VERSION e version
— <major>[.<minor>[.<patch>[.<tweak>]]]]
[COMPAT_VERSION
< <major>[.<minor>[.<patch>[.<tweak>]11] e license (SPDX format)
[SPDX_LICENSE <license-string>]
[DESCRIPTION <description-string>]
[HOMEPAGE_URL <url-string>] e homepage URL
[LANGUAGES <language-name>...])

e compatible version

e description

e programming languages
used
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The CMake instructions explained

3 Intra-node parallelism

Another important command is igure external packages or libraries that the project
depends on.

Specify:
find_package (<PackageName> [version] [EXACT] e package name
— [REQUIRED] .

® version

[QUIET] [COMPONENTS components...]
[OPTIONAL_COMPONENTS components. . .] e whether it is required

NO_DEFAULT_PATH i
[NO_DEFAULT_PATH]) e components to find

e whether to suppress
messages

e whether to avoid default
search paths
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The CMake instructions explained

3 Intra-node parallelism

Another important command is igure external packages or libraries that the project
depends on.

Specify:
find_package (<PackageName> [version] [EXACT] e package name
— [REQUIRED] .

® version

[QUIET] [COMPONENTS components...]
[OPTIONAL_COMPONENTS components. . .] e whether it is required

NO_DEFAULT_PATH i
[NO_DEFAULT_PATH]) e components to find

You can pass suggestion on where to find the package
using the CMAKE_PREFIX_PATH environment variable or
the -DCMAKE_PREFIX_PATH=<path> option when
invoking CMake.

e whether to suppress
messages

e whether to avoid default
search paths

47/69



The CMake instructions explained

3 Intra-node parallelism

The next command is add_executable (), which is used to define an executable target:

Specify:
add_executable(<name> [WIN32] [MACOSX_BUNDLE] e target name
[EXCLUDE_FROM_ALL] vpe .
_ _ N B
sourcel source2 ... sourceN) platform SpeCIf'IC options

e whether to exclude from

An executable target is a binary file that can be run on the -
default build

system, it can be created from one or more source files.
) . e sourcefiles
The last command is target_link_libraries(), which is used to specify libraries to
link against a target.
Specify:

target_link_libraries(<target> e target name
<PRIVATE|PUBLIC|INTERFACE> <item>... e libraries to link
[<PRIVATE|PUBLIC|INTERFACE> <item>...]...)
e linkage type
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Private, Public, and Interface linkage

3 Intra-node parallelism

When using target_link_libraries(), you can specify the linkage type:
e PRIVATE: the library is used only for the target itself.
e PUBLIC: the library is used for both the target and any targets that link against it.
o INTERFACE: the library is used only for targets that link against the target, not for the
target itself.

target_link_libraries(my_executable
PRIVATE 1ibA
PUBLIC 1ibB
INTERFACE 1ibC)

In this example, 1ibA is linked only to my_executable, 1ibB is linked to both
my_executable and any targets that link against it, and 1ibC is linked only to targets that

link against my_executable.
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Configuring and building

3 Intra-node parallelism

To configure and build the project with CMake the steps are:
1. Create a build folder: mkdir build

2. Move to the build folder and launch the cmake program
cd build

cmake .. # You could also try doing ccmake .. for an interactive configuration

3. Build the project using the generated build system, for example:
Make runmake
Ninja runninja
this will compile the code and generate the executable in the build folder.

50/69



\\"'»A
Make a commit

3 Intra-node parallelism

w,

If everything works, we can make a commit of the results.
@ itis a good idea to create a . gitignore file to avoid committing build artifacts.
For doing this, you run
touch .gitignore
and then with your favourite editor write inside it
build/

Everything which is listed here is going to be ignored by git.
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Make a commit

3 Intra-node parallelism

w,

If everything works, we can make a commit of the results.

@ itis a good idea to create a . gitignore file to avoid committing build artifacts.
For doing this, you run

touch .gitignore

and then with your favourite editor write inside it

build/

Everything which is listed here is going to be ignored by git. Now we can add all the files
and make a commit:

git add .
git commit -m "Initial commit: OpenMP hello world with CMake"
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Continuous Integration (Cl) with GitHub Actions

3 Intra-node parallelism

We can adapt our last example of continuous integration (ClI) with GitHub Actions from
the previous lecture to build and test our OpenMP project. We need to create a workflow
file in the .github/workflows folder.

1. Create the folders:
mkdir -p .github/workflows

2. Create the workflow file:
touch .github/workflows/CI.yml

3. Edit the file (starting from the one seen in the previous lecture).
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Editing the Cl.yml file

3 Intra-node parallelism

The content of the CI.yml file should be as follows:

name: CI
on:
push: ¢ Define workflow name and
branches: . .
) trigger on push to main branch
- maln
jobs: e Set up Ubuntu environment
build:
runs—on: ubuntu-latest e Checkout code, se't up CMake
steps: and Fortran compiler
- name: Checkout code with:
uses: actions/checkout@v4 compiler: gcc
- name: Setup CMake (latest) version: 'latest'
uses: lukka/get-cmake@latest update-environment: true

- name: Setup Fortran
uses: fortran-lang/setup-fortran@vl.8.0
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Editing the Cl.yml file

3 Intra-node parallelism

The content of the CI.yml file should be as follows:

- name: Configure (CMake)

run: cmake -S . -B build

— -DCMAKE_BUILD_TYPE=Release
- name: Build (CMake)

run: cmake --build build --config Release ° Conﬁgure and build project
DAL using CMake
- name: Run program
env: e Run the compiled OpenMP
OMP_NUM_THREADS: '4' program with 4 threads
run: |

./build/hello-openmp || (echo
— "Executable not found" && 1ls -la
< build && exit 1)
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4 Building Blocks for Dense Linear Algebra
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SV
Motivation: Cholesky factorization example
4 Building Blocks for Dense Linear Algebra

Symmetric Matrix

A matrix A € R™™" is called symmetricif A = AT, meaning that it is equal to its transpose.

Eigenvalue and Eigenvector

Given a square matrix A € R"*", a non-zero vector v € R" is called an eigenvector of A if
there exists a scalar A € R such that:

U,

Av = \v

The scalar A is referred to as the eigenvalue corresponding to the eigenvector v. All
eigenvalues of a symmetric matrix are real.
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Motivation: Cholesky factorization example
4 Building Blocks for Dense Linear Algebra

Positive Definite Matrix

A symmetric matrix A € R™*" is called positive definite if for all non-zero vectors x € R":

U,

X' AX > 0
This implies that all eigenvalues of A are positive.

Examples of symmetric positive definite matrices
e Covariance/correlation matrices in statistics and machine learning.
e Normal equations: AT A from least squares; SPD if A has full column rank.
e Gram/kernel matrices: Ky = k(x,-,xj) with strictly PD kernels (e.g., Gaussian/RBF).

e Precision (inverse covariance) matrices in Gaussian Markov random fields.
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Motivation: Cholesky factorization example
4 Building Blocks for Dense Linear Algebra

U,

e The Cholesky factorization is a method for decomposing a positive definite matrix A
into the product of an upper triangular matrix U and its transpose:

A=U'U

e |t is useful for solving systems of linear equations, and inverting matrices.

¢ |t is computationally efficient, requiring approximately %n?’ operations forann x n
matrix.

Theorem (Existence and uniqueness)

Every symmetric positive definite matrix A has a unique Cholesky factorization A = U' U,
where U is an upper triangular matrix with positive diagonal entries.
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Motivation: Cholesky factorization example

4 Building Blocks for Dense Linear Algebra

U,

Consider the Cholesky factorization A = U' U:

Algorithm

1 forj = 1tondo e But...“reinventing the wheel”

Easy to translate to any language

2: fori=1toj— 1do Similar patterns appear repeatedly
3 Uj < 4 (aij — Y uki“kj)
4: end for
5
6

Lots of code duplication
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The key observation
4 Building Blocks for Dense Linear Algebra

Similar code patterns resurface over and over again
in linear algebra algorithms

Natural strategy

“Define a set of operators such that any algorithm
can be expressed as their application to the data at hand.”

e Some languages provide native operators (MATLAB, Fortran, Julia)

e Algorithms = sequences of primitive operator calls
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Benefits of standardized building blocks

4 Building Blocks for Dense Linear Algebra

1. Code reuse

— Write once, use many times

— Amortize cost of high-quality implementation
2. Standardized interfaces

— Explore alternative implementations

— Preserve overall code behavior
3. Architecture-aware optimizations

— Exploit cache hierarchies

— Use block/submatrix operations (not just vectors)
4. Portability across systems

— Same interface, optimized per platform
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Scope of application
4 Building Blocks for Dense Linear Algebra

e Cholesky is just one example
e Same reasoning applies to:

— Dense linear algebra (LU, QR, eigensolvers, ...)
— Sparse linear algebra (SpMV, iterative solvers, ...)
— Many other numerical algorithms

e Encapsulation enables:

— Performance tuning without changing user code
— Leveraging hardware accelerators (GPUs, vector units)
— Evolution of implementations over time

This is the foundation of BLAS and LAPACK
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The Basic Linear Algebra Subprograms (BLAS)

4 Building Blocks for Dense Linear Algebra

o Set of low-level routines for common linear algebra operations

Designed to be efficient and portable
Building block for higher-level libraries (LAPACK, ScaLAPACK, PSBLAS, PETSc)
Available in many programming languages (C, Fortran, Python)

Focus of this section

Dense BLAS: routines for dense matrices and vectors
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BLAS organization: three levels
4 Building Blocks for Dense Linear Algebra

Level 1: Vector operations
e Examples: dot product, vector addition, scaling
e Complexity: O(n)
e Memory-bound

Level 2: Matrix-vector operations
e Examples: matrix-vector multiplication, rank-1 updates
e Complexity: O(n?)
e Memory-bound

Level 3: Matrix-matrix operations
e Examples: matrix-matrix multiplication (GEMM)
e Complexity: O(n?)
e Compute-bound (high data reuse)
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Popular BLAS implementations
4 Building Blocks for Dense Linear Algebra

OpenBLAS: Open-source implementation of BLAS and LAPACK
ATLAS: Automatically Tuned Linear Algebra Software; open-source, self-optimizing
Intel MKL: High-performance library optimized for Intel processors
CUBLAS: GPU-accelerated BLAS for NVIDIA GPUs

BLIS: Portable, high-performance, modern BLAS framework

Key takeaway
Same interface, different implementations = performance portability
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Finding BLAS with CMake

4 Building Blocks for Dense Linear Algebra

e CMake provides a built-in module to find BLAS libraries
e Use find_package (BLAS REQUIRED) to locate BLAS

Link against the found BLAS library using
target_link_libraries(<target> PRIVATE ${BLAS_LIBRARIES})

Information are available on the webpage: FindBLAS module documentation.

Example CMake snippet

find_package (BLAS REQUIRED)
target_link_libraries(<target> PRIVATE ${BLAS_LIBRARIES})
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https://cmake.org/cmake/help/latest/module/FindBLAS.html
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Summary and Next Steps

5 Summary

OpenMP is a widely used API for shared-memory parallel programming.

It provides a simple and flexible way to parallelize code using compiler directives.
CMake can be used to manage the build process of Fortran projects with OpenMP.

The Basic Linear Algebra Subprograms (BLAS) provide standardized building blocks
for dense linear algebra operations.

Using BLAS enables code reuse, portability, and performance optimizations across
different hardware architectures.



Summary and Next Steps

5 Summary

e OpenMP is a widely used API for shared-memory parallel programming.
e |t provides a simple and flexible way to parallelize code using compiler directives.

e CMake can be used to manage the build process of Fortran projects with OpenMP.

The Basic Linear Algebra Subprograms (BLAS) provide standardized building blocks
for dense linear algebra operations.

Using BLAS enables code reuse, portability, and performance optimizations across
different hardware architectures.

Next Steps

e Explore more advanced OpenMP features (e.g., task parallelism, SIMD).

e Use Fortran and OpenMP features to look through BLAS implementations.
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