
High Performance Linear Algebra
Lecture Ŷ: Intra-node parallelism and starting with BLAS
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

November Ŵź, ŵųŵŸ — Ŵŷ.ųų:ŴŹ.ųų

Ŵ/Źż

mailto:fabio.durastante@unipi.it

Summary of previous lecture
Ŵ Summary of previous lecture

• Taxonomy of computer architectures
• Performance metrics: FLOP/s, speedup, efficiency, scalability
• Performance modeling: weak and strong scaling

ŵ/Źż

Table of Contents
ŵ The roofline model

▶ The roofline model

▶ Intra-node parallelism
Intra-node parallelism: advanced architectures
Intra-node parallelism: tools
OpenMP
Using CMake and doing CI with OpenMP

▶ Building Blocks for Dense Linear Algebra
The Basic Linear Algebra Subprograms (BLAS)

Ŷ/Źż

Modern Memory Hierarchy
ŵ The roofline model

• Computer architectures organized around amemory hierarchy
• Designed to balance speed, capacity, and cost

Memory Hierarchy Levels
Ŵ. Registers and cache (LŴ, Lŵ, LŶ) — extremely fast
ŵ. Main memory (RAM) — moderate speed
Ŷ. Secondary storage (SSD/HDD) — slower
ŷ. Tertiary storage — archival

Key parameter: Memory bandwidth — rate of data transfer between memory and
processor

ŷ/Źż

The Memory Wall
ŵ The roofline model

The Problem
Processor speeds have grown much faster than memory bandwidth improvements

• Memory wall: memory latency and bandwidth become the primary bottleneck
• Need tools to understand and visualize this limitation
• Enter: the Roofline Model [ź]

Ÿ/Źż

The Roofline Model: Concept
ŵ The roofline model

Definition
A visual performance model relating computational throughput to memory bandwidth

Key hardware characteristics:
• Peak floating-point performance: Perf (FLOP/s)
• Peak memory bandwidth: BW (Bytes/s)

Key application characteristic:
• Operational Intensity (OI): FLOP/Byte
• Ratio of floating-point ops to bytes accessed from memory

Ź/Źż

Roofline Model: The Relationship
ŵ The roofline model

Fundamental equation

Perf =
FLOP
s

=
FLOP
Byte

· Byte
s

= OI · BW

• Performance depends linearly on both OI and BW
• Plotted as log-log graph: performance vs operational intensity
• Creates a characteristic “roofline” shape

ź/Źż

Roofline Model: Visual Representation
ŵ The roofline model

10−1 100 101 102
100

101

102
102.3 Ridge Point

Operational Intensity (FLOP/Byte)

Pe
rf
(G
FL
O
P/
s)

Memory Bandwidth (ŵŸ GB/s)
Peak Performance (Ŵųų GFLOP/s)

Figure: Roofline model: Ŵųų GFLOP/s peak, ŵŸ GB/s bandwidthŻ/Źż

Understanding the Roofline Plot
ŵ The roofline model

Two regions:
Ŵ. Memory-bound (left)

— Linear increase with OI
— Limited by bandwidth

ŵ. Compute-bound (right)
— Horizontal line
— Limited by peak FLOP/s

Ridge point:
• Intersection of two regions
• Minimum OI to reach peak
performance

• In example: ŷ FLOP/Byte

ż/Źż

Using the Roofline Model
ŵ The roofline model

Applications:
• Analyze kernel performance on given architecture
• Identify performance bottlenecks
• Guide optimization efforts

Optimization strategy
Compare kernel’s OI to ridge point:
• Below ridge → memory-bound → improve data locality
• Above ridge → compute-bound → optimize computations

Ŵų/Źż

Roofline and Linear Algebra Evolution
ŵ The roofline model

• Algorithmic optimization improves OI and data locality
• Example: Evolution of BLAS (Basic Linear Algebra Subprograms)

— Level Ŵ: vector operations (low OI)
— Level ŵ: matrix-vector operations (medium OI)
— Level Ŷ: matrix-matrix operations (high OI)

• Higher-level BLAS operations:
— Reuse data in fast memory
— Reduce memory traffic
— Approach compute-bound regime

More details on BLAS in upcoming lectures

ŴŴ/Źż

Measuring Memory Bandwidth: STREAM
ŵ The roofline model

STREAM Benchmark [ŷ, Ÿ]
Measures sustainable memory bandwidth (GB/s) for simple vector kernels

Four kernels:
COPY Copy vector from one location to another
SCALE Scale vector by constant factor
SUM Add two vectors
TRIAD Scaled vector addition

• Simple, easy to understand
• Provides reliable bandwidth measure
• Widely used in HPC community

Info: http://www.cs.virginia.edu/stream/

Ŵŵ/Źż

http://www.cs.virginia.edu/stream/

Measuring Memory Bandwidth: Example
ŵ The roofline model

Let us run try the STREAM benchmark on your machine:
• Download the STREAM benchmark from http://www.cs.virginia.edu/stream/
mkdir -p stream && cd stream
wget -r -np -nH --cut-dirs=2 -e robots=off -R "index.html*" \

https://www.cs.virginia.edu/stream/FTP/Code/
• There is a Makefile provided; you can compile with make
• The standard configuration requires g77, but you can edit the Makefile to use
gfortran, or any other compiler you have available:
FF = gfortran
FFLAGS = -O2

• Run the benchmark by doing: ./stream_f.exe

ŴŶ/Źż

http://www.cs.virginia.edu/stream/

Example output of STREAM benchmark
ŵ The roofline model

--
Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word

--
--
STREAM Version $Revision: 5.6 $
--
Array size = 2000000
Offset = 0
The total memory requirement is 45 MB
You are running each test 10 times
--
The *best* time for each test is used
EXCLUDING the first and last iterations
--

Ŵŷ/Źż

Example output of STREAM benchmark
ŵ The roofline model

--
Printing one line per active thread....
--
Your clock granularity/precision appears to be 1 microseconds
--

Function Rate (MB/s) Avg time Min time Max time
Copy: 19300.7949 0.0017 0.0017 0.0019
Scale: 16737.4645 0.0019 0.0019 0.0020
Add: 20691.3250 0.0024 0.0023 0.0025
Triad: 19599.5514 0.0025 0.0024 0.0025
--
Solution Validates!
--

ŴŸ/Źż

How to obtain correct results from STREAM
ŵ The roofline model

• Ensure the array size is large enough to exceed cache sizes
• Compile with optimizations enabled (e.g., -O2 or higher)
• Run multiple iterations and take the best time
• Validate results to ensure correctness

Note
Reported bandwidth may vary based on system load, compiler optimizations, and other
factors. Always run multiple trials for reliable measurements.

ŴŹ/Źż

How to obtain correct results from STREAM: Example
ŵ The roofline model

We can extract the right way to perform the test by looking at the size of the level Ŷ cache
of our machine and ensuring that the array size is large enough to exceed it. This number
can be found by running the command:

lscpu | grep "L3"
On my machine, this returns:
L3 cache: 36 MiB (1 instance)
So I should set the array size to be larger than ŶŹ MiB. Since each double-precision
number takes Ż bytes, I can calculate the minimum number of elements needed:

MIN_SIZE=$(echo "36 * 1024 * 1024 / 8" | bc)
echo $MIN_SIZE

This gives me ŷ,źŴŻ,Ÿżŵ elements. To be safe, I can set the array size to Ÿ,ųųų,ųųų
elements in the STREAM benchmark code before compiling and running it

Ŵź/Źż

How to obtain correct results from STREAM: Modifying
the Makefile
ŵ The roofline model

Using awk
A nice way to automate the modification of the array size in the STREAM benchmark code
is to use awk to edit the source file directly from the command line.
L3CACHE=$(lscpu | awk -F: '/L3 cache/ {match($2, /[0-9]+/); print

substr($2, RSTART, RLENGTH)}')↪→

MIN_SIZE=$(echo "${L3CACHE} * 1024 * 1024 / 8" | bc)
echo $MIN_SIZE

Then, you can modify the FFLAGS variable in the Makefile to use the new array size:
FFLAGS="-O3 -march=native -mtune=native

-DSTREAM_ARRAY_SIZE=${MIN_SIZE}"↪→

ŴŻ/Źż

Measuring Peak Performance
ŵ The roofline model

Estimation formula

Peak FLOP/s = Cores× Clock (GHz)× FLOP/Cycle

Example: xŻŹ processor with AVXŵ
• Ż double-precision FLOP per cycle
• ŷ cores at Ŷ GHz
• Peak: 4× 3× 8 = 96 GFLOP/s

Note
This is theoretical peak; actual performance may be lower due to: bandwidth limitations,
cache misses, other overheads. It always best to get this number from the manufacturer
datasheet when possible.

Ŵż/Źż

Table of Contents
Ŷ Intra-node parallelism

▶ The roofline model

▶ Intra-node parallelism
Intra-node parallelism: advanced architectures
Intra-node parallelism: tools
OpenMP
Using CMake and doing CI with OpenMP

▶ Building Blocks for Dense Linear Algebra
The Basic Linear Algebra Subprograms (BLAS)

ŵų/Źż

FromMoore’s Law to Parallelism
Ŷ Intra-node parallelism

• For decades, performance grew via Moore’s Law
— Higher clock frequencies
— Instruction Level Parallelism (ILP): pipelining, out-of-order execution, branch prediction

• Early ŵųųųs: this trend hit fundamental limits

Moore’s Law
Number of transistors on a microchip doubles approximately every two years, leading to
increased computational power and decreased relative cost (Gordon E. Moore, ŴżŹŸ)

ŵŴ/Źż

Hard Limits to ILP
Ŷ Intra-node parallelism

Concurrence Limit
• ILP techniques are sophisticated but
limited

• Modern processors: max ŷ-Ÿ
instructions per cycle

• Available concurrence is much larger

Power Limit
• Power consumption∝ frequency3

• Critical for mobile devices (battery life)
• Critical for supercomputers (operational
costs)

• TopŸųų systems: ∼Ŷų MW (small
town!)

ŵŷ/Źż

The Shift to Thread Level Parallelism (TLP)
Ŷ Intra-node parallelism

• Industry shifted from ILP to TLP techniques
• Birth ofmulticores / Chip Multi-Processors (CMP)
• Multiple independent cores on the same die
• Each core handles different instructions and data streams

Key Advantages
• Higher concurrence levels
• Power consumption∝ number of cores (linear)
• Lower frequency + more cores = better performance + less power

ŵŸ/Źż

The Multicore Era
Ŷ Intra-node parallelism

• Multicore processors are now ubiquitous
• Evolution driven by increasing core counts per chip
• Paradigm shift: parallel programming is essential

Performance no longer comes from faster cores,
but from more cores working together

ŵŹ/Źż

POWERŷ: first mainstream multicore (ŵųųŴ)
Ŷ Intra-node parallelism

• Two general-purpose cores on the same die
• Per-core private LŴ caches
• Shared Lŵ; off-chip shared LŶ
• Cores access DRAM via a shared memory
bus

• Template for many subsequent multicore
designs

ŵź/Źż

Modern CPU examples
Ŷ Intra-node parallelism

• AMD EPYC żŹŸŸP (ŵųŵŶ): żŹ cores, Ŵżŵ threads
• Intel Xeon wż-ŶŸżŸX (ŵųŵŷ): Źų cores, Ŵŵų threads
• Intel iż-ŴŷżųųHX (hybrid, ŵŷ cores / Ŷŵ threads)

— Ż P-cores (ŴŹ threads), each with dedicated Lŵ
— ŴŹ E-cores (ŴŹ threads), Lŵ shared across clusters of ŷ
— LŶ shared among all cores; LŴ private per core

Machine

Package L#0

L3

L2

L1d

L1i

Core L#0

PU L#0
P#0

PU L#1
P#1

L2

L1d

L1i

Core L#1

PU L#2
P#2

PU L#3
P#3

L2

L1d

L1i

Core L#2

PU L#4
P#4

PU L#5
P#5

L2

L1d

L1i

Core L#3

PU L#6
P#6

PU L#7
P#7

L2

L1d

L1i

Core L#4

PU L#8
P#8

PU L#9
P#9

L2

L1d

L1i

Core L#5

PU L#10
P#10

PU L#11
P#11

L2

L1d

L1i

Core L#6

PU L#12
P#12

PU L#13
P#13

L2

L1d

L1i

Core L#7

PU L#14
P#14

PU L#15
P#15

L2

L1d

L1i

Core L#8

PU L#16
P#16

L1d

L1i

Core L#9

PU L#17
P#17

L1d

L1i

Core L#10

PU L#18
P#18

L1d

L1i

Core L#11

PU L#19
P#19

L2

L1d

L1i

Core L#12

PU L#20
P#20

L1d

L1i

Core L#13

PU L#21
P#21

L1d

L1i

Core L#14

PU L#22
P#22

L1d

L1i

Core L#15

PU L#23
P#23

L2

L1d

L1i

Core L#16

PU L#24
P#24

L1d

L1i

Core L#17

PU L#25
P#25

L1d

L1i

Core L#18

PU L#26
P#26

L1d

L1i

Core L#19

PU L#27
P#27

L2

L1d

L1i

Core L#20

PU L#28
P#28

L1d

L1i

Core L#21

PU L#29
P#29

L1d

L1i

Core L#22

PU L#30
P#30

L1d

L1i

Core L#23

PU L#31
P#31

NUMANode L#0 P#0

ŵŻ/Źż

CPU cache hierarchy (LŴ, Lŵ, LŶ)
Ŷ Intra-node parallelism

• Caches use SRAM (fast, low latency, small, costly)
• DRAM in main memory is larger but slower
• Multi-level design balances speed, capacity, and cost
• LŴ: smallest/fastest, usually split I/D caches, per-core
• Lŵ: larger/slower than LŴ, per-core or per-cluster
• LŶ: largest on-chip, shared across cores
• Miss path: LŴ → Lŵ → LŶ → DRAM (increasing latency)

Exercise: topology
Use lscpu and the following command to inspect your CPU topology:
lstopo --no-attrs --no-factorize --no-collapse --no-cpukinds --no-legend

topology.pdf↪→

ŵż/Źż

Memory-bound vs compute-bound workloads
Ŷ Intra-node parallelism

Memory-bound
• Low arithmetic intensity; little/no data
reuse

• Performance limited by memory
bandwidth

• Parallel speedups saturate early
• Examples:

— SpMV:O(nnz) FLOPs onO(nnz) data
— BLAS-Ŵ: O(n) FLOPs onO(n) data
— BLAS-ŵ: O(n2) FLOPs onO(n2) data

Compute-bound
• High arithmetic intensity; strong data
reuse

• Performance limited by peak FLOP/s
• Scales well across cores (cache-friendly)
• Examples:

— BLAS-Ŷ (e.g., GEMM):O(n3) FLOPs on
O(n2) data

— Dense factorizations leveraging
BLAS-Ŷ

Ŷų/Źż

Operational intensity and the memory wall
Ŷ Intra-node parallelism

• Example (EPYC żŹŸŸP): peak źŴų GFLOP/s vs ŹŴŷ GB/s bandwidth
• Roofline knee: źŴų/ŹŴŷ ≈ Ŵ.ŴŹ FLOP/byte

— OI < Ŵ.ŴŹ: memory-bound (bandwidth limits performance)
— OI > Ŵ.ŴŹ: compute-bound (FLOP/s limits performance)

• As core counts grow, static bandwidth limits memory-heavy kernels
• Remedies: improve cache reuse, increase bandwidth, or both

ŶŴ/Źż

Multiprogramming and processes
Ŷ Intra-node parallelism

• Modern systems support multiprogramming: many programs appear to run
concurrently.

• Microscopic view: you cannot executemore programs than available cores.
• Macroscopic view: time sharing makes many programs seem concurrent.
• A process is a running instance of a program plus its data.
• Processes are dynamic; multiple processes can run the same program.
• Each process has a private address space (its data are private).

Ŷŵ/Źż

Processes and threads: visual
Ŷ Intra-node parallelism

Data area

Instruction
flow

• Code + private memory + execution
context.

• OS schedules processes on cores.
• No shared memory by default.

Data area

Instruction flows

• Execution streams within a process.
• Share address space and program data.
• Own stack and registers; often one per
core.

ŶŶ/Źż

Programming tools for threads
Ŷ Intra-node parallelism

• POSIX threads (pthreads): low-level API, fine-grained control, portable.
• OpenMP: high-level, directive-based, widely used in C/C++/Fortran.
• Typical workflow: start with OpenMP; use pthreads only when necessary.

Will start describing some OpenMP basics, and decline it in the context of linear algebra
routines.

Ŷŷ/Źż

OpenMP: overview
Ŷ Intra-node parallelism

• De-facto standard API for shared-memory parallel programming.
• Languages: Fortran, C, C++; introduced in Ŵżżź.
• Maintained by the OpenMP Architecture Review Board (openmp.org).

Components: • Compiler directives (pragmas)
• Run-time library routines
• Environment variables

Directives behave as:
Ŵ. Actual instructions for OpenMP-aware compilers
ŵ. Comments for non-supporting compilers (keeps serial behavior)

ŶŸ/Źż

https://www.openmp.org

OpenMP: overview
Ŷ Intra-node parallelism

• De-facto standard API for shared-memory parallel programming.
• Languages: Fortran, C, C++; introduced in Ŵżżź.
• Maintained by the OpenMP Architecture Review Board (openmp.org).

Components: • Compiler directives (pragmas)
• Run-time library routines
• Environment variables

Directives behave as:
Ŵ. Actual instructions for OpenMP-aware compilers
ŵ. Comments for non-supporting compilers (keeps serial behavior)

ŶŸ/Źż

https://www.openmp.org

Fork-join execution model
Ŷ Intra-node parallelism

• Serial region executed by a single
master thread.

• Hitting a parallel region: fork into
multiple threads.

• Threads share address space; may
coordinate via shared data.

• End of region: threads join back to
one thread.

Master

fork

Thread Ŵ Thread ŵ Thread Ŷ Thread ŷ

join

Master

ŶŹ/Źż

Original focus: loop parallelism
Ŷ Intra-node parallelism

• Split workload of loops (e.g., do) across threads.

Ŵ. Enter a loop/region: activate multiple threads and partition iterations.
ŵ. Threads may communicate via shared variables/memory.
Ŷ. On completion: synchronize; deactivate all but one thread and continue serially.

• Programming model: threads with shared logical address space.
• Natural fit for shared-memory systems; not mandated by the standard.
• Attempts to map the same model to distributed-memory exist, but limited success in
practice.

Ŷź/Źż

Original focus: loop parallelism
Ŷ Intra-node parallelism

• Split workload of loops (e.g., do) across threads.

Ŵ. Enter a loop/region: activate multiple threads and partition iterations.
ŵ. Threads may communicate via shared variables/memory.
Ŷ. On completion: synchronize; deactivate all but one thread and continue serially.

• Programming model: threads with shared logical address space.
• Natural fit for shared-memory systems; not mandated by the standard.
• Attempts to map the same model to distributed-memory exist, but limited success in
practice.

Ŷź/Źż

OpenMP today
Ŷ Intra-node parallelism

• Standard evolves regularly; Ź.ų recently released, Ÿ.ŵ widely supported.
• Key additions:

— Irregular and data-driven workload dispatching
— Transformations to improve memory hierarchy usage and work sharing
— Support for SIMD extensions and accelerators

OpenMP in practice
• Will show concrete OpenMP code next.
• Often combined with MPI for hybrid/nested parallelism.
• Further reading: [Ŵ, ŵ, Ŷ, Ź]

ŶŻ/Źż

OpenMP example: let us start from an hello world
Ŷ Intra-node parallelism

The standard Fortran hello world program:
program hello

use, intrinsic :: iso_fortran_env,
only: output_unit↪→

write (output_unit, '("Hello,
world!")')↪→

end program hello

which can be compiled and run as:
gfortran -o hello hello.f90
./hello

Getting the output:
Hello, world!

Ŷż/Źż

OpenMP example: let us start from an hello world
Ŷ Intra-node parallelism

The standard Fortran hello world program:
program hello

use, intrinsic :: iso_fortran_env,
only: output_unit↪→

write (output_unit, '("Hello,
world!")')↪→

end program hello

which can be compiled and run as:
gfortran -o hello hello.f90
./hello

Getting the output:
Hello, world!

We now want to implement the same
program using OpenMP, and getting an
output from each thread.
program hello

use, intrinsic :: iso_fortran_env,
only: output_unit↪→

use omp_lib
integer :: tid, nthreads
nthreads = omp_get_max_threads()
!$omp parallel private(tid)
tid = omp_get_thread_num()
write (output_unit, '("Hello, world!

from thread ", I0)') tid↪→

!$omp end parallel
end program hello

Ŷż/Źż

Compiling the OpenMP hello world
Ŷ Intra-node parallelism

To compile the OpenMP version, we need to add the ‘-fopenmp‘ flag:
gfortran -o hello hello.f90 -fopenmp
./hello

Getting the output (on my Laptop):
Hello, world! from thread 3
Hello, world! from thread 20
Hello, world! from thread 31
Hello, world! from thread 1
Hello, world! from thread 2
Hello, world! from thread 5
Hello, world! from thread 7
...
Hello, world! from thread 29
Hello, world! from thread 16

• Each thread prints its ID.
• Order of output may vary due to thread
scheduling.

• By default, uses all available threads.
• Control number of threads via
OMP_NUM_THREADS=<num> environment
variable.

• Let us have a better look at the code, line by line.

ŷų/Źż

Compiling the OpenMP hello world
Ŷ Intra-node parallelism

To compile the OpenMP version, we need to add the ‘-fopenmp‘ flag:
gfortran -o hello hello.f90 -fopenmp
./hello

Getting the output (on my Laptop):
Hello, world! from thread 3
Hello, world! from thread 20
Hello, world! from thread 31
Hello, world! from thread 1
Hello, world! from thread 2
Hello, world! from thread 5
Hello, world! from thread 7
...
Hello, world! from thread 29
Hello, world! from thread 16

• Each thread prints its ID.
• Order of output may vary due to thread
scheduling.

• By default, uses all available threads.
• Control number of threads via
OMP_NUM_THREADS=<num> environment
variable.

• Let us have a better look at the code, line by line.

ŷų/Źż

OpenMP hello world: code walkthrough
Ŷ Intra-node parallelism

program hello
use, intrinsic ::

iso_fortran_env, only:
output_unit

↪→

↪→

use omp_lib
integer :: tid, nthreads
nthreads =

omp_get_max_threads()↪→

!$omp parallel private(tid)
tid = omp_get_thread_num()
write (output_unit, '("Hello,

world! from thread ",
I0)') tid

↪→

↪→

!$omp end parallel
end program hello

• use omp_lib: imports OpenMP
functions/constants

• nthreads = omp_get_max_threads(): gets
max available threads

• !$omp parallel private(tid): starts
parallel region; each thread has private tid

• tid = omp_get_thread_num(): each thread
gets its unique ID

• !$omp end parallel: ends parallel region;
threads synchronize

ŷŴ/Źż

Compilation flag for other compilers
Ŷ Intra-node parallelism

• GCC / GFortran: -fopenmp
• Intel ICC / IFORT: -qopenmp or -openmp
• Clang / Flang: -fopenmp (requires OpenMP library)
• PGI / NVIDIA HPC SDK: -mp

Note
Ensure the compiler supports OpenMP and is properly configured.

Mixing compilers
There exist a few cases where mixing compilers is possible (e.g., Intel and GCC), but in
general it is not recommended to mix different compilers when dealing with OpenMP
code.

ŷŵ/Źż

Using CMake to build a Fortran project
Ŷ Intra-node parallelism

As we have seen from the previous slide, and from the question on managing different
compilers in the previous lecture, it is often useful to use a build system to manage the
complexity of building a project.

There exists several build systems:
Make / GNU Make / Autotools: classic, widely used, but low-level

https://www.gnu.org/software/make/
CMake: popular, cross-platform, higher-level

https://cmake.org/
Ninja: fast, modern, often used as a backend for CMake

https://ninja-build.org/
Meson: high-level, fast, modern

https://mesonbuild.com/

ŷŶ/Źż

https://www.gnu.org/software/make/
https://cmake.org/
https://ninja-build.org/
https://mesonbuild.com/

Using CMake to build a Fortran project
Ŷ Intra-node parallelism

As we have seen from the previous slide, and from the question on managing different
compilers in the previous lecture, it is often useful to use a build system to manage the
complexity of building a project.
There exists several build systems:
Make / GNU Make / Autotools: classic, widely used, but low-level

https://www.gnu.org/software/make/
CMake: popular, cross-platform, higher-level

https://cmake.org/
Ninja: fast, modern, often used as a backend for CMake

https://ninja-build.org/
Meson: high-level, fast, modern

https://mesonbuild.com/

ŷŶ/Źż

https://www.gnu.org/software/make/
https://cmake.org/
https://ninja-build.org/
https://mesonbuild.com/

Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.

Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.
ŷ. Create the CMakeLists.txt file:

touch CMakeLists.txt

ŷŷ/Źż

Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.
ŷ. Create the CMakeLists.txt file:

touch CMakeLists.txt

ŷŷ/Źż

Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.
ŷ. Create the CMakeLists.txt file:

touch CMakeLists.txt

ŷŷ/Źż

Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.

ŷ. Create the CMakeLists.txt file:
touch CMakeLists.txt

ŷŷ/Źż

Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.
ŷ. Create the CMakeLists.txt file:

touch CMakeLists.txt

ŷŷ/Źż

Editing the CMakeLists.txt file
Ŷ Intra-node parallelism

The content of the CMakeLists.txt file should be as follows:
cmake_minimum_required(VERSION 3.23)

project(hello-openmp LANGUAGES Fortran)
find_package(OpenMP REQUIRED COMPONENTS

Fortran)↪→

Executable from the single source file
add_executable(hello-openmp hello-openmp.f90)
Link OpenMP
target_link_libraries(hello-openmp PRIVATE

OpenMP::OpenMP_Fortran)↪→

• Specify minimum CMake version
• Define project name and language
• Find OpenMP package for Fortran
• Add executable target
• Link OpenMP libraries to the target

ŷŸ/Źż

The CMake instructions explained
Ŷ Intra-node parallelism

The roject name and the programming language used, it also take further optional
arguments:

project(<PROJECT-NAME>
[VERSION

<major>[.<minor>[.<patch>[.<tweak>]]]]↪→

[COMPAT_VERSION
<major>[.<minor>[.<patch>[.<tweak>]]]]↪→

[SPDX_LICENSE <license-string>]
[DESCRIPTION <description-string>]
[HOMEPAGE_URL <url-string>]
[LANGUAGES <language-name>...])

Specify:
• project name
• version
• compatible version
• license (SPDX format)
• description
• homepage URL
• programming languages
used

ŷŹ/Źż

https://spdx.org/licenses/

The CMake instructions explained
Ŷ Intra-node parallelism

Another important command is igure external packages or libraries that the project
depends on.

find_package(<PackageName> [version] [EXACT]
[REQUIRED]↪→

[QUIET] [COMPONENTS components...]
[OPTIONAL_COMPONENTS components...]
[NO_DEFAULT_PATH])

You can pass suggestion on where to find the package
using the CMAKE_PREFIX_PATH environment variable or
the -DCMAKE_PREFIX_PATH=<path> option when
invoking CMake.

Specify:
• package name
• version
• whether it is required
• components to find
• whether to suppress
messages

• whether to avoid default
search paths

ŷź/Źż

The CMake instructions explained
Ŷ Intra-node parallelism

Another important command is igure external packages or libraries that the project
depends on.

find_package(<PackageName> [version] [EXACT]
[REQUIRED]↪→

[QUIET] [COMPONENTS components...]
[OPTIONAL_COMPONENTS components...]
[NO_DEFAULT_PATH])

You can pass suggestion on where to find the package
using the CMAKE_PREFIX_PATH environment variable or
the -DCMAKE_PREFIX_PATH=<path> option when
invoking CMake.

Specify:
• package name
• version
• whether it is required
• components to find
• whether to suppress
messages

• whether to avoid default
search paths

ŷź/Źż

The CMake instructions explained
Ŷ Intra-node parallelism

The next command is add_executable(), which is used to define an executable target:

add_executable(<name> [WIN32] [MACOSX_BUNDLE]
[EXCLUDE_FROM_ALL]
source1 source2 ... sourceN)

An executable target is a binary file that can be run on the
system, it can be created from one ormore source files.

Specify:
• target name
• platform-specific options
• whether to exclude from
default build

• source files
The last command is target_link_libraries(), which is used to specify libraries to
link against a target.

target_link_libraries(<target>
<PRIVATE|PUBLIC|INTERFACE> <item>...
[<PRIVATE|PUBLIC|INTERFACE> <item>...]...)

Specify:
• target name
• libraries to link
• linkage type

ŷŻ/Źż

Private, Public, and Interface linkage
Ŷ Intra-node parallelism

When using target_link_libraries(), you can specify the linkage type:
• PRIVATE: the library is used only for the target itself.
• PUBLIC: the library is used for both the target and any targets that link against it.
• INTERFACE: the library is used only for targets that link against the target, not for the
target itself.

Example
target_link_libraries(my_executable

PRIVATE libA
PUBLIC libB
INTERFACE libC)

In this example, libA is linked only to my_executable, libB is linked to both
my_executable and any targets that link against it, and libC is linked only to targets that
link against my_executable.
ŷż/Źż

Configuring and building
Ŷ Intra-node parallelism

To configure and build the project with CMake the steps are:
Ŵ. Create a build folder: mkdir build
ŵ. Move to the build folder and launch the cmake program

cd build
cmake .. # You could also try doing ccmake .. for an interactive configuration

Ŷ. Build the project using the generated build system, for example:
Make run make
Ninja run ninja

this will compile the code and generate the executable in the build folder.

Ÿų/Źż

Make a commit
Ŷ Intra-node parallelism

If everything works, we can make a commit of the results.
it is a good idea to create a .gitignore file to avoid committing build artifacts.

For doing this, you run
touch .gitignore
and then with your favourite editor write inside it
build/
Everything which is listed here is going to be ignored by git.

Now we can add all the files
and make a commit:

ŸŴ/Źż

Make a commit
Ŷ Intra-node parallelism

If everything works, we can make a commit of the results.
it is a good idea to create a .gitignore file to avoid committing build artifacts.

For doing this, you run
touch .gitignore
and then with your favourite editor write inside it
build/
Everything which is listed here is going to be ignored by git. Now we can add all the files
and make a commit:
git add .
git commit -m "Initial commit: OpenMP hello world with CMake"

ŸŴ/Źż

Continuous Integration (CI) with GitHub Actions
Ŷ Intra-node parallelism

We can adapt our last example of continuous integration (CI) with GitHub Actions from
the previous lecture to build and test our OpenMP project. We need to create a workflow
file in the .github/workflows folder.
Ŵ. Create the folders:

mkdir -p .github/workflows

ŵ. Create the workflow file:
touch .github/workflows/CI.yml

Ŷ. Edit the file (starting from the one seen in the previous lecture).

Ÿŵ/Źż

Editing the CI.yml file
Ŷ Intra-node parallelism

The content of the CI.yml file should be as follows:
name: CI
on:

push:
branches:
- main

jobs:
build:

runs-on: ubuntu-latest
steps:
- name: Checkout code

uses: actions/checkout@v4
- name: Setup CMake (latest)

uses: lukka/get-cmake@latest
- name: Setup Fortran

uses: fortran-lang/setup-fortran@v1.8.0

• Define workflow name and
trigger on push to main branch

• Set up Ubuntu environment
• Checkout code, set up CMake
and Fortran compiler

with:
compiler: gcc
version: 'latest'
update-environment: true

ŸŶ/Źż

Editing the CI.yml file
Ŷ Intra-node parallelism

The content of the CI.yml file should be as follows:
- name: Configure (CMake)

run: cmake -S . -B build
-DCMAKE_BUILD_TYPE=Release↪→

- name: Build (CMake)
run: cmake --build build --config Release

-- -j↪→

- name: Run program
env:

OMP_NUM_THREADS: '4'
run: |

./build/hello-openmp || (echo
"Executable not found" && ls -la
build && exit 1)

↪→

↪→

• Configure and build project
using CMake

• Run the compiled OpenMP
program with ŷ threads

Ÿŷ/Źż

Table of Contents
ŷ Building Blocks for Dense Linear Algebra

▶ The roofline model

▶ Intra-node parallelism
Intra-node parallelism: advanced architectures
Intra-node parallelism: tools
OpenMP
Using CMake and doing CI with OpenMP

▶ Building Blocks for Dense Linear Algebra
The Basic Linear Algebra Subprograms (BLAS)

ŸŸ/Źż

Motivation: Cholesky factorization example
ŷ Building Blocks for Dense Linear Algebra

Symmetric Matrix
A matrix A ∈ Rn×n is called symmetric if A = A⊤, meaning that it is equal to its transpose.

Eigenvalue and Eigenvector
Given a square matrix A ∈ Rn×n, a non-zero vector v ∈ Rn is called an eigenvector of A if
there exists a scalar λ ∈ R such that:

Av = λv

The scalar λ is referred to as the eigenvalue corresponding to the eigenvector v. All
eigenvalues of a symmetric matrix are real.

ŸŹ/Źż

Motivation: Cholesky factorization example
ŷ Building Blocks for Dense Linear Algebra

Positive Definite Matrix
A symmetric matrix A ∈ Rn×n is called positive definite if for all non-zero vectors x ∈ Rn:

x⊤Ax > 0

This implies that all eigenvalues of A are positive.

Examples of symmetric positive definite matrices
• Covariance/correlation matrices in statistics and machine learning.
• Normal equations: A⊤A from least squares; SPD if A has full column rank.
• Gram/kernel matrices: Kij = k(xi, xj) with strictly PD kernels (e.g., Gaussian/RBF).
• Precision (inverse covariance) matrices in Gaussian Markov random fields.

Ÿź/Źż

Motivation: Cholesky factorization example
ŷ Building Blocks for Dense Linear Algebra

• The Cholesky factorization is a method for decomposing a positive definite matrix A
into the product of an upper triangular matrix U and its transpose:

A = U⊤U

• It is useful for solving systems of linear equations, and inverting matrices.
• It is computationally efficient, requiring approximately 1

3n
3 operations for an n× n

matrix.

Theorem (Existence and uniqueness)
Every symmetric positive definite matrix A has a unique Cholesky factorization A = U⊤U,
where U is an upper triangular matrix with positive diagonal entries.

ŸŻ/Źż

Motivation: Cholesky factorization example
ŷ Building Blocks for Dense Linear Algebra

Consider the Cholesky factorization A = U⊤U:

Algorithm
Ŵ: for j = 1 to n do
ŵ: for i = 1 to j− 1 do
Ŷ: uij ← 1

uii

(
aij −

∑i−1
k=1 ukiukj

)
ŷ: end for
Ÿ: ujj ←

√
ajj −

∑j−1
k=1 u

2
kj

Ź: end for

• Easy to translate to any language
• But…“reinventing the wheel”
• Similar patterns appear repeatedly
• Lots of code duplication

Ÿż/Źż

The key observation
ŷ Building Blocks for Dense Linear Algebra

Similar code patterns resurface over and over again
in linear algebra algorithms

Natural strategy
“Define a set of operators such that any algorithm

can be expressed as their application to the data at hand.”

• Some languages provide native operators (MATLAB, Fortran, Julia)
• Algorithms = sequences of primitive operator calls

Źų/Źż

Benefits of standardized building blocks
ŷ Building Blocks for Dense Linear Algebra

Ŵ. Code reuse
— Write once, use many times
— Amortize cost of high-quality implementation

ŵ. Standardized interfaces
— Explore alternative implementations
— Preserve overall code behavior

Ŷ. Architecture-aware optimizations
— Exploit cache hierarchies
— Use block/submatrix operations (not just vectors)

ŷ. Portability across systems
— Same interface, optimized per platform

ŹŴ/Źż

Scope of application
ŷ Building Blocks for Dense Linear Algebra

• Cholesky is just one example
• Same reasoning applies to:

— Dense linear algebra (LU, QR, eigensolvers, …)
— Sparse linear algebra (SpMV, iterative solvers, …)
— Many other numerical algorithms

• Encapsulation enables:
— Performance tuning without changing user code
— Leveraging hardware accelerators (GPUs, vector units)
— Evolution of implementations over time

This is the foundation of BLAS and LAPACK

Źŵ/Źż

The Basic Linear Algebra Subprograms (BLAS)
ŷ Building Blocks for Dense Linear Algebra

• Set of low-level routines for common linear algebra operations
• Designed to be efficient and portable
• Building block for higher-level libraries (LAPACK, ScaLAPACK, PSBLAS, PETSc)
• Available in many programming languages (C, Fortran, Python)

Focus of this section
Dense BLAS: routines for dense matrices and vectors

ŹŶ/Źż

BLAS organization: three levels
ŷ Building Blocks for Dense Linear Algebra

Level Ŵ: Vector operations
• Examples: dot product, vector addition, scaling
• Complexity: O(n)
• Memory-bound

Level ŵ: Matrix-vector operations
• Examples: matrix-vector multiplication, rank-Ŵ updates
• Complexity: O(n2)
• Memory-bound

Level Ŷ: Matrix-matrix operations
• Examples: matrix-matrix multiplication (GEMM)
• Complexity: O(n3)
• Compute-bound (high data reuse)

Źŷ/Źż

Popular BLAS implementations
ŷ Building Blocks for Dense Linear Algebra

OpenBLAS: Open-source implementation of BLAS and LAPACK
ATLAS: Automatically Tuned Linear Algebra Software; open-source, self-optimizing

Intel MKL: High-performance library optimized for Intel processors
cuBLAS: GPU-accelerated BLAS for NVIDIA GPUs
BLIS: Portable, high-performance, modern BLAS framework

Key takeaway
Same interface, different implementations⇒ performance portability

ŹŸ/Źż

Finding BLAS with CMake
ŷ Building Blocks for Dense Linear Algebra

• CMake provides a built-in module to find BLAS libraries
• Use find_package(BLAS REQUIRED) to locate BLAS
• Link against the found BLAS library using
target_link_libraries(<target> PRIVATE ${BLAS_LIBRARIES})

• Information are available on the webpage: FindBLAS module documentation.

Example CMake snippet
find_package(BLAS REQUIRED)
target_link_libraries(<target> PRIVATE ${BLAS_LIBRARIES})

ŹŹ/Źż

https://cmake.org/cmake/help/latest/module/FindBLAS.html

Summary and Next Steps
Ÿ Summary

• OpenMP is a widely used API for shared-memory parallel programming.
• It provides a simple and flexible way to parallelize code using compiler directives.
• CMake can be used to manage the build process of Fortran projects with OpenMP.
• The Basic Linear Algebra Subprograms (BLAS) provide standardized building blocks
for dense linear algebra operations.

• Using BLAS enables code reuse, portability, and performance optimizations across
different hardware architectures.

Next Steps
• Explore more advanced OpenMP features (e.g., task parallelism, SIMD).
• Use Fortran and OpenMP features to look through BLAS implementations.

Źź/Źż

Summary and Next Steps
Ÿ Summary

• OpenMP is a widely used API for shared-memory parallel programming.
• It provides a simple and flexible way to parallelize code using compiler directives.
• CMake can be used to manage the build process of Fortran projects with OpenMP.
• The Basic Linear Algebra Subprograms (BLAS) provide standardized building blocks
for dense linear algebra operations.

• Using BLAS enables code reuse, portability, and performance optimizations across
different hardware architectures.

Next Steps
• Explore more advanced OpenMP features (e.g., task parallelism, SIMD).
• Use Fortran and OpenMP features to look through BLAS implementations.

Źź/Źż

References
Ź Bibliography

[Ŵ] G. J. Barbara Chapman and R. van der Pas. Using OpenMP. MIT Press, Cambridge,
MA, ŵųųź, p. ŶŻŷ. ISBN: żźŻųŵŹŵŸŶŶųŵź.

[ŵ] O. A. R. Board. OpenMP Application Programming Interface Specification ŷ.Ŵ. Ed. by
B. de Supinski and M. Klemm. ŵųŵŴ. ISBN: żźż-ŻŷżźŶźųŴżŸ. URL:
https://www.openmp.org/specifications/.

[Ŷ] O. A. R. Board. OpenMP Application Programming Interface Specification Ÿ.Ų. ŵųŵŷ.
URL: https://www.openmp.org/specifications/.

[ŷ] J. D. McCalpin. “Memory Bandwidth and Machine Balance in Current High
Performance Computers”. In: IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. ŴżżŸ), pp. Ŵż–ŵŸ.

ŹŻ/Źż

https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

References
Ź Bibliography

[Ÿ] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. Tech. rep. A continually updated technical report.
http://www.cs.virginia.edu/stream/. Charlottesville, Virginia: University of Virginia,
ŴżżŴ-ŵųųź. URL: http://www.cs.virginia.edu/stream/.

[Ź] Y. (H. Timothy G. Mattson and A. E. Koniges. The OpenMP Common Core. MIT Press,
Cambridge, MA, ŵųŴż, p. Ŷŵų. ISBN: żźŻųŵŹŵŸŶŻŻŹŵ.

[ź] S. Williams, A. Waterman, and D. Patterson. “Roofline: an insightful visual
performance model for multicore architectures”. In: Commun. ACM Ÿŵ.ŷ (Apr. ŵųųż),
pp. ŹŸ–źŹ. ISSN: ųųųŴ-ųźŻŵ. DOI: 10.1145/1498765.1498785. URL:
https://doi.org/10.1145/1498765.1498785.

Źż/Źż

http://www.cs.virginia.edu/stream/
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785

	Summary of previous lecture
	The roofline model
	Intra-node parallelism
	Intra-node parallelism: advanced architectures
	Intra-node parallelism: tools
	OpenMP
	Using CMake and doing CI with OpenMP

	Building Blocks for Dense Linear Algebra
	The Basic Linear Algebra Subprograms (BLAS)

	Summary
	Bibliography

