High Performance Linear Algebra
Lecture 4: Starting with BLAS, BLAS Level 1: AXPY

Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

November 19, 2025 — 14.00:16.00

1/52

\‘"'/‘

W

Dipartimento
di Matematica
Universita di Pisa

mailto:fabio.durastante@unipi.it

Table of Contents

1 Building Blocks for Dense Linear Algebra

» Building Blocks for Dense Linear Algebra

2/52

SVl
Motivation: Cholesky factorization example

1 Building Blocks for Dense Linear Algebra

U,

Symmetric Matrix

A matrix A € R™™" is called symmetricif A = AT, meaning that it is equal to its transpose.

Eigenvalue and Eigenvector

Given a square matrix A € R"*", a non-zero vector v € R" is called an eigenvector of A if
there exists a scalar A € R such that:

Av = \v

The scalar A is referred to as the eigenvalue corresponding to the eigenvector v. All
eigenvalues of a symmetric matrix are real.

3/52

Y
Motivation: Cholesky factorization example

1 Building Blocks for Dense Linear Algebra

Positive Definite Matrix

A symmetric matrix A € R™*" is called positive definite if for all non-zero vectors x € R":

U,

X' AX > 0
This implies that all eigenvalues of A are positive.

Examples of symmetric positive definite matrices
e Covariance/correlation matrices in statistics and machine learning.
e Normal equations: AT A from least squares; SPD if A has full column rank.
e Gram/kernel matrices: Ky = k(x,-,xj) with strictly PD kernels (e.g., Gaussian/RBF).

e Precision (inverse covariance) matrices in Gaussian Markov random fields.

4/52

Y
Motivation: Cholesky factorization example

1 Building Blocks for Dense Linear Algebra

U,

e The Cholesky factorization is a method for decomposing a positive definite matrix A
into the product of an upper triangular matrix U and its transpose:

A=U'U

e |t is useful for solving systems of linear equations, and inverting matrices.

¢ |t is computationally efficient, requiring approximately %n?’ operations forann x n
matrix.

Theorem (Existence and uniqueness)

Every symmetric positive definite matrix A has a unique Cholesky factorization A = U' U,
where U is an upper triangular matrix with positive diagonal entries.

5/52

Y
Motivation: Cholesky factorization example

1 Building Blocks for Dense Linear Algebra

U,

Consider the Cholesky factorization A = U' U:

Algorithm

1 forj = 1tondo e But...“reinventing the wheel”

Easy to translate to any language

2: fori=1toj— 1do Similar patterns appear repeatedly
3 Uj < 4 (aij — Y uki“kj)
4: end for
5
6

Lots of code duplication

6/52

The key observation

1 Building Blocks for Dense Linear Algebra

Similar code patterns resurface over and over again
in linear algebra algorithms

Natural strategy

“Define a set of operators such that any algorithm
can be expressed as their application to the data at hand.”

e Some languages provide native operators (MATLAB, Fortran, Julia)

e Algorithms = sequences of primitive operator calls

7/52

Benefits of standardized building blocks

1 Building Blocks for Dense Linear Algebra

1. Code reuse

— Write once, use many times
— Amortize cost of high-quality implementation

2. Standardized interfaces
— Explore alternative implementations
— Preserve overall code behavior

3. Architecture-aware optimizations

— Exploit cache hierarchies
— Use block/submatrix operations (not just vectors)

4. Portability across systems
— Same interface, optimized per platform

8/52

Scope of application

1 Building Blocks for Dense Linear Algebra

e Cholesky is just one example
e Same reasoning applies to:

— Dense linear algebra (LU, QR, eigensolvers, ...)
— Sparse linear algebra (SpMV, iterative solvers, ...)
— Many other numerical algorithms

e Encapsulation enables:

— Performance tuning without changing user code
— Leveraging hardware accelerators (GPUs, vector units)
— Evolution of implementations over time

This is the foundation of BLAS and LAPACK

9/52

Table of Contents
2 The Basic Linear Algebra Subprograms (BLAS)

» The Basic Linear Algebra Subprograms (BLAS)

10/52

The Basic Linear Algebra Subprograms (BLAS)

2 The Basic Linear Algebra Subprograms (BLAS)

o Set of low-level routines for common linear algebra operations

Designed to be efficient and portable
Building block for higher-level libraries (LAPACK, ScaLAPACK, PSBLAS, PETSc)
Available in many programming languages (C, Fortran, Python)

Focus of this section

Dense BLAS: routines for dense matrices and vectors

11/52

BLAS organization: three levels
2 The Basic Linear Algebra Subprograms (BLAS)

Level 1: Vector operations
e Examples: dot product, vector addition, scaling
e Complexity: O(n)
e Memory-bound

Level 2: Matrix-vector operations
e Examples: matrix-vector multiplication, rank-1 updates
e Complexity: O(n?)
e Memory-bound

Level 3: Matrix-matrix operations
e Examples: matrix-matrix multiplication (GEMM)
e Complexity: O(n?)
e Compute-bound (high data reuse)

12/52

Popular BLAS implementations
2 The Basic Linear Algebra Subprograms (BLAS)

OpenBLAS: Open-source implementation of BLAS and LAPACK
ATLAS: Automatically Tuned Linear Algebra Software; open-source, self-optimizing
Intel MKL: High-performance library optimized for Intel processors
CUBLAS: GPU-accelerated BLAS for NVIDIA GPUs

BLIS: Portable, high-performance, modern BLAS framework

Key takeaway
Same interface, different implementations = performance portability

13/52

Finding BLAS with CMake

2 The Basic Linear Algebra Subprograms (BLAS)

e CMake provides a built-in module to find BLAS libraries
e Use find_package (BLAS REQUIRED) to locate BLAS

Link against the found BLAS library using
target_link_libraries(<target> PRIVATE ${BLAS_LIBRARIES})

Information are available on the webpage: FindBLAS module documentation.

Example CMake snippet

find_package (BLAS REQUIRED)
target_link_libraries(<target> PRIVATE ${BLAS_LIBRARIES})

14/52

https://cmake.org/cmake/help/latest/module/FindBLAS.html

Table of Contents
3 Level 1 BLAS: Vector operations

» Level 1 BLAS: Vector operations
AXPY
An object oriented packaging
Implementation with OpenMP

15/52

Level 1 BLAS: Overview
3 Level 1 BLAS: Vector operations

types name (size ar) description flops data
s,d,c,z axpy (n, alpha,x, incx, y, incy) update vector y=y+ox 2n 2n
s,d,c,z,cs,zd scal (n, alpha, x, incx) scale vector y=oy n n
s,d,c,z copy (m, X, incx, y, incy) copy vector y=x 0 2n
s,d,c,z swap (n, X, incx, y, incy) swap vectors x>y 0 2n
s, d dot (n, X, incx, y, incy) dot product e xTy 2n 2n

c,z dotu (n, X, incx, y, incy) (complex) =xTy 2n 2n

[dotc (n, X, incx, y, incy) (complex conj) =x# y 2n 2n
sds, ds dot (n, X, incx, y, incy) (internally double precision) = xTy 2n 2n
s, d, sc,dz nrm2 (n, X, incx) 2-norm =[x, 2n n
s, d, sc, dz asum (n, X, incx) l-norm =|Re(x)||; + [Im(x)]|; n n
s,d, ¢,z i_amax (n, X, incx) oco-norm = argmax;([Re(x;)|+ |Im(x;)|) n n
s,d,c,z rotg (a, b, c, s) generate plane (Given’s) rotation (c real, s complex) o(1) o(1)
s,d,c,z T rot (n, X, incx, y, incy, ¢, s) apply plane rotation (c real, s complex) 6n 2n
cs, zd rot (n, X, incx, y, incy, ¢, s) apply plane rotation (c & s real) 6n 2n
s, d rotmg (d1, d2, a, b, param) generate modified plane rotation o(1) 0(1)
s, d rotm (n, X, incx, y, incy, param) apply modified plane rotation 6n 2n

16/52

3 Level 1 BLAS: Vector operations

e Basic operations on vectors
e Examples:

Dot product: DOT
Vector addition: AXPY
Scaling: SCAL

Copy: COPY

Norms: NRM2

e Memory-bound operations

Level 1 BLAS: Vector operations

Data types:
e s: single real
e d: double real
e C: single complex

e 7: double complex

Naming convention: <data type><operation>

17/52

<Bﬂlq;-ll

//A\w AXPY: Definition

3 Level 1 BLAS: Vector operations

AXPY (Add X times Y):

y—ax+y
Routine name: daxpy (double precision)
e « scalar, x, y vectors call daxpy(n, alpha, x, incx, y, incy)
e Level 1 BLAS (memory-bound) e n: vector length
@ The output vector y is overwritten e alpha: scalar
A Widely used in numerical algorithms e X, Y: vectors
(e.g., iterative methods) e incx, incy: strides (usually 1)

18/52

Fortran example (double precision)
3 Level 1 BLAS: Vector operations

program axpy_example
use iso_fortran_env, only: int64, real64, output_unit
implicit none

integer(kind=int64), parameter :: n = 5
real (kind=real64) :: x(n), y(n), alpha
integer (kind=int64) :: i

Initialize the vectors and scalar
x = [1.0, 2.0, 3.0, 4.0, 5.0]
y = [10.0, 20.0, 30.0, 40.0, 50.0]
alpha = 2.0
! Call the AXPY routine
call daxpy(n, alpha, x, 1, y, 1)
I Print the result
write(output_unit, '("Resulting vector y:")')
doi=1,n
write(output_unit, '(F6.2)', advance='no') y(i)
end do
write(output_unit, '("")')
return

end program ax example
19/52p & Py- P

Compiling (OpenBLAS)

3 Level 1 BLAS: Vector operations

Install (Ubuntu): apt-get install libopenblas-dev

gfortran -o axpy_example axpy_example.f90 -lopenblas
./axpy_example

Sample output

Resulting vector y:
12.00 24.00 36.00 48.00 60.00

20/52

Compiling (OpenBLAS)

3 Level 1 BLAS: Vector operations

Install (Ubuntu): apt-get install libopenblas-dev

gfortran -o axpy_example axpy_example.f90 -lopenblas
./axpy_example

Sample output

Resulting vector y:
12.00 24.00 36.00 48.00 60.00

There are quite a few inconvenient things!

20/52

NP

?/A\$ An object oriented packaging
3 Level 1 BLAS: Vector operations
Let us make an object oriented packaging of this BLAS operations using modern Fortran.
o Create a Git repository for our package
mkdir objblas
cd objblas
git init
git branch -m main

21/52

\‘ '[,‘

ﬂk\V An object oriented packaging

3 Level 1 BLAS: Vector operations

Let us make an object oriented packaging of this BLAS operations using modern Fortran.
e Create a Git repository for our package
mkdir objblas
cd objblas
git init
git branch -m main
e Create a CMakeLists.txt file for our project with content
cmake_minimum_required(3.28)
project(objblas LANGUAGES Fortran)
find_package (BLAS REQUIRED)

21/52

\‘ '[,‘

WK\V An object oriented packaging

3 Level 1 BLAS: Vector operations

Let us make an object oriented packaging of this BLAS operations using modern Fortran.

21/52

Create a Git repository for our package

mkdir objblas

cd objblas

git init

git branch -m main

Create a CMakeLists. txt file for our project with content
cmake_minimum_required(3.28)
project(objblas LANGUAGES Fortran)
find_package (BLAS REQUIRED)

Create a directory which will contain the code:
mkdir src

touch src/blas.f90

\‘ '[,‘

ﬂk\V An object oriented packaging

3 Level 1 BLAS: Vector operations

We will now create a Fortran module, which will package the BLAS library we are going to
use, hence we write into the src/blas. £90 file the following:
module blas

use iso_fortran_env, only: real64, real32

implicit none

< interfaces >
contains
< implementations >

end module blas

22/52

subroutine daxpy_blas(alpha, x, y, incx, incy)

Let us start with the implementations
3 Level 1 BLAS: Vector operations

use iso_fortran_env, only: real64
implicit nome

real(real64), intent(in) :: alp
real (real64), intent(in) :: x(:

real(real64), intent(inout)
integer, intent(in), optional ::

! Local wvariables

integer :: incx_, incy_

incx_ =1

incy_ =1

if (present(incx)) incx_ = incx

if (present(incy)) incy_

incy

call daxpy(size(x),alpha,x,incx
end subroutine daxpy_blas

23/52

ha
)

ooy ()

,¥,incy)

incx, incy

intent () tells the subroutine if the
argumenti is an input, an output, or
both,

optional tells if the argument can be
omitted, and present checks if it has
been passed or not.

We use size (x) to get the length of
the vector.

We can write similar subroutines for the
other data types (single, complex,
double complex).

Now the interfaces

private

interface axpy

module procedure daxpy_blas

! Other data types procedures
end interface axpy

public :: axpy

<[> private makes all the module
contents private by default,

<[> public :: axpy makes the axpy
interface public.

24/52

3 Level 1 BLAS: Vector operations

The interface block allows to define
multiple procedures with the same
name but different argument types.

Here we define the interface for daxpy,
which maps to the implementation
daxpy_blas.

We can add other procedures for
different data types (single, complex,
double complex).

CMake configuration
3 Level 1 BLAS: Vector operations

We need to tell CMake how to build our package, so we add the following lines to the
CMakeLists.txt file

add_library(objblas src/blas.f90)
target_link_ libraries(objblas PUBLIC BLAS::BLAS)

e add_library() creates a library target named objblas from the source file.
e target_link_libraries() links the BLAS libraries to our package.

25/52

CMake configuration
3 Level 1 BLAS: Vector operations

We need to tell CMake how to build our package, so we add the following lines to the
CMakeLists.txt file

add_library(objblas src/blas.f90)

target_link_ libraries(objblas PUBLIC BLAS::BLAS)
e add_library() creates a library target named objblas from the source file.
e target_link_libraries() links the BLAS libraries to our package.

/¥ Now we need to write a tester: we create a test directory and inside it a
CMakeLists.txt file and a axpy_test.£90 file and add the following lines to the
test/CMakeLists.txt file:
add_executable(test_axpy test/test_axpy.f90)
target_link_libraries(test_axpy PRIVATE objblas)

25/52

Test program

3 Level 1 BLAS: Vector operations

program test_axpy e We test the double precision AXPY
use iso_fortran_ env, only: real64, operations through the axpy interface.
— output_unit o
use blas e We initialize vectors and scalars, call the
implicit none axpy method from our package, and
integer, parameter :: n = 10 print the results.
rjalggiigi) Hoeam, yesm, @ This modular approach makes it easy to
x64 = [1,2,3,4,5,6,7,8,9,10] extend and maintain the BLAS wrapper.

y64 = 0.0_real64
alpha64 = 2.0_real64
call axpy(alpha64, x64, y64)
write(output_unit,*) "Double Precision
— AXPY Result:"
write(output_unit,*) y64

end program test_axpy

26/52

Test program
3 Level 1 BLAS: Vector operations

program test_axpy e We test the double precision AXPY
use iso_fortran_env, only: real64, operations through the axpy interface.
— output_unit NTONT
use blas e We initialize vectors and scalars, call the
implicit none axpy method from our package, and
integer, parameter :: n = 10 print the results.
real (real64) :: x64(n), y64(n), . .
. alpha64 v ® This modular approach makes it easy to

x64 = [1,2,3,4,5,6,7,8,9,10] extend and maintain the BLAS wrapper.
y64 = 0.0_real64
alpha64 = 2.0_real64 Exercise
11 1pha64, x64, y64 . -
e axpy (alp ant x y64) . Implement the single precision, complex,
write(output_unit,*) "Double Precision R R
. AXPY Result:" and double complex versions of AXPY in the
write(output_unit,*) y64 blas module and test them in the test
end program test_axpy program.
26/52

NP

— < . ° 0 .
V/A\V AXPY: A Starting Point for Parallelism

3 Level 1 BLAS: Vector operations

e AXPY is a simple routine, ideal for exploring parallelism
e The operation can be parallelized by splitting vectors into chunks
e Each chunk can be computed independently in parallel

OpenMP Parallelization

e OpenMP: API for shared memory parallel programming
e Uses compiler directives (special comments)

e Supports C, C++, and Fortran

e Portable and scalable for multi-core processors

27/52

ﬂvﬁa4ll

ﬂk\V OpenMP AXPY Example

3 Level 1 BLAS: Vector operations

program axpy_opm_example
use iso_fortran_env, only: int64, real64, output_unit
use omp_lib
implicit nome

integer (kind=int64), parameter :: n = 5
real(kind=real64) :: x(n), y(n), alpha
integer (kind=int64) :: i

Initialize the wectors and scalar

x = [1.0, 2.0, 3.0, 4.0, 5.0]

y [10.0, 20.0, 30.0, 40.0, 50.0]

alpha = 2.0

! Write the OpenMP directive to parallelize the for loop
!$omp parallel do

doi=1, n

y(i) = y(i) + alpha * x(i)

28/52

\\‘ 'I»A

ﬂk\V OpenMP AXPY Example

3 Level 1 BLAS: Vector operations

end do
!$omp end parallel do
! Print the result
write(output_unit, '("Resulting vector y:")')
doi=1, n
write(output_unit, '(F6.2)', advance='no') y(i)
end do
write(output_unit, '("")"')
! Return
return
end program axpy_opm_example

e Include OpenMP: use omp_lib
e Directive: !$omp parallel do
e Compiler spawns threads to distribute loop iterations

29/52

Compiling with OpenMP

3 Level 1 BLAS: Vector operations

Compile the OpenMP program:
gfortran -o axpy_omp_example axpy_omp_example.f90 -fopenmp
Run the program:

./axpy_omp_example

Controlling Thread Count

Set number of threads via environment variable:

export OMP_NUM_THREADS=4
./axpy_omp_example

Orincode: call omp_set_num_threads(4)

30/52

\\‘ 'I»A

//A\\ Querying Thread Information

3 Level 1 BLAS: Vector operations

Get the number of threads being used:

integer (kind=int64) :: nthreads
!$omp parallel
!$omp single
nthreads = omp_get_num_threads()
!$omp end single
!$omp end parallel
write(output_unit, '("Number of threads: ", I2)') nthreads

e Use omp_get_num_threads() to query
e !$omp singleensuresonly one thread updates
e Must be called within a parallel region

31/52

Two Key Questions
3 Level 1 BLAS: Vector operations

1. How are threads scheduled?
— How are loop iterations distributed among threads?

2. Who owns what data?
— Which variables are shared vs. private?

32/52

<Bﬂlq;-ll

ﬂk\V OpenMP Scheduling Policies

3 Level 1 BLAS: Vector operations

Specified using schedule clause:
static: Equal-sized chunks (default)
static, chunk_size: Fixed chunk size
dynamic: Iterations assigned as threads become available
guided: Dynamic with decreasing chunk sizes
runtime: Determined by OMP_SCHEDULE environment variable
auto: Compiler decides

!$omp parallel do schedule(static, chunk_size)
doi=1,n
y(i) = alpha * x(i) + y(i)
end do
!$omp end parallel do

33/52

Data Sharing Clauses

3 Level 1 BLAS: Vector operations

Control variable visibility between threads:
shared: Single instance visible to all threads
private: Each thread has its own uninitialized copy
firstprivate: Like private, but initialized from original

lastprivate: Private, with final value copied back

Example for AXPY:

!$omp parallel do shared(z, y, alpha) private(si) schedule(dynamic)
doi=1,n
y(i) = alpha * x(i) + y(i)
end do
!$omp end parallel do

34/52

Performance Measurement Strategy

3 Level 1 BLAS: Vector operations

e Use omp_get_wtime () for accurate timing

Run multiple iterations for reliable measurements

Use sufficiently large problem sizes

Read problem size from command line

Use allocatable arrays for dynamic sizing

Compilation with optimization

gfortran -03 -march=native -mtune=alderlake -o axpy_omp axpy_omp_time.f90 -fopenmp

35/52

Timing Code Example
3 Level 1 BLAS: Vector operations

do i =1, 1000
elapsed_time = 0.0
tl = omp_get_wtime() !/ Start timer
!$omp parallel do shared(z, y, alpha) private(j) schedule(static)
do j=1, n
y(j) = alpha * x(j) + y(j)
end do
!$omp end parallel do
t2 = omp_get_wtime() ! Stop timer
elapsed_time = elapsed_time + (t2 - t1)
end do
e Average over many iterations
e Use omp_get_wtime() instead of cpu_time
e Measure wall-clock time

36/52

Performance Analysis: roofline model
3 Level 1 BLAS: Vector operations

Let us analyze the performance of our OpenMP AXPY implementation using the roofline
model.

First the characteristics of the AXPY operation:
e AXPY operation: y <— ax +y
¢ Floating-point operations (FLOPs): 2n (1 multiplication + 1 addition per element)
e Data movement: 3n (read x, read y, write y)

e Operational intensity: 33;“ = 234 = %2 FLOPs/byte

To plot the roofline model, we need to measure/know:
e Peak computational performance (FLOPs/s)
e Memory bandwidth (bytes/s)

37/52

Performance Analysis: roofline model
3 Level 1 BLAS: Vector operations

On my CPU (Intel® Core™ i9-14900HX) | have:
e Peak performance: 844.8 GFLOPs (double precision)
e Memory bandwidth: 89.6 GB/s (measured with stream)

The operational intensity of AXPY is 1/12 FLOPs/byte, which is independent of n, this is a
clear indication of a memory-bound operation.

38/52

Performance Analysis: roofline model
3 Level 1 BLAS: Vector operations

On my CPU (Intel® Core™ i9-14900HX) | have:
e Peak performance: 844.8 GFLOPs (double precision)
e Memory bandwidth: 89.6 GB/s (measured with stream)

The operational intensity of AXPY is 1/12 FLOPs/byte, which is independent of n, this is a
clear indication of a memory-bound operation.

The memory-bound performance ceiling is given by:

Performancemax, memory-bound = Operational Intensity x Memory Bandwidth

1
=1 % 89.6 GFLOPs =~ 7.47 GFLOPs

38/52

\\"'»A
Measuring Performance
3 Level 1 BLAS: Vector operations

w,

After running the different AXPY implementation with a large vector size (e.g., slightly
larger than the L3 cache size) and measuring the execution time, we can compute the
achieved performance:

39/52

<N%ul
Measuring Performance
3 Level 1 BLAS: Vector operations

w,

After running the different AXPY implementation with a large vector size (e.g., slightly
larger than the L3 cache size) and measuring the execution time, we can compute the
achieved performance:

Assuming we measured an execution time of t seconds, the achieved performance is:

2n
Achieved Performance = - FLOPs/s

do rep = 1, reps
y = 0.0_dp ! Reset y for each repetition
t0 = omp_get_wtime()
call daxpy(n, alpha, x, 1, y, 1)
tl = omp_get_wtime() ! BLAS implementation
time_blas = time_blas + (tl1 - tO0)

end do
39/52

\\‘ 'l»‘

//A\V Visualizing results

3 Level 1 BLAS: Vector operations

| tested it my machine with n = 6000000 over 100 repetitions and obtained the following:

8 | | | |
’\a Pal | Pal | Pal | Pal |
g P P o Lo
S O o v v
L 1 1 1 1 1 1 1 1
% 4l Vo b . . | I8 Measured Performance
I Vo Vo Vo Vo Ul Theoretical Max
o] 1 ! 1 ! 1 ! 1 !
£ o o o Lo
N Y Co Lo
g L Lo Lo Lo
0 c)L 1 Q . 1 . 1 bL 1
A
40/52 S O

Some caveats
3 Level 1 BLAS: Vector operations

To obtain reasonable numbers from our implementations we need to enable compiler
optimizations:

gfortran -03 -march=native -mtune=native

<[> -03 enables high-level optimizations

¢[> -march=native enables instructions for the host CPU

¢/> -mtune=native optimizes for the host CPU microarchitecture

If we want to enable them in our CMake project we need to add the following lines to the
CMakeLists.txt file:

set (CMAKE_Fortran_FLAGS_RELEASE "-03 -march=native -mtune=native")
set (CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)

41/52

Full example code
3 Level 1 BLAS: Vector operations

The full example code for the OpenMP AXPY implementation with performance
measurement is available at:

Q) github.com/High-Performance-Linear-Algebra/objblas/tree/main

As usual, it can be obtained by doing

git clone git@github.com:High-Performance-Linear-Algebra/objblas.git
cd objblas

and the example run by doing

mkdir build

cd build

cmake ..

make # or ninja

./axpy_perf

42/52

https://github.com/High-Performance-Linear-Algebra/objblas/tree/main

“"'A

ﬂl\w Varying the number of threads

3 Level 1 BLAS: Vector operations

We can analyze the performance of our OpenMP AXPY implementation by varying the
number of threads used.

e Set the number of threads using the OMP_NUM_THREADS environment variable
e Measure execution time and compute achieved performance for each thread count

e Plot performance vs. number of threads to visualize scaling behavior

Example command to run with different thread counts

export OMP_NUM_THREADS=4
./axpy_perf

43/52

Implementation of the AXPY scaling driver
3 Level 1 BLAS: Vector operations

Since we want to vary the number of threads, and we want to visualize the performance,
we can implement a simple bash script which will do the job for us.

#!/bin/bash

BUILD_DIR=../../build

THREADS=(1 2 4 8 16 32)

SIZES=(1000000 5000000 10000000 50000000 100000000)

repetitions=50

for size in "${SIZES[@]}"; do
for threads in "${THREADS[@]}"; do
export OMP_NUM_THREADS=$threads
echo "Running axpy_scaling with size=$size and threads=$threads"
$BUILD_DIR/axpy_scaling $size $repetitions
done
done

44/52

Implementation of the AXPY scaling driver
3 Level 1 BLAS: Vector operations

The axpy_scaling program needs to read the size and number of repetitions from the

command line, so we can implement it as follows:

integer :: reps, n

character(len=20) :: n_str, reps_str

if (command_argument_count() < 2) then
write(error_unit, *) 'Usage: axpy_scaling <problem_size> <repetitions>'
stop

end if

call get_command_argument(l, n_str)

call get_command_argument (2, reps_str)

read(n_str, *) n

read(reps_str, *) reps

45/52

Implementation of the AXPY scaling driver
3 Level 1 BLAS: Vector operations

We allocate the arrays dynamically:

real(dp), allocatable :: x(:), y(:)

real(dp) :: alpha

integer :: stat

! Allocate and initialize data

allocate(x(n), y(n),stat=stat)

if (stat /= 0) then
write(error_unit, *) 'Error allocating arrays of size ', n
stop

end if

x = [(real(i, dp), i = 1, n)]
y = 0.0_dp
alpha = 2.0_dp

46/52

Implementation of the AXPY scaling driver
3 Level 1 BLAS: Vector operations

Finally we can implement the timing loop as follows:

! Benchmark BLAS AXPY ! Benchmark OpenMP AXPY
time_blas = 0.0_dp time_omp = 0.0_dp
do rep = 1, reps do rep = 1, reps
y = 0.0_dp y = 0.0_dp
t0 = omp_get_wtime() t0 = omp_get_wtime()
call daxpy(n, alpha, x, 1, y, 1) call axpy_omp(n, alpha, x, 1, y, 1)
tl = omp_get_wtime() tl = omp_get_wtime()
time_blas = time_blas + (t1 - t0) time_omp = time_omp + (t1 - t0)
end do end do

We then compute the averages, and print the results to screen:

write(output_unit, *) 'Average time BLAS AXPY: ', time_blas/reps, ' seconds'
write(output_unit, *) 'Average time OpenMP AXPY: ', time_omp/reps, ' seconds'

47/52

<N%ul

//A\\ Writing to file for plotting

3 Level 1 BLAS: Vector operations

It is convenient to write the results to a file for later plotting. We can do it as follows:
open(unit=10, file='axpy_scaling_results.csv', status='unknown',

< action='write', position='append')

write(10, '(I10,I10,1X,F15.6,F15.6)"') n, nthreads, time_blas, time_omp
close(10)

e open opens a file for writing

e status='unknown' creates the file if it doesn’t exist, other possibilities for this
argument are 'o0ld', 'new', and 'replace’

e position='append' adds data to the end of the file, other possibilities are
'rewind' and 'replace', which start writing from the beginning of the file, and
overwrite existing content.

e write formats and writes the data: problem size, thread count, and timings

e close closes the file

48/52

Strong Scaling Results

3 Level 1 BLAS: Vector operations

10736 —e— BLAS-n = 10°
—a— OpenMP -n = 106

1073.8 L

1074 L

Time (seconds)

1074‘2 L

1 2 4 8 16 32
Number of Threads

49/52

Strong Scaling Results

3 Level 1 BLAS: Vector operations

—— BLAS-n =5 x 106
—=— OpenMP -n =5 x 10°

1072.7 L

1072.8 L

Time (seconds)

1 2 4 8 16 32
Number of Threads

49/52

Strong Scaling Results

3 Level 1 BLAS: Vector operations

I I I I I
10723 - —o— BLAS-n = 107
—=— OpenMP -n = 107
o)
C
(@]
g 10724]
o
£
|_
1072.5 [
| | | | | |

1 2 4 8 16 32
Number of Threads

49/52

Strong Scaling Results

3 Level 1 BLAS: Vector operations

—— BLAS-n=5x 107
1016 | —a— OpenMP-n =5 x 107

1071.7 L

Time (seconds)

10718 L \ \ \ \ \ \
1 2 4 8 16 32

Number of Threads

49/52

Strong Scaling Results

3 Level 1 BLAS: Vector operations

—e— BLAS-n = 108
10713 |- —=— OpenMP -n = 108

1071.4 L

Time (seconds)

10715 b \ \ \ \ \ \

1 2 4 8 16 32
Number of Threads

49/52

Strong Scaling Results: Analysis

3 Level 1 BLAS: Vector operations

e For small problem sizes (n = 106), execution time increases with more threads
— Thread creation overhead dominates computation
— Memory bandwidth not fully utilized

50/52

Strong Scaling Results: Analysis

3 Level 1 BLAS: Vector operations

e For small problem sizes (n = 10°), execution time increases with more threads
— Thread creation overhead dominates computation
— Memory bandwidth not fully utilized

e For large problem sizes (n > 5 x 107), execution time decreases with more threads
— Computation becomes significant enough to benefit from parallelism
— Better amortization of parallel overhead
— Improved memory bandwidth utilization across cores

50/52

Strong Scaling Results: Analysis

3 Level 1 BLAS: Vector operations

e For small problem sizes (n = 10°), execution time increases with more threads
— Thread creation overhead dominates computation
— Memory bandwidth not fully utilized

e For large problem sizes (n > 5 x 107), execution time decreases with more threads
— Computation becomes significant enough to benefit from parallelism
— Better amortization of parallel overhead
— Improved memory bandwidth utilization across cores

e Memory-bound nature persists:
— Scaling plateaus beyond 8-16 threads
— Limited by memory bandwidth, not computation
— Multiple threads saturate available bandwidth

50/52

Strong Scaling Results: Analysis

3 Level 1 BLAS: Vector operations

e For small problem sizes (n = 10°), execution time increases with more threads
e For large problem sizes (n > 5 x 107), execution time decreases with more threads
e Memory-bound nature persists:

Rule of thumb

For memory-bound operations like AXPY, parallelism helps only when the problem size is
large enough to amortize threading overhead and saturate memory bandwidth.

50/52

4\ Exercises

4 Conclusions

@ What does it change if we use single precision instead of double precision?

© Investigate weak scaling behavior by increasing problem size proportionally with the
number of threads.

© Implement Continuous Integration (Cl) for the repository using GitHub Actions.

© We could test one BLAS implementation against another (e.g., OpenBLAS vs Intel
MKL) and one compiler against another (e.g., GCC vs Intel). How would you
implement this? A good idea would be to look at 9 spack.io for package
management.

51/52

https://spack.io/

Summary and next-steps

4 Conclusions

e We have created a Fortran module wrapping BLAS AXPY routines with a clean
interface.

e We implemented an OpenMP version of AXPY to explore parallelism.

e We analyzed performance using the roofline model, confirming AXPY is
memory-bound.

e We studied strong scaling behavior by varying thread counts and problem sizes.

Next Steps:

e Look at inner products (DOT), norms and their parallel implementations.
e Start exploring Level 2 BLAS routines (matrix-vector operations).

e Look at more OpenMP pragmas and optimizations.

52/52

	Building Blocks for Dense Linear Algebra
	The Basic Linear Algebra Subprograms (BLAS)
	Level 1 BLAS: Vector operations
	AXPY
	An object oriented packaging
	Implementation with OpenMP

	Conclusions

