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Back from the past
Ŵ Back from the past

• Last time we have seen:
— BLAS Level Ŵ: DOT, NRMŵ and Givens rotations
— BLAS Level ŵ: GEMV a first look

• Today we will continue with:
— BLAS Level ŵ: GEMV: better memory access patterns
— BLAS Level Ŷ: GEMM
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Last lecture
ŵ BLAS Level ŵ: GEMV continued

We have implemented two variants of the GEMV kernel, in the following module:
module gemvmod

use iso_fortran_env
use omp_lib
implicit none
private
public :: gemv_openmp_n, gemv_openmp_n_block

contains
! Implementations in the last lecture

end module gemvmod

• gemv_openmp_n: simple OpenMP parallelization over rows,
• gemv_openmp_n_block: blocked version with OpenMP parallelization over blocks

of rows.
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GEMV: limitations of the previous implementations
ŵ BLAS Level ŵ: GEMV continued

Both implementations have a limitation: they access the matrix A in column-major
order, which is not cache friendly.
We can improve the memory access pattern by changing the way we parallelize the
computation.

Instead of parallelizing over rows, we can parallelize over columns.
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=

We express the matrix-vector product as a linear
combination of the columns of A:

y = x1a:,1 + x2a:,2 + · · ·+ xna:,n

From an operative point of view, this means
swapping the two loops in the naïve implementation.
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GEMV: parallelization over columns
ŵ BLAS Level ŵ: GEMV continued

The matrix A is stored in column-major order, this allows A to be read sequentially,
optimizing memory access.
Each element of the vector x is loaded into registers and reused efficiently.
The vector y is accessed in every iteration, but if its size is smaller than the cache
capacity, it can be reused at the cache level.

y = beta * y ! Update y with beta * y
!$omp parallel do private(i) shared(A, x, alpha) reduction(+:y)
do i = 1, n

call daxpy(m, alpha*x(i), A(1:m,i), 1, y, 1)
end do
!$omp end parallel do
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Limitation of the column-wise parallelization
ŵ BLAS Level ŵ: GEMV continued

The column-wise parallelization has a limitation:
— The number of columns nmay be small compared to the number of available threads,
— Array reductions are expensive: each thread needs to maintain a private copy of the

output vector y and then reduce them at the end of the computation,
— For largem, maintaining multiple copies of y can exceed cache capacity

To overcome this limitation, we can use a blocked version of the column-wise
parallelization.
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• This is a good approach if the matrix A is large enough,
and it allows us to take advantage of the cache hierarchy.
The code is similar, but we need to add an outer loop that
iterates over the blocks of the matrix A.
This is an example of divide-and-conquer approach:
— we divide the problem into smaller subproblems,
— solve each subproblem by a sequential GEMV operation.
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Divide and conquer GEMV code
ŵ BLAS Level ŵ: GEMV continued

! scale y by beta
y = beta * y
!$omp parallel default(none) &
!$omp shared(A, x, y, m, n, lda, alpha, n_x_, n_y_) &
!$omp private(i,j,ti,mb,nb,yloc)
allocate(yloc(m))
yloc = 0.0_real64
! Tile the i–j loops; collapse for better load balance
!$omp do collapse(2) schedule(static)
do i = 1, m, n_x_

do j = 1, n, n_y_
mb = min(n_x_, m - i + 1) ! handle edge tiles
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Divide and conquer GEMV code
ŵ BLAS Level ŵ: GEMV continued

nb = min(n_y_, n - j + 1)
! perform the small GEMV into the thread--local yloc

call dgemv('N', mb, nb, alpha, &
A(i, j), lda, &
x(j), 1, &
1.0_real64, yloc(i), 1)

end do
end do
!$omp end do
! Safely accumulate thread--local yloc into global y
do ti = 1, m

!$omp atomic
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Divide and conquer GEMV code
ŵ BLAS Level ŵ: GEMV continued

y(ti) = y(ti) + yloc(ti)
end do
deallocate(yloc)
!$omp end parallel

We need to choose appropriate block sizes n_x_ and n_y_.
We need to handle edge tiles when the matrix dimensions are not multiples of the
block sizes.
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Description of the code
ŵ BLAS Level ŵ: GEMV continued

We allocate a private copy of the output vector yloc for each thread.
We tile the i-j loops, and we use the !collapse(2) clause to parallelize over the
tiles.
For each tile, we call a sequential dgemv to compute the partial result into the
private yloc.
Finally, we safely accumulate the private copies into the global output vector y using
an !atomic operation.

Compile
We can add the module to our main project objblas:
add_library(objblas src/blas.f90 src/blasOMP.f90 src/gemvmod.f90)
target_link_libraries(objblas PUBLIC BLAS::BLAS OpenMP::OpenMP_Fortran)
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Roofline Model Refresher
ŵ BLAS Level ŵ: GEMV continued

We analyze GEMV

y = αAx+ βy, A ∈ Rm×n, x ∈ Rn, y ∈ Rm

• Floating–point ops (precise):

2mn︸︷︷︸
Ax

+ m︸︷︷︸
βy scale

+ m︸︷︷︸
final add

= 2mn+ 2m ≈ 2mn (mn ≫ m).

• Bytes moved (no reuse):

8mn︸︷︷︸
A

+ 8n︸︷︷︸
x

+ 16m︸︷︷︸
y read+write

= 8mn+ 8n+ 16m.

• Operational intensity:

I =
2mn+ 2m

8mn+ 8n+ 16m
≈ 2mn

8mn+ 8n+ 16m
.
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Roofline Model Refresher
ŵ BLAS Level ŵ: GEMV continued

We analyze GEMV

y = αAx+ βy, A ∈ Rm×n, x ∈ Rn, y ∈ Rm

Platform (Intel® Core™ iż–ŴŷżųųHX, approximate):
• Peak DP FLOPs≈ ų.Ż–ų.ż TFLOP/s
• Sustained memory bandwidth≈ Żż.Ź GB/s
• Cache sizes:

L1d: 896 KiB (24 instances)
L1i: 1,3 MiB (24 instances)
L2: 32 MiB (12 instances)
L3: 36 MiB (1 instance)

Use roofline: Attainable GFLOP/s =min(Peak, Bandwidth×I).
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Cache-Aware Problem Size Selection
ŵ BLAS Level ŵ: GEMV continued

Goal: choose (m,n) to exercise cache vs. memory bandwidth. Working set (no temporal
reuse):

W(m, n) = 8mn+ 8n+ 16m bytes.

Hierarchy (per core / shared, simplified):
• LŴd: Ŷŵ–ŷŻ KiB
• Lŵ (per P-core): ŵ MiB; E-core cluster: ŷ MiB
• LLC (LŶ): ŶŹ MiB shared
• DRAM: Żż.Ź GB/s sustained

We classify regimes using full matrix footprint vs. cache levels (or effective tiled working
set).
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Representative Matrix Sizes
ŵ BLAS Level ŵ: GEMV continued

LŴ-working-set (fully fits when tiled):
• Example global size: m = n = Źŷ
• Full A: Źŷ2 ∗ 8B = 32KiB; x+ yoverhead ≈ ŵ KiB
• Entire working set≈ Ŷŷ KiB (fits in ŷŻ KiB LŴd)

Lŵ/LLC-resident (fits in LLC, not LŴ):
• m = n = ŵųųų
• A: Ŷŵ MB; x + y≈ ų.ųŶŵ MB
• Fits in ŶŹ MB LŶ; stresses LLC bandwidth / latency

DRAM-bound:
• m = n = ŵųųųų
• A: Ŷ.ŵ GB; exceeds LLC; compulsory DRAM traffic
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Tile Size Selection (bm, bn)
2 BLASLevel2 : GEMVcontinued

Tile footprint (data needed per tile GEMV assuming contiguous columns):

F(bm, bn) = 8 bmbn + 8 bn + 16 bm bytes.

Guidelines:
• Minimize capacity misses for A; keep (portion of) y hot.
• Reuse x entries across all rows of the tile.
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Tile Size Selection (bm, bn)
2 BLASLevel2 : GEMVcontinued

LŴ tile:

bm = bn = 32 ⇒ F ≈ 8 · 1024 + 8 · 32 + 16 · 32 ≈ 8192 + 256 + 512 ≈ 8.96 KiB.

Lŵ tile:
bm = bn = 256 ⇒ F ≈ 512 KiB+ vector overhead ≈ 513 KiB.

Large / DRAM-stress tile:

bm = bn = 512 ⇒ F ≈ 2MiB.

Pick (bm,bn) so multiple thread–private y tiles fit without eviction.
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Operational Intensity Examples
ŵ BLAS Level ŵ: GEMV continued

For square casem = n:

I(n) =
2n2 + 2n

8n2 + 8n+ 16n
=

2n2 + 2n
8n2 + 24n

.

As n → ∞: I → 2
8 = 0.25 FLOP/Byte.

Examples (rounded):

• n = 64: I ≈ 0.24

• n = 2000: I ≈ 0.25

• n = 20000: I ≈ 0.25

Conclusion: GEMV remains memory-bound on modern CPUs (low intensity). Optimization focuses
on:

• Reducing data traffic (tiling, avoiding redundant y copies)

• Prefetch-friendly sequential column access

• Minimizing reduction overhead
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Performance Expectation vs. Roofline
ŵ BLAS Level ŵ: GEMV continued

Given peak P and bandwidth B:

Boundmemory = B · I, Boundcompute = P.

With I ≈ 0.25, B = 89.6 GB/s:

Memory bound ≈ 22.4 GFLOP/s ≪ P.

Thus:
• Optimized GEMV should approach ŵų–ŵŵ GFLOP/s.
• Large deviations imply poor locality or bandwidth saturation issues.
• Parallel scaling limited once bandwidth saturated.

Use roofline to validate improvement of column-wise and tiled implementations.
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Results and Observations
ŵ BLAS Level ŵ: GEMV continued

Small (LŴ) Medium (LLC) Large (DRAM)
0
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Configuration
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Measured performance: consistency check
ŵ BLAS Level ŵ: GEMV continued

Matrix sizes used (matches earlier size slide):

Small: m = n = 64, Medium: m = n = 2000, Large: m = n = 20000.

Arithmetic intensity (AI) for square case

I(n) =
2n2 + 2n
8n2 + 24n

−−−→
n→∞

0.25 FLOP/Byte.

Concrete values:
I(64) ≈ 0.243, I(2000) ≈ 0.250, I(20000) ≈ 0.250.

DRAM roofline (bandwidth B = Żż.Ź GB/s):

Rmem = B · I ≈ 21.8–22.4 GFLOP/s (all sizes).

Observed (from bar chart):

ŵų/Źż



Measured performance: consistency check
ŵ BLAS Level ŵ: GEMV continued

• Small (Źŷ): BLAS ŴŶ.Ŷ GF/s (≈ŹŴ% of DRAM roof); OMP row ų.ŹŻ; OMP col Ŵ.źŴ; OMP tiled ų.ŷŻ.

• Medium (ŵųųų): BLAS ŵŶ.ŷ; OMP col ŶŶ.ŷ; OMP tiled ŵų.Ÿ (some values exceed DRAM roof).

• Large (ŵųųųų): BLAS Ŵź.Ŵ; OMP col Ŵź.Ż; OMP tiled ŴŹ.ŵ (all below DRAM roof).

Flags:

• Column-wise medium case exceeds simple DRAM roof⇒model underestimates attainable
due to cache reuse.

• Small case far below roof⇒ kernel overhead+ underutilization dominate.

• Large case memory-bound as expected.
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Why some results exceed the DRAM roofline
ŵ BLAS Level ŵ: GEMV continued

The ŵŵ GF/s bound assumes pure DRAM streaming. It is not a universal ceiling.

Ŵ. Cache residency blocking:

— Medium matrix (ŵųųų×ŵųųų): A = Ŷŵ MB fits in LLC (ŶŹ MB)⇒many accesses served
from LŶ after first pass.

— Effective bandwidth becomes LŶ (hundreds GB/s) not DRAM⇒ higher feasible GFLOP/s.

ŵ. Reuse pattern (column-wise outer-product):

— Reuses each column of A sequentially with daxpy; x(j) stays in registers; y streamed
once per column.

Ŷ. Simplified bytes-moved model overcounts:

— Counts full read of A, x, y each repetition; ignores temporal locality of x and partial y
residency.
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Why some results exceed the DRAM roofline
ŵ BLAS Level ŵ: GEMV continued

ŷ. Library optimizations:

— Vendor BLAS uses micro-kernels, software prefetching, packing improving cache-line
reuse.

Ÿ. Timing / FLOP accounting alignment:

— FLOPs formula correct (ŵmn + ŵm), but if beta=ų path or fused operations shorten
memory traffic, effective intensity rises.

Conclusion: Use a multi-ceiling roofline (LŴ/Lŵ/LŶ/DRAM) to interpret results; DRAM roof alone is
insufficient for cached regimes.
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Behavior of implementation variants
ŵ BLAS Level ŵ: GEMV continued

• Row-wise (ddot per row):
— Very small per-thread work; function-call overhead; poor vector length; limited ILP →

low GFLOP/s.

• Column-wise (daxpy per column / outer-product form):
— Long contiguous daxpy operations → good SIMD utilization; favorable sequential

column access; high cache reuse → best performance.

• Tiled version (current):
— Private yloc per thread then atomic add for each element → m atomics per thread →

heavy serialization.
— Tile scheduling + allocation overhead further reduces throughput.

• BLAS:
— Hand-tuned kernels, packing, minimized write-allocate misses, balanced threading.

Key bottleneck now: reduction scheme in tiled kernel (atomics) rather than GEMV arithmetic.
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OpenMP SIMD Directive
ŵ BLAS Level ŵ: GEMV continued

The !$omp simd directive instructs the compiler to vectorize the following loop using SIMD
(Single Instruction, Multiple Data) instructions.

!$omp simd
do i = istart, iend

y(i) = y(i) + alpha * A(i,j) * xj
end do

Key features:

Enables automatic vectorization: multiple operations executed simultaneously

Utilizes CPU vector registers (e.g., AVX-ŸŴŵ on modern Intel/AMD)

No thread creation overhead — purely instruction-level parallelism

Can combine with thread parallelism: !$omp parallel do simd

Performance impact: ŷ×–Ż× speedup typical with AVXŵ/AVX-ŸŴŵ for suitable loops.
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OpenMP SIMD Directive
ŵ BLAS Level ŵ: GEMV continued

The !$omp simd directive instructs the compiler to vectorize the following loop using SIMD
(Single Instruction, Multiple Data) instructions.

!$omp simd
do i = istart, iend

y(i) = y(i) + alpha * A(i,j) * xj
end do

Requirements for effective SIMD:

• Contiguous memory access (unit stride)

• No loop-carried dependencies

• Simple loop body (FMA-friendly operations)

• Alignment helps but not strictly required

Performance impact: ŷ×–Ż× speedup typical with AVXŵ/AVX-ŸŴŵ for suitable loops.
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

Goals: (Ŵ) column-major streaming of A, (ŵ) reuse x(j) in registers, (Ŷ) avoid per-thread full y copies
+ atomic reduction.

subroutine gemv_openmp_blocked(m, n, alpha, A, lda, x, beta, y)
use iso_fortran_env, only: real64
use omp_lib
implicit none
integer, intent(in) :: m, n, lda
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda,*), x(*)
real(real64), intent(inout) :: y(*)
integer :: i, j, tid, nth, istart, iend, base
real(real64) :: xj
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

! Parallel scale y by beta (write each element once)
!$omp parallel default(none) shared(m,y,beta) private(i)
!$omp do schedule(static)
do i = 1, m

y(i) = beta * y(i)
end do
!$omp end do
!$omp end parallel

!$omp parallel default(none) shared(m,n,A,lda,x,y,alpha) &
!$omp private(tid,nth,istart,iend,j,i,xj,base)
tid = omp_get_thread_num()
nth = omp_get_num_threads()
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

! Contiguous row partition among threads
base = (tid * m) / nth
istart = base + 1
iend = ((tid + 1) * m) / nth

do j = 1, n
xj = x(j)
!$omp simd
do i = istart, iend

y(i) = y(i) + alpha * A(i,j) * xj
end do

end do
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

!$omp end parallel
end subroutine gemv_openmp_blocked

Key differences vs previous tiled version:

• Eliminates thread-private full copies (yloc) and expensive atomic accumulation.

• Each thread updates a disjoint contiguous slice of y: no write-sharing, no reduction.

• Outer loop over columns preserves sequential (contiguous) access to A(:,j) in
column-major layout.

• Reuses scalar x(j) across whole row block (likely register-resident).
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

Why this helps:

• Reduction overhead removed → lower synchronization cost.

• Contiguous row blocks reduce TLB pressure and improve prefetch.

• !$omp simd on inner loop encourages vectorization across rows.

Trade-offs / limits:

• Parallelism tied to m (number of rows). If m < threads utilization poor.

• Load balance assumes uniform cost per row; acceptable for dense A.

• Still memory-bound; each A(i,j) touched exactly once; intensity capped at ų.ŵŸ FLOP/Byte.
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

Possible refinements:

• Hybrid blocking: partition rows, then process columns in chunks to keep y slice hot in cache.

• Use micro-kernel (unroll + FMA) for inner loop; block rows in multiples of SIMD width.

• If n very large, manual software prefetch on upcoming A(i,j+pf).

• Replace scalar update with small packed panel (register block of A).

When to prefer earlier tiled + reduction approach:

• When n (columns) is huge and mmoderately small: tiling over columns can improve x reuse
granularity.

• When fusing multiple GEMVs sharing the same y (batch / multi-right-hand-side emulation).
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

Summary: This variant removes the dominant bottleneck (atomic reduction) while retaining
cache-friendly column streaming over A(:,j) and register reuse of x(j), approaching vendor
dgemv behavior when m is large enough for thread scaling.
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TRSV: Triangular Solve with Vector
ŵ BLAS Level ŵ: GEMV continued

Not all Level ŵ BLAS operations parallelize well!
• TRSV solves triangular systems Ax = b where A is:

Lower triangular

A =


a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann



Upper triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann


Sequential dependency: must solve for xi before xi+1 (forward) or xi−1 (backward)
Options exist: iterative methods for sparse matrices, specialized parallel algorithms
(covered later)
Design principle: Avoid triangular solves in parallel algorithms when possible!
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TRSV: Triangular Solve with Vector
ŵ BLAS Level ŵ: GEMV continued

subroutine fwd_subs(A, b, x)
implicit none
integer :: i, j, n
real(real64), intent(in) :: A(:,:)
real(real64), intent(in) :: b(:)
real(real64), intent(out) :: x(size(b))
n = size(b)
x(1) = b(1)/A(1,1)
do i = 2, n

x(i) = b(i)
do j = 1, i-1

x(i) = x(i) - A(i,j)*x(j)
end do
x(i) = x(i)/A(i,i)

end do
end subroutine fwd_subs

Backward substitution algorithm.Ŷŷ/Źż



TRSV: Triangular Solve with Vector
ŵ BLAS Level ŵ: GEMV continued

subroutine bwd_subs(A, b, x)
implicit none
integer :: i, j, n
real(real64), intent(in) :: A(:,:)
real(real64), intent(in) :: b(:)
real(real64), intent(out) :: x(size(b))
n = size(b)
x(n) = b(n)/A(n,n)
do i = n-1, 1, -1

x(i) = b(i)
do j = i+1, n

x(i) = x(i) - A(i,j)*x(j)
end do
x(i) = x(i)/A(i,i)

end do
end subroutine bwd_subs

Forward substitution algorithm.Ŷŷ/Źż
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BLAS Level Ŷ: Overview
Ŷ BLAS Level Ŷ

• Level Ŷ BLAS define operators that involve matrices
• Key operations:

GEMM Computes C = αAB+ βC
SYRŵK Computes symmetric rank-ŵ update C = αAB⊤ + αBA⊤ + βC

• For n× nmatrices: O(n3) arithmetic operations with O(n2) data accesses
Excellent arithmetic intensity compared to Level Ŵ and ŵ!
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GEMM: General Matrix Multiply
Ŷ BLAS Level Ŷ

Mathematical formulation

C = αAB+ βC

• A and B can optionally be transposed or conjugated
• All three matrices may be strided
• Standard matrix multiplication: α = 1.0, β = 0.0

Element-wise formulation:

Cij = α

k∑
l=1

AilBlj + βCij, i = 1, . . . ,m, j = 1, . . . , n
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GEMM: BLAS Interface
Ŷ BLAS Level Ŷ

call dgemm(transa, transb, m, n, k, alpha, A, lda,
B, ldb, beta, C, ldc)

Parameters:
• transa, transb: transposition options for A and B

• m, n, k: matrix dimensions
• alpha, beta: scalar multipliers
• lda, ldb, ldc: leading dimensions
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DGEMM: Example Usage
Ŷ BLAS Level Ŷ

program gemm_blass
use iso_fortran_env, only: real64, output_unit, error_unit
implicit none
character(len=100) :: n_str, m_str, k_str
integer :: n, m, k, info
real(real64), allocatable :: a(:,:), b(:,:), c(:,:)
! Read from command line arguments n, m, k
if (command_argument_count() < 3) then

write(error_unit, *) "Usage: gemm_blass n m k"
stop

end if
call get_command_argument(1, n_str)
call get_command_argument(2, m_str)
call get_command_argument(3, k_str)
read(n_str, *) n
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DGEMM: Example Usage
Ŷ BLAS Level Ŷ

read(m_str, *) m
read(k_str, *) k
! Check if n, m, k are positive integers
if (n <= 0 .or. m <= 0 .or. k <= 0) then

write(error_unit, '("n = ",I0,", m = ",I0,", k = ",I0," must be positive
integers")') n,m,k↪→

stop
else

write(output_unit, '("n = ",I0,", m = ",I0,", k = ",I0)') n,m,k
end if
! Allocate matrices
allocate(a(n,k), b(k,m), c(n,m), stat=info)
if (info /= 0) then

write(error_unit, *) "Error allocating matrices"
stop
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DGEMM: Example Usage
Ŷ BLAS Level Ŷ

end if
! Initialize matrices
call random_number(a)
call random_number(b)
call random_number(c)
! Perform matrix multiplication using BLAS
call dgemm('N', 'N', n, m, k, 1.0d0, a, n, b, k, 1.0d0, c, n)
! Free matrices
deallocate(a, b, c, stat=info)
if (info /= 0) then

write(error_unit, *) "Error deallocating matrices"
stop

end if
end program gemm_blass
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Naïve Implementation: (i, j, l) ordering
Ŷ BLAS Level Ŷ

subroutine matmul_ijl(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)
integer :: i, j, l
do i = 1, m

do j = 1, n
C(i,j) = beta * C(i,j)
do l = 1, k

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)
end do

end do
end do

end subroutine matmul_ijl
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Naïve Implementation: (i, j, l) ordering
Ŷ BLAS Level Ŷ

Direct formula-to-code translation
Poor memory access pattern for column-major storage

A

n

k

B

k

m

C

n

m

row of A
column of B

C(i, j)

=×
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Loop Reordering: (j, i, l) ordering
Ŷ BLAS Level Ŷ

subroutine matmul_jil(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)
integer :: i, j, l
do j = 1, m

do i = 1, n
C(i,j) = beta * C(i,j)
do l = 1, k

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)
end do

end do
end do

end subroutine matmul_jil

ŷŶ/Źż



Loop Reordering: (j, i, l) ordering
Ŷ BLAS Level Ŷ

Better: accesses C in column-major order
∼ŵ.Ź× faster than (i, j, l) ordering

A

n

k

B

k

m

C

n

mcolumn of C

row of A

column of B

=×
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Optimal Loop Ordering: (j, l, i)
Ŷ BLAS Level Ŷ

Why (j, l, i) is best for Fortran column-major layout:

Innermost loop (i):

— Reads A(i, l) and C(i, j) contiguously (unit stride)
— Maximizes cache-line utilization

Middle loop (l):

— B(l, j) constant, kept in register
— Sequential access to columns of A and B

Outer loop (j):

— Computes each column of C in turn
— Good spatial locality

Key principle: Loop order matters! Memory access pattern dominates performance.
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Optimal Implementation: (j, l, i) ordering
Ŷ BLAS Level Ŷ

subroutine matmul_jli(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)
integer :: i, j, l
C = beta * C
do j = 1, n

do l = 1, k
do i = 1, m

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)
end do

end do
end do

end subroutine matmul_jli
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Optimal Implementation: (j, l, i) ordering
Ŷ BLAS Level Ŷ

Unit-stride access on all arrays

∼Ŵ.Ÿ× faster than (j, i, l),∼ŷ× faster than (i, j, l)

A (m× k)

A(
:,
l)

B (k× n)

B(
:,
j)

B(l, j)

C (m× n)

C(
:,
j)

C(:, j) + = α A(:, l) B(l, j)

Outer: j
Middle: l
Inner: i

A(:, l) B(:, j) B(l, j) C(:, j) updated
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Performance Comparison (n = 103, avg. over Ŵųų runs)
Ŷ BLAS Level Ŷ
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(j, l, i) achieves źŶ% of OpenBLAS performances
BLAS still faster: uses blocking, packing, micro-kernels
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Performance Comparison (n = 103, avg. over Ŵųų runs)
Ŷ BLAS Level Ŷ
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Parallel DGEMMwith OpenMP
Ŷ BLAS Level Ŷ

We now want to parallelize our DGEMM operation using OpenMP.
A good starting point is to start from our optimal sequential implementation (loop
order (j, l, i))

We just write the triple loop as before, and add OpenMP directives to parallelize the
outer loops:
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Parallel DGEMMwith OpenMP
Ŷ BLAS Level Ŷ

We now want to parallelize our DGEMM operation using OpenMP.
A good starting point is to start from our optimal sequential implementation (loop
order (j, l, i))
We just write the triple loop as before, and add OpenMP directives to parallelize the
outer loops:
!$omp parallel default(none) shared(C,beta,m,n) private(i,j)
!$omp do schedule(static)
do j = 1, n

!$omp simd
do i = 1, m

C(i,j) = beta * C(i,j)
end do

end do
!$omp end do
⟨ Continues on the next slide ⟩
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Parallel DGEMMwith OpenMP
Ŷ BLAS Level Ŷ

We now want to parallelize our DGEMM operation using OpenMP.
We just write the triple loop as before, and add OpenMP directives to parallelize the
outer loops:
!$omp do collapse(2) schedule(static) default(none) &
!$omp shared(A,B,C,alpha,m,n,k) private(i,j,l,blj)
do j = 1, n

do l = 1, k
blj = alpha * B(l,j)
!$omp simd
do i = 1, m

C(i,j) = C(i,j) + A(i,l) * blj
end do

end do
end do
!$omp end do
!$omp end parallel
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OpenMP SIMD Pragma
Ŷ BLAS Level Ŷ

• The !$omp simd directive is used to instruct the compiler to vectorize the loop that
follows it.

• This pragma allows the compiler to generate SIMD (Single Instruction, Multiple Data)
instructions, which can process multiple data points in parallel.

• It is particularly useful in loops where iterations are independent, allowing for
significant performance improvements on modern processors.

• Example usage:
!$omp simd
do i = 1, m

C(i,j) = C(i,j) + A(i,l) * blj
end do

• In this example, the loop iterations can be executed simultaneously, leveraging the
capabilities of the CPU’s vector units.
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What did we gain?
Ŷ BLAS Level Ŷ

BLAS jli OpenMP
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We used OpenMP to parallelize our optimal
sequential DGEMM implementation

• Tested on matrices of size n = 2560,
averaged over ŵų runs, using Ŷŵ
threads.
Achieved a speedup of∼ź.źŸ× over the
sequential version.
Still slower than vendor BLAS
implementation.
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Tiled DGEMM
Ŷ BLAS Level Ŷ

To improve cache utilization, we can implement a tiled version of DGEMM.
Divide the matrices into smaller sub-matrices (tiles) that fit into the cache.
This reduces cache misses and improves data locality.

A (m× k) B (k× n) C (m× n)

Ctile(I,J) + = Atile(I,L) Btile(L,J)

m

k

k

n

m

n

A(I, L) tile
B(L, J) tile
C(I, J) tile (updated)
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Tiled DGEMM Implementation
Ŷ BLAS Level Ŷ

subroutine dgemm_tiled(m, n, k, alpha, A, lda, B, ldb, beta, C, ldc, tile_m,
tile_n, tile_k)↪→

use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: m, n, k, lda, ldb, ldc
integer, intent(in), optional :: tile_m, tile_n, tile_k
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda, *)
real(real64), intent(in) :: B(ldb, *)
real(real64), intent(inout) :: C(ldc, *)
! Local variables
integer :: i, j, l, ii, jj, ll
integer :: ts_m, ts_n, ts_k
integer :: i_end, j_end, l_end
real(real64) :: temp
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Tiled DGEMM Implementation
Ŷ BLAS Level Ŷ

! Set tile sizes (default 64)
ts_m = 64
ts_n = 64
ts_k = 64
if (present(tile_m)) ts_m = tile_m
if (present(tile_n)) ts_n = tile_n
if (present(tile_k)) ts_k = tile_k

! Scale C by beta
do j = 1, n

do i = 1, m
C(i,j) = beta * C(i,j)

end do
end do
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Tiled DGEMM Implementation
Ŷ BLAS Level Ŷ

! Tiled matrix multiplication with non-square tiles
do jj = 1, n, ts_n

j_end = min(jj + ts_n - 1, n)
do ll = 1, k, ts_k

l_end = min(ll + ts_k - 1, k)
do ii = 1, m, ts_m

i_end = min(ii + ts_m - 1, m)

! Multiply tile
do j = jj, j_end

do l = ll, l_end
temp = alpha * B(l,j)
do i = ii, i_end

C(i,j) = C(i,j) + A(i,l) * temp
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Tiled DGEMM Implementation
Ŷ BLAS Level Ŷ

end do
end do

end do

end do
end do

end do

end subroutine dgemm_tiled
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Tiled DGEMM: Implementation Notes
Ŷ BLAS Level Ŷ

Key design choices:
Tile size selection: Default Źŷ×Źŷ×Źŷ tiles
— Balances LŴ/Lŵ cache capacity vs. parallelism granularity
— Overridable via optional arguments for tuning

Edge handling: min() ensures correct partial tiles at boundaries
Loop nest structure:
— Outer Ŷ loops (jj, ll, ii): tile iteration
— Inner Ŷ loops (j, l, i): computation within tile
— Maintains optimal (j,l,i) ordering for cache-friendly access

Beta scaling: Applied once before tiling to avoid redundant operations

Temporal reuse: Each tile of C accumulates contributions from multiple A/B tile pairs,
improving cache hit rate

Parallelization opportunity: Outer tile loops are independent.
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Exercise: tuning tiled DGEMM
Ŷ BLAS Level Ŷ

An exercise for you to try at home!
Ŵ. Write a driver program to test the performance of the tiled DGEMM implementation.
ŵ. Experiment with different tile sizes (e.g., Ŷŵ, Źŷ, ŴŵŻ) to see how they affect

performance.
Ŷ. Measure execution time and compute performance (GFLOP/s) for various matrix

sizes (e.g., ŸŴŵ, Ŵųŵŷ, ŵųŷŻ).
ŷ. Compare the performance of your tiled DGEMM with the non-tiled version and with

a vendor BLAS implementation.
Ÿ. Analyze the results and determine the optimal tile size for your specific hardware.
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Tiled DGEMMwith OpenMP
Ŷ BLAS Level Ŷ

We can further enhance our tiled DGEMM implementation by adding OpenMP directives
to parallelize the outer tile loops.

This allows multiple tiles to be computed simultaneously, leveraging multi-core
processors.
We add OpenMP pragmas to the outer loops iterating over tiles.
To hope for good performance, make sure to choose
— tile sizes that provide enough work per thread to amortize threading overhead,
— tile sizes that divide the matrix dimensions exactly to avoid load imbalance.
— If not, we would need to implement dynamic scheduling or handle edge cases carefully

to avoid loss of performance.
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

subroutine dgemm_tiled_openmp(m, n, k, alpha, A, lda, B, ldb, beta, C, ldc, &
tile_m, tile_n, tile_k)
use iso_fortran_env, only: real64
implicit none

integer, intent(in) :: m, n, k, lda, ldb, ldc
integer, intent(in), optional :: tile_m, tile_n, tile_k
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda, *)
real(real64), intent(in) :: B(ldb, *)
real(real64), intent(inout) :: C(ldc, *)

integer :: ts_m, ts_n, ts_k
integer :: ii, jj, ll
integer :: i, j, l
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

integer :: i_end, j_end, l_end
integer :: ib, jb
real(real64) :: tmp

! ---- MAXIMUM tile sizes (adjust safely for your CPU cache) ----
integer, parameter :: MAX_TS_M = 128
integer, parameter :: MAX_TS_N = 128

! Local tile buffer, fixed size (thread-private due to OpenMP)
real(real64) :: Cbuf(MAX_TS_M, MAX_TS_N)

! Default tile sizes
ts_m = 64
ts_n = 64
ts_k = 64
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

if (present(tile_m)) ts_m = min(tile_m, MAX_TS_M)
if (present(tile_n)) ts_n = min(tile_n, MAX_TS_N)
if (present(tile_k)) ts_k = tile_k

!$omp parallel default(none) &
!$omp shared(m,n,k,ts_m,ts_n,ts_k,A,B,C,alpha,beta,lda,ldb,ldc) &
!$omp private(ii,jj,ll,i,j,l,i_end,j_end,l_end,ib,jb,Cbuf,tmp)
!$omp do collapse(2) schedule(static)
do jj = 1, n, ts_n

do ii = 1, m, ts_m
! Work tile bounds
i_end = min(ii + ts_m - 1, m)
j_end = min(jj + ts_n - 1, n)

ib = i_end - ii + 1 ! actual tile height
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

jb = j_end - jj + 1 ! actual tile width
! -------------------------------
! Load and scale C tile: Cbuf = beta * C
! -------------------------------
do j = 1, jb

do i = 1, ib
Cbuf(i, j) = beta * C(ii + i - 1, jj + j - 1)

end do
end do
! -------------------------------
! Accumulate over all K tiles
! -------------------------------
do ll = 1, k, ts_k

l_end = min(ll + ts_k - 1, k)
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

do l = ll, l_end
do j = 1, jb

! scalar needed for whole column
tmp = alpha * B(l, jj + j - 1)

!$omp simd
do i = 1, ib

Cbuf(i, j) = Cbuf(i, j) + A(ii + i - 1, l) * tmp
end do

end do
end do

end do
! -------------------------------
! Write tile back to C
! -------------------------------
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

do j = 1, jb
do i = 1, ib

C(ii + i - 1, jj + j - 1) = Cbuf(i, j)
end do

end do

end do
end do
!$omp end do
!$omp end parallel

end subroutine dgemm_tiled_openmp
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Tiled DGEMMwith OpenMP: Implementation Notes
Ŷ BLAS Level Ŷ

Key improvements over sequential tiled version:
Thread-private tile buffer: Each thread allocates Cbuf(MAX_TS_M, MAX_TS_N) on its stack
— Eliminates write conflicts to shared C during accumulation
— Local buffer has better cache affinity than scattered C updates

Collapsed parallelization: !$omp do collapse(2) over (jj, ii) tile indices
— Increases parallel grain count: (n/ts_n) * (m/ts_m) independent tasks
— Better load balance when n or m is small relative to thread count

Three-stage tile computation:
Ŵ. Load & scale: Cbuf = beta * C(tile)
ŵ. Accumulate: Loop over ll (K-tiles), perform Cbuf += alpha * A(tile) * B(tile)
Ŷ. Write-back: C(tile) = Cbuf

Minimizes memory traffic to global C: two passes instead of O(k/ts_k) read-modify-writes

Innermost SIMD: !$omp simd on row loop within tile maximizes ILP
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Tiled DGEMMwith OpenMP: Trade-offs
Ŷ BLAS Level Ŷ

Memory considerations:
Stack pressure: Each thread needs 8 * MAX_TS_M * MAX_TS_N bytes
— Example: MAX_TS_M = MAX_TS_N = 128⇒ ŴŵŻ KB/thread
— Ŷŵ threads⇒ ŷ MB total (acceptable on modern systems)
— May need ulimit -s unlimited or adjust stack size limits

Cache optimization: Cbuf stays hot in LŴ/Lŵ during K-loop accumulation
— Temporal reuse: each Cbuf element updated k/ts_k times without eviction
— Reduces Cmemory traffic by factor of k/ts_k

Performance tuning:
Choose ts_m, ts_n to balance:
— Tile buffer fits in Lŵ cache (ts_m * ts_n * 8 bytes≲ Lŵ size)
— Enough tiles for good thread utilization: (m/ts_m)*(n/ts_n) >= num_threads * 4

ts_k primarily affects A/B reuse, less critical than ts_m/ts_n
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Performance Comparison: Tiled vs. Tiled+OpenMP
Ŷ BLAS Level Ŷ

Test configuration: m = n = k = 2560, Ŷŵ threads, tile sizes 64× 64× 64
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Final remarks and conclusions
Ŷ BLAS Level Ŷ

Observations:
OpenMP tiling achieves∼ź.Ŵ× speedup over sequential tiled version
Reaches∼ŵŴ% of vendor BLAS performance (reasonable for educational
implementation)
Remaining gap due to:
Register blocking: further subdividing tiles to fit in CPU registers
Micro-kernels: hand-optimized inner loops using assembly or intrinsics
Prefetching: software prefetch instructions to hide memory latency

Packing: reorganizing data in contiguous buffers to improve cache access
patterns
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Summary of Lecture Ź
ŷ Conclusions

• We completed our study of the DGEMV operation.
• We explored the implementation of DGEMM from basic triple-loop to optimized tiled

and parallel versions.
• We analyzed performance using the Roofline model, highlighting the importance of

operational intensity.
• We discussed key optimization techniques such as loop ordering, tiling, and OpenMP

parallelization.
• We provided a foundation for further exploration into high-performance computing

and numerical linear algebra.
Next up: start pushing outside the frontier of a single CPU: distributed memory
parallelism with MPI!
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