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Back from the past

1 Back from the past

e Last time we have seen:

— BLAS Level 1: DOT, NRM2 and Givens rotations
— BLAS Level 2: GEMYV a first look

e Today we will continue with:

— BLAS Level 2: GEMV: better memory access patterns
— BLAS Level 3: GEMM
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Last lecture
2 BLAS Level 2: GEMV continued

We have implemented two variants of the GEMV kernel, in the following module:
module gemvmod
use iso_fortran_env
use omp_lib
implicit nome
private
public :: gemv_openmp_n, gemv_openmp_n_block
contains
! Implementations in the last lecture
end module gemvmod

e gemv_openmp_n: simple OpenMP parallelization over rows,

e gemv_openmp_n_block: blocked version with OpenMP parallelization over blocks
of rows.
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?/A\$ GEMV: limitations of the previous implementations

2 BLAS Level 2: GEMV continued

<[> Both implementations have a limitation: they access the matrix A in column-major
order, which is not cache friendly.

/> We can improve the memory access pattern by changing the way we parallelize the
computation.
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//A\V GEMV: limitations of the previous implementations

2 BLAS Level 2: GEMV continued

<[> Both implementations have a limitation: they access the matrix A in column-major

order, which is not cache friendly.
/> We can improve the memory access pattern by changing the way we parallelize the

computation.
@ Instead of parallelizing over rows, we can parallelize over columns.

14 A X We express the matrix-vector product as a linear

combination of the columns of A:
m
y=x1a.1 + X082+ -+ Xpa:p
<[> From an operative point of view, this means
n swapping the two loops in the naive implementation.
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ﬂk\V GEMV: parallelization over columns

2 BLAS Level 2: GEMV continued

<[> The matrix A is stored in column-major order, this allows A to be read sequentially,
optimizing memory access.

<[> Each element of the vector x is loaded into registers and reused efficiently.

<[> The vector y is accessed in every iteration, but if its size is smaller than the cache
capacity, it can be reused at the cache level.

y = beta *x y ! Update y with beta * y

!$omp parallel do private(i) shared(4, z, alpha) reduction(+:y)

doi=1,n
call daxpy(m, alpha*x(i), A(l:im,i), 1, y, 1)

end do

!$omp end parallel do

6/69



Limitation of the column-wise parallelization
2 BLAS Level 2: GEMV continued

/¥ The column-wise parallelization has a limitation:

— The number of columns n may be small compared to the number of available threads,

— Array reductions are expensive: each thread needs to maintain a private copy of the
output vector y and then reduce them at the end of the computation,

— For large m, maintaining multiple copies of y can exceed cache capacity
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2 BLAS Level 2: GEMV continued

/¥ The column-wise parallelization has a limitation:
— The number of columns n may be small compared to the number of available threads,
— Array reductions are expensive: each thread needs to maintain a private copy of the
output vector y and then reduce them at the end of the computation,
— For large m, maintaining multiple copies of y can exceed cache capacity
@ To overcome this limitation, we can use a blocked version of the column-wise
parallelization.

4 A X e This is a good approach if the matrix A is large enough,
. and it allows us to take advantage of the cache hierarchy.

<[> The code is similar, but we need to add an outer loop that

= iterates over the blocks of the matrix A.

<[> This is an example of divide-and-conquer approach:

— we divide the problem into smaller subproblems,
n — solve each subproblem by a sequential GEMV operation.
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Divide and conquer GEMV code

2 BLAS Level 2: GEMV continued

! scale y by beta
y = beta * y
!$omp parallel default(none) &
!$omp shared(4, z, y, m, n, lda, alpha, n_z , n_y ) &
1$omp private(i,j,ti,mb,nb,yloc)
allocate(yloc(m))
yloc = 0.0_real64
! Tile the i-7 loops; collapse for better load balance
!$omp do collapse(2) schedule(static)
doi=1, m, n_x_

do j =1, n, n_y_

mb = min(n_x_, m - 1 + 1) ! handle edge tiles
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Divide and conquer GEMV code

2 BLAS Level 2: GEMV continued

nb = min(n_y_, n - j + 1)
! perform the small GEMV into the thread--local yloc
call dgemv('N', mb, nb, alpha, &
A(i, j), 1lda, &
x(j), 1, &
1.0_real64, yloc(i), 1)
end do
end do
!$omp end do
! Safely accumulate thread--local yloc into global y
do ti =1, m
!$omp atomic
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Divide and conquer GEMV code

2 BLAS Level 2: GEMV continued

y(ti) = y(ti) + yloc(ti)
end do
deallocate(yloc)
!$omp end parallel

<[> We need to choose appropriate block sizesn_x_andn_y_.

<[> We need to handle edge tiles when the matrix dimensions are not multiples of the
block sizes.
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Description of the code
2 BLAS Level 2: GEMV continued

<[> We allocate a private copy of the output vector yloc for each thread.

<[> We tile the i-j loops, and we use the /collapse (2) clause to parallelize over the
tiles.

<[> For each tile, we call a sequential dgemv to compute the partial result into the
private yloc.

<[> Finally, we safely accumulate the private copies into the global output vector y using
an !atomic operation.

We can add the module to our main project objblas:

add_library(objblas src/blas.f90 src/blasOMP.f90 src/gemvmod.f90)
target_link_libraries(objblas PUBLIC BLAS::BLAS OpenMP: :0penMP_Fortran)
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Roofline Model Refresher
2 BLAS Level 2: GEMV continued

We analyze GEMV

y=alx+ By, AcR™" xeR" yeR™

e Floating-point ops (precise):

2 =2 2m =~ 2 .
mn+ m + m mn+2m=~2mn (mn > m)
Ax By scale  final add

e Bytes moved (no reuse):

1 = 16m.
S8mn+ 8n + 6m 8mn + 8n + 16m
A X y read+write
e Operational intensity:
2mn + 2m N 2mn

T 8mn+8n+16m  8mn+8n+ 16m’
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Roofline Model Refresher
2 BLAS Level 2: GEMV continued

We analyze GEMV

y=alx+ By, AcR™" xeR" yeR™

Platform (Intel® Core™ i9-14900HX, approximate):
e Peak DP FLOPs =~ 0.8-0.9 TFLOP/s
e Sustained memory bandwidth ~ 89.6 GB/s
e Cache sizes:

Lid: 896 KiB (24 instances)
Lii: 1,3 MiB (24 instances)
L2: 32 MiB (12 instances)
L3: 36 MiB (1 instance)

Use roofline: Attainable GFLOP/s = min(Peak, Bandwidth xI).
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Cache-Aware Problem Size Selection
2 BLAS Level 2: GEMV continued

Goal: choose (m,n) to exercise cache vs. memory bandwidth. Working set (no temporal
reuse):
W(m,n) = 8mn + 8n + 16m bytes.

Hierarchy (per core / shared, simplified):

e L1d: 32-48 KiB

e L2 (per P-core): 2 MiB; E-core cluster: 4 MiB

e LLC (L3): 36 MiB shared

e DRAM: 89.6 GB/s sustained

We classify regimes using full matrix footprint vs. cache levels (or effective tiled working
set).
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Representative Matrix Sizes
2 BLAS Level 2: GEMV continued

L1-working-set (fully fits when tiled):

e Example global size: m=n=64

e Full A: 642 x 8B = 32KiB; x + yoverhead ~ 2 KiB

e Entire working set ~ 34 KiB (fits in 48 KiB L1d)
L2/LLC-resident (fits in LLC, not L1):

e m=n=2000

e A:32MB; x+y~0.032 MB

e Fitsin 36 MB L3; stresses LLC bandwidth / latency

DRAM-bound:
e m=n=20000
e A: 3.2 GB; exceeds LLC; compulsory DRAM traffic
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Tile Size Selection (b, b,)
2 BLASLevel?2 : GEMVcontinued

Tile footprint (data needed per tile GEMV assuming contiguous columns):
F(bm,bn) = 8 bmb, + 8b, + 16 by, bytes.

Guidelines:
e Minimize capacity misses for A; keep (portion of) y hot.

e Reuse x entries across all rows of the tile.
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Tile Size Selection (b, b,)
2 BLASLevel?2 : GEMVcontinued

L1 tile:

bm=bp=32=F~8-1024+8-32+ 16 - 32 ~ 8192 + 256 + 512 ~ 8.96 KiB.

L2 tile:
by, = b, = 256 = F =~ 512 KiB + vector overhead ~ 513 KiB.

Large / DRAM-stress tile:
bn = b, =512 = F =~ 2 MiB.

Pick (bm,bn) so multiple thread-private y tiles fit without eviction.
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ﬂk\V Operational Intensity Examples

2 BLAS Level 2: GEMV continued

For square case m = n:
2n? + 2n 2n? + 2n

) = e snri6n — sn? 1 2dn’
Asn — co: I — 2 = 0.25 FLOP/Byte.
Examples (rounded):
e n=064:1~0.24
e n=2000: I~ 0.25
e n=20000: I~ 0.25

Conclusion: GEMV remains memory-bound on modern CPUs (low intensity). Optimization focuses
on:

e Reducing data traffic (tiling, avoiding redundant y copies)
e Prefetch-friendly sequential column access

e Minimizing reduction overhead
17/69



Performance Expectation vs. Roofline
2 BLAS Level 2: GEMV continued

Given peak P and bandwidth B:

Boundmemory = B-I, Boundcompute = P.
With I ~ 0.25, B = 89.6 GB/s:
Memory bound ~ 22.4 GFLOP/s < P.

Thus:
e Optimized GEMV should approach 20-22 GFLOP/s.
e Large deviations imply poor locality or bandwidth saturation issues.
e Parallel scaling limited once bandwidth saturated.

Use roofline to validate improvement of column-wise and tiled implementations.

18/69



Results and Observations
2 BLAS Level 2: GEMV continued

loBLAS DGEMV [ 10penMP Row [l 10penMP Col Il OpenMP Tiled

30

20

GFLOPS

10 |-

0 =

O

i

Small (L1)

19/69

Medium (LLC)
Configuration

Large (DRAM)



\"/,‘
Measured performance: consistency check
2 BLAS Level 2: GEMV continued

w,

Matrix sizes used (matches earlier size slide):

Small: m =n =64, Medium: m =n = 2000, Large: m =n = 20000.
Arithmetic intensity (Al) for square case

2n% + 2n

Concrete values:
1(64) ~ 0.243, I(2000) ~ 0.250, I(20000) ~ 0.250.

DRAM roofline (bandwidth B = 89.6 GB/s):
Riem = B - I &~ 21.8-22.4 GFLOP/s (all sizes).

Observed (from bar chart):
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Measured performance: consistency check
2 BLAS Level 2: GEMV continued

w,

e Small (64): BLAS 13.3 GF/s (=61% of DRAM roof); OMP row 0.68; OMP col 1.71; OMP tiled 0.48.
e Medium (2000): BLAS 23.4; OMP col 33.4; OMP tiled 20.5 (some values exceed DRAM roof).
e Large (20000): BLAS 17.1; OMP col 17.8; OMP tiled 16.2 (all below DRAM roof).

Flags:

e Column-wise medium case exceeds simple DRAM roof = model underestimates attainable
due to cache reuse.

e Small case far below roof = kernel overhead -+ underutilization dominate.

e Large case memory-bound as expected.

21/69



\\‘ 'I»A

4‘\\\ Why some results exceed the DRAM roofline

2 BLAS Level 2: GEMV continued

The 22 GF/s bound assumes pure DRAM streaming. It is not a universal ceiling.
1. Cache residency blocking:

— Medium matrix (2000%x2000): A = 32 MB fits in LLC (36 MB) = many accesses served
from L3 after first pass.
— Effective bandwidth becomes L3 (hundreds GB/s) not DRAM = higher feasible GFLOP/s.

2. Reuse pattern (column-wise outer-product):

— Reuses each column of A sequentially with daxpy; x(j) stays in registers; y streamed
once per column.

3. Simplified bytes-moved model overcounts:

— Counts full read of A, x, y each repetition; ignores temporal locality of x and partial y
residency.
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4‘\\\ Why some results exceed the DRAM roofline

2 BLAS Level 2: GEMV continued

4. Library optimizations:

— Vendor BLAS uses micro-kernels, software prefetching, packing improving cache-line
reuse.

5. Timing / FLOP accounting alignment:

— FLOPs formula correct (2mn + 2m), but if beta=0 path or fused operations shorten
memory traffic, effective intensity rises.

Conclusion: Use a multi-ceiling roofline (L1/L2/L3/DRAM) to interpret results; DRAM roof alone is
insufficient for cached regimes.
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Behavior of implementation variants
2 BLAS Level 2: GEMV continued

e Row-wise (ddot per row):
— Very small per-thread work; function-call overhead; poor vector length; limited ILP =
low GFLOP/s.
e Column-wise (daxpy per column / outer-product form):
— Long contiguous daxpy operations = good SIMD utilization; favorable sequential
column access; high cache reuse = best performance.
e Tiled version (current):

— Private yloc per thread then atomic add for each element = m atomics per thread =
heavy serialization.
— Tile scheduling + allocation overhead further reduces throughput.

e BLAS:
— Hand-tuned kernels, packing, minimized write-allocate misses, balanced threading.
Key bottleneck now: reduction scheme in tiled kernel (atomics) rather than GEMV arithmetic.
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//A\V OpenMP SIMD Directive

2 BLAS Level 2: GEMV continued

The !$omp simd directive instructs the compiler to vectorize the following loop using SIMD
(Single Instruction, Multiple Data) instructions.

!$omp simd
do i = istart, iend

y(i) = y(i) + alpha * A(i,j) * xj
end do

Key features:
<[> Enables automatic vectorization: multiple operations executed simultaneously
<[> Utilizes CPU vector registers (e.g., AVX-512 on modern Intel/AMD)
<[> No thread creation overhead — purely instruction-level parallelism
<[> Can combine with thread parallelism: !$omp parallel do simd

Performance impact: 4 x-8x speedup typical with AVX2/AVX-512 for suitable loops.
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//A\V OpenMP SIMD Directive
2 BLAS Level 2: GEMV continued
The !$omp simd directive instructs the compiler to vectorize the following loop using SIMD
(Single Instruction, Multiple Data) instructions.
!$omp simd
do i = istart, iend
y(i) = y(i) + alpha * A(i,j) * xj
end do

Requirements for effective SIMD:

Contiguous memory access (unit stride)

No loop-carried dependencies

Simple loop body (FMA-friendly operations)

Alignment helps but not strictly required
Performance impact: 4 x-8x speedup typical with AVX2/AVX-512 for suitable loops.
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Goal
+ atomic reduction.

subr
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Improved GEMV (row-partitioned, column-streaming, no

atomics)
2 BLAS Level 2: GEMV continued

s: (1) column-major streaming of A, (2) reuse x(j) in registers, (3) avoid per-thread full y copies

outine gemv_openmp_blocked(m, n, alpha, A, lda, x, beta, y)
use iso_fortran_env, only: real64

use omp_lib

implicit nome

integer, intent(in) :: m, n, lda
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda,*), x(*)
real(real64), intent(inout) :: y(*)

integer :: i, j, tid, nth, istart, iend, base

real(real64) :: xj



Improved GEMV (row-partitioned, column-streaming, no

atomics)
2 BLAS Level 2: GEMV continued

! Parallel scale y by beta (write each element once)
!$omp parallel default(none) shared(m,y,beta) private(i)
!$omp do schedule(static)
doi=1, m
y(i) = beta * y(i)
end do
1$omp end do
!$omp end parallel

!$omp parallel default(none) shared(m,n,A,lda,z,y,alpha) &
1$omp private(tid,nth,istart, iend, j,%,25,base)

tid = omp_get_thread_num()

nth = omp_get_num_threads()
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Improved GEMV (row-partitioned, column-streaming, no

atomics)
2 BLAS Level 2: GEMV continued

! Contiguous rTow partition among threads
base = (tid * m) / nth

istart = base + 1

((tid + 1) * m) / nth

iend

do j=1,n
xj = x(3)
!$omp simd
do i = istart, iend
y(i) = y(i) + alpha * A(i,j) * xj
end do
end do
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Improved GEMV (row-partitioned, column-streaming, no

atomics)
2 BLAS Level 2: GEMV continued

!$omp end parallel
end subroutine gemv_openmp_blocked

Key differences vs previous tiled version:

Eliminates thread-private full copies (yloc) and expensive atomic accumulation.

Each thread updates a disjoint contiguous slice of y: no write-sharing, no reduction.

Outer loop over columns preserves sequential (contiguous) access to A(:, j) in
column-major layout.

Reuses scalar x (j) across whole row block (likely register-resident).
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Improved GEMV (row-partitioned, column-streaming, no

atomics)
2 BLAS Level 2: GEMV continued

Why this helps:
e Reduction overhead removed — lower synchronization cost.
e Contiguous row blocks reduce TLB pressure and improve prefetch.
e /$omp simd oninner loop encourages vectorization across rows.
Trade-offs / limits:
e Parallelism tied tom (number of rows). If m < threads utilization poor.
e Load balance assumes uniform cost per row; acceptable for dense A.

e Still memory-bound; each A(i, j) touched exactly once; intensity capped at 0.25 FLOP/Byte.
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Improved GEMV (row-partitioned, column-streaming, no

atomics)
2 BLAS Level 2: GEMV continued

Possible refinements:
e Hybrid blocking: partition rows, then process columns in chunks to keep y slice hot in cache.
e Use micro-kernel (unroll + FMA) for inner loop; block rows in multiples of SIMD width.
e If n very large, manual software prefetch on upcoming A(i, j+pf).
e Replace scalar update with small packed panel (register block of A).
When to prefer earlier tiled + reduction approach:

e When n (columns) is huge and m moderately small: tiling over columns can improve x reuse
granularity.

e When fusing multiple GEMVs sharing the same y (batch / multi-right-hand-side emulation).
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Improved GEMV (row-partitioned, column-streaming, no

atomics)
2 BLAS Level 2: GEMV continued

Summary: This variant removes the dominant bottleneck (atomic reduction) while retaining
cache-friendly column streaming over A(: , j) and register reuse of x(j), approaching vendor
dgemv behavior when m is large enough for thread scaling.

‘ 0 oBLAS DGEMV [l 1 OpenMP Row I 1 OpenMP Col BB OpenMP Tiled \
| | |

30
20 -

ol .- il L

Small (L1) Medium (LLC) Large (DRAM)

GFLOPS
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TRSV: Triangular Solve with Vector

2 BLAS Level 2: GEMV continued

A\ Not all Level 2 BLAS operations parallelize well!
e TRSV solves triangular systems Ax = b where A is:

Lower triangular Upper triangular
a; 0 -+ 0 aip di2 -+ Qdin
a axp -+ 0 0 azxp -+ an
A=\ T A=
an1 0n2 --+ 0pn 0 0 *o Opn

© sequential dependency: must solve for x; before x| (forward) or x;_; (backward)

@ Options exist: iterative methods for sparse matrices, specialized parallel algorithms
(covered later)

& Design principle: Avoid triangular solves in parallel algorithms when possible!
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TRSV: Triangular Solve with Vector

2 BLAS Level 2: GEMV continued

subroutine fwd_subs(A, b, x)
implicit none
integer :: i, j, n
real(real64), intent(in) :: A(:,:)
real (real64), intent(in) :: b(:)
real (real64), intent(out) :: x(size(b))
n = size(b)
x(1) = b(1)/A1,1)
doi=2,n

x(1) = b(i)

do j =1, i-1

x(1) = x(i) - AL, j)*x(3)

end do

x(1) = x(1)/A(1,1)
end do
end subroutine fwd_subs

24/69 Backward substitution algorithm.



TRSV: Triangular Solve with Vector

2 BLAS Level 2: GEMV continued

subroutine bwd_subs(A, b, x)
implicit none
integer :: i, j, n
real(real64), intent(in) :: A(:,:)
real (real64), intent(in) :: b(:)
real (real64), intent(out) :: x(size(b))
n = size(b)
x(n) = b(n)/A(n,n)
do i =n-1, 1, -1

x(1) = b(i)

do j =i+l, n

x(1) = x(i) - AL, j)*x(3)

end do

x(1) = x(1)/A(1,1)
end do
end subroutine bwd_subs

24/69 Forward substitution algorithm.
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BLAS Level 3: Overview

3 BLAS Level 3

e Level 3 BLAS define operators that involve matrices
e Key operations:
GEMM Computes C = «AB + 5C
SYR2K Computes symmetric rank-2 update C = aAB" + aBAT + C

e Forn x n matrices: O(n?) arithmetic operations with O(n?) data accesses

@ Excellent arithmetic intensity compared to Level 1 and 2!
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V/A\V GEMM: General Matrix Multiply

3 BLAS Level 3

Mathematical formulation

C = aAB+ 3C

e A and B can optionally be transposed or conjugated
e All three matrices may be strided
e Standard matrix multiplication: a = 1.0, 8 = 0.0

Element-wise formulation:

k

Cij:aZA,-lBU+6Cij, i=1,....m j=1,...,n
=1

37/69



<N%ul

ﬂk\V GEMM: BLAS Interface

3 BLAS Level 3

call dgemm(transa, transb, m, n, k, alpha, A, 1lda,
B, 1ldb, beta, C, 1dc)

Parameters:
e transa, transb: transposition options for A and B
e m, n, k: matrix dimensions

e alpha, beta: scalar multipliers

1da, 1db, 1dc: leading dimensions
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DGEMM: Example Usage

3 BLAS Level 3

program gemm_blass

use iso_fortran_env, only: real64, output_unit, error_unit

implicit nome

character(len=100) :: n_str, m_str, k_str

integer :: n, m, k, info

real(real64), allocatable :: a(:,:), b(:,:), c(:,:)

! Read from command line arguments n, m, k

if (command_argument_count() < 3) then
write(error_unit, *) "Usage: gemm_blass n m k"
stop

end if

call get_command_argument(l, n_str)

call get_command_argument (2, m_str)

call get_command_argument (3, k_str)

read(n_str, *) n
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DGEMM: Example Usage

3 BLAS Level 3

read(m_str, *) m
read(k_str, *) k
! Check <f n, m, k are positive integers
if (n <= 0 .or. m <= 0 .or. k <= 0) then

write(error_unit, '("n = ",I0,", m = ",I0,", k = ",I0," must be positive
< integers")') n,m,k
stop
else
write(output_unit, '("n = ",I0,", m = ",I0,", k = ",I0)') n,m,k
end if

! Allocate matrices

allocate(a(n,k), b(k,m), c(n,m), stat=info)

if (info /= 0) then
write(error_unit, *) "Error allocating matrices"
stop
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DGEMM: Example Usage

3 BLAS Level 3

end if

I Initialize matrices

call random_number (a)

call random_number (b)

call random_number (c)

! Perform matriz multiplication using BLAS

call dgemm('N', 'N', n, m, k, 1.0d0, a, n, b, k, 1.0d0, c, n)

! Free matrices

deallocate(a, b, c, stat=info)

if (info /= 0) then
write(error_unit, *) "Error deallocating matrices"
stop

end if

end program gemm_blass
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Naive Implementation: (i,j,I) ordering
3 BLAS Level 3

subroutine matmul_ijl(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit nome

integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)
integer :: i, j, 1
doi=1, m
do j=1,n
C(i,j) = beta * C(4,3)
dol=1, &k
C(i,j) = C(i,j) + alpha * A(i,1) * B(1,j)
end do
end do
end do

end subroutine matmul_ijl
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Naive Implementation: (i,j,I) ordering
3 BLAS Level 3

<[> Direct formula-to-code translation

! poor memory access pattern for column-major storage

A B C
< k
n ? X colymn of B=n
row off A
~ C(l. j
m
k m
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Loop Reordering: (j, i,1) ordering
3 BLAS Level 3

subroutine matmul_jil(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit nome

integer, intent(in) :: n, m, k

real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)

integer :: i, j, 1

do j=1,m

doi=1,n
C(i,j) = beta * C(4,3)
dol-=1, k

C(i,j) = C(i,j) + alpha * A(i,1) * B(1,j)

end do

end do

end do
end subroutine matmul_jil
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Loop Reordering: (j, i,1) ordering
3 BLAS Level 3

®@ Better: accesses C in column-major order
v ~2.6x faster than (i,j, ) ordering

A B C
k
n > X =n
row off A
colurml of B
k colurml of C
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ﬂL\V Optimal Loop Ordering: (j, 1, 1)

3 BLAS Level 3
Why (j, 1, i) is best for Fortran column-major layout:
@ Innermost loop (i):

— Reads A(i, 1) and C(i, j) contiguously (unit stride)
— Maximizes cache-line utilization

@ Middle loop (1):

— B(l,j) constant, kept in register
— Sequential access to columns of A and B

& outer loop (j):

— Computes each column of Cin turn
— Good spatial locality

Key principle: Loop order matters! Memory access pattern dominates performance.

44/69



\\‘ 'I»A

ﬂk\w Optimal Implementation: (j, I, i) ordering

3 BLAS Level 3

subroutine matmul_jli(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit none

integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)
integer :: i, j, 1
C = beta * C
do j=1,n
dol=1, k

doi=1, m
C(i,j) = C(i,j) + alpha * A(i,1) * B(1,j)
end do
end do
end do
end subroutine matmul_jli

45/69



AV 'I»A

WK\V Optimal Implementation: (j, I, i) ordering

3 BLAS Level 3

of Unit-stride access on all arrays
¥ ~1.5x faster than (j, i, 1), ~4x faster than (i,j,[)

A (m x k) B(k x n) C(m xn) Outer: j
Middle: |
[ ‘ ‘ Inner: i
] =
— //2
| | =

C(:,j) += «A(;,1)B(L,j)

A(L ) B(:,j) M B(lLj) C(:,j) updated
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Performance Comparison (n = 10°, avg. over 100 runs)
3 BLAS Level 3

0.4 @ ]
o 0.3F |
£
l_
o 0.2} .
g B 0.13
z 01 9. 29 10~2 ‘—’ i
0 T T
ijl JI| BLAS

@ (j,1,1) achieves 73% of OpenBLAS performances
1 BLAS still faster: uses blocking, packing, micro-kernels
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Performance Comparison (n = 10°, avg. over 100 runs)
3 BLAS Level 3
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Operational Intensity (FLOP/Byte)

& High operational intensity ( 500 FLOP/Byte)

& Performance approaches compute-bound regime
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Parallel DGEMM with OpenMP

3 BLAS Level 3

We now want to parallelize our DGEMM operation using OpenMP.

@ A good starting point is to start from our optimal sequential implementation (loop
order (j,1,1))
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Parallel DGEMM with OpenMP

3 BLAS Level 3

We now want to parallelize our DGEMM operation using OpenMP.
@ A good starting point is to start from our optimal sequential implementation (loop

order (j,1,1))
1 We just write the triple loop as before, and add OpenMP directives to parallelize the

outer loops:
!$omp parallel default(none) shared(C,beta,m,n) private(i,j)
!$omp do schedule(static)
do j=1,n

!$omp simd

doi=1, m

C(i,j) = beta * C(i,j)

end do
end do
I$omp end do
( Continues on the next slide )
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Parallel DGEMM with OpenMP

3 BLAS Level 3

We now want to parallelize our DGEMM operation using OpenMP.
1 We just write the triple loop as before, and add OpenMP directives to parallelize the

outer loops:
1$omp do collapse(2) schedule(static) default(none) &
!$omp shared(4,B,C,alpha,m,n,k) private(i,7,1,bl7)
doj=1,n
dol=1, k
blj = alpha * B(1,j)
!$omp simd
doi=1,m
C(i,j) = C(i,j) + A(i,1) = blj
end do
end do
end do
I$omp end do
!$omp end parallel
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OpenMP SIMD Pragma

3 BLAS Level 3

The !$omp simd directive is used to instruct the compiler to vectorize the loop that
follows it.

This pragma allows the compiler to generate SIMD (Single Instruction, Multiple Data)
instructions, which can process multiple data points in parallel.

It is particularly useful in loops where iterations are independent, allowing for
significant performance improvements on modern processors.
Example usage:

!$omp simd

doi=1,m

C(i,3) = C(i,3) + A(i,1) = blj

end do
In this example, the loop iterations can be executed simultaneously, leveraging the
capabilities of the CPU'’s vector units.



What did we gain?

3 BLAS Level 3

|
4+ 3.79 -
3 - |
0
£ 2} 1
=
1 - |
0.49
5.32-1072
0 = T m
BLAS jli OpenMP
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We used OpenMP to parallelize our optimal
sequential DGEMM implementation
e Tested on matrices of size n = 2560,
averaged over 20 runs, using 32
threads.
® Achieved a speedup of ~7.75x% over the
sequential version.

© still slower than vendor BLAS
implementation.



Tiled DGEMM

3 BLAS Level 3

To improve cache utilization, we can implement a tiled version of DGEMM.
@ Divide the matrices into smaller sub-matrices (tiles) that fit into the cache.
! This reduces cache misses and improves data locality.

A(m x k) B(k x n) C(mxn)
k n n
—_— A N
ke~ >
m < m <

C(1,)) tile (updated)

51/69 Ciie(r,)) + = Atite(r,L) Btile(L)



Tiled DGEMM Implementation

3 BLAS Level 3

subroutine dgemm_tiled(m, n, k, alpha, A, 1lda, B, 1db, beta, C, ldc, tile_m,
< tile_n, tile_k)

use iso_fortran_env, only: real64

implicit none

integer, intent(in) :: m, n, k, lda, 1ldb, ldc

integer, intent(in), optional :: tile_m, tile_n, tile_k

real(real64), intent(in) :: alpha, beta

real (real64), intent(in) :: A(lda, *)

real (real64), intent(in) :: B(1ldb, =*)

real(real64), intent(inout) :: C(ldc, *)

! Local wvariables

integer :: i, j, 1, ii, jj, 11

integer :: ts_m, ts_n, ts_k

integer :: i_end, j_end, 1l_end

real(real64) :: temp
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3 BLAS Level 3

! Set tile sizes (default
ts_m = 64
ts_n = 64
ts k = 64

if (present(tile_m)) ts_m =

if (present(tile_n)) ts_n
if (present(tile_k)) ts_k

! Scale C by beta
do j=1,n
doi=1, m

C(i,j) = beta * C(i,

end do
end do

Tiled DGEMM Implementation

64)

tile_m
= tile_n
tile_k

3



Tiled DGEMM Implementation

3 BLAS Level 3

! Tiled matriz multiplication with non-square tiles
do jj =1, n, ts_n
j_end = min(jj + ts_n - 1, n)
do 11 =1, k, ts_k
l_end = min(11 + ts_k - 1, k)
do ii =1, m, ts_m
i_end = min(ii + ts_m - 1, m)

! Multiply tile
do j = jj, j_end
do 1 =11, 1 _end
temp = alpha * B(1,j)
do i = ii, i_end
C(i,j) = C(i,3) + A(4,1) * temp
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Tiled DGEMM Implementation

3 BLAS Level 3

end do
end do
end do

end do
end do

end do

end subroutine dgemm_tiled
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Tiled DGEMM: Implementation Notes

3 BLAS Level 3

Key design choices:

<[> Tile size selection: Default 64 x 64 x 64 tiles
— Balances L1/L2 cache capacity vs. parallelism granularity
— Overridable via optional arguments for tuning

<[> Edge handling: min () ensures correct partial tiles at boundaries

<[> Loop nest structure:
— Outer 3loops (jj, 11, ii): tileiteration
— Inner 3loops (j, 1, i): computation within tile
— Maintains optimal (j,1,1i) ordering for cache-friendly access

1 Beta scaling: Applied once before tiling to avoid redundant operations

@ Temporal reuse: Each tile of C accumulates contributions from multiple A/B tile pairs,
improving cache hit rate

Parallelization opportunity: Outer tile loops are independent.
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4 Exercise: tuning tiled DGEMM

3 BLAS Level 3

An exercise for you to try at home!
1. Write a driver program to test the performance of the tiled DGEMM implementation.

2. Experiment with different tile sizes (e.g., 32, 64, 128) to see how they affect
performance.

3. Measure execution time and compute performance (GFLOP/s) for various matrix
sizes (e.g., 512, 1024, 2048).

4. Compare the performance of your tiled DGEMM with the non-tiled version and with
a vendor BLAS implementation.

5. Analyze the results and determine the optimal tile size for your specific hardware.
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Tiled DGEMM with OpenMP

3 BLAS Level 3

We can further enhance our tiled DGEMM implementation by adding OpenMP directives
to parallelize the outer tile loops.

@ This allows multiple tiles to be computed simultaneously, leveraging multi-core
processors.
! We add OpenMP pragmas to the outer loops iterating over tiles.

To hope for good performance, make sure to choose

— ftile sizes that provide enough work per thread to amortize threading overhead,

— tile sizes that divide the matrix dimensions exactly to avoid load imbalance.

— If not, we would need to implement dynamic scheduling or handle edge cases carefully
to avoid loss of performance.
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Tiled DGEMM with OpenMP: implementation

3 BLAS Level 3

subroutine dgemm_tiled_openmp(m, n, k, alpha, A, 1lda, B, 1db, beta, C, ldc, &
tile_m, tile_n, tile_k)
use iso_fortran_env, only: real64
implicit none

integer, intent(in) :: m, n, k, lda, 1ldb, ldc
integer, intent(in), optional :: tile_m, tile_n, tile_k
real(real64), intent(in) :: alpha, beta

real (real64), intent(in) :: A(lda, =*)
real(real64), intent(in) :: B(1ldb, *)
real (real64), intent(inout) :: C(ldc, *)

integer :: ts_m, ts_n, ts_k
integer :: ii, jj, 11
integer :: i, j, 1
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Tiled DGEMM with OpenMP: implementation

3 BLAS Level 3

integer :: i_end, j_end, 1_end

integer :: ib, jb

real(real64) :: tmp

! ———— MAXIMUM tile sizes (adjust safely for your CPU cache) ----
integer, parameter :: MAX_TS_M = 128

integer, parameter :: MAX_TS_N = 128

! Local tile buffer, fized size (thread-private due to OpenMP)
real(real64) :: Cbuf (MAX_TS_M, MAX_TS_N)

! Default tile sizes

ts_m = 64
ts_n = 64
ts_k = 64
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if (present(tile_m)) ts_m

Tiled DGEMM with OpenMP: implementation

3 BLAS Level 3

min(tile_m, MAX_TS_M)

if (present(tile_n)) ts_n = min(tile_n, MAX_TS_N)

if (present(tile_k)) ts_k

!$omp
!$omp
!$omp
!$omp
do jj

do

tile_k

parallel default(none) &
shared(m,n,k,ts_m,ts_n,ts_k,A,B,C,alpha,beta, lda, 1db, ldc) &
private(ii, j5,11,%,75,1,%_end, j_end, l_end, ib, jb,Cbuf, tmp)

do collapse(2) schedule(static)

=1, n, ts_n

ii =1, m, ts_m

! Work tile bounds

i_end = min(ii + ts_m - 1, m)

j_end = min(jj + ts_n - 1, n)

ib = i_end - ii + 1 ! actual tile height



Tiled DGEMM with OpenMP: implementation

3 BLAS Level 3

jb = j_end - jj + 1 ! actual tile width
!

do i=1, ib
Cbuf(i, j) = beta * C(ii + i - 1, jj + 3 - 1)
end do
end do

do 11 = 1, k, ts_ k
1_end = min(1l + ts_k - 1, k)
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Tiled DGEMM with OpenMP: implementation

3 BLAS Level 3

do 1 =11, 1_end
do j =1, jb
! scalar needed for whole column
tmp = alpha * B(1, jj + j - 1)

!$omp simd
do i =1, ib
Cbuf (i, j) = Cbuf(i, j) + A(ii + i - 1, 1) * tmp
end do
end do
end do
end do
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Tiled DGEMM with OpenMP: implementation

3 BLAS Level 3

do j =1, jb
do i=1, ib
C(ii + i -1, jj +3j - 1) = Cbuf(i, j)
end do
end do

end do
end do
!$omp end do
!$omp end parallel

end subroutine dgemm_tiled_openmp
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Tiled DGEMM with OpenMP: Implementation Notes

3 BLAS Level 3

Key improvements over sequential tiled version:

<[> Thread-private tile buffer: Each thread allocates Cbuf (MAX_TS_M, MAX_TS_N) on its stack
— Eliminates write conflicts to shared C during accumulation
— Local buffer has better cache affinity than scattered C updates

<[> Collapsed parallelization: /$omp do collapse(2) over (jj, ii) tileindices

— Increases parallel grain count: (n/ts_n) * (m/ts_m) independent tasks
— Better load balance when n or m is small relative to thread count

<[> Three-stage tile computation:

1. Load & scale: Cbuf = beta * C(tile)
2. Accumulate: Loop over 11 (K-tiles), perform Cbuf += alpha * A(tile) * B(tile)
3. Write-back: C(tile) = Cbuf

Minimizes memory traffic to global C: two passes instead of 0(k/ts_k) read-modify-writes

<[> Innermost SIMD: !$omp simd on row loop within tile maximizes ILP
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Tiled DGEMM with OpenMP: Trade-offs

3 BLAS Level 3

Memory considerations:

1 Stack pressure: Each thread needs 8 * MAX_TS_M * MAX_TS_N bytes

— Example: MAX_TS_M = MAX_TS_N = 128 = 128 KB/thread
— 32threads = 4 MB total (acceptable on modern systems)
— Mayneed ulimit -s unlimited or adjust stack size limits

@ Cache optimization: Cbuf stays hot in L1/L2 during K-loop accumulation

— Temporal reuse: each Cbuf element updated k/ts_k times without eviction
— Reduces C memory traffic by factor of k/ts_k

Performance tuning:

/& Choose ts_m, ts_n to balance:

— Tile buffer fits in L2 cache (ts_m * ts_n * 8 bytes < L2 size)
— Enough tiles for good thread utilization: (m/ts_m)*(n/ts_n) >= num_threads * 4

& ts_k primarily affects A/B reuse, less critical than ts_m/ts_n
66/69



Performance Comparison: Tiled vs. Tiled+OpenMP
3 BLAS Level 3

Test configuration: m = n = k = 2560, 32 threads, tile sizes 64 x 64 x 64
| | |
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Final remarks and conclusions
3 BLAS Level 3

Observations:
@ OpenMP tiling achieves ~7.1x speedup over sequential tiled version

® Reaches ~21% of vendor BLAS performance (reasonable for educational
implementation)
! Remaining gap due to:
Register blocking: further subdividing tiles to fit in CPU registers
Micro-kernels: hand-optimized inner loops using assembly or intrinsics
Prefetching: software prefetch instructions to hide memory latency
Packing: reorganizing data in contiguous buffers to improve cache access
patterns

68/69



Summary of Lecture 6

4 Conclusions

e We completed our study of the DGEMV operation.

e We explored the implementation of DGEMM from basic triple-loop to optimized tiled
and parallel versions.

e We analyzed performance using the Roofline model, highlighting the importance of
operational intensity.

e We discussed key optimization techniques such as loop ordering, tiling, and OpenMP
parallelization.

e We provided a foundation for further exploration into high-performance computing
and numerical linear algebra.

Next up: start pushing outside the frontier of a single CPU: distributed memory
parallelism with MPI!

69/69



	Back from the past
	BLAS Level 2: GEMV continued
	Looking at the performance: roofline model
	BLAS Level 2: TRSV

	BLAS Level 3
	DGEMM with OpenMP
	Tiled version
	Tiled version with OpenMP

	Conclusions

