
High Performance Linear Algebra
Lecture ź: Distributed Memory Machines and MPI
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

January Ŵŵ, ŵųŵŹ — Ŵŷ.ųų:ŴŹ.ųų

Ŵ/ŷż

mailto:fabio.durastante@unipi.it

Before the time-skip
Ŵ Before the time-skip

• We have seen in the first half of the course:
— The basic concepts of parallel computing
— The main architectures for parallel computing
— The main programming models for parallel computing

• We have introduced the BLAS libraries for linear algebra computations
— We have seen the Level Ŵ, Level ŵ and Level Ŷ BLAS operations
— We have discussed the performance of BLAS operations on shared memory

architectures
— Explored the OpenMP programming model
— Employed the roofline model to analyze the performance of BLAS operations

And now to boldly go out of shared memory architectures…

ŵ/ŷż

Before the time-skip
Ŵ Before the time-skip

• We have seen in the first half of the course:
— The basic concepts of parallel computing
— The main architectures for parallel computing
— The main programming models for parallel computing

• We have introduced the BLAS libraries for linear algebra computations
— We have seen the Level Ŵ, Level ŵ and Level Ŷ BLAS operations
— We have discussed the performance of BLAS operations on shared memory

architectures
— Explored the OpenMP programming model
— Employed the roofline model to analyze the performance of BLAS operations

And now to boldly go out of shared memory architectures…

ŵ/ŷż

Table of Contents
ŵ Distributed memory machines

▶ Distributed memory machines

▶ How do we program such a machine?
An MPI hello world program

Finding MPI via CMake
The fallacies of distributed computing

Working on a cluster/shared machine with MPI

▶ The Toeplitz cluster at DMPISA
Partitions on Toeplitz
Software

Ŷ/ŷż

Distributed memory machines
ŵ Distributed memory machines

• In distributed memory machines, each processor has its own private memory
• Processors communicate by passing messages through a network
• Examples of distributed memory machines:

— Clusters of workstations connected by a high-speed network,
— Massively parallel supercomputers (e.g., the machines of the TOPŸųų list)

• Programming models for distributed memory machines:
— Message Passing Interface (MPI)
— Partitioned Global Address Space (PGAS) languages (e.g., Coarray Fortran)

ŷ/ŷż

Nodes
ŵ Distributed memory machines

• A distributed memory machine is composed of
multiple nodes

• Each node contains one or more processors (CPUs)
and its own private memory

• Nodes are connected by a high-speed network that
allows them to communicate with each other

• Each node can run one or more processes that
execute the parallel program

• Each node can have one or more accelerators (e.g.,
GPUs) to offload computations

Ÿ/ŷż

General information on networks
ŵ Distributed memory machines

• In distributed memory machines, communication between processors occurs
through a network

• Network performance is characterized by two key parameters:
— Latency (α): time to send a message of zero length
— Bandwidth (β): inverse of time to send one byte of data

• The time to send a message of size n bytes is modeled as:

Tcomm(n) = α+
n
β

• Latency is typically measured in microseconds (µs)
• Bandwidth is typically measured in gigabits per second (Gbit s−1)

Ź/ŷż

What determines these parameters?
ŵ Distributed memory machines

α Depends almost entirely on the operating system stack. To minimize latency: avoid
TCP/IP protocols

β Depends on both the operating system stack and the physical communication device
hardware

Key insight: Low latency requires careful software optimization, while high bandwidth
depends on specialized hardware (e.g., InfiniBand).

ź/ŷż

Some examples from the market
ŵ Distributed memory machines

InfiniBand High Dynamic Range (HDR) ŵųŴŻ:
• Latency: <0.6 µs
• Bandwidth: 200Gbit s−1

The InfiniBand technology is widely used in
high-performance computing clusters, and it
is the network technology used in many
TOPŸųų supercomputers.

There are different vendors for Infiniband
network adapters, e.g., Mellanox (now part
of NVIDIA):
• NVIDIA/Mellanox Compatible AOC ŵųm
InfiniBand HDR Active Optical Cable:
żŴų USD,

• NVIDIA/Mellanox
MCXŹŸŶŴųŸA-HDAT-SP ConnectX®-Ź
InfiniBand Adapter Card, HDR/ŵųųG:
ŴųŹż USD,

• NVIDIA MQMŻźųų-HSŵF Quantum HDR
InfiniBand Switch, ŷų x HDR QSFPŸŹ
Ports: ŴźŸŶŻ USD.

Ż/ŷż

Some examples from the market
ŵ Distributed memory machines

InfiniBand High Dynamic Range (HDR) ŵųŴŻ:
• Latency: <0.6 µs
• Bandwidth: 200Gbit s−1

There are different vendors for Infiniband
network adapters, e.g., Mellanox (now part
of NVIDIA):
• NVIDIA/Mellanox Compatible AOC ŵųm
InfiniBand HDR Active Optical Cable:
żŴų USD,

• NVIDIA/Mellanox
MCXŹŸŶŴųŸA-HDAT-SP ConnectX®-Ź
InfiniBand Adapter Card, HDR/ŵųųG:
ŴųŹż USD,

• NVIDIA MQMŻźųų-HSŵF Quantum HDR
InfiniBand Switch, ŷų x HDR QSFPŸŹ
Ports: ŴźŸŶŻ USD.

Ż/ŷż

Some examples from the market
ŵ Distributed memory machines

Newer InfiniBand standard exists, but are not yet widely used in HPC clusters

ż/ŷż

The TOPŸųų supercomputer situation
ŵ Distributed memory machines

From the November ŵųŵŸ TOPŸųų listŴ, the distribution of interconnects used in the top
Ÿųų supercomputers is as follows:

ŸŸ.ŷ

Ŷŷ.ŵ
Ÿ.Ż
ŵ.ŷŴ.Ź
ų.Ź

InfiniBand
Gigabit Ethernet
OmniPath
Custom Interconnects
Proprietary Networks
Ethernet

Ŵhttps://www.top500.org/lists/top500/2025/11/

Ŵų/ŷż

https://www.top500.org/lists/top500/2025/11/

Should we care about network topology?
ŵ Distributed memory machines

In large distributed memory machines, the network topology can have a significant
impact on the performance of parallel applications.

• Different topologies have different
characteristics in terms of latency,
bandwidth, and scalability.

• Common network topologies include:
— Fat-tree,
— Torus,
— Hypercube,
— Dragonfly.

• The choice of network topology can affect
the performance of collective
communication operations.

ŴŴ/ŷż

Should we care about network topology?
ŵ Distributed memory machines

In large distributed memory machines, the network topology can have a significant
impact on the performance of parallel applications.

• Different topologies have different
characteristics in terms of latency,
bandwidth, and scalability.

• Common network topologies include:
— Fat-tree,
— Torus,
— Hypercube,
— Dragonfly.

• The choice of network topology can affect
the performance of collective
communication operations.

ŴŴ/ŷż

Should we care about network topology?
ŵ Distributed memory machines

In large distributed memory machines, the network topology can have a significant
impact on the performance of parallel applications.

• Different topologies have different
characteristics in terms of latency,
bandwidth, and scalability.

• Common network topologies include:
— Fat-tree,
— Torus,
— Hypercube,
— Dragonfly.

• The choice of network topology can affect
the performance of collective
communication operations.

ŴŴ/ŷż

Should we care about network topology?
ŵ Distributed memory machines

In large distributed memory machines, the network topology can have a significant
impact on the performance of parallel applications.

• Different topologies have different
characteristics in terms of latency,
bandwidth, and scalability.

• Common network topologies include:
— Fat-tree,
— Torus,
— Hypercube,
— Dragonfly.

• The choice of network topology can affect
the performance of collective
communication operations.

ŴŴ/ŷż

Should we care about network topology?
ŵ Distributed memory machines

In large distributed memory machines, the network topology can have a significant
impact on the performance of parallel applications.

• Different topologies have different
characteristics in terms of latency,
bandwidth, and scalability.

• Common network topologies
• The choice of network topology can affect
the performance of collective
communication operations.

On the implementation side, we usually do not have to care, and think of the network as
a black box with given latency and bandwidth.

ŴŴ/ŷż

An example: the Leonardo supercomputer Dragonfly+
ŵ Distributed memory machines

At top level, there are ŵŶ cells fully connected in
a dragonfly topology,
Locally, intra-cell routers are organized in a
bipartite graph
— in which a first tier is directly connected to

servers (leaf routers)
— and a second tier (spine routers) is equally

provisioned with down-links.

See the full description in: Turisini, Cestarti, Amati.
“LEONARDO A Pan-European Pre-Exascale Supercomputer
for HPC and AI applications”, Vol. ż No. Ŵ (ŵųŵŷ): Journal of
large-scale research facilities.

Dragonfly topology of the internal
network. Green is used for Booster
cells, blue for Data-Centric cells,

pink for the I/O.
Ŵŵ/ŷż

Leonardo supercomputer: Network specifications
ŵ Distributed memory machines

• Network Technology: ŵųų Gbps InfiniBand HDR (Mellanox/NVIDIA)
Switch latency: żų nanoseconds port-to-port

— Message rate: Ŷżų million messages/second per port
Total switches: ŻŵŶ QMŻźųų units

• Node-level adapter: ConnectX-Ź (CXŹ) card
— ŵųų million messages per second capacity
— 600 ns latency per Network Interface Card (NIC)
— PCIe Genŷ on Ŷŵ lanes

• Maximum inter-node latency: 3 µs
— Dominated by NIC delays: 1.2 µs
— Fiber segments: 1m (NIC to leaf), 5m (leaf to spine), 20m (spine to spine)

• External connectivity: ŷ gateway routers with Ethernet-InfiniBand translators
— 1.6 Tbit s−1 per unit, 6.4 Tbit s−1 aggregated

ŴŶ/ŷż

Table of Contents
Ŷ How do we program such a machine?

▶ Distributed memory machines

▶ How do we program such a machine?
An MPI hello world program

Finding MPI via CMake
The fallacies of distributed computing

Working on a cluster/shared machine with MPI

▶ The Toeplitz cluster at DMPISA
Partitions on Toeplitz
Software

Ŵŷ/ŷż

Message Passing Interface (MPI)
Ŷ How do we program such a machine?

• TheMessage Passing Interface (MPI) is the de facto standard for programming
distributed memory machines

• MPI provides a set of functions for:
— Point-to-point communication (send/receive messages between two processes)
— Collective communication (broadcast, scatter, gather, reduce, etc.)
— Process management (creating and terminating processes)

• MPI is implemented as a library that can be used with different programming
languages (C, C++, Fortran)

• There are several implementations of MPI
— MPICH https://www.mpich.org/
— OpenMPI https://www.open-mpi.org/
— MVAPICH https://mvapich.cse.ohio-state.edu/

• The current stable version is ŷ.Ŵ, and work is underway to define version Ÿ.ų.

ŴŸ/ŷż

https://www.mpich.org/
https://www.open-mpi.org/
https://mvapich.cse.ohio-state.edu/

What is exactly MPI?
Ŷ How do we program such a machine?

“MPI (Message-Passing Inter-
face) is a message-passing library
interface specification.”

All parts of this definition are significant.
See: https://www.mpi-forum.org/docs/

ŴŹ/ŷż

https://www.mpi-forum.org/docs/

MPI: Key aspects
Ŷ How do we program such a machine?

• Message-passing model: Data moves from the address space of one process to
another through cooperative operations

• Specification, not implementation: Multiple implementations exist (MPICH,
OpenMPI, MVAPICH)

• Library interface: Operations expressed as functions, subroutines, or methods in C
and Fortran

• Extensions: Collective operations, remote-memory access, dynamic process
creation, parallel I/O

Ŵź/ŷż

MPI basic concepts
Ŷ How do we program such a machine?

An MPI program is composed of multiple processes that run concurrently on different
processors
• Each process has a unique identifier called rank
• The total number of processes is called the size of the communicator
• The main communicator is called MPI_COMM_WORLD, which includes all processes
• Processes can communicate by sending and receiving messages using MPI functions

Why message passing?
• Each process has its own private address space
• Other processes cannot access data directly
• Processes must cooperate to exchange data through messages

ŴŻ/ŷż

An MPI hello world program in Fortran
Ŷ How do we program such a machine?

Let us write a simple MPI program that prints “Hello, World!” from each process, we write
a file called mpi_hello.f90 with the following content:
program mpi_hello

use mpi
use iso_fortran_env, only: output_unit
implicit none
integer :: ierr, rank, size

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
write(output_unit, *) 'Hello from process', rank, 'of', size
call MPI_Finalize(ierr)

end program mpi_hello

Ŵż/ŷż

Let us look at it line by line
Ŷ How do we program such a machine?

use mpi

This line includes the MPI module, which contains the definitions of MPI functions
and constants

call MPI_Init(ierr)

This line initializes the MPI environment, must be called before any other MPI
function

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

This line gets the rank of the current process in the communicator
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

This line gets the total number of processes in the communicator

ŵų/ŷż

Let us look at it line by line
Ŷ How do we program such a machine?

write(output_unit, *) 'Hello from process', rank, 'of', size

This line prints a message from each process, including its rank and the total size
call MPI_Finalize(ierr)

This line finalizes the MPI environment, must be called at the end of the program

The program declares three integer variables:
— rank: to store the rank of the current process
— size: to store the total number of processes
— ierr: to store the error code returned by MPI functions

The variable ierr is used to capture error codes from MPI functions, and should be
used for error handling in a production code.

ŵŴ/ŷż

Compiling and running the MPI program
Ŷ How do we program such a machine?

To compile the MPI program, we need to have installed an MPI implementation (e.g.,
MPICH, OpenMPI, MVAPICH).
On an Ubuntu system, we can install OpenMPI with the following command:

sudo apt-get install libopenmpi-dev openmpi-bin openmpi-common

If you are using Spack to manage your software, you can install OpenMPI with:
spack install openmpi
spack load openmpi

In a system with multiple MPI implementations, make sure to load the correct one
using module load or spack load.

ŵŵ/ŷż

Compiling and running the MPI program
Ŷ How do we program such a machine?

All these implementations provide a wrapper compiler that simplifies the compilation
process by automatically including the necessaryMPI headers and linking against theMPI
libraries.

For example, using OpenMPI, we can compile the program with the following command:
mpifort -o mpi_hello mpi_hello.f90
If you are using MPICH or MVAPICH, the command is the same.

ŵŶ/ŷż

Compiling and running the MPI program
Ŷ How do we program such a machine?

If you want to investigate what the wrapper compiler is doing behind the scenes:
mpifort --show:me

This will display the actual compilation command, e.g., on my machine it shows:
/usr/bin/gfortran -I/opt/spack/opt/spack/linux-skylake/openmpi-4.1.8/include

-I/opt/spack/opt/spack/linux-skylake/openmpi-4.1.8/lib
-L/opt/spack/opt/spack/linux-skylake/openmpi-4.1.8/lib
-L/opt/spack/opt/spack/linux-skylake/hwloc-2.12.2/lib
-L/opt/spack/opt/spack/linux-skylake/libevent-2.1.12/lib -Wl,-rpath
-Wl,/opt/spack/opt/spack/linux-skylake/openmpi-4.1.8/lib -Wl,-rpath
-Wl,/opt/spack/opt/spack/linux-skylake/hwloc-2.12.2/lib -Wl,-rpath
-Wl,/opt/spack/opt/spack/linux-skylake/libevent-2.1.12/lib -lmpi_usempif08
-lmpi_usempi_ignore_tkr -lmpi_mpifh -lmpi

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

showing that it is using gfortran as the underlying compiler, and including the necessary
MPI headers and libraries from Spack.

ŵŷ/ŷż

Compiling and running the MPI program
Ŷ How do we program such a machine?

To run the MPI program, we use the mpirun or mpiexec command, specifying the
number of processes with the -n option:
mpirun -n 4 ./mpi_hello
This command runs the mpi_hello program with ŷ processes, and we should see output
similar to:
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4
Note that the order of the output may vary, as the processes run concurrently.

ŵŸ/ŷż

Finding MPI via CMake
Ŷ How do we program such a machine?

To find and use MPI in a CMake project, we can use the FindMPImodule provided by
CMake, i.e., we can add the following lines to our CMakeLists.txt file:
find_package(MPI REQUIRED COMPONENTS Fortran)
This command searches for an installed MPI implementation and sets the necessary
variables to use MPI in our project.

To compile an MPI program, we need to link against the MPI libraries and include the MPI
headers. We can do this by adding the following lines to our CMakeLists.txt file:
add_executable(mpi_hello mpi_hello.f90)
target_link_libraries(mpi_hello MPI::MPI_Fortran)

ŵŹ/ŷż

The fallacies of distributed computing
Ŷ How do we program such a machine?

There are some common misconceptions about distributed computing that can lead to
poor performance and scalability

• These misconceptions are known as the fallacies of
distributed computing:
ŵ. The network is reliable
Ż. Latency is zero
Ŵ. Bandwidth is infinite
ŷ. The network is secure
Ŷ. Topology doesn’t change
Ÿ. There is one administrator
Ź. Transport cost is zero
ź. The network is homogeneous

• It is important to be aware of these fallacies when designing
and implementing distributed applications

L. Peter Deutsch

ŵź/ŷż

Working on a cluster/shared machine with MPI
Ŷ How do we program such a machine?

To work on a cluster or shared machine with MPI, we typically need to follow these steps:
• Connect to the cluster using SSH
• Load the MPI module using module load or spack load
Compile the MPI program using the MPI wrapper compiler (e.g., mpifort, mpicc)

• Submit the MPI job to the job scheduler (e.g., SLURM, PBS, LSF) using a job script
• Monitor the job status and retrieve the output files

The compile step may have to be done on compute nodes, depending on the cluster
configuration.

ŵŻ/ŷż

The SLURM job scheduler
Ŷ How do we program such a machine?

SLURM (Simple Linux Utility for Resource Management) is a popular job scheduler used in
many HPC clusters.
• SLURM manages the allocation of resources (e.g., nodes, CPUs, memory) for jobs
submitted by users

• Users submit jobs to SLURM using a job script that specifies the resources required
and the commands to execute

• SLURM schedules jobs based on resource availability and job priorities
• Users can monitor the status of their jobs using SLURM commands (e.g., squeue,

sacct)
• Once a job is completed, users can retrieve the output files generated by their jobs

ŵż/ŷż

SLURM glossary
Ŷ How do we program such a machine?

node: A single physical or virtual machine in the cluster
task: A single instance of a program running on a node
job: A collection of tasks that are submitted to SLURM for execution

partition: A group of nodes with similar characteristics (e.g., hardware, software)
allocation: A reservation of resources (nodes, CPUs, memory) for a job

script: A file that contains the commands to execute a job, along with SLURM
directives

interactive session: A temporary allocation of resources for interactive use (e.g.,
debugging, testing, compilation)

We usually have a number of tasks per node, depending on the number of available
CPUs/cores, and a number of CPUs per task, depending on the number of threads we
want to use per task.

Ŷų/ŷż

Running an interactive session with SLURM
Ŷ How do we program such a machine?

To run an interactive session with SLURM, we can use the salloc command, specifying
the resources we need:
salloc -N 1 -n 4 --cpus-per-task=2 --time=01:00:00 --partition=cl1
This command requests an interactive session with:
• Ŵ nodes (-N 1),
• ŷ tasks (-n 4),
• ŵ CPUs per task (--cpus-per-task=2),
• a time limit of Ŵ hour (--time=01:00:00),
• on the cl1 partition (--partition=cl1).

ŶŴ/ŷż

Running an interactive session with SLURM
Ŷ How do we program such a machine?

To run an interactive session with SLURM, we can use the salloc command, specifying
the resources we need:
salloc -N 1 -n 4 --cpus-per-task=2 --time=01:00:00 --partition=cl1
Which will print on screen something like:
salloc: Pending job allocation 20864
salloc: job 20864 queued and waiting for resources
salloc: job 20864 has been allocated resources
salloc: Granted job allocation 20864
After a while, when the resources are allocated, we will get a shell prompt on the
compute node.

ŶŴ/ŷż

Running an interactive session with SLURM
Ŷ How do we program such a machine?

Another option to run an interactive session is to use the srun command with the --pty
option:
srun --pty -N 1 -n 4 --cpus-per-task=2 --time=01:00:00 --partition=cl1 bash
This command has the same effect as the previous one, but it directly starts a bash shell
on the compute node.

If the cluster supports it, you can also use ssh to connect directly to a compute node for
interactive work (after allocating resources with salloc), but this is less common.

Ŷŵ/ŷż

Preparing a SLURM job script for MPI
Ŷ How do we program such a machine?

An example of a SLURM job script launch.sh for running an MPI program:

#!/bin/bash
#SBATCH --job-name=mpi_hello
#SBATCH --output=mpi_hello.out
#SBATCH --error=mpi_hello.err
#SBATCH --nodes=2
#SBATCH --ntasks=4
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=1
#SBATCH --time=01:00:00
#SBATCH --partition=cl2

The script starts with a shebang line
(#!/bin/bash) to specify the shell to use
The #SBATCH directives specify the job:
— job name (--job-name),
— output file (--output),
— error file (--error),
— number of nodes (--nodes),
— number of tasks (--ntasks),
— tasks per node (--ntasks-per-node),
— CPUs per task (--cpus-per-task),
— time limit (--time),
— partition (--partition).

ŶŶ/ŷż

Output files options in SLURM job scripts
Ŷ How do we program such a machine?

The --output and --error options in SLURM job scripts specify the files where the
standard output and standard error streams of the job will be redirected.
By default, if these options are not specified, SLURM will create output files named
slurm-<jobid>.out in the directory where the job was submitted.
You can customize the names of these files using the --output and --error options,
together with some special placeholders:
• %j: Job ID
• %N: Node name
• %n: Task ID

Ŷŷ/ŷż

Preparing a SLURM job script for MPI + OpenMP
Ŷ How do we program such a machine?

If we want to use OpenMP in addition to MPI, we need to set the number of threads per
process using the OMP_NUM_THREADS environment variable in the job script:
export OMP_NUM_THREADS=4
This line should be added before the command that runs the MPI program.

It is crucial to ensure that OMP_NUM_THREADS does not exceed the total number of
available CPU cores on the allocated nodes to avoid oversubscription, i.e., the number of
threads should be less than or equal to the number passsed to --cpus-per-task.

ŶŸ/ŷż

The execution command in SLURM job scripts
Ŷ How do we program such a machine?

To run the MPI program in the SLURM job script, we use the srun command:
srun ./mpi_hello
This command launches the MPI program mpi_hello using the resources allocated by
SLURM.

It is important to use srun instead of mpirun or mpiexec in SLURM job scripts, as
srun is integrated with SLURM and ensures proper resource allocation and management;
in many clusters mpirun and mpiexec are disabled or not recommended.

ŶŹ/ŷż

Submitting the SLURM job script and checking job status
Ŷ How do we program such a machine?

To submit the SLURM job script, we use the sbatch command:
sbatch launch.sh
This command submits the job script launch.sh to SLURM for execution.

To check the status of the submitted job, we can use the squeue command:
squeue -u your_username
This command lists all the jobs submitted by the user your_username, showing their job
IDs, statuses, and other information.
If the job is running or completed, we can check the output and error files specified in the
job script.

Ŷź/ŷż

Table of Contents
ŷ The Toeplitz cluster at DMPISA

▶ Distributed memory machines

▶ How do we program such a machine?
An MPI hello world program

Finding MPI via CMake
The fallacies of distributed computing

Working on a cluster/shared machine with MPI

▶ The Toeplitz cluster at DMPISA
Partitions on Toeplitz
Software

ŶŻ/ŷż

The Toeplitz cluster at DMPISA
ŷ The Toeplitz cluster at DMPISA

• The Toeplitz cluster is a distributed memory machine available at DMPISA for
high-performance computing tasks

• It consists of multiple nodes, each equipped with powerful processors and a
significant amount of memory

• The nodes are connected by a 10Gbit s−1/25Gbit s−1 network providing
communication between nodes

• The cluster is managed using the SLURM job scheduler, which allows users to submit
and manage their jobs effectively

• Users can access the cluster remotely via SSH and utilize MPI for parallel
programming

Ŷż/ŷż

Specifications of the Toeplitz cluster at DMPISA
ŷ The Toeplitz cluster at DMPISA

• The Toeplitz cluster consists of ż nodes:
— ŷ AMD EPYC źźŹŶ nodes: ŵ threads per core, Źŷ cores per socket, ŵ sockets, 2 TB of

memory (1.96 TB usable).
— ŷ Intel Xeon EŸ-ŵŹŸų vŷ at 2.20GHz nodes: ŵ threads per core, Ŵŵ cores per socket, ŵ

sockets, 256GB of memory (250GB usable).
— Ŵ Intel Xeon EŸ-ŵŹŷŶ vŷ at 3.40GHz node: ŵ threads per core, Ź cores per socket, ŵ

sockets, 128GB of memory (125GB usable).
• Network connectivity:

— The first ŷ AMD nodes are connected via fiber at 25Gbit s−1.
— The remaining nodes use Intel Ethernet Controller XŸŷų-ATŵ Ŵų-Gigabit NICs over

copper, with a 10Gbit s−1 switch.

ŷų/ŷż

Accessing the Toeplitz cluster
ŷ The Toeplitz cluster at DMPISA

Once you receive your account credentials, you can log in to the cluster with the
command:
ssh username@toeplitz.cs.dm.unipi.it
At the first connection, you will be asked to accept the machine’s fingerprint.

If you intend to use services with a graphical interface on the remote machine, you need
to request SSH to forward the XŴŴ server by adding the -X option to the previous
command.

ŷŴ/ŷż

Setting up SSH key authentication
ŷ The Toeplitz cluster at DMPISA

In general, it is useful to connect via SSH key. A key can be generated on your system by
following the instructions given by:
ssh-keygen

Important: Set a passphrase for the generated key.
You can use the ssh-key we generated for GitHub if you want to.

Once the procedure is complete, you must copy the key to the remote machine with:
ssh-copy-id username@toeplitz.cs.dm.unipi.it
Every subsequent login from your machine will not require a password; the first login
from your machine in each session will require the passphrase.

ŷŵ/ŷż

Partitions on Toeplitz
ŷ The Toeplitz cluster at DMPISA

Toeplitz contains three different partitions:

Partition Description Time Limit Nodes Node List

gpu ŵ threads/core, ŴŵŻ threads/socket infinite ŷ gpu0[1-4]
ŵ sockets, ŷ NVIDIA Aŷų (ŷŻGB RAM)

cl1 ŵ threads/core, Ź cores/socket infinite Ŵ lnx1
ŵ sockets

cl2 ŵ threads/core, Ŵŵ cores/socket infinite ŷ lnx[2-5]
ŵ sockets

all All nodes in the cluster infinite ż lnx[1-5],
gpu0[1-4]

ŷŶ/ŷż

Software management on Toeplitz
ŷ The Toeplitz cluster at DMPISA

The software management on the cluster is performed using Spack, a package manager
for supercomputers.
• Simplifies installation and management of scientific software
• Not tied to a specific programming language
• Allows creating software stacks in Python or R, linking to libraries in C, C++, or Fortran
• Easily switch compilers or program for specific microarchitectures

ŷŷ/ŷż

Environment Modules on Toeplitz
ŷ The Toeplitz cluster at DMPISA

Environment Modules is a tool that simplifies shell initialization and allows users to
modify their environment during the session.
To view available modules:
module avail
Modules are named with the following pattern:
programname/version-compiler-version
Example output:
anaconda3/2021.05-gcc-12.2.0 openmpi/4.1.4-gcc-12.2.0
cmake/3.23.3-gcc-12.2.0 openblas/0.3.20-gcc-12.2.0
gcc/12.2.0 valgrind/3.19.0-oneapi-2022.1.0
intel-oneapi-compilers/2022.1.0

All loaded modules must refer to the same compiler for a consistent environment.

ŷŸ/ŷż

Loading and managing modules
ŷ The Toeplitz cluster at DMPISA

Load modules:
module load programname1/version-compiler-version

programname2/version-compiler-version↪→

Remove modules:
module unload programname1/version-compiler-version
Revert to original state:
module purge
View active modules:
module list

ŷŹ/ŷż

Anaconda on Toeplitz
ŷ The Toeplitz cluster at DMPISA

For installing and managing Python environments we use Anaconda.
• Anaconda is a Python environment designed to work with multiple isolated
environments

• Each environment can contain different versions of software and modules
• This approach minimizes conflicts and undesired interactions between different
projects

Best practices when starting a new project:
• Create a new environment (do not use the base environment)
• Install required software in the new environment
• Use the $SCRATCH directory for environments (more storage than home)

ŷź/ŷż

Anaconda on Toeplitz
ŷ The Toeplitz cluster at DMPISA

Quick start guide:
module load anaconda3
conda create -p $SCRATCH/my-env-project
conda activate $SCRATCH/my-env-project

For subsequent uses, simply reload the module and activate the environment. Install
packages with:
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch

-c nvidia↪→

ŷŻ/ŷż

Conclusions and next steps
Ÿ Conclusions

We have:
Introduced distributed memory machines and MPI programming
Explained how to compile and run MPI programs on a cluster
Presented the Toeplitz cluster at DMPISA and its software management

Next steps:
Explore communication routines in MPI

ŷż/ŷż

	Before the time-skip
	Distributed memory machines
	How do we program such a machine?
	An MPI hello world program
	Working on a cluster/shared machine with MPI

	The Toeplitz cluster at DMPISA
	Conclusions

