
High Performance Linear Algebra
Lecture Ż: Basic functions of MPI
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

January ŴŸ, ŵųŵŹ — ŴŹ.ųų:ŴŻ.ųų

Ŵ/ŷŻ

mailto:fabio.durastante@unipi.it


Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

• Durign the last lecture we have introduced the basics of parallel programming using
theMessage Passing Interface (MPI) paradigm.

• We have discussed the main features of MPI and we have seen how to setup a simple
MPI environment.

• We have also discussed the usage of SLURM to handle queues on HPC systems.
Today we will continue our discussion on MPI by introducing some of the most used MPI
functions.

ŵ/ŷŻ



Table of Contents
ŵ Message Passing Interface (MPI)

▶Message Passing Interface (MPI)
Point-to-point communication
Deadlock
Non-Blocking Communication
Buffered Communication
Collective Communications

Vectorized versions of gather and scatter
Reduction operations

Ŷ/ŷŻ



Point-to-Point Communication
ŵ Message Passing Interface (MPI)

• Send and Receive operations between pairs of processes
• Essential building block for distributed algorithms
• Two main types: Blocking and Non-blocking

ŷ/ŷŻ



Blocking Send and Receive
ŵ Message Passing Interface (MPI)

program point_to_point
use mpi
implicit none
integer :: rank, size, ierr, status(MPI_STATUS_SIZE)
integer :: send_data, recv_data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

if (rank == 0) then
send_data = 42

Ÿ/ŷŻ



Blocking Send and Receive
ŵ Message Passing Interface (MPI)

call MPI_Send(send_data, 1, MPI_INTEGER, 1, 0, &
MPI_COMM_WORLD, ierr)

else if (rank == 1) then
call MPI_Recv(recv_data, 1, MPI_INTEGER, 0, 0, &

MPI_COMM_WORLD, status, ierr)
print *, 'Received:', recv_data

end if

call MPI_Finalize(ierr)
end program point_to_point

Ź/ŷŻ



Blocking Send and Receive
ŵ Message Passing Interface (MPI)

Let us analyze the code line by line:
• MPI_Init: Initialize the MPI environment
• MPI_Comm_rank: Get the rank of the calling process in the communicator
• MPI_Comm_size: Get the total number of processes in the communicator
• MPI_Send: Locally Blocking send operation
• MPI_Recv: Blocking receive operation
• MPI_Finalize: Clean up the MPI environment

A call is said to be blocking if the function does not return control to the calling process
until the operation is complete.

• MPI_Send returns only after the data has been copied out of the send buffer
• MPI_Recv returns only after the data has been received and placed in the receive

buffer
• This can lead to inefficiencies if processes are waiting for each other! However,

blocking calls are often simpler to implement and reason about.

ź/ŷŻ



Blocking Send and Receive
ŵ Message Passing Interface (MPI)

Let us analyze the code line by line:
• MPI_Init: Initialize the MPI environment
• MPI_Comm_rank: Get the rank of the calling process in the communicator
• MPI_Comm_size: Get the total number of processes in the communicator
• MPI_Send: Locally Blocking send operation
• MPI_Recv: Blocking receive operation
• MPI_Finalize: Clean up the MPI environment

A call is said to be blocking if the function does not return control to the calling process
until the operation is complete.

• MPI_Send returns only after the data has been copied out of the send buffer
• MPI_Recv returns only after the data has been received and placed in the receive

buffer
• This can lead to inefficiencies if processes are waiting for each other! However,

blocking calls are often simpler to implement and reason about.ź/ŷŻ



Arguments of the MPI Send/Receive
ŵ Message Passing Interface (MPI)

The argument of the Send call are:
• send_data: starting address of the send buffer
• 1: number of elements to send
• MPI_INTEGER: datatype of each element
• 1: rank of the destination process
• 0: message tag (used to identify messages)
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Send function is:
call MPI_Send(send_data, counter, datatype, dest, tag, comm, ierr)

Ż/ŷŻ



Arguments of the MPI Send/Receive
ŵ Message Passing Interface (MPI)

The argument of the Receive call are:
• recv_data: starting address of the receive buffer
• 1: number of elements to receive
• MPI_INTEGER: datatype of each element
• 0: rank of the source process
• 0: message tag (used to identify messages)
• MPI_COMM_WORLD: communicator
• status: status object (contains information about the received message)
• ierr: error code

The prototype of the MPI_Recv function is:
call MPI_Recv(recv_data, counter, datatype, source, tag, comm, status, ierr)

ż/ŷŻ



Arguments of the MPI Send/Receive
ŵ Message Passing Interface (MPI)

The argument of the Receive call are:
• recv_data: starting address of the receive buffer
• 1: number of elements to receive
• MPI_INTEGER: datatype of each element
• 0: rank of the source process
• 0: message tag (used to identify messages)
• MPI_COMM_WORLD: communicator
• status: status object (contains information about the received message)
• ierr: error code

The status object can be used to retrieve additional information about the received
message, such as the actual number of elements received or the source of the message.

ż/ŷŻ



MPI Datatypes
ŵ Message Passing Interface (MPI)

MPI provides a variety of predefined datatypes to represent different kinds of data. The
following table lists them:

Fortran Type MPI Datatype

INTEGER MPI_INTEGER
REAL MPI_REAL
DOUBLE PRECISION MPI_DOUBLE_PRECISION
COMPLEX MPI_COMPLEX
DOUBLE COMPLEX MPI_DOUBLE_COMPLEX
LOGICAL MPI_LOGICAL
CHARACTER MPI_CHAR

Ŵų/ŷŻ



Questions
ŵ Message Passing Interface (MPI)

What happens if we run the code with Ŵ process only? What if we run it with more
than ŵ processes?
What happens if the sender and receiver have mismatched tags or datatypes?
How can we handle errors in MPI calls?

The program will hang if there is only Ŵ process, as the receiver will wait indefinitely
for a message that will never arrive. If run with more than ŵ processes, only ranks ų
and Ŵ will participate in the communication; other ranks will do nothing.
Mismatched tags or datatypes will lead to errors or unexpected behavior. The
receiver may not receive the intended message, leading to data corruption or
program crashes.
MPI functions return an error code that can be checked after each call. Additionally,
MPI provides error handling routines to manage errors more gracefully.

ŴŴ/ŷŻ



Questions
ŵ Message Passing Interface (MPI)

What happens if we run the code with Ŵ process only? What if we run it with more
than ŵ processes?
What happens if the sender and receiver have mismatched tags or datatypes?
How can we handle errors in MPI calls?
The program will hang if there is only Ŵ process, as the receiver will wait indefinitely
for a message that will never arrive. If run with more than ŵ processes, only ranks ų
and Ŵ will participate in the communication; other ranks will do nothing.

Mismatched tags or datatypes will lead to errors or unexpected behavior. The
receiver may not receive the intended message, leading to data corruption or
program crashes.
MPI functions return an error code that can be checked after each call. Additionally,
MPI provides error handling routines to manage errors more gracefully.

ŴŴ/ŷŻ



Questions
ŵ Message Passing Interface (MPI)

What happens if we run the code with Ŵ process only? What if we run it with more
than ŵ processes?
What happens if the sender and receiver have mismatched tags or datatypes?
How can we handle errors in MPI calls?
The program will hang if there is only Ŵ process, as the receiver will wait indefinitely
for a message that will never arrive. If run with more than ŵ processes, only ranks ų
and Ŵ will participate in the communication; other ranks will do nothing.
Mismatched tags or datatypes will lead to errors or unexpected behavior. The
receiver may not receive the intended message, leading to data corruption or
program crashes.

MPI functions return an error code that can be checked after each call. Additionally,
MPI provides error handling routines to manage errors more gracefully.

ŴŴ/ŷŻ



Questions
ŵ Message Passing Interface (MPI)

What happens if we run the code with Ŵ process only? What if we run it with more
than ŵ processes?
What happens if the sender and receiver have mismatched tags or datatypes?
How can we handle errors in MPI calls?
The program will hang if there is only Ŵ process, as the receiver will wait indefinitely
for a message that will never arrive. If run with more than ŵ processes, only ranks ų
and Ŵ will participate in the communication; other ranks will do nothing.
Mismatched tags or datatypes will lead to errors or unexpected behavior. The
receiver may not receive the intended message, leading to data corruption or
program crashes.
MPI functions return an error code that can be checked after each call. Additionally,
MPI provides error handling routines to manage errors more gracefully.

ŴŴ/ŷŻ



MPI Error Handling
ŵ Message Passing Interface (MPI)

• Every MPI function returns an error code in the ierr variable
• ierr == MPI_SUCCESS indicates successful execution
• Error codes can be converted to human-readable messages using
MPI_Error_string

integer :: ierr
character(len=MPI_MAX_ERROR_STRING) :: error_string
integer :: error_len

call MPI_Send(data, 1, MPI_INTEGER, dest, tag, comm, ierr)
if (ierr /= MPI_SUCCESS) then

call MPI_Error_string(ierr, error_string, error_len, ierr)
print *, 'Error: ', error_string(1:error_len)
call MPI_Finalize(ierr)
stop

end if

Ŵŵ/ŷŻ



MPI Error Handling
ŵ Message Passing Interface (MPI)

• Every MPI function returns an error code in the ierr variable
• ierr == MPI_SUCCESS indicates successful execution
• Error codes can be converted to human-readable messages using
MPI_Error_string

Always check error codes after critical MPI calls
Use MPI_Error_string to get descriptive error messages
Call MPI_Finalize before terminating on error

Ŵŵ/ŷŻ



Deadlock in MPI
ŵ Message Passing Interface (MPI)

• A deadlock occurs when processes are
blocked indefinitely, waiting for events
that will never occur

• Common cause: circular waiting
patterns in blocking send/receive
operations

• Example: Two processes each waiting
to receive before sending

ŴŶ/ŷŻ



Deadlock Example: Circular Wait
ŵ Message Passing Interface (MPI)

program deadlock_example
use mpi
implicit none
integer :: rank, size, ierr, status(MPI_STATUS_SIZE)
integer :: data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

if (rank == 0) then
! Rank 0: First receive, then send

Ŵŷ/ŷŻ



Deadlock Example: Circular Wait
ŵ Message Passing Interface (MPI)

call MPI_Recv(data, 1, MPI_INTEGER, 1, 0, &
MPI_COMM_WORLD, status, ierr)

call MPI_Send(data, 1, MPI_INTEGER, 1, 0, &
MPI_COMM_WORLD, ierr)

else if (rank == 1) then
! Rank 1: First receive, then send (same pattern!)
call MPI_Recv(data, 1, MPI_INTEGER, 0, 0, &

MPI_COMM_WORLD, status, ierr)
call MPI_Send(data, 1, MPI_INTEGER, 0, 0, &

MPI_COMM_WORLD, ierr)
end if

ŴŸ/ŷŻ



Deadlock Example: Circular Wait
ŵ Message Passing Interface (MPI)

call MPI_Finalize(ierr)
end program deadlock_example

• Rank ų calls MPI_Recv first and waits for data from rank Ŵ
• Rank Ŵ calls MPI_Recv first and waits for data from rank ų
• Both processes are now blocked, each waiting for the other to send
• Neither process can proceed⇒ deadlock!

Rank ų Rank Ŵ
waiting for

waiting for

ŴŹ/ŷŻ



Solution Ŵ: Order Communication
ŵ Message Passing Interface (MPI)

if (rank == 0) then
! Rank 0: Send first, then receive
call MPI_Send(data, 1, MPI_INTEGER, 1, 0, MPI_COMM_WORLD, ierr)
call MPI_Recv(data, 1, MPI_INTEGER, 1, 0, MPI_COMM_WORLD, status, ierr)

else if (rank == 1) then
! Rank 1: Receive first, then send (opposite order)
call MPI_Recv(data, 1, MPI_INTEGER, 0, 0, MPI_COMM_WORLD, status, ierr)
call MPI_Send(data, 1, MPI_INTEGER, 0, 0, MPI_COMM_WORLD, ierr)

end if

• Break the circular dependency by using different orderings
• Rank ų sends first, so rank Ŵ’s receive completes
• Rank Ŵ can then send, so rank ų’s receive completes

Ŵź/ŷŻ



Non-Blocking Communication
ŵ Message Passing Interface (MPI)

integer :: request
! Start non-blocking send
call MPI_Isend(send_data, 1, MPI_INTEGER, 1, 0, &

MPI_COMM_WORLD, request, ierr)
! Do computation while message is in transit
! ...
! Wait for completion
call MPI_Wait(request, status, ierr)

• MPI_Isend: initiate non-blocking send operation
• Returns immediately without waiting for the send to complete
• Enables overlap of communication and computation

ŴŻ/ŷŻ



Non-Blocking Communication
ŵ Message Passing Interface (MPI)

integer :: request
! Start non-blocking receive
call MPI_Irecv(recv_data, 1, MPI_INTEGER, 0, 0, &

MPI_COMM_WORLD, request, ierr)
! Do computation while waiting for message
! ...
! Wait for completion
call MPI_Wait(request, status, ierr)

• MPI_Irecv: initiate non-blocking receive operation
• Returns immediately without waiting for the message to arrive
• MPI_Wait: blocks until the operation completes and data is available

ŴŻ/ŷŻ



The request argument and the wait commands
ŵ Message Passing Interface (MPI)

• The request argument is an integer that uniquely identifies the operation
• It is used to track the status of the operation and is required for completion routines

like MPI_Wait
• MPI_Wait blocks the calling process until the specified non-blocking operation

completes
• It takes the request handle and a status object as arguments
• The status object can provide information about the completed operation, such as

the source, tag, and error code
If we have multiple non-blocking operations, we can use MPI_Waitall to wait for all of
them to complete:
call MPI_Waitall(count, request_array, status_array, ierr)

Ŵż/ŷŻ



Solution ŵ: Use Non-Blocking Operations
ŵ Message Passing Interface (MPI)

integer :: req_send, req_recv
integer :: status_array(MPI_STATUS_SIZE, 2)

! Both ranks initiate sends and receives simultaneously
call MPI_Isend(data, 1, MPI_INTEGER, 1-rank, 0, MPI_COMM_WORLD, &

req_send, ierr)
call MPI_Irecv(data, 1, MPI_INTEGER, 1-rank, 0, MPI_COMM_WORLD, &

req_recv, ierr)
! Wait for both operations to complete
call MPI_Waitall(2, (/req_send, req_recv/), &

status_array, ierr)
• Non-blocking operations return immediately
• Both sends and receives can progress independently
• MPI runtime handles message buffering and ordering

ŵų/ŷŻ



Buffered Communication
ŵ Message Passing Interface (MPI)

• Standard mode (default): MPI decides whether
to buffer or not

• Buffered mode: User provides explicit buffer for
send operations

• Useful when you want guaranteed buffering
without relying on MPI’s internal buffers

• Allows more predictable behavior in certain
scenarios

Standard Send

MPI Buffer

Receive Buffer

maybe

if buffered

Standard Mode

ŵŴ/ŷŻ



Buffered Communication
ŵ Message Passing Interface (MPI)

• Standard mode (default): MPI decides whether
to buffer or not

• Buffered mode: User provides explicit buffer for
send operations

• Useful when you want guaranteed buffering
without relying on MPI’s internal buffers

• Allows more predictable behavior in certain
scenarios

Buffered Send

User Buffer

Receive Buffer

guaranteed

on demand

Buffered Mode

ŵŴ/ŷŻ



MPI Buffered Send
ŵ Message Passing Interface (MPI)

integer :: buffer_size, provided_size
integer, allocatable :: buffer(:)

! Determine required buffer size
call MPI_Pack_size(1, MPI_INTEGER, MPI_COMM_WORLD, buffer_size, ierr)
buffer_size = buffer_size + MPI_BSEND_OVERHEAD
allocate(buffer(buffer_size))

! Attach the buffer to MPI
call MPI_Buffer_attach(buffer, buffer_size, ierr)

! Now use MPI_Bsend instead of MPI_Send
call MPI_Bsend(data, 1, MPI_INTEGER, dest, tag, MPI_COMM_WORLD, ierr)

ŵŵ/ŷŻ



MPI Buffered Send
ŵ Message Passing Interface (MPI)

! Detach buffer when done
call MPI_Buffer_detach(buffer, buffer_size, ierr)
deallocate(buffer)

• MPI_Bsend: buffered send operation
• MPI_Buffer_attach: attach user-provided buffer
• MPI_Buffer_detach: detach buffer (must wait for all sends to complete)

ŵŶ/ŷŻ



Solution Ŷ: Use Buffered Send
ŵ Message Passing Interface (MPI)

integer :: buffer_size
integer, allocatable :: buffer(:)

call MPI_Pack_size(1, MPI_INTEGER, MPI_COMM_WORLD, buffer_size, ierr)
buffer_size = buffer_size + MPI_BSEND_OVERHEAD
allocate(buffer(buffer_size))

call MPI_Buffer_attach(buffer, buffer_size, ierr)

! Both ranks can now safely use Bsend
call MPI_Bsend(data, 1, MPI_INTEGER, 1-rank, 0, MPI_COMM_WORLD, ierr)
call MPI_Recv(data, 1, MPI_INTEGER, 1-rank, 0, MPI_COMM_WORLD, &

status, ierr)

ŵŷ/ŷŻ



Solution Ŷ: Use Buffered Send
ŵ Message Passing Interface (MPI)

call MPI_Buffer_detach(buffer, buffer_size, ierr)
deallocate(buffer)

• MPI_Bsend copies data to user buffer immediately and returns
• Eliminates deadlock by guaranteeing buffering before receive is called
• Requires explicit buffer management overhead

ŵŸ/ŷŻ



Collective Communications
ŵ Message Passing Interface (MPI)

• Collective communication are operations that involve all processes in a
communicator.

• Examples include broadcasting, gathering, scattering, and reducing data.
• These operations are essential for synchronizing data among processes.

Rank ų

Rank Ŵ Rank ŵ
Rank Ŷ

data datadata

Broadcast

Rank ŴRank ŵ Rank Ŷ

Rank ų
d = (d1, d2, d3)

d1d2 d3

Gather

ŵŹ/ŷŻ



Collective Communications
ŵ Message Passing Interface (MPI)

• Collective communication are operations that involve all processes in a
communicator.

• Examples include broadcasting, gathering, scattering, and reducing data.
• These operations are essential for synchronizing data among processes.

Rank ų

Rank Ŵ Rank ŵ
Rank Ŷ

data datadata

Broadcast

Rank ŴRank ŵ Rank Ŷ

Rank ų
d = (d1, d2, d3)

d1d2 d3

Scatter

ŵŹ/ŷŻ



Broadcast Operation
ŵ Message Passing Interface (MPI)

• The broadcast operation sends data from one process (the root) to all other
processes in the communicator.

• Useful for distributing initial data or parameters.
program mpi_broadcast

use mpi
implicit none
integer :: rank, size, ierr
integer :: data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

ŵź/ŷŻ



Broadcast Operation
ŵ Message Passing Interface (MPI)

if (rank == 0) then
data = 100 ! Root process initializes data

end if

! Broadcast data from root process (rank 0) to all processes
call MPI_Bcast(data, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

print *, 'Process', rank, 'received data:', data

call MPI_Finalize(ierr)
end program mpi_broadcast

ŵŻ/ŷŻ



Broadcast Operation
ŵ Message Passing Interface (MPI)

The arguments of the MPI_Bcast function are:
• buffer: starting address of the buffer to be broadcasted
• 1: number of elements to broadcast
• MPI_INTEGER: datatype of each element
• 0: rank of the root process
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Bcast function is:
call MPI_Bcast(buffer, counter, datatype, root, comm, ierr)
The value of buffer is significant only at the root process during the call; all other
processes will receive the broadcasted value into their own buffer variable.

ŵż/ŷŻ



Gather Operation
ŵ Message Passing Interface (MPI)

• The gather operation collects data from all processes and sends it to a root process.
• Useful for aggregating results from multiple processes.

program mpi_gather
use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data, recv_data(4)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

send_data = rank + 1 ! Each process sends its rank + 1

Ŷų/ŷŻ



Gather Operation
ŵ Message Passing Interface (MPI)

! Gather data at root process (rank 0)
call MPI_Gather(send_data, 1, MPI_INTEGER, recv_data, 1, MPI_INTEGER,

0, MPI_COMM_WORLD, ierr)↪→

if (rank == 0) then
print *, 'Root process received data:', recv_data

end if

call MPI_Finalize(ierr)
end program mpi_gather

ŶŴ/ŷŻ



Gather Operation
ŵ Message Passing Interface (MPI)

The arguments of the MPI_Gather function are:
• send_buffer: starting address of the send buffer
• 1: number of elements sent by each process
• MPI_INTEGER: datatype of each element
• recv_buffer: starting address of the receive buffer (only significant at root)
• 1: number of elements received from each process
• MPI_INTEGER: datatype of each element
• 0: rank of the root process
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Gather function is:
call MPI_Gather(send_buffer, send_count, send_datatype, &

recv_buffer, recv_count, recv_datatype, &
root, comm, ierr)

Ŷŵ/ŷŻ



Scatter Operation
ŵ Message Passing Interface (MPI)

• The scatter operation distributes data from a root process to all other processes.
• Useful for distributing chunks of data for parallel processing.

program mpi_scatter
use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data(4), recv_data
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
if (rank == 0) then

send_data = (/10, 20, 30, 40/) ! Root process initializes data
end if

ŶŶ/ŷŻ



Scatter Operation
ŵ Message Passing Interface (MPI)

! Scatter data from root process (rank 0) to all processes
call MPI_Scatter(send_data, 1, MPI_INTEGER, recv_data, 1, MPI_INTEGER,

0, MPI_COMM_WORLD, ierr)↪→

print *, 'Process', rank, 'received data:', recv_data
call MPI_Finalize(ierr)

end program mpi_scatter

Ŷŷ/ŷŻ



Scatter Operation
ŵ Message Passing Interface (MPI)

The arguments of the MPI_Scatter function are:
• send_buffer: starting address of the send buffer (only significant at root)
• 1: number of elements sent to each process
• MPI_INTEGER: datatype of each element
• recv_buffer: starting address of the receive buffer
• 1: number of elements received by each process
• MPI_INTEGER: datatype of each element
• 0: rank of the root process
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Scatter function is:
call MPI_Scatter(send_buffer, send_count, send_datatype, &

recv_buffer, recv_count, recv_datatype, &
root, comm, ierr)

ŶŸ/ŷŻ



MPI_Gatherv Operation
ŵ Message Passing Interface (MPI)

• The gatherv operation collects variable amounts of data from each process to a root
process.

• Useful when processes have different amounts of data to contribute.
program mpi_gatherv

use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data(10), recv_data(25)
integer :: send_count, recv_counts(4), displs(4)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
! Each process sends different amount of data

ŶŹ/ŷŻ



MPI_Gatherv Operation
ŵ Message Passing Interface (MPI)

send_count = rank + 1
send_data(1:send_count) = rank
! Root process specifies how much to receive from each process
recv_counts = (/1, 2, 3, 4/)
displs = (/0, 1, 3, 6/) ! Displacements in receive buffer
call MPI_Gatherv(send_data, send_count, MPI_INTEGER, &

recv_data, recv_counts, displs, MPI_INTEGER, &
0, MPI_COMM_WORLD, ierr)

if (rank == 0) then
print *, 'Root received data:', recv_data(1:10)

end if

call MPI_Finalize(ierr)
end program mpi_gatherv

Ŷź/ŷŻ



MPI_Scatterv Operation
ŵ Message Passing Interface (MPI)

• The scatterv operation distributes variable amounts of data from a root process to all
processes.

• Useful for load balancing when processes need different data sizes.
program mpi_scatterv

use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data(10), recv_data(10)
integer :: send_counts(4), displs(4), recv_count

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
if (rank == 0) then

ŶŻ/ŷŻ



MPI_Scatterv Operation
ŵ Message Passing Interface (MPI)

send_data = (/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/)
end if
! Root specifies how much to send to each process
send_counts = (/1, 2, 3, 4/)
displs = (/0, 1, 3, 6/) ! Displacements in send buffer
recv_count = rank + 1
call MPI_Scatterv(send_data, send_counts, displs, MPI_INTEGER, &

recv_data, recv_count, MPI_INTEGER, &
0, MPI_COMM_WORLD, ierr)

print *, 'Process', rank, 'received:', recv_data(1:recv_count)
call MPI_Finalize(ierr)

end program mpi_scatterv

Ŷż/ŷŻ



MPI_Gatherv and MPI_Scatterv Parameters
ŵ Message Passing Interface (MPI)

MPI_Gatherv
• send_buffer: data to send
• send_count: amount sent by this

process
• recv_counts: array of receive counts

per process
• displs: array of displacements in

receive buffer

MPI_Scatterv
• send_counts: array of send counts per

process
• displs: array of displacements in send

buffer
• recv_buffer: buffer to receive data
• recv_count: amount received by this

process

ŷų/ŷŻ



Reduce Operation
ŵ Message Passing Interface (MPI)

• The reduce operation combines data from all processes and sends the result to a
root process.

• Commonly used for summing values or finding maximum/minimum.
program mpi_reduce

use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data, recv_data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

send_data = rank + 1 ! Each process sends its rank + 1

! Reduce data at root process (rank 0) using sum operation
call MPI_Reduce(send_data, recv_data, 1, MPI_INTEGER, MPI_SUM, 0, MPI_COMM_WORLD, ierr)

if (rank == 0) then
print *, 'Root process received reduced data (sum):', recv_data

end if

call MPI_Finalize(ierr)
end program mpi_reduce

ŷŴ/ŷŻ



Reduce Operation Arguments
ŵ Message Passing Interface (MPI)

The arguments of the MPI_Reduce function are:
• send_buffer: starting address of the send buffer
• 1: number of elements to reduce
• MPI_INTEGER: datatype of each element
• MPI_SUM: reduction operation (MPI_SUM, MPI_MAX, MPI_MIN, etc.)
• 0: rank of the root process
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Reduce function is:
call MPI_Reduce(send_buffer, recv_buffer, counter, datatype, op, root,

comm, ierr)↪→

The reduce buffer is only significant at the root process.

ŷŵ/ŷŻ



MPI Reduction Operations
ŵ Message Passing Interface (MPI)

MPI provides several built-in reduction operations:

Operation Description Operation Description

MPI_SUM Sum of values MPI_MAX Maximum value
MPI_PROD Product of values MPI_MIN Minimum value
MPI_MAXLOC Maximum value and its

location (rank)
MPI_MINLOC Minimum value and its lo-

cation (rank)
MPI_LAND Logical AND MPI_BAND Bitwise AND
MPI_LOR Logical OR MPI_BOR Bitwise OR
MPI_LXOR Logical XOR MPI_BXOR Bitwise XOR

ŷŶ/ŷŻ



MPI Collective — Reduce
ŵ Message Passing Interface (MPI)

You can also define your own custom reduction operations. This is done using the
call MPI_Op_create(user_function, commute, op, ierr)
where the user-defined function has the interface:
subroutine user_function(invec, inoutvec, len, datatype)

implicit none
integer :: len
integer :: datatype
! invec and inoutvec are assumed-size arrays
! Operation: inoutvec = invec op inoutvec

end subroutine user_function
The operation op is assumed to be associative; if commute == .false. the order of the
operands must be forced in ascending process rank order, see the naive implementation
example in the MPI standard document for details.

ŷŷ/ŷŻ



MPI Collective — Reduce
ŵ Message Passing Interface (MPI)

What is the output of a collective communication?

Collective features
• If the underlying operation is not associative, the results cannot be the same with

different number of processes;
• If the collective is implemented without enforcing ordering, even two successive runs

on the same machine will give different outputs.

Warnings
• Never test a floating point result for exact match;
• Never expect a specific value from different machine configurations;
• Always use the result of a collective to govern global application behaviour;
• Always test results for appropriate bounds.

ŷŸ/ŷŻ



Allreduce Operation
ŵ Message Passing Interface (MPI)

Combines data from all processes and distributes the result to all processes:
program mpi_allreduce

use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data, recv_data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

send_data = rank + 1

ŷŹ/ŷŻ



Allreduce Operation
ŵ Message Passing Interface (MPI)

! All processes receive the result
call MPI_Allreduce(send_data, recv_data, 1, MPI_INTEGER, &

MPI_SUM, MPI_COMM_WORLD, ierr)

print *, 'Process', rank, 'received:', recv_data

call MPI_Finalize(ierr)
end program mpi_allreduce

• Useful when all processes need the reduced result
• No root process specification needed
• Commonly used in iterative algorithms (e.g., convergence checks, orthogonalization

coefficients)
• May be a bottleneck at scale due to synchronization requirements

ŷź/ŷŻ



Conclusions and next steps
Ŷ Conclusions

We have covered:
Point-to-point communication (blocking, non-blocking, buffered)
Collective communication (broadcast, gather, scatter, reduce)

Next steps:
Investigate the cost of communication in parallel applications
Measuring time, and putting barriers
Explore few advanced MPI features (derived datatypes, communicators)
Reuse and adapt code examples for our linear algebra tasks

ŷŻ/ŷŻ


	Last time on High Performance Linear Algebra
	Message Passing Interface (MPI)
	Point-to-point communication
	Deadlock
	Non-Blocking Communication
	Buffered Communication
	Collective Communications
	Reduction operations

	Conclusions

