
High Performance Linear Algebra
Lecture ż: Basic functions of MPI — Part ŵ
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

January Ŵż, ŵųŵŹ — Ŵŷ.ųų:ŴŹ.ųų

Ŵ/Ÿų

mailto:fabio.durastante@unipi.it

Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

• Durign the last lecture we have introduced the basics of parallel programming using
theMessage Passing Interface (MPI) paradigm.

• We have discussed the main features of MPI and we have seen how to setup a simple
MPI environment.

• We have also discussed the usage of SLURM to handle queues on HPC systems.
Today we will continue our discussion on MPI by introducing some of the most used MPI
functions.

ŵ/Ÿų

Table of Contents
ŵ Message Passing Interface (MPI)

▶Message Passing Interface (MPI)
Timing and barriers
The Cost of Communication

Ping-Pong Test for Point-to-Point Communication
The cost of collective communications

▶ Restarting with BLAS: Level Ŵ routines
How do we distribute vectors?
Creation and destruction

Ŷ/Ÿų

MPI Timers
ŵ Message Passing Interface (MPI)

• MPI_Wtime() returns a double-precision wall-clock time in seconds
• MPI_Wtick() returns the resolution of MPI_Wtime()
• Suitable for measuring elapsed time of code regions (not CPU time)
• Call MPI_Init before and MPI_Finalize after using timers

CPU time vs Wall-clock time
CPU time measures the time a CPU spends executing a program, while wall-clock time
measures the real-world elapsed time from start to finish, including waiting times and
delays. Tomeasure performance in parallel computing, wall-clock time is often more
relevant as it reflects the actual time users experience.

ŷ/Ÿų

Example: Timing a Loop
ŵ Message Passing Interface (MPI)

program timing_example
use mpi
implicit none
integer :: ierr, rank, nprocs, i
real(kind=8) :: t0, t1, elapsed

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)

call MPI_Barrier(MPI_COMM_WORLD, ierr) ! synchronize start
t0 = MPI_Wtime()

Ÿ/Ÿų

Example: Timing a Loop
ŵ Message Passing Interface (MPI)

do i = 1, 10**7
call random_seed() ! dummy work

end do

call MPI_Barrier(MPI_COMM_WORLD, ierr) ! synchronize end
t1 = MPI_Wtime()

elapsed = t1 - t0
print '(A,I3,A,F8.4)', 'Rank ', rank, ' elapsed: ', elapsed

call MPI_Finalize(ierr)
end program timing_example

Ź/Ÿų

Barriers and Timing Best Practices
ŵ Message Passing Interface (MPI)

• Barriers (MPI_Barrier) force all ranks to synchronize
• Use barriers to align start/end of timed regions; avoid overuse
• Prefer MPI_Reduce (e.g., MPI_MAX) to collect max elapsed time across ranks
• Run multiple iterations and average to smooth variability

ź/Ÿų

Example: Timing with Reduction
ŵ Message Passing Interface (MPI)

program timing_reduce
use mpi
implicit none
integer :: ierr, rank, root
real(kind=8) :: t0, t1, tlocal, tmax

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
root = 0
call MPI_Barrier(MPI_COMM_WORLD, ierr)
t0 = MPI_Wtime()
call MPI_Bcast(tlocal, 1, MPI_DOUBLE_PRECISION, root, MPI_COMM_WORLD,

ierr)↪→

Ż/Ÿų

Example: Timing with Reduction
ŵ Message Passing Interface (MPI)

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t1 = MPI_Wtime()

tlocal = t1 - t0
call MPI_Reduce(tlocal, tmax, 1, MPI_DOUBLE_PRECISION, MPI_MAX, root,

MPI_COMM_WORLD, ierr)↪→

if (rank == root) then
print *, 'Max elapsed across ranks: ', tmax

end if

call MPI_Finalize(ierr)
end program timing_reduce

ż/Ÿų

The Cost of Communication
ŵ Message Passing Interface (MPI)

• Communication overhead increases with the number of processes
• Two main components: latency and bandwidth

— Latency: time to initiate a message (startup cost)
— Bandwidth: data transfer rate once communication starts

• Total communication time: Tcomm = α+ N
β

— α: latency (message startup cost)
— β: reciprocal of the bandwidth
— N: message size in bytes

Ŵų/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

The fist measure we can do is to evaluate the scaling of point-to-point communication
costs with respect to the number of MPI ranks.

An idea is to implement a simple
benchmark that implements a
ping-pong test between two MPI ranks,
where rank ų sends a message to rank
n− 1, which immediately sends it back.

The time taken for this round-trip communication is measured and reported.

ŴŴ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

program test_mpi_pingpong
use mpi
implicit none
integer :: ierr, rank, nprocs
integer :: n, i, niter
real(kind=8), allocatable :: sendbuf(:), recvbuf(:)
real(kind=8) :: t_start, t_end, t_local, t_avg, t_max
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)
! -----------------------------
! Fixed problem size (strong scaling)
! -----------------------------

Ŵŵ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

n = 1000000 ! number of double-precision elements
niter = 100 ! number of repetitions
allocate(sendbuf(n), recvbuf(n))
sendbuf = 1.0d0
recvbuf = 0.0d0

We perform a warm-up phase to avoid measuring initial overheads,
! Warm-up (not timed)
if (rank == 0) then

call MPI_Send(sendbuf, n, MPI_DOUBLE_PRECISION, nprocs-1, 0,
MPI_COMM_WORLD, ierr)↪→

call MPI_Recv(recvbuf, n, MPI_DOUBLE_PRECISION, nprocs-1, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr)↪→

else if (rank == nprocs-1) then

ŴŶ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

call MPI_Recv(recvbuf, n, MPI_DOUBLE_PRECISION, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE, ierr)↪→

call MPI_Send(sendbuf, n, MPI_DOUBLE_PRECISION, 0, 0, MPI_COMM_WORLD,
ierr)↪→

end if
call MPI_Barrier(MPI_COMM_WORLD, ierr)

then we perform the ping-pong test for a number of iterations, measuring the time taken
for each round-trip communication.

Ŵŷ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

t_local = 0.0d0
do i = 1, niter

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t_start = MPI_Wtime()
if (rank == 0) then

call MPI_Send(sendbuf, n, MPI_DOUBLE_PRECISION, nprocs-1, 0,
MPI_COMM_WORLD, ierr)↪→

call MPI_Recv(recvbuf, n, MPI_DOUBLE_PRECISION, nprocs-1, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr)↪→

else if (rank == nprocs-1) then
call MPI_Recv(recvbuf, n, MPI_DOUBLE_PRECISION, 0, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr)↪→

call MPI_Send(sendbuf, n, MPI_DOUBLE_PRECISION, 0, 0,
MPI_COMM_WORLD, ierr)↪→

ŴŸ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

end if
t_end = MPI_Wtime()
t_local = t_local + (t_end - t_start)

end do
t_avg = t_local / niter

Finally, we compute the average time and bandwidth, reporting the results from rank ų.
! Take the maximum time across all ranks
call MPI_Reduce(t_avg, t_max, 1, MPI_DOUBLE_PRECISION, MPI_MAX, 0,

MPI_COMM_WORLD, ierr)↪→

if (rank == 0) then
print *, "MPI Ping-Pong strong scaling test"
print *, "Message size (MB): ", n * 8.0d0 / 1.0d6
print *, "MPI ranks : ", nprocs

ŴŹ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

print *, "Avg Ping-Pong time (s): ", t_max
print *, "Avg Bandwidth (GB/s): ", (n * 8.0d0 * 2.0d0) / (t_max *

1.0d9)↪→

print *, "Avg Bandwidth (GBit/s): ", (n * 8.0d0 * 8.0d0 * 2.0d0) /
(t_max * 1.0d9)↪→

end if
deallocate(sendbuf, recvbuf)
call MPI_Finalize(ierr)

end program test_mpi_pingpong

Ŵź/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We recall that the bandwidth is computed as the total data transferred (send + receive)
divided by the time taken, i.e.,

Bandwidth ≈ N× 2

Tcomm

where N is the message size in bytes and Tcomm is the average time taken for the
ping-pong communication.
We have an array of size n double-precision elements, so the message size in bytes is
N = n× 8 bytes, and the total data transferred in the ping-pong test is N× 2 bytes and
we multiply by Ż to convert to bits.

ŴŻ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

To run this benchmark on a HPC system with SLURM, we use the Amelia cluster at
IAC-CNR.

This is a machine whose nodes are equipped with Intel Xeon Gold ŹŶŶŻ processors (Ŷŵ
cores per socket, ŵ sockets per node), connected via an InfiniBand HDRŵųų network with
a theoretical peak bandwidth of 200Gbit s−1.
We write a SLURM script to run the benchmark with different numbers of MPI ranks,

#!/bin/bash
#SBATCH --job-name=pingpong_strong_64ppn
#SBATCH --nodes=7
#SBATCH --ntasks-per-node=64
#SBATCH --time=00:20:00
#SBATCH --partition=prod-gn
#SBATCH --mem=900Gb
#SBATCH --output=pingpong_%j.out
#SBATCH --error=pingpong_%j.errŴż/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We load the necessary modules and compile the Fortran code using mpifort,
module load intel/gcc-12.2.1/openmpi-4.1.6
And then use bash loops to run the benchmark with different numbers of MPI ranks,
for NODES in $(seq 1 7); do

NTASKS=$((NODES * 64))
echo "Running Ping-Pong with:"
echo " Nodes : $NODES"
echo " Tasks : $NTASKS (64 per node)"
mpirun --bind-to core --map-by ppr:64:node --mca btl ^openib --mca pml

ucx -x UCX_NET_DEVICES='mlx5_0:1' -np $NTASKS ./pingpong↪→

done
The script can be submitted to the SLURM queue using the command:
sbatch runner-pingpong.sh.

ŵų/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We have passed several options to mpirun to optimize the communication performance:
• --bind-to core: binds each MPI process to a specific CPU core to reduce context

switching and improve cache utilization.
• --map-by ppr:64:node: maps Źŷ MPI processes per node, ensuring an even

distribution of processes across the available nodes.
• --mca btl ^openib: disables the OpenIB BTL (Byte Transfer Layer) to avoid

potential issues with certain InfiniBand configurations.
• --mca pml ucx: selects the UCX (Unified Communication X) PML (Point-to-Point

Messaging Layer) for improved performance on high-speed networks.
• -x UCX_NET_DEVICES='mlx5_0:1': specifies the network devices to be used by

UCX for communication, optimizing data transfer over the InfiniBand network.
The last three options are relevant only to the specific network configuration of the

Amelia cluster, thus they might not be necessary on other systems.

ŵŴ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We have passed several options to mpirun to optimize the communication performance:
• --bind-to core: binds each MPI process to a specific CPU core to reduce context

switching and improve cache utilization.
• --map-by ppr:64:node: maps Źŷ MPI processes per node, ensuring an even

distribution of processes across the available nodes.
• --mca btl ^openib: disables the OpenIB BTL (Byte Transfer Layer) to avoid

potential issues with certain InfiniBand configurations.
• --mca pml ucx: selects the UCX (Unified Communication X) PML (Point-to-Point

Messaging Layer) for improved performance on high-speed networks.
• -x UCX_NET_DEVICES='mlx5_0:1': specifies the network devices to be used by

UCX for communication, optimizing data transfer over the InfiniBand network.
The first two options are important for what we are doing, because they ensure that

we really use the network as expected.

ŵŴ/Ÿų

Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We increase the number of MPI ranks from Źŷ to ŷŷŻ (ź nodes with Źŷ ranks each).

64 128 192 256 320 384 448
0

50

100

150

200

Number of MPI Ranks

Av
g
Ba

nd
w
id
th

(G
Bi
t/
s)

MPI Ping-Pong 8MB
MPI Ping-Pong 80MB

The average ping-pong bandwidth approaches the theoretical peak bandwidth of the
InfiniBand HDRŵųų network (200Gbit s−1).
ŵŵ/Ÿų

Exercise
ŵ Message Passing Interface (MPI)

There are a number of possible exercises you can do to further explore the ping-pong
benchmark
Ŵ. Vary the message size and perform linear regression to estimate the latency and

bandwidth parameters (α and β) of the communication model.
ŵ. Implement a similar benchmark using non-blocking communication (e.g.,

MPI_Isend and MPI_Irecv).
Ŷ. Benchmark what happens when you use MPI ranks on different nodes versus on the

same node.
ŷ. Explore the impact of different MPI implementations (e.g., OpenMPI vs MPICH vs

Intel MPI) on communication performance.

ŵŶ/Ÿų

The problem of collective communications
ŵ Message Passing Interface (MPI)

Let’s review the idea of the Broadcast operation. Algorithmically, we can implement it as:
if (my_rank == 0) then

do i = 1, p-1
call MPI_Send(a, 1, MPI_REAL, i, tag, MPI_COMM_WORLD, ierr)

end do
else

call MPI_Recv(a, 1, MPI_REAL, 0, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE, ierr)↪→

end if

• This is a collective communication since all processes participate in its
implementation;

• Just from a software engineering perspective, it makes sense to encapsulate it in a
function: the MPI_Bcast.

ŵŷ/Ÿų

How much does it cost?
ŵ Message Passing Interface (MPI)

• With fast networks, cost for Ŵ float
is dominated by latency α;

• Cost of this algorithm is therefore

T(p) ≈ α · (p− 1)

or, linear in p.

0

1

2

3

4

5

6

7

ŵŸ/Ÿų

Can we do any better?
ŵ Message Passing Interface (MPI)

Let’s make some assumptions about the network:
• The cost of communication between any two network nodes is uniform, and is given

by α+ N/β;
• In particular, it is possible to send a message between any two nodesŴ

• The network is capable of sustaining multiple messages (noisy topology) at the same
time, provided pairs of nodes involved in the messages do not overlap.

The latter assumption is especially important: we can improve communication if we can
have multiple messages “flying” through the network at the same time.

ŴHistorically there existed networks where only neighbouring nodes could exchange messages

ŵŹ/Ÿų

Tree broadcast — simple minded
ŵ Message Passing Interface (MPI)

2

1

3

75 64

8

ŵź/Ÿų

Tree broadcast — simple minded
ŵ Message Passing Interface (MPI)

Assume processes are numbered from Ŵ:
• Each process i (except Ŵ) receives from ⌊(p− 1)/2⌋;
• Each process such that 2i <= p sends first to process 2i, then to process 2i+ 1.

Cost:
T(p) ≈ 2 log(p),

or logarithmic in p. To be precise, with p > 1 then

T(p) =


0 for p = 1

2 · (k− 1) + 1 for p = 2k, k > 0

2 · ⌊log2(p)⌋ otherwise

ŵŻ/Ÿų

Tree broadcast — Recursive Doubling
ŵ Message Passing Interface (MPI)

0

0

4

62 40

1 2 4 5 6 730

ŵż/Ÿų

Tree broadcast — Recursive Doubling
ŵ Message Passing Interface (MPI)

• Consider that there are p processes with root ų;
• Set K the minimum power of ŵ such that K ≥ p;
• Process ų sends to process K/2;
• Divide the processes in two groups: from ų to K/2− 1, and from K/2 to
min(p− 1,K− 1);

• Apply recursively to:
— Processes ų to K/2− 1 with root ų;
— Processes K/2 tomin(p− 1,K− 1) with root K/2.

Cost:
T(p) = ⌈log(p)⌉,

or logarithmic in p.

Ŷų/Ÿų

Collective communications
ŵ Message Passing Interface (MPI)

Considerations for collective communications:
• Their functionality can be defined in terms of simple loops;
• There exist much better implementations;
• The optimal implementation for a given collective depends on:

— The operation;
— The network interface;
— The network topology;
— The amount of data.

A good MPI implementation will switch internally among different algorithms where
appropriate (another advantage of encapsulating the collective)

Let us try and take some measurements of the broadcast operation to see how its cost
scales with the number of MPI ranks.

ŶŴ/Ÿų

Collective communications
ŵ Message Passing Interface (MPI)

Considerations for collective communications:
• Their functionality can be defined in terms of simple loops;
• There exist much better implementations;
• The optimal implementation for a given collective depends on:

— The operation;
— The network interface;
— The network topology;
— The amount of data.

A good MPI implementation will switch internally among different algorithms where
appropriate (another advantage of encapsulating the collective)

Let us try and take some measurements of the broadcast operation to see how its cost
scales with the number of MPI ranks.

ŶŴ/Ÿų

Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

program test_mpi_bcast_latency
use mpi
implicit none

integer :: ierr, rank, nprocs
integer :: root
integer :: n, i, niter
real(kind=8), allocatable :: buffer(:)
real(kind=8) :: t_start, t_end, t_local, t_avg, t_max

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)

Ŷŵ/Ÿų

Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

root = 0
! Small message size for latency measurement
n = 1 ! single element for pure latency
niter = 10000 ! more iterations for better statistics
allocate(buffer(n))
if (rank == root) then

buffer = 1.0d0
else

buffer = 0.0d0
end if
! Warm-up (not timed)
call MPI_Bcast(buffer, n, MPI_DOUBLE_PRECISION, root, MPI_COMM_WORLD,

ierr)↪→

ŶŶ/Ÿų

Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t_local = 0.0d0
call MPI_Barrier(MPI_COMM_WORLD, ierr)
t_start = MPI_Wtime()
do i = 1, niter

call MPI_Bcast(buffer, n, MPI_DOUBLE_PRECISION, root,
MPI_COMM_WORLD, ierr)↪→

end do
t_end = MPI_Wtime()

t_local = t_local + (t_end - t_start)
t_avg = (t_end - t_start) / niter
! Take the maximum latency across all ranks
call MPI_Reduce(t_avg, t_max, 1, MPI_DOUBLE_PRECISION, MPI_MAX, root,

MPI_COMM_WORLD, ierr)↪→

Ŷŷ/Ÿų

Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

if (rank == root) then
print *, "MPI_Bcast latency test"
print *, "MPI ranks : ", nprocs
print *, "Avg Bcast latency (us): ", t_max * 1.0d6

end if
deallocate(buffer)
call MPI_Finalize(ierr)

end program test_mpi_bcast_latency

ŶŸ/Ÿų

Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

We run the benchmark on the Amelia cluster at IAC-CNR, (ŵų nodes with Źŷ ranks each).

64 128 192 256 320 384 448
0

5

10

15

Number of MPI Ranks

Av
g
La
te
nc
y
µs
MPI_Bcast (Ŵ double)

The observed MPI_Bcast latency shows a non-monotonic scaling trend as the number of
MPI ranks increases.
ŶŹ/Ÿų

Interpreting Broadcast Scaling Behavior
ŵ Message Passing Interface (MPI)

This behavior is expected and reflects the internal algorithm selection.

• Ŵ node (Źŷ ranks): Extremely low latency due to shared-memory communication.
• ŵ–Ŷ nodes (ŴŵŻ–Ŵżŵ ranks): Transition to inter-node communication with efficient

tree-based collectives.
• ŷ–Ÿ nodes (ŵŸŹ–Ŷŵų ranks): Sudden increase in latency caused by algorithm

switching and network contention.
• Ź–ź nodes (ŶŻŷ–ŷŷŻ ranks): Stabilization as MPI switches to scalable hierarchical

broadcast algorithms.

Overall, broadcast latency is dominated by collective startup costs rather than message
size, and is strongly influenced by communicator size, topology awareness, and algorithm
thresholds.

Ŷź/Ÿų

Table of Contents
Ŷ Restarting with BLAS: Level Ŵ routines

▶Message Passing Interface (MPI)
Timing and barriers
The Cost of Communication

Ping-Pong Test for Point-to-Point Communication
The cost of collective communications

▶ Restarting with BLAS: Level Ŵ routines
How do we distribute vectors?
Creation and destruction

ŶŻ/Ÿų

Restarting with BLAS: Level Ŵ routines
Ŷ Restarting with BLAS: Level Ŵ routines

The first operation we are going to considere are the level-Ŵ BLAS routines, which we
recall are vector-vector operations.

• Vector scaling: y← αy (DSCAL)
• Vector addition: y← y+ αx (DAXPY)
• Vector dot product: α← xTy (DDOT)
• Vector norm: α← ∥x∥2 (DNRM2)

In our model, each process holds a local portion of the vectors, this means that for a
vector of size N distributed over P processes, each process holds a local vector of size N/P.

Ŷż/Ÿų

How do we distribute vectors?
Ŷ Restarting with BLAS: Level Ŵ routines

The basic idea can be represented with an easy picture:

Proc ų Proc Ŵ Proc ŵ Proc Ŷ Proc ŷ Proc Ÿ Proc Ź Proc ź

Full Vector of Size N divided across P = 8 Processes

This permits us to:
• Perform local computations on each process independently;
• Know what data is stored where with a closed-form formula:

Process p holds elements
[
p · N

P
, (p+ 1) · N

P
− 1

]

ŷų/Ÿų

Implementing vector distribution
Ŷ Restarting with BLAS: Level Ŵ routines

To implement this distribution in code, we need to:
• Initialize MPI and get the rank and size of the communicator;
• Determine the global vector size N and compute the local size N/P;
• Allocate local arrays for each process to hold its portion of the vector;

The inizialization code looks always the same:
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)

To compute the local size and allocate the local vector we can use a simple-minded block
distribution.

ŷŴ/Ÿų

Implementing vector distribution: block distribution
Ŷ Restarting with BLAS: Level Ŵ routines

Assuming N is divisible by P, the local size is simply:

Nlocal =
N
P

In the general case, we can compute the local size as:

Nlocal =

⌊
N+ P− 1− p

P

⌋
where p is the rank of the process. This formula ensures that the last process gets any
remaining elements if N is not perfectly divisible.
We can implement this as a function:

function compute_local_size(N, P, p) result(n_local)
integer, intent(in) :: N, P, p
integer :: n_local
n_local = (N + P - 1 - p) / P

end function compute_local_sizeŷŵ/Ÿų

Implementing Level-Ŵ BLAS: a type for distributed vectors
Ŷ Restarting with BLAS: Level Ŵ routines

The first thing we need to do is to create a distributed vector datytpe, this can be done
using the object-oriented functionalities of Fortran:
type :: mpi_ddistributed_vector

integer :: n_local(1) ! number of local elements
integer :: n_global ! total number of global elements
integer :: comm ! MPI communicator
real(real64), allocatable :: data(:) ! local data array

end type mpi_ddistributed_vector
The type encapsulates all necessary information about the distributed vector, including
local size, global size, communicator, and local data array.

ŷŶ/Ÿų

Implementing Level-Ŵ BLAS: type-bound procedures
Ŷ Restarting with BLAS: Level Ŵ routines

In Fortran a type can have type-bound procedures, which are functions or subroutines
associated with the type. Thesere are declared within the contains section of the type
definition.
type :: mpi_ddistributed_vector

<Type members>
contains

<Type bound procedure are declared here>
end type mpi_ddistributed_vector

For our distributed vector type, we need to start by implementing:
• A constructor to initialize the distributed vector;
• A destructor to free resources;

ŷŷ/Ÿų

Implementing Level-Ŵ BLAS: Constructor
Ŷ Restarting with BLAS: Level Ŵ routines

The constructor initializes the distributed vector by computing the local size, allocating
the local data array, and setting the global s ize and communicator.

We add the following type-bound procedure to the type:
procedure, pass(this) :: dinit
The implementation of the constructor is then inserted in che contains part
subroutine dinit(this, comm, n_global)
use mpi
use iso_fortran_env, only: error_unit
implicit none
class(mpi_ddistributed_vector), intent(inout) :: this
integer, intent(in) :: comm
integer, intent(in) :: n_global

end subroutine dinit

ŷŸ/Ÿų

Implementing Level-Ŵ BLAS: Constructor
Ŷ Restarting with BLAS: Level Ŵ routines

The type constructor has a default variable this that refers to the instance of the type
being initialized.

integer :: ierr, rank, nprocs
this%comm = comm
this%n_global = n_global
call MPI_Comm_rank(this%comm, rank, ierr)
call MPI_Comm_size(this%comm, nprocs,

ierr)↪→

this%n_local =
compute_local_size(this%n_global,
nprocs, rank)

↪→

↪→

allocate(this%data(this%n_local),
stat=ierr)↪→

• We assign the communicator and global
size to the type members;

• We get the rank and size of the
communicator;

• We compute the local size using the
previously defined function;

• We allocate the local data array based
on the computed local size.

We should also include error handling for the allocation.

ŷŹ/Ÿų

Implementing Level-Ŵ BLAS: Constructor (error handling)
Ŷ Restarting with BLAS: Level Ŵ routines

The error handling for the allocation can be done by checking the status of the allocation.
if (ierr /= 0) then

write(error_unit, *) "Error allocating local data array on rank ", rank
call MPI_Abort(this%comm, ierr, ierr)

end if
The MPI_Abort function is called to terminate the MPI program if the allocation fails,
ensuring that all processes are informed of the error, and that the program fails and exits
gracefully.

ŷź/Ÿų

Implementing Level-Ŵ BLAS: Destructor
Ŷ Restarting with BLAS: Level Ŵ routines

The destructor is responsible for freeing the resources allocated to the distributed vector.
We add use the final keyword in the type bound procedures to define the
destructor:
final :: dfinalize
The implementation of the destructor is then inserted in che contains part
subroutine dfinalize(this)

type(mpi_ddistributed_vector), intent(inout) :: this
if (allocated(this%data)) then

deallocate(this%data)
end if

end subroutine dfinalize

ŷŻ/Ÿų

The creation and destruction of distributed vectors
Ŷ Restarting with BLAS: Level Ŵ routines

With the constructor and destructor defined, we can now create and destroy distributed
vector instances easily.
integer :: n_global, rank, ierr
type(mpi_ddistributed_vector) :: x
call MPI_Init(ierr)
n_global = 1000000 ! Total number of elements
call x%dinit(MPI_COMM_WORLD, n_global)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
if (rank == 0) then

write(output_unit, *) "MPI ranks : ", nprocs
write(output_unit, *) "Global vector size : ", n_global

end if
call MPI_Barrier(MPI_COMM_WORLD, ierr)
write(output_unit, *) "Rank ", rank, ": Local vector size : ", x%n_local
call MPI_Finalize(ierr)
ŷż/Ÿų

Conclusions and next steps
ŷ Conclusions and next steps

Today we have:
Reviewed the concept of communication costs in MPI;
Implemented a point-to-point ping-pong benchmark to measure communication
latency and bandwidth;
Explored the scaling behavior of collective communications using a broadcast
benchmark;
Introduced the concept of distributed vectors and how to implement them in Fortran
using object-oriented programming.

Next steps:
Implement Level-Ŵ BLAS operations (vector scaling, addition, dot product, norm) for
distributed vectors;
Explore Level-ŵ and Level-Ŷ BLAS operations

Ÿų/Ÿų

	Last time on High Performance Linear Algebra
	Message Passing Interface (MPI)
	Timing and barriers
	The Cost of Communication

	Restarting with BLAS: Level 1 routines
	How do we distribute vectors?
	Creation and destruction

	Conclusions and next steps

