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The original idea

The concept of differentiation and integration to noninteger order goes as far back as the
concept we are used to work with. Leibniz mentions it in a letter to L’Hôspital in 1695:

“John Bernoulli seems to have told you of my having men-
tioned to him a marvelous analogy which makes it possible
to say in a way that successive differentials are in geometric
progression. One can ask what would be a differential
having as its exponent a fraction. You see that the re-
sult can be expressed by an infinite series. Although this
seems removed from Geometry, which does not yet know of
such fractional exponents, it appears that one day these
paradoxes will yield useful consequences, since there
is hardly a paradox without utility. Thoughts that mat-
tered little in themselves may give occasion to more beau-
tiful ones.” (Leibniz, 1646-1716)
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Who cares?

Derivatives of non integer order help
• modeling of viscoelastic phenomena, e.g., (Bagley and Torvik 1986; Müller et al. 2011)
• restate fundamental model from physics [gravity (Giusti, Garrappa, and Vachon 2020),

Schrödinger (Laskin 2002), waves (Luchko 2013), …],
• modeling of heterogeneous cardiac tissues (Cusimano et al. 2015),
• describing phenomena with memory and non locality aspects, e.g., (Benzi et al. 2020;

Riascos and Mateos 2014)
...

This is a booming topic, and many new applications frequently arise.
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Fractional integrals

Euler Γ -function
The Γ function Γ(z) is defined for complex numbers
with a positive real part via the convergent improper
integral:

Γ(z) =
∫+∞

0
xz−1e−x dx , <(z) > 0,

and then extended by analyitic continuation to a
meromorphic function that is holomorphic in the
whole complex plane except zero and the negative
integers, where the function has simple poles.
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Γ(z + 1) = z Γ(z)
Bounded in:

S = {z ∈ C : <z ∈ [1, 2)}
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A formula for repeated integration
Swapping Integrals
If G(x , t) is jointly continuous on [c, b]× [c, b]:∫ x

c
dx1

∫ x1

c
G(x1, x2)dx2 =

∫ x

c
dx2

∫ x

x2

G(x1, x2)dx1.

Fubini’s Theorem
Given (X ,SX , µx), (Y ,SY , µy ) measure spaces with σ-finite
complete measures µx , µy on the σ-algebras SX , and SY . If
the function f (x , y) is integrable on the product X × Y w.r.t.
the product measure µ = µx × µy , then the following equality
holds true ∫

X×Y
f (x , y)dµ =

∫
Y

dµy

∫
X

f (x , y)dµx .
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A formula for repeated integration

Cauchy’s formula
The indefinite integral of order n ∈ N of function f (t) is given by

In
c,t f (t) =

∫ t

c
· · ·
∫ t

c
f (t)dt · · · dt =

1
(n − 1)!

∫ t

c
(t − τ)n−1f (τ)dτ,

In
t,c f (t) =

∫ c

t
· · ·
∫ c

t
f (t)dt · · · dt =

1
(n − 1)!

∫ t

c
(τ− t)n−1f (τ)dτ.

• Can be proved by induction using Fubini’s Theorem/the previous formula,

• We have introduced the Γ function so let’s use it,
• Now we use it to move from the integer case to the real one.
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Riemann–Liouville Fractional Integrals
Riemann–Liouville Fractional Integral
Let <α > 0, and let f ∈ L1([a, b]). Then for t ∈ [a, b] we call

Iα[a,t]f (t) = aD−α
t f (t) = 1

Γ(α)

∫ t

a
(t − τ)α−1f (τ)dτ,

Iα[t,b]f (t) = aD−α
t f (t) = 1

Γ(α)

∫b

t
(τ− t)α−1f (τ)dτ.

the Riemann–Liouville fractional integrals of f of order α, we set it to be the identity
operator whenever α = 0.

LIGHTBULB the idea is that we have substituted the integer number n of repetition of the integral
with the real order α,

Question-Circle but does this makes sense?
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RL Fractional Integrals: properties - I
Theorem (Existence).
Lef f ∈ L1[a, b], and α > 0. Then, the integral Iα[a,t]f (t) exists for almost every t ∈ [a, b].
Moreover, the function Iα[a,t]f itself is also an element of L1[a, b].

Proof. It is sufficient to recognize that we can write the integral in question as a
convolution on R, indeed:∫ t

0
(t − τ)α−1f (τ)dτ =

∫+∞
−∞ Φ1(t − τ)Φ2(τ)dτ,

where

Φ1(u) =
{

uα−1, for 0 < t ≤ b − a,
0, otherwise,

and Φ2(u) =
{

f (u), for u ∈ [a, b],
0, otherwise.

By construction both the Φj , j = 1, 2, are in L1(R), and thus the integral exists and is a
member of L1 as a convolution of L1 functions (We are using again Fubini’s Theorem).
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RL Fractional Integrals: properties - II

Theorem (Semigroup property).
The RL fractional integral operators {Iαc : L1[a, b]→ L1[a, b], α ≥ 0} form a commutative
semigroup with respect to the concatenation operation, that is

Iαc (Iβc f (t)) = Iα+β
c f (t)), and Iβc (Iαc f (t)) = Iα+β

c f (t)).

The neutral element of this semigroup is the I0
c operator.

Proof. We prove it for one side, the other is analogous.
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RL Fractional Integrals: properties - II

Euler’s β-function
The Euler’s β-function is defined as:

β(x , y) ,
∫1

0
ux−1(1 − u)y−1 du =

Γ(x)Γ(y)
Γ(x + y) <x > 0,<y > 0,
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can interchange the order of integration. We now use the substitution t = τ+ s(x − τ),
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RL Fractional Integrals: properties - II
Theorem (Semigroup property).
The RL fractional integral operators {Iαc : L1[a, b]→ L1[a, b], α ≥ 0} form a commutative
semigroup with respect to the concatenation operation, that is

Iαc (Iβc f (t)) = Iα+β
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c f (t)).

The neutral element of this semigroup is the I0
c operator.
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can interchange the order of integration. We now use the substitution t = τ+ s(x − τ),
dt = (x − τ)ds. We obtain:

Iα[a,t]I
β
[a,t]f (x) =

1
Γ(α+ β)

∫ x

a
(x − τ)α+β−1f (τ)dτ = Iα+β

[a,t] f (x), a.e. on [a, b].

The same works also if we exchange α and β, while we have the 0th order operator being
the neutral element by definition. 9 / 26



RL Fractional Integrals: properties - III

A note on regularity.
Observe that in the proof we could say something more on the regularity of the resulting
functions. Indeed if f is a continuous function on [a, b], then also Iα[a,t]f is continuous.
Therefore we have that also the concatenation Iα[a,t]I

β
[a,t] and Iα+β

[a,t] are continuous. Then
what we have proved is that we have two continuous function that are almost everywhere
equal, and therefore they most coincide everywhere. Furthermore, if f ∈ L1[a, b] and
α+ β ≥ 1 we can use Semigroup property to write

Iα[a,t]I
β
[a,t]f = Iα+β

[a,t] f = Iα+β−1
[a,t] I1

[a,t]f , a.e.

Now, since I1
[a,t]f is continuos, we also get that the other two way of writing it are

continuous, and thus we can conclude the equality everywhere by the same argument as
before.

10 / 26



Computing a Riemann–Liouville fractional integral.

Iα[0,t]t
µ =

1
Γ(α)

∫ t

0
(t − τ)α−1τµ dτ,

This should be the simplest possible example, and indeed it is as simple as using again the
Euler β Function:

β(x , y) ,
∫1

0
ux−1(1 − u)y−1 du =

Γ(x)Γ(y)
Γ(x + y) <x > 0,<y > 0.

To obtain it, we do the substitution for u = τ
t , then

Iα[0,t]t
µ =

tα+µ

Γ(α)

∫1

0
uµ(1 − u)α−1 du

=
tα+µ

Γ(α)

Γ(µ+ 1)Γ(α)
Γ(α+ µ+ 1) =

Γ(µ+ 1)
Γ(α+ µ+ 1) tα+µ.
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Computing a Riemann–Liouville fractional integral.

Iα[0,t]t
µ =

1
Γ(α)

∫ t

0
(t − τ)α−1τµ dτ =

Γ(µ+ 1)
Γ(α+ µ+ 1) tα+µ,

t = linspace(0,1,100);
I = @(alpha,mu,t)

gamma(mu+1)*t.^(alpha+mu)/
gamma(alpha+mu+1);

↪→
↪→
mu = 1.5;
alpha = 1.5;
plot(t,t.^mu,'r-',t,I(alpha,mu,t),

'b-','Linewidth',2);↪→
legend('Function','Integral');

SAD-TEARThey are hard to compute!
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Quadratures for Fractional Integrals
Lightbulb Quadrature idea
Let us assume that f (t) is suitably smooth on an interval (a, b). Let

h =
b − a

N , tk = a + kh, with k = 0, 1, 2, . . . ,N, N ∈ N

then we can approximate for t = tN the fractional integral as

aD−α
b f (t)

∣∣
t=tN

=
1

Γ(α)

∫ tN

a
(tN − τ)α−1f (τ)dτ =

1
Γ(α)

N−1∑
k=0

∫ tk+1

tk

(tk − τ)α−1f (τ)dτ.

We approximate f (x) with a polynomial p(x) such that we can compute exactly the
involved integrals, this yields quadratures by the usual look

aD−α
b f (t)

∣∣
t=tN

≈
N−1∑
k=0

ωk f (tk).
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Piecewise constant approximation
We approximate f (t) on the intervals [tk , tk + 1), k = 0, . . . ,N − 1, selecting

f (t) ≈ p(t) ≡ p(tk), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1,
from which we get the formula

aD−α
b f (t)

∣∣
t=tN

≈ 1
Γ(α)

N−1∑
k=0

f (tk)

∫ tk+1

tk

(tN − τ)α−1 dτ =
1

Γ(α)

N−1∑
k=0

f (tk)

[
−

1
α
(tN − τ)α

]tk+1

tk

=

N−1∑
k=0

f (tk)
1

αΓ(α)
[(tN − tk)

α − (tN − tk+1)
α]

=

N−1∑
k=0

f (tk)
1

αΓ(α)
[(a + hn − a − kh)α − (a + hn − a − (k + 1)h)α]

=

N−1∑
k=0

f (tk)
hα

Γ(α+ 1) [(n − k)α − (N − k − 1)α] =
N−1∑
k=0

bN−k−1f (tk),
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We approximate f (t) on the intervals [tk , tk + 1), k = 0, . . . ,N − 1, selecting

f (t) ≈ p(t) ≡ p(tk), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1,

from which we get the formula

aD−α
b f (t)

∣∣
t=tN

≈
N−1∑
k=0

bN−k−1f (tk),

where we have defined

bk =
hα

Γ(α+ 1) [(k + 1)α − kα], 0 ≤ k ≤ N − 1.
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f (t) ≈ p(t) ≡ p(tk), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1,

from which we get the formula

aD−α
b f (t)
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t=tN

≈
N−1∑
k=0

bN−k−1f (tk), bk =
hα

Γ(α+ 1) [(k + 1)α − kα].

Analogously we get the case in which we select the right approximation

f (t) ≈ p(t) ≡ p(tk+1), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1,

and, more generally, for the weighted formula in which we select

f (t) ≈ p(t) ≡ λp(tk) + (1 − λ)p(tk+1), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1, λ ∈ [0, 1].
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Implementation
This is a simple procedure to implement

function I = constfracint(f,a,t,alpha,N,lambda)
%CONSTFRACINT computes the fractional integral with the weighted piecewise
%constant approximation of the function f between a and t, over N uniformly
%distributed intervals.
h = (t-a)/N;
tk = (a:h:t)';
b = zeros(N,1);
for k=0:N-1

b(k+1) = (k+1)^alpha - k^alpha;
end
b = h^alpha*b/gamma(alpha+1);
p = f(tk);
I = flipud(b)'*(lambda*p(1:N) + (1-lambda)*p(2:N+1));
end
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Implementation - II
And we can test the results using the fractional integral we have computed by hand

f = @(t,mu) t.^mu;
Itrue = @(alpha,mu,t) gamma(mu+1)*t.^(alpha+mu)/ gamma(alpha+mu+1);
mu = 1;
alpha = 1.5;

N = 100;
lambda = 1;
I = constfracint(@(t) f(t,mu),0,1,alpha,N,1);
fprintf('Relative error is: %e\n',abs(I-Itrue(alpha,mu,1))./abs(Itrue(alpha,mu,1)));

That returns us

Relative error is: 1.246939e-02

But what about convergence?
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Convergence

Fractional Newton-Cotes formula
Lef f (t) be approximated by a polynomial
pk,r (t) of degree r on the grid points
{tk = t(k)0 , . . . , t(k)r = tk+1}. Then the error
estimate for an f ∈ Cr+1([a, b]) on each
sub-interval [tk , tk+1] is given by

f (t) − pk,r (t) =
f (r+1)(τk)

(r + 1)!

r∏
j=0

(t − t(k)j ),

for r ∈ N, t, τk ∈ [tk , tk+1], i.e., the formula
is of order O(hr+1).

101 102 103 104 10510−12

10−8

10−4

100
Relative Error

λ = 1
λ = 0
λ = 0.5

N/λ 0 1 1/2

1e+01 1.3e-01 1.2e-01 2.9e-03
1e+02 1.3e-02 1.2e-02 3.1e-05
1e+03 1.3e-03 1.2e-03 3.1e-07
1e+04 1.3e-04 1.2e-04 3.1e-09
1e+05 1.3e-05 1.2e-05 3.1e-11
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Convergence
Proof.The interpolating polynomial can be expressed in the Lagrange basis

pk,r (t) =
r∑

i=0
lk,i(t)f (t(k)i ), lk,i(t) =

r∏
j=0
j 6=i

t − t(k)j

t(k)i − t(k)j
, 0 ≤ i ≤ r , t ∈ [tk , tk+1].

Then the fractional Newton-Coates formula si given by

aD−α
b f (t)

∣∣
t=tN

≈ aD−α
b pk,r (t)

∣∣
t=tN

=

N−1∑
k=0

r∑
i=0

C (k)
i ,N f (t(k)i ),

for
C (k)

i ,N =
1

Γ(α)

∫ tk+1

tk

(tN − τ)α−1lk,i(τ)dτ.
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t=tN

=

N−1∑
k=0

r∑
i=0

C (k)
i ,N f (t(k)i ),

from which we obtain the error estimate as∣∣aD−α
b f (t) − aD−α

b pk,r (t)
∣∣ ≤ 1

Γ(α)

N−1∑
k=0

∫ tk+1

tk

(tN − τ)α−1 |f (τ) − pk,r (τ)| dτ

≤ max
t∈[a,tN ]

|f (r+1)(t)|
(r + 1)!Γ(α)

N−1∑
k=0

∫ tk+1

tk

(tN − τ)α−1
r∏

j=0
|τ− t(k)j |dτ

≤ max
t∈[a,tN ]

∣∣∣f (r+1)(t)
∣∣∣ hr+1

(r + 1)!Γ(α)

N−1∑
k=0

∫ tk+1

tk

(tN − τ)α−1 dτ.
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Convergence
Proof.Then the fractional Newton-Coates formula si given by

aD−α
b f (t)

∣∣
t=tN

≈ aD−α
b pk,r (t)

∣∣
t=tN

=

N−1∑
k=0

r∑
i=0

C (k)
i ,N f (t(k)i ),

from which we obtain the error estimate as∣∣aD−α
b f (t) − aD−α

b pk,r (t)
∣∣ ∈ O(hr+1).

Remark
The error estimate does not coincide completely with the classical one for Newton-Coates
formulas, this is due to the nonsymmetry of the integral kernel (t ′N − t)α−1.
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Suggested exercises, and some extensions

(i) Rewrite (and implement) the fractional weighted constant approximation for the
other-sided Riemann-Liuoville fractional integral,

(ii) Denote with tk+1/2 = tk+tk+1/2 on each sub-interval [tk , tk+1], approximate f (t) with a
piecewise quadratic polynomial, derive and implement the fractional Simpson’s formula
– Exclamation-Triangle The closed form of the coefficients for this case is cumbersome…

Extensions
By mimicking the usual procedure for deriving collocation/spectral type quadrature
formulas, we could approximate f (t) by using, e.g., Jacobi polynomials to obtain the
related quadrature formulas (when you have obtained formulas for Jacobi, then Chebyshev
and Legendre follow with relative “ease”).
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Riemann–Liouville Fractional Derivatives
Now that we’ve gotten a little bit of familiarity with Riemann–Liouville integral operators,
we can finally introduce the corresponding differential operators.

LightbulbThe key idea
Let f be a function having a continuous nth derivative on the interval [a, b], and let m ∈ N
be such that m > n, then

dn

dtn f (t) = 1
(m − n − 1)!

dm

dtm

∫ t

a
(t − τ)m−n−1f (τ)dτ =

dm

dtm Im−n
a f ,

simply by employing the Fundamental Theorem of (Classical) Calculus

f =
dm−n

dtm−n Im−n
a f ,

and applying the operator dn

dtn to both side of it.
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Riemann–Liouville Fractional Derivatives

Substitute the integer n with a real positive number α and select an m ∈ N s.t. m > α.

RL Derivative
Let α ∈ R+ and m = dαe, we define the Riemann-Liouville operator RLDα

a as

RLDα
a f (t) , dm

dtm Im−α
a f (t),

and we set RLD0
a to the identity operator.

Exclamation-Triangle The right-hand side of our definition remains valid, but now the resulting operator
depends on the choice of the point a.

Question-Circle for what functions f does this definition make sense?
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Riemann–Liouville Fractional Derivatives Existence

The An functions
We call An[a, b], or simply An when the interval is clear from the context, the space of
function with an absolutely continuous (n − 1)st derivative, i.e., the functions f for which
there exists almost everywhere a (generalized) nth derivative function g ∈ L1[a, b] for
which holds

f (n−1)(t) = f (n−1)(a) +
∫ t

a
g(τ)dτ.

Remind: For a compact interval:
continuously differentiable ⊆ Lipschitz continuous ⊆ absolutely continuous ⊆

bounded variation ⊆ differentiable almost everywhere
Example: f (t) = 3√t is absolutely continuous on any bounded interval I but not

Lipschitz continuous on any interval I such that 0 ∈ I.
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Riemann–Liouville Fractional Derivatives Existence
Theorem (Existence)
Lef f ∈ A1[a, b], and 0 < α < 1. Then RLDα

a f (t) exists almost everywhere in [a, b].
Moreover, RLDα

a f (t) ∈ Lp for 1 ≤ p < α−1 and

RLDα
a f (t) = 1

Γ(1 − α)

(
f (a)

(t − a)α +

∫ t

a
f ′(τ)(t − τ)dτ

)
.

Proof. We use directly the two definitions

RLDα
a f (t) = 1

Γ(1 − α)

d
dt

∫ t

a
f (τ)(t − τ)−α dτ

=
1

Γ(1 − α)

d
dt

∫ t

a

(
f (a) +

∫τ
a

f ′(s)ds
)
(t − τ)−α dτ
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a f (t) ∈ Lp for 1 ≤ p < α−1 and

RLDα
a f (t) = 1

Γ(1 − α)

(
f (a)

(t − a)α +

∫ t

a
f ′(τ)(t − τ)dτ

)
.

Proof. We use directly the two definitions, and apply again Fubini’s Theorem

RLDα
a f (t) = 1

Γ(1 − α)

d
dt

(
f (a)
∫ t

a

dt
(x − t)α +

∫τ
a

∫ t

a
f ′(s)(t − τ)−α ds dτ

)
=

1
Γ(1 − α)

(
f (a)

(t − a)α +
d
dt

∫τ
a

∫ t

a
f ′(s)(t − τ)−α ds dτ

)
(Fubini) =

1
Γ(1 − α)

(
f (a)

(t − a)α +
d
dt

∫ t

a
f ′(s)(t − s)1−α

1 − α
ds

)
,
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RLDα
a f (t) = 1

Γ(1 − α)

(
f (a)

(t − a)α +

∫ t

a
f ′(τ)(t − τ)dτ

)
.

Proof. We use directly the two definitions, and finally Leibniz rule for the derivative of
integral functions,

RLDα
a f (t) = 1

Γ(1 − α)

(
f (a)

(t − a)α +
d
dt

∫ t

a
f ′(s)(t − s)1−α

1 − α
ds

)
,

(Leibniz) =
1

Γ(1 − α)

(
f (a)

(t − a)α +

∫ t

a
f ′(τ)(t − τ)dτ

)
.
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Computing our first RL derivatives

To keep things simple we can compute, first of all, the fractional derivative of order
α ∈ (0, 1) of the constant function f (t) = 1 in [0, t]:

We simply apply the previous representation theorem,
and thus:

RLDα
[0,1]f (t) =

1
Γ(1 − α)

(
f (0)

(t − 0)α +

∫ t

0
f ′(τ)(t − τ)dτ

)
=

=
1

Γ(1 − α)

1
(t − 0)α =

t−α

Γ(1 − α)
0 0.2 0.4 0.6 0.8 1

0

2

4

6
RLDα

[0,1]f (t)
f (t) = 1

The RL derivative of a constant is not zero!
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Computing our first RL derivatives

Let f (t) = (t − a)β for some β > −1 and compute its RL derivative of order α > 0 on an
interval [a, b].
First we compute the fractional integral part of the definition:

Iα[a,t]f (t) =
1

Γ(α)

∫ t

a
(τ− a)β(t − τ)α−1 dτ =

=
1

Γ(α)

∫ t−a

0
sβ(t − a − s)α−1 ds =← (∫ x

0
sβ−1(x − s)α−1ds =

Γ(α)Γ(β)

Γ(α+ β)
xα+β−1

)
=

Γ(β+ 1)
Γ(α+ β+ 1)(t − a)α+β,
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Computing our first RL derivatives
Let f (t) = (t − a)β for some β > −1 and compute its RL derivative of order α > 0 on an
interval [a, b].
First we compute the fractional integral part of the definition:

Iα[a,t]f (t) =
Γ(β+ 1)

Γ(α+ β+ 1)(t − a)α+β,

Then we just have to compute the derivative with the correct indexes

RLDα
[0,1]f (t) =

ddαe

dtdαe
Idαe−α

[a,t] f (t) = Γ(β+ 1)
Γ(dαe− α+ β+ 1)

ddαe

dtdαe
(·− a)dαe−α+β

∣∣∣∣∣
t

,

now, if α− β ∈ N the right-hand side vanishes (dαe-derivative of a polynomial of lower
degree), if α− β 6∈ N, we find

RLDα
[0,1]f (t) =

Γ(β+ 1)
Γ(β+ 1 − α)

(t − a)β−α.
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Summary and anticipations

We did
Check-Circle Definition and properties of Riemann–Liouville Integrals,
Check-Circle Some examples of Fractional Newton-Cotes formulas for RL integral computations,
Check-Circle Definition and existence of Riemann–Liouville Derivatives,
Check-Circle A couple of by-hand computations of RL derivatives of simple functions.

Next up
CLIPBOARD-LIST Properties and interactions between Riemann–Liouville Integrals and Derivatives,
CLIPBOARD-LIST The Caputo fractional derivative,
CLIPBOARD-LIST An introduction to Fractional Differential Equations.
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