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\The curse of dimensionality

In the last lesson we saw that:

- Circulant preconditioners cannot cluster cases with variable coefficients,

- Multilevel circulant preconditioners cannot cluster multilevel Toeplitz systems,

- Preconditioner based on matrix algebras with fast simultaneous diagonalization
cannot cluster multilevel Toeplitz systems.

® Can we reduce the dimensionality of the problem to reuse the information and good
results we have in the 1D case?

å Alternating-direction implicit method,
å reformulation as matrix equations,
å reformulation as tensor problems.
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Matrix equation reformulations

The simplest way of introducing this reformulation is to go back to the 1D problem (now
with a source term):{

∂W
∂t = θ RLDα

[0,x ]W (x , t) + (1− θ)RLDα
[x ,1]W (x , t) + f (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

To solve everything we have to solve the sequence of linear systems

1

∆t

(
W(m+1) −W(m)

)
=

1

hα

(
θGN + (1− θ)GT

N

)
W(m+1)) + f (m+1), m = 0, . . . ,M − 1.

� Do we really have to solve this sequentially?
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Matrix equation reformulations

Following (Breiten, Simoncini, and Stoll 2016), we can collect the time steps altogether:(
BM ⊗ IN −

∆t

hα
IM ⊗ TN

)
Ŵ = F,

since 
IN − ∆t

hαTN

−IN IN − ∆t
hαTN

. . .
. . .

−IN IN − ∆t
hαTN




W(1)

W(2)

...

W(M−1)

 =


W(0) + ∆tf (1)

∆tf (2)

...

∆tf (M),


for TN =

(
θGN + (1− θ)GT

N

)
, BM = TM(1− e iθ).

This is now a coupled system of size MN ×MN, that is larger and uglier than before. . .
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Matrix equation reformulations
® Where is the advantage in dealing with(

BM ⊗ IN −
∆t

hα
IM ⊗ TN

)
Ŵ = F?

Let’s call W = [W(1)| · · · |W(M)]N×M , F = [W(0) +∆tf (1)| · · · |∆tfM ]N×M , and rewrite our
problem as

�Compute W ∈ RN×M s.t. ANW +WBT
M = F .

� This is a well-know object called Sylvester equation!

® Did we gain anything?

Back to this in a few moment. . .

® Since we are accumulating all the time steps in one step, is it appropriate to simply
use one of the methods we already know (e.g. Euler, BDFs, Adams’, etc.) or can we
do better?

Á Next lecture!
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∆t

hα
TN?

Let’s call W = [W(1)| · · · |W(M)]N×M , F = [W(0) +∆tf (1)| · · · |∆tfM ]N×M , and rewrite our
problem as

�Compute W ∈ RN×M s.t. ANW +WBT
M = F .

� This is a well-know object called Sylvester equation!

® Did we gain anything?

Back to this in a few moment. . .

® Since we are accumulating all the time steps in one step, is it appropriate to simply
use one of the methods we already know (e.g. Euler, BDFs, Adams’, etc.) or can we
do better?

Á Next lecture!

4 / 38



Matrix equation reformulations

® Where is the advantage in dealing with

(BM ⊗ IN + IM ⊗ AN) Ŵ = F, AN = −
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What about the 2D problem?

What happens if we want then to reformulate:
∂W
∂t =

(
θ RLDα

[0,x ] ·+(1− θ)RLDα
[x ,1]·

)
W (x , y , t)

+
(
θ RLDα

[0,y ] ·+(1− θ)RLDα
[y ,1]·

)
W (x , y , t) + f (x , y , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

By the usual procedure
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1
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1

2
INy − ∆tG̃Ny

)T

= W̃ (m)+∆tF (m+1), m = 0, . . . ,M−1.

å We now have a sequence of Sylvester equations for m = 0, . . . ,M − 1.

- The matrix coefficients are related to rescaled 1D problems.
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Solving Sylvester equations (Simoncini 2016)

J This rewriting effort will be worth it only if we can efficiently solve Sylvester equations:

AX + XB = C , A ∈ RN×N , B ∈ RM×M , C ∈ RN×M .

The solution can be expressed in closed form in a number of ways, e.g.,

Numerical mehtods

These formulations can exploited to devise numerical methods, to avoid a very long detour,
we are going to just mention a couple of them; read (Simoncini 2016) for the full story.
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AX + XB = C , A ∈ RN×N , B ∈ RM×M , C ∈ RN×M .

The solution can be expressed in closed form in a number of ways, e.g., as integrals of
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X = −

∫+∞
0

eAtCeBt dt,

for A and B with a spectra separated by a vertical line.
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The Bartels and Stewart 1972 algorithm

L The first step costs O(N3) and O(M3)
operations by QR algorithm for general
A and B,

L The last step is just two matrix-matrix
multiplications.

Input: A, B, C
Compute Schur factorizations
URUH = AH and B = VSVH ;

Solve RHY + YS = UHCV for Y ;

Compute X = UYVH ;

We can solve the system with triangular coefficients by substitution⇒ The leading cost is the Schur factorization O(N3 +M3)!Ó only small matrices.
� We may gain something if A and B are in upper Hessenberg form. . .
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The small case scenario

There are a number of variations that we can apply for the case of small matrices

å We can use real Schur form instead of the complex one, avoids complex arithmetic,
but now for in the second step we have to solve some Sylvester equation with 2× 2
coefficients. We do it by going back to a small linear system.

å We can go directly for the Hessenberg form instead of Schur (Golub, Nash, and
Van Loan 1979).

å If A is much larger than B then we can work on the block case

.

å If B = −A and C is small rank, then we are falling back to our “fast
small-displacement-rank solver” scenario, e.g., (Gohberg, Kailath, and Olshevsky
1995).
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But our cases are not small. . .

If only we knew a way to from a large matrix setting, to a small one made of Hessenberg
matrices. . .
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small-displacement-rank solver” scenario, e.g., (Gohberg, Kailath, and Olshevsky
1995).

� But our cases are not small. . .

If only we knew a way to from a large matrix setting, to a small one made of Hessenberg
matrices. . . wait a second, we may know a trick or two for this! �
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When in doubt: project!

When we have to solve linear systems with a large matrix, we have seen that a good
solution is represented by the Krylov projection methods.

® Can we do something similar for this problem too?

sometimes, it is a matter of rank.

Theorem (Simoncini 2016, Theorem 4)

Let A and B be stable1 and real symmetric, with spectra contained in [a, b] and [c , d ],
respectively. Define η = 2(b − a)(d − c)/((a + c)(b + d)). Assume C is of rank p. Then
the singular values σ1 ≥ · · · ≥ σmin{M,N} of the solution X to the Sylvester equation satisfy

σpr+1

σ1
≤

(
1−

√
k ′
r

1+
√
k ′
r

)2

, 1 ≤ pr < n, k ′
r =

1

1+ η+
√

η(η+ 2)
.

1A matrix is called stable (or sometimes Hurwitz) if every eigenvalue has strictly negative real part.
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Projection methods for low-rank right-hand sides
Let us assume that rank (C ) = p ≪ min{n,m}.

Ó Decompose C = C1C
H
2 ;

Ó Select V = span(Vk) and W = span(Wj) subspaces of CN and CM ;
Ó Basis Vk , k ≪ N, and Wj , j ≪ M, are orthonormal and such that V and W are not

orthogonal to range(C1) and range(C2) respectively;
Ó Build an approximation X̃ = VkYW

H
j ≈ X with residual R = C1C

H
2 − AX̃ − X̃B.

Galerkin (orthogonality) condition

Call x̃ = vec(X̃ ) = (Wj ⊗ Vk) vec(Y ), then we want Vk and Wk to be selected as

(Wj ⊗ Vk)
H(c−Ax) = 0 ⇔ VH

k RWj = 0 with A = BT ⊗ I + I ⊗ A, c = vec(C ).

å To compute Y , solve the small Sylvester equation:

VH
k AVkY + YWH

j BWj = VH
k C1(W

H
j C2)

H

⇒ Bartels and Stewart.
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Projection methods for low-rank right-hand sides

Existence of the solution

If VH
k AVk and −WH

j BWj have disjoint spectra we can solve

VH
k AVkY + YWH

j BWj = VH
k C1(W

H
j C2)

H ∀C = C1C
H
2 .

To enforce it, is sufficient to have A and −B with disjoint field of values.
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Projection methods for low-rank right-hand sides
The cost of one iteration for m > n
and p = rank(C ) is then given by

L O((kp)3) flops for the solution
of the projected problem,

L Orthogonalization of the new
basis vectors with respect to
the older vectors: O(mkp2),

L Orthogonalization of the new
block: O(mp2).

Loss of rank

If the generated basis experiences
loss of rank, deflation procedures
can be applied to remove redundant
columns.

Input: A, B, C1 and C2

Orthogonalize columns of C1 to get v1 = V1;
Orthogonalize columns of C2 to get v2 = W1;
for k = 1, 2, . . . , do

Compute Yk solution to
V H
k AVkY + YW H

k BWk − V H
k C1(W

H
k C2)

H = 0;
if converged then

Return Vk , Yk and Wk such that
Xk = VkYkW

∗
k and stop.

end
/* Compute next bases blocks */
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Make ŵ orthogonal w.r.t. {w1, . . . ,wk };
Orthogonalize col.s of v̂ and ŵ for vk+1 and wk+1;
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Selection of V and W
® How do we select the approximation spaces V and W?

� Standard block Krylov subspace

V = range{[C1,AC1,A
2C2, . . .]}, W = range{[C2,B

HC1, (B
H)2C2, . . .]},

� Rational block Krylov subspace

V = range{[(A+ σ1I )
−1C1, (A+ σ2I )

−1(A+ σ1I )
−1C1, . . .]},

W = range{[(BH + η1I )
−1C2, (B

H + η2I )
−1(BH + η1I )

−1C2, . . .]},

� Global Krylov subspace:

V =

∑
i≥0

AiCiγi , γi ∈ R

 = span{C1,AC1,A
2C2, . . .}

where the linear combination is performed blockwise, and analogously for W.
12 / 38



Stopping criterions
To change the “if converged” in the algorithm we have to monitor the residual, e.g.,

∥R∥2 = ∥AX̃ + X̃B − C1C
∗
2 ∥2 or ∥R∥F = ∥AX̃ + X̃B − C1C

∗
2 ∥F .

. R is dense and large: we should avoid assembling it!

- If we are using Krylov subspaces, we can employ Arnoldi-like relations to this end:

AVk = [Vk , v̂k ]Hk and BHWj = [Wj , ŵj ]K j ,

with [Vk , v̂k ] and [Wj , ŵj ] having orthonormal columns.

å If ∃C (k)
1 and C

(j)
2 s.t. C1 = [Vk , v̂k ]C

(k)
1 and C2 = [Wj , ŵj ]C

(j)
2

∥R∥F = ∥HkY [I , 0] + [I ; 0]YKH
j − C

(k)
1 (C

(j)
2 )H∥F .

J The matrix in the last norm is small if k and j are small, if we are under the
å conditions on the spaces we can monitor the residual along the way.
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with [Vk , v̂k ] and [Wj , ŵj ] having orthonormal columns.

å If ∃C (k)
1 and C

(j)
2 s.t. C1 = [Vk , v̂k ]C

(k)
1 and C2 = [Wj , ŵj ]C
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Variants: as many as for standard Krylov methods

 We can use different approximation space dimensions for A and B.

 We can use different approximation spaces of the same dimension.
 We could use nonsymmetric Lanczos (oblique subspaces) if B = AH and C1C

∗
2 is

nonsymmetric to build simultaneously Kj(A,C1) and Kj(A,C2).
 We could use Krylov methods with restart to save memory.
 If A and B are symmetric (and not necessarily equal), we could use short-term block

recurrences.

[ The review by Simoncini 2016 has pointers to all the different strategies available.

® Where were we?

For the two equations we wanted to solve we have then the following questions:

® Is our C low-rank?

® What type of Krylov subspace should we select?

® Does any of this stuff converge at all?
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Low-rank, regularity and separability

å For the 1D+1D case we have to solve

ANW +WBT
M = F , with F = [W(0) + ∆tf (1)| · · · |∆tfM ]N×M ,

with (f (m))i = f (xi , tm).

å For the 1D+2D case we have to solve for m = 0, . . . ,M − 1(
1

2
INx − ∆tG̃Nx

)
W̃ (m+1) + W̃ (m+1)

(
1

2
INy − ∆tG̃Ny

)T

= W̃ (m) + ∆tF (m+1),

with (F (m+1))i ,j = f (xi , yj , tm+1).

® Low-Rank

When is it that these matrices have a fixed, size-independent “small” rank?
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Low-rank, regularity and separability

� If a function f (x , y) = f1(x)f2(y) then
f (x1, y1) f (x1, y2) · · · f (x1, yn)
f (x2, y1) f (x2, y2) · · · f (x2, yn)

...
...

. . .
...

f (xn, y1) f (xn, y2) · · · f (xn, yn)




f1(x1)f2(y1) f1(x1)f2(y2) · · · f1(x1)f2(yn)
f1(x2)f2(y1) f1(x2)f2(y2) · · · f1(x2)f2(yn)

...
...

. . .
...

f1(xn)f2(y1) f1(xn)f2(y2) · · · f1(xn)f2(yn)

 =


f1(x1)
f1(x2)

...
f1(xn)

 [f2(y1) f2(y2) · · · fn(yn)
]
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 =


f1(x1)
f1(x2)

...
f1(xn)

 [f2(y1) f2(y2) · · · fn(yn)
]

4 To have a simple example:

n = 10;

f1 = @(x) exp(-2*x); f2 = @(y) sin(2*pi*y); f = @(x,y) f1(x).*f2(y);

x = linspace(0,1,n); y = linspace(0,1,n);

[X,Y] = meshgrid(x,y);

A = f(X.',Y.'); a1 = f1(x); a2 = f2(y);

norm(A-a1.'*a2)

that answers us >> ans = 0.
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f1(xn)

 [f2(y1) f2(y2) · · · fn(yn)
]

What happens if f (x , y) is not separable? E.g., if f (x , y) = sin(π(x + y))?

n = 10;

f = @(x,y) sin(pi*(x+y));

x = linspace(0,1,n);

y = linspace(0,1,n);

[X,Y] = meshgrid(x,y); A = f(X.',Y.');

sv = svd(A); 2 4 6 8 10
10−20

10−8

104
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f1(xn)

 [f2(y1) f2(y2) · · · fn(yn)
]

What happens if f (x , y) is not separable? E.g., if f (x , y) = sin(π(x + y))?

sin(π(x + y)) = sin(πx) cos(πy) + cos(πx) sin(πy)

is the sum of two separable functions, i.e., we get a matrix that has rank equal to 2.
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Low-rank, regularity and separability
We can approximate a function of two variables as the sum of separable functions

f (x , y) =
K∑

k=1

fkTk(x)Tk(y), {Tk(·)}k Čebyšëv polynomials.

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider f (x , y) = exp(−40(x2 − xy + 2y2 − 1/2)2).

cheb.xy

ff=@(x,y)exp(-40*(x.^2-x.*y+2*y.^2-1/2).^2);

f=chebfun2(ff);

levels = 0.1:0.1:0.9;

contour(f,levels);

axis([-1 1 -1 1]);

axis square
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Consider f (x , y) = exp(−40(x2 − xy + 2y2 − 1/2)2).
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Low-rank, regularity and separability

4 Not every right-hand side will have a small-enough rank!

� Whenever we have closed form expression of the involved functions we can work
with polynomial basis expansion to discover the rank.

Ó To actually compute the decomposition C = C1C
H
2 we need we can either

X assemble everything and use the SVD,
� work with polynomial expansion and truncate it for small enough coefficients,

e.g., (Beckermann and Townsend 2019; Carvajal, Chapman, and Geddes 2005;
Townsend and Trefethen 2013),

= using algorithm that only need to compute few entries of A, such as
Adaptive-Cross-Approximation (Tyrtyshnikov 2000), or RandSVD-type
algorithms (Halko, Martinsson, and Tropp 2011).

- Approximating approximating we could get where we wanted. . .

Let us remember that the approximation of the low-rank term must be done together with
the approximation induced by the FDE solution method. We may not need to go as far as
machine precision.
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Selecting the Krylov subspace

If we are now in the case of a low rank right-hand side, we have to select Krylov subspaces
for the spaces V and W.

- From the work we have done in the last couple of lectures, we know how to solve
linear systems involving discretization of 1D problems,

� Rational (block) Krylov subspace can therefore be a good choice!

V = range{[(A+ σ1I )
−1C1, (A+ σ2I )

−1(A+ σ1I )
−1C1, . . .]},

W = range{[(BH + η1I )
−1C2, (B

H + η2I )
−1(BH + η1I )

−1C2, . . .]},

® . . . but how do we select the poles?

. This is not an easy problem in general! A maybe lazy (but surprisingly well behaving)
choice is to set {σi , ηi } ∈ {0,∞} ⇒ if we choose the two values alternately, then we
get the Extended Krylov Subspace.
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The Extended Krylov Subspace approach
If B = AT and C = C1C

T
2 with C1 = C2, we can generate the space:

EK(A,C1) = range([C1,A
−1C1,AC1,A

−2C1,A
2C1, . . .]) = V = W.

The resulting algorithm is the KPIK method by (Simoncini 2007), and can be easily
extended to solve the general case, by building both

V = EK(A,C1) = range([C1,A
−1C1,AC1,A

−2C1,A
2C1, . . .]),

W = EK(BT ,C2) = range([C2,B
−TC2,B

TC2,A
−2TC2,A

2TC2, . . .]).

For our two problems, we have to solve systems and do mat-vec with matrices

1D: A =
−∆t

hαN
(θGN + (1− θ)GT

N ) B =TM(1− e iθ)

2D: A =
1

2
INx −

∆t

hαNx

(θGNx + (1− θ)GT
Nx
) B =

1

2
INy −

∆t

hαNy

(θGNy + (1− θ)GT
Ny
)

20 / 38



The Extended Krylov Subspace approach
If B = AT and C = C1C

T
2 with C1 = C2, we can generate the space:

EK(A,C1) = range([C1,A
−1C1,AC1,A

−2C1,A
2C1, . . .]) = V = W.

The resulting algorithm is the KPIK method by (Simoncini 2007), and can be easily
extended to solve the general case, by building both

V = EK(A,C1) = range([C1,A
−1C1,AC1,A

−2C1,A
2C1, . . .]),

W = EK(BT ,C2) = range([C2,B
−TC2,B

TC2,A
−2TC2,A

2TC2, . . .]).

For our two problems, we have to solve systems and do mat-vec with matrices

1D: A =
−∆t

hαN
(θGN + (1− θ)GT

N ) B =TM(1− e iθ)

2D: A =
1

2
INx −

∆t

hαNx

(θGNx + (1− θ)GT
Nx
) B =

1

2
INy −

∆t

hαNy

(θGNy + (1− θ)GT
Ny
)

20 / 38



A couple of examples - I
Let us start from the 1D+1D case{

∂W
∂t = Γ(3− α)xα RLDα

[0,x ]W + Γ(3− α)(2− x)αRLDα
[x ,2]W − x(x − 2)e−t ,

W (0, t) = W (1, t) = 0, W (x , 0) = 5x(2− x);

We can discretize it in the usual way:

w0 = @(x) 5*x.*(2-x);

hN = 2/(N-1); x = 0:hN:2;

dt = hN; t = 0:dt:1; M = length(t);

dplus=@(x,t)gamma(3-alpha).*x.^alpha;

dmin=@(x,t)gamma(3-alpha).*(2-x).^alpha;

f= @(x,t) -x.*(x-2).*exp(-t);

G = glmatrix(N,alpha);

Gr = G; Grt = G.';

Dplus = diag(dplus(x,0));

Dminus = diag(dmin(x,0));

I = eye(N,N); e = ones(N,1);

A = -dt*(Dplus*Gr +

Dminus*Grt)/hN^alpha;↪→
B = spdiags([-e,e],-1:0,M,M);

[X,T] = meshgrid(x,t);

C = dt*f(X,T);

C(1,:) = w0(x) + C(1,:);

C = -C';

[U,S,V] = svd(C);

C1 = U(:,1:2)*sqrt(S(1:2,1:2));

C2 = (sqrt(S(1:2,1:2))*

V(:,1:2).').';↪→
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

0

2

1

2

1

3

x

4

1

t

5

0.5

0 0

N = 28, M = 27, α = 1.5
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B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.2 25 7 4.982093e-10
26 11 7.629176e-11
27 15 3.721767e-10
28 21 2.406077e-10
29 28 4.726518e-10
210 37 8.250742e-10
211 50 5.928325e-10
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[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.3 25 8 7.473189e-41
26 10 3.324155e-10
27 14 1.876221e-10
28 18 6.104754e-10
29 24 4.098504e-10
210 31 5.142375e-10
211 40 6.702602e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.4 25 7 4.900654e-10
26 10 4.402728e-11
27 13 1.970841e-10
28 17 2.024635e-10
29 22 5.120085e-10
210 28 8.263324e-10
211 36 8.596848e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.5 25 7 1.235969e-10
26 9 2.799035e-10
27 13 1.007848e-10
28 16 6.145733e-10
29 21 7.639171e-10
210 27 5.857467e-10
211 34 8.065585e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.6 25 7 2.480357e-11
26 9 8.683894e-11
27 13 7.692141e-11
28 16 3.792143e-10
29 21 3.991222e-10
210 26 6.017048e-10
211 33 6.133773e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.7 25 7 5.588528e-12
26 8 6.692127e-10
27 12 8.189936e-10
28 16 3.403250e-10
29 20 9.093120e-10
210 26 3.550244e-10
211 32 7.478792e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.8 25 6 6.097527e-10
26 8 9.737670e-11
27 13 6.202872e-11
28 16 2.193864e-10
29 20 7.469866e-10
210 25 8.191797e-10
211 32 5.086938e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!
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A couple of examples - II
We can then try the 1D+2D case

∂W
∂t = Γ(3− α)xα RLDα

[0,x ]W + Γ(3− α)(2− x)αRLDα
[x ,2]W

+ Γ(3− α)yα RLDα
[0,y ]W + Γ(3− α)(2− y)αRLDα

[y ,2]W

+ sin(πx) sin(πy)e−t ,

W (x , y , t) = 0, (x , y) ∈ ∂[0, 2]2,

W (x , y , 0) = 5x(2− x)y(2− y),

for which the discretization proceeds along the usual lines, i.e,

hN = 2/(N-1); x = 0:hN:2; y = 0:hN:2; [X,Y] = meshgrid(x,y);

dt = hN; t = 0:dt:1; M = length(t);

w0 = @(x,y) 5*x.*(2-x).*y.*(2-y);

dplus = @(x,t) gamma(3-alpha).*x.^alpha;

dminus = @(x,t) gamma(3-alpha).*(2-x).^alpha;

f = @(x,y,t) sin(pi*x).*sin(pi*y).*exp(-t);
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A couple of examples - II
We can then try the 1D+2D case

∂W
∂t = Γ(3− α)xα RLDα

[0,x ]W + Γ(3− α)(2− x)αRLDα
[x ,2]W

+ Γ(3− α)yα RLDα
[0,y ]W + Γ(3− α)(2− y)αRLDα

[y ,2]W

+ sin(πx) sin(πy)e−t ,

W (x , y , t) = 0, (x , y) ∈ ∂[0, 2]2,

W (x , y , 0) = 5x(2− x)y(2− y),

for which the discretization proceeds along the usual lines, i.e,

G = glmatrix(N,alpha); Gr = G; Grt = G.';

Dplus = diag(dplus(x,0)); Dminus = diag(dminus(x,0));

I = eye(N,N); e = ones(N,1);

A = 0.5*I -dt*(Dplus*Gr + Dminus*Grt)/hN^alpha; % Left-hand side

B = (0.5*I -dt*(Dplus*Gr + Dminus*Grt)/hN^alpha).';

C = w0(X,Y) + dt*f(X,Y,t(1)); C = -C'; [U,S,V] = svd(C); % Right-hand side

C1 = U(:,1:2)*sqrt(S(1:2,1:2)); C2 = (sqrt(S(1:2,1:2))*V(:,1:2).').';
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.2 25 7 8.572314e-12
26 9 1.035235e-10
27 10 6.376925e-10
28 11 4.294848e-10
29 11 4.831316e-10
210 11 3.340377e-10
211 10 8.493637e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.3 25 7 7.117681e-11
26 9 7.410001e-11
27 10 6.311608e-10
28 11 6.629092e-10
29 11 7.935697e-10
210 11 5.256769e-10
211 11 3.021361e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.4 25 7 6.199844e-11
26 9 5.440959e-11
27 10 6.223106e-10
28 12 2.743756e-10
29 12 6.270319e-10
210 12 4.310692e-10
211 11 4.849822e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.5 25 7 5.108938e-11
26 8 7.696608e-10
27 10 5.554438e-10
28 12 3.501633e-10
29 13 4.696907e-10
210 13 5.839644e-10
211 12 6.172378e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.6 25 7 4.147318e-11
26 9 1.120891e-10
27 10 4.652358e-10
28 12 3.624143e-10
29 13 6.835564e-10
210 14 5.920602e-10
211 13 8.882506e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.7 25 7 3.321348e-11
26 9 9.437180e-11
27 10 7.551800e-10
28 12 3.268160e-10
29 13 7.715645e-10
210 14 8.954668e-10
211 15 5.806398e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.8 25 7 2.639521e-11
26 9 7.654578e-11
27 10 6.909946e-10
28 12 4.424195e-10
29 13 7.255110e-10
210 15 4.728355e-10
211 15 8.400505e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!
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Convergence

® What can we say about the convergence?

Ô If A is symmetric and positive definite, and B = AT , i.e., we are solving a Lyapunov
equation, and using polynomial Krylov subspace:

Theorem (Simoncini and Druskin 2009, Proposition 3.1)

Let A be symmetric and positive definite, and let λmin be the smallest eigenvalue of A. Let
λ̂min, λ̂max be the extreme eigenvalue of A+ λminI and κ̂ = λ̂max/̂λmin. Then

∥X − Xm∥ ≤ 4

√
κ̂+ 1

λ̂min

√
κ̂

(√
κ̂− 1√
κ̂+ 1

)m

.

. If B = AT but A is no longer symmetric, one then needs again bounds related to the
Field-of-Values of A, see (Simoncini and Druskin 2009).
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Ô If A is symmetric and positive definite, and B = AT , i.e., we are solving a Lyapunov
equation, and using polynomial Krylov subspace:

Theorem (Simoncini and Druskin 2009, Proposition 3.1)

Let A be symmetric and positive definite, and let λmin be the smallest eigenvalue of A. Let
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√
κ̂+ 1

λ̂min

√
κ̂

(√
κ̂− 1√
κ̂+ 1

)m

.

. If B = AT but A is no longer symmetric, one then needs again bounds related to the
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Convergence
If we have B ̸= AT things are more involved and due to (Beckermann 2011), and we need
preliminary work.

[ First of all, we need a more manageable expression of the rational Krylov subspace, let
us re-brand the poles in the extended complex plane C = C ∪ {∞} as

zA,1, . . . , zA,m ∈ C \Λ(A), zB,1, . . . , zB,n ∈ C \Λ(B),

and introduce the polynomials

QA(z) =
m∏
j=1

zA,j ̸=∞
(z − zA,j) and QB(z) =

n∏
j=1

zB,j ̸=∞
(z − zA,j).

[ The two rational spaces can then be written as

V = {RA(A)C1 : RA ∈ Pm−1/QA}, W = {RB(B)
HC2 : RB ∈ Pn−1/QB }.
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Convergence

å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB
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å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB

Theorem (Beckermann 2011, Theorem 2.1)

Let rank(C ) = 1. The rational Galerkin residual ρ can be decomposed into the sum

ρ = ρ1,2 + ρ2,1 + ρ2,2, ∥ρ∥2F = ∥ρ1,2∥2F + ∥ρ2,1∥2F + ∥ρ2,2∥2F ,

with, C1,m = UHC1, C2,n = VHC2, and

ρ1,2U
1

RG
B

(Am)C1,mC
H
2 RG

B (B), ρ2,1 = RG
A (A)C1C

H
2,n

1

RG
A

(Bn)V
H ,

ρ2,2 =
RG
A (A)C1C

H
2 RG

B (B)

RG
A (∞)RG

B (∞)
.
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å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
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det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)
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∈ Pn/QB

Theorem (Beckermann 2011, Theorem 2.1)

Let rank(C ) = 1. The rational Galerkin residual ρ can be decomposed into the sum

ρ = ρ1,2 + ρ2,1 + ρ2,2, ∥ρ∥2F = ∥ρ1,2∥2F + ∥ρ2,1∥2F + ∥ρ2,2∥2F ,

with, C1,m = UHC1, C2,n = VHC2, and

∥ρ2,2∥F = inf
RA∈Pm/QA

RB∈Pn/QB

∥∥∥∥RA(A)C1C
H
2 RB(B)

RA(∞)RB(∞)

∥∥∥∥
F

= ∥(I − UUH)C1C
H
2 (I − VVH)∥F ,
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Convergence

å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB

Theorem (Beckermann 2011, Theorem 2.1)

Let rank(C ) = 1. The rational Galerkin residual ρ can be decomposed into the sum

ρ = ρ1,2 + ρ2,1 + ρ2,2, ∥ρ∥2F = ∥ρ1,2∥2F + ∥ρ2,1∥2F + ∥ρ2,2∥2F ,

with, C1,m = UHC1, C2,n = VHC2, and

∥ρ1,2∥F = min
RB∈Pm/QB

[
∥RB(Am)C1,mC

H
2 RB(B)∥F + c0∥

1

RB
(Am)C1,mC

H
2,nRB(Bn)∥F

]
,

for c0 = 2diam(W (A),W (B))/ dist(W (A),W (B)).
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Convergence

å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB

Theorem (Beckermann 2011, Theorem 2.1)

Let rank(C ) = 1. The rational Galerkin residual ρ can be decomposed into the sum

ρ = ρ1,2 + ρ2,1 + ρ2,2, ∥ρ∥2F = ∥ρ1,2∥2F + ∥ρ2,1∥2F + ∥ρ2,2∥2F ,

with, C1,m = UHC1, C2,n = VHC2, and

∥ρ2,1∥F = min
RA∈Pm/QA

[
∥RA(A)C1C

H
2,n

1

RA
(Bn)∥F + c0∥RA(Am)C1,mC

H
2,n

1

RA
(Bn)∥F

]
,

for c0 = 2diam(W (A),W (B))/ dist(W (A),W (B)).

27 / 38



Convergence

å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB

å Now we have a representation of the residual in the orthogonal bases associated
to the given Krylov subspaces, and furthermore we know that ρ2,2 = 0 if at least one
of the zA,j or zB,j is ∞, i.e., if either of the initial vectors are in the subspace.

Ó The bounds are then obtained by having upper-bounds of the quantities

Em(♠,Q♠, z) = min
p∈P♡

∥∥∥ P
Q♠

(♠)
∥∥∥∣∣∣ P

Q♠
(z)
∣∣∣ , for ♠ = {A,B}, ♡ = {m, n}.

⇒ This can be faced by using the upper bound given by Crouziex upper-bound for
matrix-functions.
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Convergence: potential theory

� In order to obtain the bounds and the rate of convergence, we need to work with the
Green functions of C \W (A) and C \W (B) with poles at ζ ∈ C called gA(·, ζ) and
gB(·, ζ) respectively; (Saff and Totik 1997).

With this potential functions the bound can then be expressed in terms of the functions

uA,m(z) = exp

−

m∑
j=1

gA(z , zA,j)

 , and uB,n(z) = exp

−

n∑
j=1

gB(z , zB,j)

 .

O A mad research idea

Given the case we are interested in, can we find optimal poles, i.e., the one minimizing the
bounds and have both α robustness, and M and N independence?
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X Let’s blow up the bridges
® What do we do if the space coefficients are not separable?

Ó We decompose

d±(x , y) =
K∑

k=1

t±k Tk(x)Tk(y)

and substitute in our equation obtaining

K∑
k=1

(
ÃkX + XB̃T

k

)
= C1C

T
2 .

� We can try generalize the Galerkin projection

2K∑
k=1

ÂkXB̂k = C1C
T
2 ⇒ 2K∑

k=1

(V T
m ÂkVm)X (W T

m B̂kWm) = VmC1(W
T
m C2)

T ,

Ó How do we select V and W? How do we generate nested subspace? How do we solve the
reduced multiterm equation?

⇒ many more questions than answers. . . Ó.
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X Let’s blow up the bridges

® What if the convergence rate is poor?

Since convergence depends on the spectrum, we may be tempted to precondition the
equation with a matrix P, i.e.,

⇒ the only possibility is playing around with the poles.

® Can we use the Kronecker structure to put together 1D+2D case as a single matrix
equation or, more generally, 1D+dD equations as a single matrix equation?

å This is a whole different can of worms and it’s called tensor equations.

® What if the right-hand side is not low rank?

� We can use some approximation strategy, solve the matrix-equation incompletely
and use it as a preconditioner inside a FGMRES method, or turn to other
structures. . .
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Rank-structured matrices

Global low-rank matrices is not the only setting in which computations can be spared!

Quasiseparable matrix

A matrix A is quasiseparable of order k if the
maximum of the ranks of all its submatrices
contained in the strictly upper or lower part is
less or equal than k .

Example: k-banded matrices

A banded matrix with bandwidth k is
quasiseparable of order (at most) k . In
particular, diagonal matrices are
quasiseparable of order 0, tridiagonal matrices
are quasiseparable of order 1, etc.
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Rank-structured matrices

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.7)

Let A and B be symmetric positive definite matrices of quasiseparable rank kA and kB ,
respectively, and suppose that the spectra of A and B are both contained in the interval [a, b].
Then, if X solves the Sylvester equation AX + XB = C , with C of quasiseparable rank kC , a
generic off-diagonal block Y of X satisfies

σ1+kℓ(Y )

σ1(Y )
≤ 4ρ−2ℓ,

where k ≜ kA + kB + kC , ρ = exp
(

π2

2µ( b
a )

)
and µ(·) the Grötzsch ring function

µ(λ) ≜
π

2

K (
√
1− λ2)

K (λ)
, K (λ) ≜

∫1
0

1

(1− t2)(1− λ2t2)
dt.

. As usual, the non-symmetric case requires using the field-of-values!
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Rank-structured matrices

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.12)

Let A,B be matrices of quasiseparable rank kA and kB respectively and such that
W (A) ⊆ E and W (−B) ⊆ F . Consider the Sylvester equation AX + XB = C , with C of
quasiseparable rank kC . Then a generic off-diagonal block Y of the solution X satisfies

σ1+kℓ(Y )

σ1(Y )
≤ C2 · Zℓ(E ,F ), k := kA + kB + kC .

Where Zℓ(E ,F ) is the solution of the Zolotarev problem

Zℓ(E ,F ) ≜ inf
r(x)∈Rℓ,ℓ

maxx∈E |r(x)|

miny∈F |r(y)|
, ℓ ≥ 1,

for Rℓ,ℓ is the set of rational functions of degree at most (ℓ, ℓ), and C is the Crouzeix
universal constant.
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The Zolotarev 3rd Problem
Zolotarev’s third problem is exactly the computation of

Zℓ(E ,F ) ≜ inf
r(x)∈Rℓ,ℓ

maxx∈E |r(x)|

miny∈F |r(y)|
, ℓ ≥ 1,

for two given sets E , F and a degree ℓ, informally:
“Find a rational function that is as small as possible on a set E while being ≥ 1 in
absolute value on another set F”

Ò For general sets E and F the solution is not explicitly known.
Ó However, there are cases where a solution is known.

Example: two equal intervals

One can prove that for E = [−b,−1] and F = [1, b] the solution is

sup
x∈[−b,1]∪[1,b]

|R(x) − sgn(x)| =

√
Zℓ(E ,F )

1+ Zℓ(E ,F )

⇒ This is Zolotarev 4th problem!
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The Zolotarev 4th Problem
A closed form solution, involving Jacobi elliptic functions, is available in the RKToolbox

b = 3; % E = [-b,-1] and F = [1,b]

k = 8; % Degree of rational approximant to sign.

% Solution to Z's fourth problem:

r = rkfun.gallery('sign', k/2, b);

% Plot the computed rational function:

x = linspace(-5, 5, 1000);

y1 = linspace(-3, -1, 1000);

y2 = linspace(1, 3, 1000);

fill([-b -1 -1 -b -b], 1.5*[-1 -1 1 1 -1], .9*[1 1

1] ),↪→
hold on

fill([b 1 1 b b],1.5*[-1 -1 1 1 -1],.9*[1 1 1] )

[~,l1,l2] = plotyy(x,r(x),[y1 0 y2],[(1-abs(r(y1)))

NaN (1-abs(r(y2)))]);↪→
l1.LineWidth = 2; l2.LineWidth = 2;

hold off

⇒ Zolotarev problem is then solved
by solving for Zℓ(E ,F ).
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x = linspace(-5, 5, 1000);

y1 = linspace(-3, -1, 1000);

y2 = linspace(1, 3, 1000);

fill([-b -1 -1 -b -b], 1.5*[-1 -1 1 1 -1], .9*[1 1

1] ),↪→
hold on

fill([b 1 1 b b],1.5*[-1 -1 1 1 -1],.9*[1 1 1] )

[~,l1,l2] = plotyy(x,r(x),[y1 0 y2],[(1-abs(r(y1)))

NaN (1-abs(r(y2)))]);↪→
l1.LineWidth = 2; l2.LineWidth = 2;

hold off

⇒ Zolotarev problem is then solved
by solving for Zℓ(E ,F ).
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The Zolotarev 3rd Problem

Solve for Zℓ(E ,F ) s.t. sup
x∈[−b,1]∪[1,b]

|R(x) − sgn(x)| =

√
Zℓ(E ,F )

1+ Zℓ(E ,F )

% Extrema for [-1,-1/b]\cup [1/b,1]:

K = ellipke(1-1/b^2);

[sn, cn, dn] = ellipj((0:k)*K/k, 1-1/b^2);

% Transplant to [-b,-1]\cup [1,b]:

extrema = b*dn;

vals = 1-r(extrema);

c = mean( vals(1:2:end) );

e = eig( [ 2-4/c^2 1 ; 1 0 ] );

Zk = min(abs(e))
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x

0.9999995

0.9999996

0.9999997

0.9999998

0.9999999

1

1.0000001

1.0000002

1.0000003

1.0000004

1.0000005
extrema of sign approximation error

From which we obtain Zk = 4.3542e-14.
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The Zolotarev 3rd Problem

To visualize the function realizing the extrema, one can use a Mobius transform to convert
the best rational approximation to the sgn function that solves the 4th problem r(x) to the
extremal rational function Rℓ,ℓ(x) solving the 3rd:

Rℓ,ℓ(x) =

1+Zℓ(E ,F )
(1−Zℓ(E ,F ))r(x)(

1− 1+Zℓ(E ,F )
1−Zℓ(E ,F ) r(x)

)

Ó There are other cases for which one can solve
the 3rd problem, e.g., unsymmetrical intervals, or
rectangles (Istace and Thiran 1995).

� If we are satisfied by the quasi-separability rank of
the solution we can then attempt it!
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Conclusion and summary

¥ We have reformulated several of our problems in terms of matrix equations,

¥ We have discussed projection methods for the solution of Sylvester equations,

¥ We have seen some limitations of the approach and shown a possible extension.

Next up

Á More on rank-structured matrices and related solution strategies,

Á All-at-once in time: using different methods to march in time than the standard ones,

Á Still some other approaches with structured preconditioners.
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