An introduction to fractional calculus

Fundamental ideas and numerics

Fabio Durastante

Università di Pisa fabio.durastante@unipi.it fdurastante.github.io

October, 2022

1 Circulant preconditioners **cannot cluster** cases with variable coefficients,

1 Circulant preconditioners **cannot cluster** cases with variable coefficients,

Image: Multilevel circulant preconditioners cannot cluster multilevel Toeplitz systems,

- Orculant preconditioners cannot cluster cases with variable coefficients,
- Image: Multilevel circulant preconditioners cannot cluster multilevel Toeplitz systems,
- Preconditioner based on matrix algebras with fast simultaneous diagonalization cannot cluster multilevel Toeplitz systems.

- **1** Circulant preconditioners **cannot cluster** cases with variable coefficients,
- Image: Multilevel circulant preconditioners cannot cluster multilevel Toeplitz systems,
- Preconditioner based on matrix algebras with fast simultaneous diagonalization cannot cluster multilevel Toeplitz systems.
- **?** Can we **reduce the dimensionality** of the problem to reuse the information and good results we have in the 1D case?

- Orculant preconditioners cannot cluster cases with variable coefficients,
- Image: Multilevel circulant preconditioners cannot cluster multilevel Toeplitz systems,
- Preconditioner based on matrix algebras with fast simultaneous diagonalization cannot cluster multilevel Toeplitz systems.
- **?** Can we **reduce the dimensionality** of the problem to reuse the information and good results we have in the 1D case?
 - Alternating-direction implicit method,

- I Circulant preconditioners cannot cluster cases with variable coefficients,
- Image: Multilevel circulant preconditioners cannot cluster multilevel Toeplitz systems,
- Preconditioner based on matrix algebras with fast simultaneous diagonalization cannot cluster multilevel Toeplitz systems.
- **?** Can we **reduce the dimensionality** of the problem to reuse the information and good results we have in the 1D case?
 - Alternating-direction implicit method,
 - reformulation as matrix equations,

- I Circulant preconditioners cannot cluster cases with variable coefficients,
- Image: Multilevel circulant preconditioners cannot cluster multilevel Toeplitz systems,
- Preconditioner based on matrix algebras with fast simultaneous diagonalization cannot cluster multilevel Toeplitz systems.
- **?** Can we **reduce the dimensionality** of the problem to reuse the information and good results we have in the 1D case?
 - Alternating-direction implicit method,
 - reformulation as matrix equations,
 - reformulation as tensor problems.

The simplest way of introducing this reformulation is to go back to the 1D problem (now with a *source term*):

$$\begin{cases} \frac{\partial W}{\partial t} = \theta^{RL} D^{\alpha}_{[0,x]} W(x,t) + (1-\theta)^{RL} D^{\alpha}_{[x,1]} W(x,t) + f(x,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

The simplest way of introducing this reformulation is to go back to the 1D problem (now with a *source term*):

$$\begin{cases} \frac{\partial W}{\partial t} = \theta \frac{GL}{D_{[0,x]}^{\alpha}} W(x,t) + (1-\theta) \frac{GL}{D_{[x,1]}^{\alpha}} W(x,t) + f(x,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

To solve everything we have to solve the sequence of linear systems

$$\frac{1}{\Delta t} \left(\mathbf{W}^{(m+1)} - \mathbf{W}^{(m)} \right) = \frac{1}{h^{\alpha}} \left(\theta G_N + (1-\theta) G_N^T \right) \mathbf{W}^{(m+1)} + \mathbf{f}^{(m+1)}, \ m = 0, \dots, M-1.$$

The simplest way of introducing this reformulation is to go back to the 1D problem (now with a *source term*):

$$\begin{cases} \frac{\partial W}{\partial t} = \theta^{GL} D^{\alpha}_{[0,x]} W(x,t) + (1-\theta)^{GL} D^{\alpha}_{[x,1]} W(x,t) + f(x,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

To solve everything we have to solve the sequence of linear systems

$$\frac{1}{\Delta t} \left(\mathbf{W}^{(m+1)} - \mathbf{W}^{(m)} \right) = \frac{1}{h^{\alpha}} \left(\theta G_{N} + (1-\theta) G_{N}^{T} \right) \mathbf{W}^{(m+1)} + \mathbf{f}^{(m+1)}, \ m = 0, \dots, M-1.$$

Oo we really have to solve this sequentially?

Following (Breiten, Simoncini, and Stoll 2016), we can collect the time steps altogether:

$$\left(B_M \otimes \mathit{I}_N - rac{\Delta t}{h^lpha} \mathit{I}_M \otimes \mathit{T}_N
ight) \widehat{\mathbf{W}} = \mathbf{F},$$

since

$$\begin{bmatrix} I_N - \frac{\Delta t}{h^{\alpha}} T_N & & \\ -I_N & I_N - \frac{\Delta t}{h^{\alpha}} T_N & \\ & \ddots & \ddots & \\ & & -I_N & I_N - \frac{\Delta t}{h^{\alpha}} T_N \end{bmatrix} \begin{bmatrix} \mathbf{W}^{(1)} \\ \mathbf{W}^{(2)} \\ \vdots \\ \mathbf{W}^{(M-1)} \end{bmatrix} = \begin{bmatrix} \mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)} \\ \Delta t \mathbf{f}^{(2)} \\ \vdots \\ \Delta t \mathbf{f}^{(M)}, \end{bmatrix}$$

for $T_N = \left(\theta G_N + (1-\theta)G_N^T\right)$, $B_M = T_M(1-e^{i\theta})$.

Following (Breiten, Simoncini, and Stoll 2016), we can collect the time steps altogether:

$$\left(B_M \otimes I_N - rac{\Delta t}{h^lpha} I_M \otimes T_N
ight) \mathbf{\widehat{W}} = \mathbf{F},$$

since

$$\begin{bmatrix} I_N - \frac{\Delta t}{h^{\alpha}} T_N & & \\ -I_N & I_N - \frac{\Delta t}{h^{\alpha}} T_N & \\ & \ddots & \ddots & \\ & & -I_N & I_N - \frac{\Delta t}{h^{\alpha}} T_N \end{bmatrix} \begin{bmatrix} \mathbf{W}^{(1)} \\ \mathbf{W}^{(2)} \\ \vdots \\ \mathbf{W}^{(M-1)} \end{bmatrix} = \begin{bmatrix} \mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)} \\ \Delta t \mathbf{f}^{(2)} \\ \vdots \\ \Delta t \mathbf{f}^{(M)}, \end{bmatrix}$$

for $T_N = \left(\theta G_N + (1-\theta)G_N^T\right)$, $B_M = T_M(1-e^{i\theta})$.

This is now a **coupled system** of size $MN \times MN$, that is larger and uglier than before...

? Where is the advantage in dealing with

$$\left(B_M\otimes I_N-rac{\Delta t}{h^{lpha}}I_M\otimes T_N
ight)\hat{\mathbf{W}}=\mathbf{F}?$$

? Where is the advantage in dealing with

$$(B_M \otimes I_N + I_M \otimes A_N) \, \widehat{\mathbf{W}} = \mathbf{F}, \qquad A_N = -\frac{\Delta t}{h^{\alpha}} T_N?$$

? Where is the advantage in dealing with

$$(B_M \otimes I_N + I_M \otimes A_N) \, \hat{\mathbf{W}} = \mathbf{F}, \qquad A_N = -\frac{\Delta t}{h^{\alpha}} T_N?$$

Let's call $W = [\mathbf{W}^{(1)}| \cdots |\mathbf{W}^{(M)}]_{N \times M}$, $F = [\mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)}| \cdots |\Delta t \mathbf{f}^{M}]_{N \times M}$, and rewrite our problem as

$$\blacktriangleright Compute \ W \in \mathbb{R}^{N \times M} \text{ s.t. } A_N W + W B_M^T = F.$$

? Where is the advantage in dealing with

$$(B_M \otimes I_N + I_M \otimes A_N) \hat{\mathbf{W}} = \mathbf{F}, \qquad A_N = -\frac{\Delta t}{h^{\alpha}} T_N?$$

Let's call $W = [\mathbf{W}^{(1)}| \cdots |\mathbf{W}^{(M)}]_{N \times M}$, $F = [\mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)}| \cdots |\Delta t \mathbf{f}^{M}]_{N \times M}$, and rewrite our problem as

∧ Compute
$$W \in \mathbb{R}^{N \times M}$$
 s.t. $A_N W + W B_M^T = F$.

This is a well-know object called Sylvester equation!

? Where is the advantage in dealing with

$$(B_M \otimes I_N + I_M \otimes A_N) \, \hat{\mathbf{W}} = \mathbf{F}, \qquad A_N = -\frac{\Delta t}{h^{\alpha}} T_N?$$

Let's call $W = [\mathbf{W}^{(1)}| \cdots |\mathbf{W}^{(M)}]_{N \times M}$, $F = [\mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)}| \cdots |\Delta t \mathbf{f}^{M}]_{N \times M}$, and rewrite our problem as

∧ Compute
$$W \in \mathbb{R}^{N \times M}$$
 s.t. $A_N W + W B_M^T = F$.

This is a well-know object called Sylvester equation! Did we gain anything?

? Where is the advantage in dealing with

$$(B_M \otimes I_N + I_M \otimes A_N) \, \hat{\mathbf{W}} = \mathbf{F}, \qquad A_N = -\frac{\Delta t}{h^{\alpha}} T_N?$$

Let's call $W = [\mathbf{W}^{(1)}| \cdots |\mathbf{W}^{(M)}]_{N \times M}$, $F = [\mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)}| \cdots |\Delta t \mathbf{f}^{M}]_{N \times M}$, and rewrite our problem as

∧ Compute
$$W \in \mathbb{R}^{N \times M}$$
 s.t. $A_N W + W B_M^T = F$.

This is a well-know object called Sylvester equation!
Did we gain anything? Back to this in a few moment...

? Where is the advantage in dealing with

$$(B_M \otimes I_N + I_M \otimes A_N) \, \hat{\mathbf{W}} = \mathbf{F}, \qquad A_N = -\frac{\Delta t}{h^{\alpha}} T_N?$$

Let's call $W = [\mathbf{W}^{(1)}| \cdots |\mathbf{W}^{(M)}]_{N \times M}$, $F = [\mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)}| \cdots |\Delta t \mathbf{f}^{M}]_{N \times M}$, and rewrite our problem as

∧ Compute
$$W \in \mathbb{R}^{N \times M}$$
 s.t. $A_N W + W B_M^T = F$.

- This is a well-know object called Sylvester equation!
- Old we gain anything? Back to this in a few moment...
- Since we are accumulating all the time steps in one step, is it appropriate to simply use one of the methods we already know (e.g. Euler, BDFs, Adams', etc.) or can we do better?

$$\begin{cases} \frac{\partial W}{\partial t} = \left(\theta^{RL} D^{\alpha}_{[0,x]} \cdot + (1-\theta)^{RL} D^{\alpha}_{[x,1]} \cdot \right) W(x,y,t) \\ + \left(\theta^{RL} D^{\alpha}_{[0,y]} \cdot + (1-\theta)^{RL} D^{\alpha}_{[y,1]} \cdot \right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

$$\begin{cases} \frac{\partial W}{\partial t} = \left(\theta \overset{GL}{D}_{[0,x]}^{\alpha} \cdot + (1-\theta) \overset{GL}{D}_{[x,1]}^{\alpha} \cdot \right) W(x,y,t) \\ + \left(\theta \overset{GL}{D}_{[0,y]}^{\alpha} \cdot + (1-\theta) \overset{GL}{D}_{[y,1]}^{\alpha} \cdot \right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

$$\begin{cases} \frac{\partial W}{\partial t} = \left(\theta^{GL} D^{\alpha}_{[0,x]} \cdot + (1-\theta)^{GL} D^{\alpha}_{[x,1]} \cdot \right) W(x,y,t) \\ + \left(\theta^{GL} D^{\alpha}_{[0,y]} \cdot + (1-\theta)^{GL} D^{\alpha}_{[y,1]} \cdot \right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

$$\frac{1}{\Delta t} \left(\mathbf{W}^{(m+1)} - \mathbf{W}^{(m)} \right) = \frac{1}{h^{\alpha}} \left(\left(\theta G_{N_x} + (1-\theta) G_{N_x}^T \right) \otimes I_{N_y} + I_{N_x} \otimes \left(\theta G_{N_y} + (1-\theta) G_{N_y}^T \right) \right) \mathbf{W}^{(m+1)} + \mathbf{f}^{(m+1)}, \quad m = 0, \dots, M-1.$$

$$\begin{cases} \frac{\partial W}{\partial t} = \left(\theta^{GL} D^{\alpha}_{[0,x]} \cdot + (1-\theta)^{GL} D^{\alpha}_{[x,1]} \cdot \right) W(x,y,t) \\ + \left(\theta^{GL} D^{\alpha}_{[0,y]} \cdot + (1-\theta)^{GL} D^{\alpha}_{[y,1]} \cdot \right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

$$\frac{1}{\Delta t} \left(\mathbf{W}^{(m+1)} - \mathbf{W}^{(m)} \right) = \left(\tilde{G}_{N_x} \otimes I_{N_y} + I_{N_x} \otimes \tilde{G}_{N_y} \right) \mathbf{W}^{(m+1)} + \mathbf{f}^{(m+1)}, \quad m = 0, \dots, M-1.$$

$$\begin{split} & \begin{pmatrix} \frac{\partial W}{\partial t} = \left(\theta \ ^{GL}D^{\alpha}_{[0,x]} \cdot + (1-\theta) \ ^{GL}D^{\alpha}_{[x,1]} \cdot \right) W(x,y,t) \\ & + \left(\theta \ ^{GL}D^{\alpha}_{[0,y]} \cdot + (1-\theta) \ ^{GL}D^{\alpha}_{[y,1]} \cdot \right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ & \swarrow W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{split}$$

$$\frac{1}{\Delta t} \left(\mathbf{W}^{(m+1)} - \mathbf{W}^{(m)} \right) = \underbrace{\left(\tilde{G}_{N_x} \otimes I_{N_y} + I_{N_x} \otimes \tilde{G}_{N_y} \right)}_{G_{N_x N_y}} \mathbf{W}^{(m+1)} + \mathbf{f}^{(m+1)}, \quad m = 0, \dots, M-1.$$

$$\begin{cases} \frac{\partial W}{\partial t} = \left(\theta^{GL} D^{\alpha}_{[0,x]} \cdot + (1-\theta)^{GL} D^{\alpha}_{[x,1]} \cdot \right) W(x,y,t) \\ + \left(\theta^{GL} D^{\alpha}_{[0,y]} \cdot + (1-\theta)^{GL} D^{\alpha}_{[y,1]} \cdot \right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

$$(I_{N_xN_y} - \Delta t G_{N_xN_y}) \mathbf{W}^{(m+1)} = \mathbf{W}^{(m)} + \Delta \mathbf{f}^{m+1}, \quad m = 0, \dots, M-1.$$

What about the 2D problem?

What happens if we want then to reformulate:

$$\begin{cases} \frac{\partial W}{\partial t} = \left(\theta^{GL} D^{\alpha}_{[0,x]} \cdot + (1-\theta)^{GL} D^{\alpha}_{[x,1]} \cdot \right) W(x,y,t) \\ + \left(\theta^{GL} D^{\alpha}_{[0,y]} \cdot + (1-\theta)^{GL} D^{\alpha}_{[y,1]} \cdot \right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

By the usual procedure

$$(I_{N_xN_y} - \Delta t G_{N_xN_y}) \mathbf{W}^{(m+1)} = \mathbf{W}^{(m)} + \Delta \mathbf{f}^{m+1}, \quad m = 0, \dots, M-1.$$

The clever observation is now that

$$I_{N_xN_y} - \Delta t G_{N_xN_y} = I_{N_y} \otimes \left(\frac{1}{2}I_{N_x} - \Delta t \tilde{G}_{N_x}\right) + \left(\frac{1}{2}I_{N_y} - \Delta t \tilde{G}_{N_y}\right) \otimes I_{N_x}.$$

What about the 2D problem?

What happens if we want then to reformulate:

$$\begin{cases} \frac{\partial W}{\partial t} = \left(\theta^{GL}D^{\alpha}_{[0,x]} \cdot + (1-\theta)^{GL}D^{\alpha}_{[x,1]} \cdot\right) W(x,y,t) \\ + \left(\theta^{GL}D^{\alpha}_{[0,y]} \cdot + (1-\theta)^{GL}D^{\alpha}_{[y,1]} \cdot\right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

By the usual procedure

$$\left(\frac{1}{2}I_{N_x}-\Delta t\,\tilde{G}_{N_x}\right)\tilde{W}^{(m+1)}+\tilde{W}^{(m+1)}\left(\frac{1}{2}I^{N_y}-\Delta t\,\tilde{G}_{N_y}\right)^T=\tilde{W}^{(m)}+\Delta t\mathcal{F}^{(m+1)},\quad m=0,\ldots,M-1.$$

The clever observation is now that

$$I_{N_xN_y} - \Delta t G_{N_xN_y} = I_{N_y} \otimes \left(\frac{1}{2}I_{N_x} - \Delta t \tilde{G}_{N_x}\right) + \left(\frac{1}{2}I_{N_y} - \Delta t \tilde{G}_{N_y}\right) \otimes I_{N_x}.$$

What about the 2D problem?

What happens if we want then to reformulate:

$$\begin{cases} \frac{\partial W}{\partial t} = \left(\theta^{GL}D^{\alpha}_{[0,x]} \cdot + (1-\theta)^{GL}D^{\alpha}_{[x,1]} \cdot\right) W(x,y,t) \\ + \left(\theta^{GL}D^{\alpha}_{[0,y]} \cdot + (1-\theta)^{GL}D^{\alpha}_{[y,1]} \cdot\right) W(x,y,t) + f(x,y,t), \qquad \theta \in [0,1], \\ W(0,t) = W(1,t) = 0, \qquad W(x,t) = W_0(x). \end{cases}$$

By the usual procedure

$$\left(\frac{1}{2}I_{N_x}-\Delta t\,\tilde{G}_{N_x}\right)\tilde{W}^{(m+1)}+\tilde{W}^{(m+1)}\left(\frac{1}{2}I^{N_y}-\Delta t\,\tilde{G}_{N_y}\right)^{T}=\tilde{W}^{(m)}+\Delta tF^{(m+1)},\quad m=0,\ldots,M-1.$$

W We now have a sequence of Sylvester equations for m = 0, ..., M - 1. The matrix coefficients are related to *rescaled* 1D problems.

This rewriting effort will be worth it only if we can **efficiently solve** Sylvester equations:

AX + XB = C, $A \in \mathbb{R}^{N \times N}$, $B \in \mathbb{R}^{M \times M}$, $C \in \mathbb{R}^{N \times M}$.

This rewriting effort will be worth it only if we can **efficiently solve** Sylvester equations:

$$AX + XB = C, \quad A \in \mathbb{R}^{N imes N}, \; B \in \mathbb{R}^{M imes M}, \quad C \in \mathbb{R}^{N imes M}.$$

The solution can be expressed in **closed form** in a number of ways, e.g., as *integrals of resolvents*

$$X = -\frac{1}{4\pi^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\gamma I_N - A)^{-1} C(\mu I_M - B)^{-1}}{\lambda + \mu} \,\mathrm{d}\mu \mathrm{d}\lambda,$$

for Γ_1 , Γ_2 contours containing and sufficiently close to the spectra of A and B, respectively.

This rewriting effort will be worth it only if we can efficiently solve Sylvester equations:

$$AX + XB = C, \quad A \in \mathbb{R}^{N \times N}, \ B \in \mathbb{R}^{M \times M}, \quad C \in \mathbb{R}^{N \times M}.$$

The solution can be expressed in **closed form** in a number of ways, e.g., as *integrals of exponentials*

$$\mathcal{K} = -\int_0^{+\infty} e^{At} C e^{Bt} \, \mathrm{d}t,$$

for A and B with a spectra separated by a vertical line.

This rewriting effort will be worth it only if we can **efficiently solve** Sylvester equations:

$$AX + XB = C, \quad A \in \mathbb{R}^{N \times N}, \ B \in \mathbb{R}^{M \times M}, \quad C \in \mathbb{R}^{N \times M}.$$

The solution can be expressed in **closed form** in a number of ways, e.g., in the *diagonalizable case*, by means of *similarity transformations*

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \ldots, \lambda_N), \qquad V^{-1}BV = \operatorname{diag}(\mu_1, \ldots, \mu_M),$$

then

$$X = U\tilde{X}V, \quad \tilde{x}_{i,j} = rac{1}{\lambda_i + \mu_j} (U^{-1}CV)_{i,j}.$$

This rewriting effort will be worth it only if we can efficiently solve Sylvester equations:

$$AX + XB = C, \quad A \in \mathbb{R}^{N imes N}, \ B \in \mathbb{R}^{M imes M}, \quad C \in \mathbb{R}^{N imes M}.$$

The solution can be expressed in **closed form** in a number of ways, e.g., in the *diagonalizable case*, by means of *similarity transformations*

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \dots, \lambda_N), \qquad V^{-1}BV = \operatorname{diag}(\mu_1, \dots, \mu_M),$$

then

$$X = U\tilde{X}V, \quad \tilde{x}_{i,j} = \frac{1}{\lambda_i + \mu_j} (U^{-1}CV)_{i,j}.$$

Numerical mehtods

These formulations can exploited to devise numerical methods, to avoid a very long detour, we are going to just mention a couple of them; read (Simoncini 2016) for the full story.

The Bartels and Stewart 1972 algorithm

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

The Bartels and Stewart 1972 algorithm

The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B, **Input:** A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;
- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general *A* and *B*,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

 $R^H Y + YS = U^H C V$

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

$$\begin{bmatrix} \blacklozenge & & \\ \diamondsuit & \blacklozenge & \\ \diamondsuit & \blacklozenge & \blacklozenge \end{bmatrix} \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} + \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \begin{bmatrix} \clubsuit & \clubsuit & \clubsuit \\ & \clubsuit & \clubsuit \\ & & \clubsuit \end{bmatrix} = \begin{bmatrix} \bigstar & \bigstar & \bigstar \\ & \bigstar & \bigstar \\ & \bigstar & \bigstar \end{bmatrix}$$

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

$$\begin{bmatrix} \blacklozenge & & \\ \diamondsuit & \blacklozenge & \\ \bigstar & \blacklozenge & \blacklozenge \end{bmatrix} \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} + \begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \begin{bmatrix} \clubsuit & \clubsuit & \clubsuit \\ & \clubsuit & \clubsuit \\ & \clubsuit & \clubsuit \end{bmatrix} = \begin{bmatrix} \bigstar & \bigstar & \bigstar \\ & \bigstar & \bigstar \\ & \bigstar & \bigstar \end{bmatrix}$$

 $(Y)_{1,1}$ element is readily obtained by solving: $(\spadesuit + \clubsuit)(Y)_{11} = \bigstar$.

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

 $\begin{bmatrix} \blacklozenge & & \\ \diamondsuit & \blacklozenge & \\ \bigstar & \blacklozenge & \clubsuit \end{bmatrix} \begin{bmatrix} y_{1,1} & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} + \begin{bmatrix} y_{11} & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \begin{bmatrix} \clubsuit & \clubsuit & \clubsuit \\ & \clubsuit \\ & \clubsuit \end{bmatrix} = \begin{bmatrix} \bigstar & \bigstar & \bigstar \\ & \bigstar & \bigstar \\ & \bigstar & \bigstar \end{bmatrix}$

Then we proceed with the first row...

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

$$\begin{bmatrix} \blacklozenge & & \\ \land & \land & \\ \diamondsuit & \blacklozenge & \blacklozenge \end{bmatrix} \begin{bmatrix} y_{1,1} & y_{12} & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} + \begin{bmatrix} y_{11} & y_{12} & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \begin{bmatrix} \clubsuit & \clubsuit & \clubsuit \\ & \clubsuit \\ & \clubsuit \\ & \clubsuit \end{bmatrix} = \begin{bmatrix} \bigstar & \bigstar & \bigstar \\ & \bigstar & \bigstar \\ & \bigstar & \bigstar \end{bmatrix}$$

Then we proceed with the first row...

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

 $\begin{bmatrix} \blacklozenge & & \\ \diamondsuit & \blacklozenge & \\ \diamondsuit & \blacklozenge & \blacklozenge \end{bmatrix} \begin{bmatrix} y_{1,1} & y_{12} & y_{1,3} \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} + \begin{bmatrix} y_{11} & y_{12} & y_{1,3} \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \begin{bmatrix} \clubsuit & \clubsuit & \clubsuit \\ & \clubsuit & \clubsuit \\ & & \clubsuit \end{bmatrix} = \begin{bmatrix} \bigstar & \bigstar & \bigstar \\ \bigstar & \bigstar \\ \bigstar & \bigstar \\ \bigstar & \bigstar \end{bmatrix}$

Then we proceed with the first row... and every other row.

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

$$\begin{bmatrix} \blacklozenge & & \\ \diamondsuit & \blacklozenge & \\ \diamondsuit & \blacklozenge & \clubsuit \end{bmatrix} \begin{bmatrix} y_{1,1} & y_{12} & y_{1,3} \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} + \begin{bmatrix} y_{11} & y_{12} & y_{1,3} \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \begin{bmatrix} \clubsuit & \clubsuit & \clubsuit \\ & \clubsuit & \clubsuit \\ & & \clubsuit \end{bmatrix} = \begin{bmatrix} \bigstar & \bigstar & \bigstar \\ \bigstar & \bigstar \\ \bigstar & \bigstar \\ \bigstar & \bigstar \end{bmatrix}$$

Then we proceed with the first row... and every other row.

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

Then we proceed with the first row... and every other row.

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

Then we proceed with the first row... and every other row. \Rightarrow The leading cost is the Schur factorization $O(N^3 + M^3)!$ B only small matrices.

- The first step costs $O(N^3)$ and $O(M^3)$ operations by **QR algorithm** for general A and B,
- The last step is just two matrix-matrix multiplications.

Input: A, B, C Compute Schur factorizations $URU^{H} = A^{H}$ and $B = VSV^{H}$; Solve $R^{H}Y + YS = U^{H}CV$ for Y; Compute $X = UYV^{H}$;

We can solve the system with triangular coefficients by substitution

Then we proceed with the first row... and every other row.

⇒ The leading cost is the Schur factorization $O(N^3 + M^3)$! ⁽³⁾ only small matrices. ⁽²⁾ We may gain something if A and B are in upper Hessenberg form...

There are a number of variations that we can apply for the case of small matrices

We can use **real Schur form** instead of the complex one, avoids complex arithmetic, but now for in the second step we have to solve some Sylvester equation with 2×2 coefficients. We do it by going back to a small linear system.

- We can use **real Schur form** instead of the complex one, avoids complex arithmetic, but now for in the second step we have to solve some Sylvester equation with 2×2 coefficients. We do it by going back to a small linear system.
- We can go directly for the Hessenberg form instead of Schur (Golub, Nash, and Van Loan 1979).

- We can use **real Schur form** instead of the complex one, avoids complex arithmetic, but now for in the second step we have to solve some Sylvester equation with 2×2 coefficients. We do it by going back to a small linear system.
- We can go directly for the Hessenberg form instead of Schur (Golub, Nash, and Van Loan 1979).
- \checkmark If A is much larger than B then we can work on the block case

$$\begin{bmatrix} A_{11} & A_{12} \\ & A_{22} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} B = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}.$$

- We can use **real Schur form** instead of the complex one, avoids complex arithmetic, but now for in the second step we have to solve some Sylvester equation with 2×2 coefficients. We do it by going back to a small linear system.
- We can go directly for the Hessenberg form instead of Schur (Golub, Nash, and Van Loan 1979).
- \checkmark If A is much larger than B then we can work on the block case

$$\begin{bmatrix} A_{11} & A_{12} \\ & A_{22} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} B = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}.$$

- We can use **real Schur form** instead of the complex one, avoids complex arithmetic, but now for in the second step we have to solve some Sylvester equation with 2×2 coefficients. We do it by going back to a small linear system.
- We can go directly for the Hessenberg form instead of Schur (Golub, Nash, and Van Loan 1979).
- \checkmark If A is much larger than B then we can work on the block case.
- If B = -A and C is *small rank*, then we are falling back to our "fast small-displacement-rank solver" scenario, e.g., (Gohberg, Kailath, and Olshevsky 1995).

There are a number of variations that we can apply for the case of small matrices

- We can use **real Schur form** instead of the complex one, avoids complex arithmetic, but now for in the second step we have to solve some Sylvester equation with 2×2 coefficients. We do it by going back to a small linear system.
- We can go directly for the Hessenberg form instead of Schur (Golub, Nash, and Van Loan 1979).
- \checkmark If A is much larger than B then we can work on the block case.
- ✓ If B = -A and C is *small rank*, then we are falling back to our "fast small-displacement-rank solver" scenario, e.g., (Gohberg, Kailath, and Olshevsky 1995).

🗃 But our cases are not small...

If only we knew a way to from a large matrix setting, to a small one made of Hessenberg matrices...

There are a number of variations that we can apply for the case of small matrices

- We can use **real Schur form** instead of the complex one, avoids complex arithmetic, but now for in the second step we have to solve some Sylvester equation with 2×2 coefficients. We do it by going back to a small linear system.
- We can go directly for the Hessenberg form instead of Schur (Golub, Nash, and Van Loan 1979).
- \checkmark If A is much larger than B then we can work on the block case.
- If B = -A and C is *small rank*, then we are falling back to our "fast small-displacement-rank solver" scenario, e.g., (Gohberg, Kailath, and Olshevsky 1995).

😊 But our cases are not small...

If only we knew a way to from a large matrix setting, to a small one made of Hessenberg matrices... wait a second, we may know a trick or two for this! $\textcircled{\mbox{$\odot$}}$

When in doubt: project!

When we have to solve **linear systems** with a **large matrix**, we have seen that a good solution is represented by the Krylov projection methods.

Can we do something similar for this problem too?

Theorem (Simoncini 2016, Theorem 4)

Let A and B be stable¹ and real symmetric, with spectra contained in [a, b] and [c, d], respectively. Define $\eta = 2(b-a)(d-c)/((a+c)(b+d))$. Assume C is of rank p. Then the singular values $\sigma_1 \geq \cdots \geq \sigma_{\min\{M,N\}}$ of the solution X to the Sylvester equation satisfy

$$\frac{\sigma_{pr+1}}{\sigma_1} \leq \left(\frac{1-\sqrt{k_r'}}{1+\sqrt{k_r'}}\right)^2, \ 1 \leq pr < n, \ k_r' = \frac{1}{1+\eta+\sqrt{\eta(\eta+2)}}.$$

¹A matrix is called stable (or sometimes *Hurwitz*) if every eigenvalue has strictly negative real part.

When in doubt: project!

When we have to solve **linear systems** with a **large matrix**, we have seen that a good solution is represented by the Krylov projection methods.

Can we do something similar for this problem too? *sometimes*, it is a **matter of rank**.

Theorem (Simoncini 2016, Theorem 4)

Let A and B be stable¹ and real symmetric, with spectra contained in [a, b] and [c, d], respectively. Define $\eta = 2(b-a)(d-c)/((a+c)(b+d))$. Assume C is of rank p. Then the singular values $\sigma_1 \geq \cdots \geq \sigma_{\min\{M,N\}}$ of the solution X to the Sylvester equation satisfy

$$\frac{\sigma_{pr+1}}{\sigma_1} \leq \left(\frac{1-\sqrt{k_r'}}{1+\sqrt{k_r'}}\right)^2, \ 1 \leq pr < n, \ k_r' = \frac{1}{1+\eta+\sqrt{\eta(\eta+2)}}.$$

¹A matrix is called stable (or sometimes *Hurwitz*) if every eigenvalue has strictly negative real part.

Let us **assume** that rank $(C) = p \ll \min\{n, m\}$.

Let us assume that rank $(C) = p \ll \min\{n, m\}$.

‡ Decompose $C = C_1 C_2^H$;

Let us **assume** that rank $(C) = p \ll \min\{n, m\}$.

\mathbf{\dot{v}} Decompose $C = C_1 C_2^H$;

Select $\mathcal{V} = \operatorname{span}(V_k)$ and $\mathcal{W} = \operatorname{span}(W_j)$ subspaces of \mathbb{C}^N and \mathbb{C}^M ;

Let us assume that rank $(C) = p \ll \min\{n, m\}$.

- **\mathbf{\dot{v}}** Decompose $C = C_1 C_2^H$;
- Select $\mathcal{V} = \operatorname{span}(V_k)$ and $\mathcal{W} = \operatorname{span}(W_j)$ subspaces of \mathbb{C}^N and \mathbb{C}^M ;
- Sasis V_k , $k \ll N$, and W_j , $j \ll M$, are orthonormal and such that \mathcal{V} and \mathcal{W} are not orthogonal to range (C_1) and range (C_2) respectively;

Let us assume that rank $(C) = p \ll \min\{n, m\}$.

- **\mathbf{\dot{v}}** Decompose $C = C_1 C_2^H$;
- Select $\mathcal{V} = \operatorname{span}(V_k)$ and $\mathcal{W} = \operatorname{span}(W_j)$ subspaces of \mathbb{C}^N and \mathbb{C}^M ;
- Sasis V_k , $k \ll N$, and W_j , $j \ll M$, are orthonormal and such that \mathcal{V} and \mathcal{W} are not orthogonal to range (C_1) and range (C_2) respectively;
- Solution $\tilde{X} = V_k Y W_j^H \approx X$ with residual $R = C_1 C_2^H A \tilde{X} \tilde{X} B$.

Let us assume that rank $(C) = p \ll \min\{n, m\}$.

Cecompose
$$C = C_1 C_2^H$$
;

Select $\mathcal{V} = \operatorname{span}(V_k)$ and $\mathcal{W} = \operatorname{span}(W_j)$ subspaces of \mathbb{C}^N and \mathbb{C}^M ;

Sasis V_k , $k \ll N$, and W_j , $j \ll M$, are orthonormal and such that \mathcal{V} and \mathcal{W} are not orthogonal to range (C_1) and range (C_2) respectively;

Solution $\tilde{X} = V_k Y W_j^H \approx X$ with residual $R = C_1 C_2^H - A \tilde{X} - \tilde{X} B$.

Galerkin (orthogonality) condition

Call $\tilde{\mathbf{x}} = \operatorname{vec}(\tilde{X}) = (W_j \otimes V_k) \operatorname{vec}(Y)$, then we want V_k and W_k to be selected as

 $(W_j \otimes V_k)^H(\mathbf{c} - A\mathbf{x}) = 0 \iff V_k^H R W_j = 0 \text{ with } A = B^T \otimes I + I \otimes A, \, \mathbf{c} = \operatorname{vec}(C).$

Let us assume that rank $(C) = p \ll \min\{n, m\}$.

Cecompose
$$C = C_1 C_2^H$$
;

Select $\mathcal{V} = \operatorname{span}(V_k)$ and $\mathcal{W} = \operatorname{span}(W_j)$ subspaces of \mathbb{C}^N and \mathbb{C}^M ;

Sasis V_k , $k \ll N$, and W_j , $j \ll M$, are orthonormal and such that \mathcal{V} and \mathcal{W} are not orthogonal to range (C_1) and range (C_2) respectively;

Solution $\tilde{X} = V_k Y W_j^H \approx X$ with residual $R = C_1 C_2^H - A \tilde{X} - \tilde{X} B$.

Galerkin (orthogonality) condition

Call $\tilde{\mathbf{x}} = \operatorname{vec}(\tilde{X}) = (W_j \otimes V_k) \operatorname{vec}(Y)$, then we want V_k and W_k to be selected as

$$(W_j \otimes V_k)^H(\mathbf{c} - \mathcal{A}\mathbf{x}) = 0 \iff V_k^H R W_j = 0 \text{ with } \mathcal{A} = B^T \otimes I + I \otimes \mathcal{A}, \, \mathbf{c} = \operatorname{vec}(C).$$

 \checkmark To compute Y, solve the small Sylvester equation:

 $V_k^H A V_k Y + Y W_j^H B W_j = V_k^H C_1 (W_j^H C_2)^H.$

Let us assume that rank $(C) = p \ll \min\{n, m\}$.

Cecompose
$$C = C_1 C_2^H$$
;

Select $\mathcal{V} = \operatorname{span}(V_k)$ and $\mathcal{W} = \operatorname{span}(W_j)$ subspaces of \mathbb{C}^N and \mathbb{C}^M ;

Sasis V_k , $k \ll N$, and W_j , $j \ll M$, are orthonormal and such that \mathcal{V} and \mathcal{W} are not orthogonal to range (C_1) and range (C_2) respectively;

Solution $\tilde{X} = V_k Y W_j^H \approx X$ with residual $R = C_1 C_2^H - A \tilde{X} - \tilde{X} B$.

Galerkin (orthogonality) condition

Call $\tilde{\mathbf{x}} = \operatorname{vec}(\tilde{X}) = (W_j \otimes V_k) \operatorname{vec}(Y)$, then we want V_k and W_k to be selected as

 $(W_j \otimes V_k)^H(\mathbf{c} - \mathcal{A}\mathbf{x}) = 0 \iff V_k^H R W_j = 0 \text{ with } \mathcal{A} = B^T \otimes I + I \otimes \mathcal{A}, \, \mathbf{c} = \operatorname{vec}(C).$

 \checkmark To compute Y, solve the small Sylvester equation:

 $V_k^H A V_k Y + Y W_j^H B W_j = V_k^H C_1 (W_j^H C_2)^H \Rightarrow$ Bartels and Stewart.

Existence of the solution

If $V_k^H A V_k$ and $-W_i^H B W_j$ have **disjoint spectra** we can solve

$$V_k^H A V_k Y + Y W_j^H B W_j = V_k^H C_1 (W_j^H C_2)^H \qquad \forall C = C_1 C_2^H.$$

To enforce it, is sufficient to have A and -B with disjoint field of values.

The cost of **one iteration** for m > nand $p = \operatorname{rank}(C)$ is then given by **Input:** A. B. C_1 and C_2 Orthogonalize columns of C_1 to get $\mathbf{v}_1 = V_1$: Orthogonalize columns of C_2 to get $\mathbf{v}_2 = W_1$: for k = 1, 2, ..., doCompute Y_k solution to $V_{\mu}^{H}AV_{k}Y + YW_{\mu}^{H}BW_{k} - V_{\mu}^{H}C_{1}(W_{\mu}^{H}C_{2})^{H} = 0;$ if converged then Return V_k , Y_k and W_k such that $X_k = V_k Y_k W_k^*$ and stop. end /* Compute next bases blocks */ Compute \tilde{v} and \hat{w} from the **approximate space**; Make \hat{v} orthogonal w.r.t. $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$: Make \hat{w} orthogonal w.r.t. $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$: Orthogonalize col.s of $\hat{\mathbf{v}}$ and $\hat{\mathbf{w}}$ for \mathbf{v}_{k+1} and \mathbf{w}_{k+1} : Update: $V_{k+1} = [V_k, \mathbf{v}_{k+1}], W_{k+1} = [W_k, \mathbf{w}_{k+1}];$ end

- The cost of **one iteration** for m > nand $p = \operatorname{rank}(C)$ is then given by
- $O((kp)^3)$ flops for the solution of the projected problem,

Input: A. B. C_1 and C_2 Orthogonalize columns of C_1 to get $\mathbf{v}_1 = V_1$; Orthogonalize columns of C_2 to get $\mathbf{v}_2 = W_1$: for k = 1, 2, ..., doCompute Y_k solution to $V_{\mu}^{H}AV_{k}Y + YW_{\mu}^{H}BW_{k} - V_{\mu}^{H}C_{1}(W_{\mu}^{H}C_{2})^{H} = 0;$ if converged then Return V_k , Y_k and W_k such that $X_k = V_k Y_k W_{\iota}^*$ and **stop**. end /* Compute next bases blocks */ Compute \tilde{v} and \hat{w} from the **approximate space**; Make \hat{v} orthogonal w.r.t. $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$: Make \hat{w} orthogonal w.r.t. $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$: Orthogonalize col.s of $\hat{\mathbf{v}}$ and $\hat{\mathbf{w}}$ for \mathbf{v}_{k+1} and \mathbf{w}_{k+1} : Update: $V_{k+1} = [V_k, \mathbf{v}_{k+1}], W_{k+1} = [W_k, \mathbf{w}_{k+1}];$ end

The cost of **one iteration** for m > nand $p = \operatorname{rank}(C)$ is then given by

- $O((kp)^3)$ flops for the solution of the projected problem,
- Orthogonalization of the new basis vectors with respect to the older vectors: $O(mkp^2)$,

Input: A. B. C_1 and C_2 Orthogonalize columns of C_1 to get $\mathbf{v}_1 = V_1$: Orthogonalize columns of C_2 to get $\mathbf{v}_2 = W_1$: for k = 1, 2, ..., doCompute Y_k solution to $V_{\mu}^{H}AV_{k}Y + YW_{\mu}^{H}BW_{k} - V_{\mu}^{H}C_{1}(W_{\mu}^{H}C_{2})^{H} = 0;$ if converged then Return V_k , Y_k and W_k such that $X_k = V_k Y_k W_{\iota}^*$ and stop. end /* Compute next bases blocks */ Compute \tilde{v} and \hat{w} from the **approximate space**: Make \hat{v} orthogonal w.r.t. $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$: Make \hat{w} orthogonal w.r.t. $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$: Orthogonalize col.s of $\hat{\mathbf{v}}$ and $\hat{\mathbf{w}}$ for \mathbf{v}_{k+1} and \mathbf{w}_{k+1} : Update: $V_{k+1} = [V_k, \mathbf{v}_{k+1}], W_{k+1} = [W_k, \mathbf{w}_{k+1}];$ end

The cost of **one iteration** for m > nand $p = \operatorname{rank}(C)$ is then given by

- $O((kp)^3)$ flops for the solution of the projected problem,
- Orthogonalization of the new basis vectors with respect to the older vectors: $O(mkp^2)$,
- Orthogonalization of the new block: $O(mp^2)$.

Input: A. B. C_1 and C_2 Orthogonalize columns of C_1 to get $\mathbf{v}_1 = V_1$: Orthogonalize columns of C_2 to get $\mathbf{v}_2 = W_1$: for k = 1, 2, ..., doCompute Y_k solution to $V_{\mu}^{H}AV_{k}Y + YW_{\mu}^{H}BW_{k} - V_{\mu}^{H}C_{1}(W_{\mu}^{H}C_{2})^{H} = 0;$ if converged then Return V_k , Y_k and W_k such that $X_k = V_k Y_k W_{\iota}^*$ and stop. end /* Compute next bases blocks */ Compute \tilde{v} and \hat{w} from the **approximate space**; Make \hat{v} orthogonal w.r.t. $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$: Make \hat{w} orthogonal w.r.t. $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$: Orthogonalize col.s of $\hat{\mathbf{v}}$ and $\hat{\mathbf{w}}$ for \mathbf{v}_{k+1} and \mathbf{w}_{k+1} : Update: $V_{k+1} = [V_k, \mathbf{v}_{k+1}], W_{k+1} = [W_k, \mathbf{w}_{k+1}];$ end

The cost of **one iteration** for m > nand $p = \operatorname{rank}(C)$ is then given by

- $O((kp)^3)$ flops for the solution of the projected problem,
- Orthogonalization of the new basis vectors with respect to the older vectors: $O(mkp^2)$,
- Orthogonalization of the new block: $O(mp^2)$.

Loss of rank

If the generated basis experiences loss of rank, deflation procedures can be applied to remove redundant columns. **Input:** A. B. C_1 and C_2 Orthogonalize columns of C_1 to get $\mathbf{v}_1 = V_1$; Orthogonalize columns of C_2 to get $\mathbf{v}_2 = W_1$; for k = 1, 2, ..., doCompute Y_k solution to $V_{\mu}^{H}AV_{k}Y + YW_{\mu}^{H}BW_{k} - V_{\mu}^{H}C_{1}(W_{\mu}^{H}C_{2})^{H} = 0;$ if converged then Return V_k , Y_k and W_k such that $X_k = V_k Y_k W_k^*$ and stop. end /* Compute next bases blocks */ Compute \tilde{v} and \hat{w} from the **approximate space**; Make \hat{v} orthogonal w.r.t. $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$: Make \hat{w} orthogonal w.r.t. $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$: Orthogonalize col.s of $\hat{\mathbf{v}}$ and $\hat{\mathbf{w}}$ for \mathbf{v}_{k+1} and \mathbf{w}_{k+1} : Update: $V_{k+1} = [V_k, \mathbf{v}_{k+1}], W_{k+1} = [W_k, \mathbf{w}_{k+1}];$ end

The cost of **one iteration** for m > nand $p = \operatorname{rank}(C)$ is then given by

- $O((kp)^3)$ flops for the solution of the projected problem,
- Orthogonalization of the new basis vectors with respect to the older vectors: $O(mkp^2)$,
- Orthogonalization of the new block: $O(mp^2)$.

Loss of rank

If the generated basis experiences loss of rank, deflation procedures can be applied to remove redundant columns. **Input:** A. B. C_1 and C_2 Orthogonalize columns of C_1 to get $\mathbf{v}_1 = V_1$; Orthogonalize columns of C_2 to get $\mathbf{v}_2 = W_1$; for k = 1, 2, ..., doCompute Y_k solution to $V_{\mu}^{H}AV_{k}Y + YW_{\mu}^{H}BW_{k} - V_{\mu}^{H}C_{1}(W_{\mu}^{H}C_{2})^{H} = 0;$ if converged then Return V_k , Y_k and W_k such that $X_k = V_k Y_k W_k^*$ and stop. end /* Compute next bases blocks */ Compute \tilde{v} and \hat{w} from the **approximate space**: Make \hat{v} orthogonal w.r.t. $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$: Make \hat{w} orthogonal w.r.t. $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$: Orthogonalize col.s of $\hat{\mathbf{v}}$ and $\hat{\mathbf{w}}$ for \mathbf{v}_{k+1} and \mathbf{w}_{k+1} : Update: $V_{k+1} = [V_k, \mathbf{v}_{k+1}], W_{k+1} = [W_k, \mathbf{w}_{k+1}];$ end
Selection of ${\mathcal V}$ and ${\mathcal W}$

How do we select the approximation spaces V and W?
Standard block Krylov subspace

 $\mathcal{V} = \operatorname{range}\{[C_1, AC_1, A^2C_2, \ldots]\}, \quad \mathcal{W} = \operatorname{range}\{[C_2, B^HC_1, (B^H)^2C_2, \ldots]\},$

1 Rational **block** Krylov subspace

$$\begin{split} \mathcal{V} &= \operatorname{range}\{[(A + \sigma_1 I)^{-1} C_1, (A + \sigma_2 I)^{-1} (A + \sigma_1 I)^{-1} C_1, \ldots]\},\\ \mathcal{W} &= \operatorname{range}\{[(B^H + \eta_1 I)^{-1} C_2, (B^H + \eta_2 I)^{-1} (B^H + \eta_1 I)^{-1} C_2, \ldots]\}, \end{split}$$

Global Krylov subspace:

$$\mathcal{V} = \left\{ \sum_{i \ge 0} A^i C_i \gamma_i, \quad \gamma_i \in \mathbb{R} \right\} = \operatorname{span}\{C_1, A C_1, A^2 C_2, \ldots\}$$

where the linear combination is performed blockwise, and analogously for $\ensuremath{\mathcal{W}}.$

To change the "if converged" in the algorithm we have to monitor the residual, e.g.,

$$||R||_2 = ||A\tilde{X} + \tilde{X}B - C_1C_2^*||_2$$
 or $||R||_F = ||A\tilde{X} + \tilde{X}B - C_1C_2^*||_F$.

To change the "if converged' in the algorithm we have to monitor the residual, e.g.,

$$\|R\|_2 = \|A\tilde{X} + \tilde{X}B - C_1C_2^*\|_2$$
 or $\|R\|_F = \|A\tilde{X} + \tilde{X}B - C_1C_2^*\|_F$.

A *R* is **dense** and **large**: we should avoid assembling it!

To change the "if *converged*" in the algorithm we have to monitor the residual, e.g., $\|R\|_2 = \|A\tilde{X} + \tilde{X}B - C_1C_2^*\|_2 \text{ or } \|R\|_F = \|A\tilde{X} + \tilde{X}B - C_1C_2^*\|_F.$

R is dense and large: we should avoid assembling it!
 If we are using Krylov subspaces, we can employ Arnoldi-like relations to this end:

$$AV_k = [V_k, \hat{v}_k]\underline{H}_k$$
 and $B^H W_j = [W_j, \hat{w}_j]\underline{K}_j$,

with $[V_k, \hat{v}_k]$ and $[W_j, \hat{w}_j]$ having orthonormal columns. $If \exists C_1^{(k)} \text{ and } C_2^{(j)} \text{ s.t. } C_1 = [V_k, \hat{v}_k] C_1^{(k)} \text{ and } C_2 = [W_j, \hat{w}_j] C_2^{(j)}$ $\|R\|_F = \|AV_k YW_j^H + V_k YW_j^H B - \hat{V}_k C_1^{(k)} (\hat{W}_j C_2^{(j)})^H \|_F$ $= \left\| [V_k \hat{v}_k] \left(\underline{H}_k Y[I, 0] + [I; 0] Y \underline{K}_j^H - C_1^{(k)} (C_2^{(j)})^H \right) [W_j, \hat{w}_j]^H \right\|_F$ $= \|\underline{H}_k Y[I, 0] + [I; 0] Y \underline{K}_j^H - C_1^{(k)} (C_2^{(j)})^H \|_F.$

To change the "**if** converged" in the algorithm we have to monitor the residual, e.g., $\|R\|_2 = \|A\tilde{X} + \tilde{X}B - C_1C_2^*\|_2 \text{ or } \|R\|_F = \|A\tilde{X} + \tilde{X}B - C_1C_2^*\|_F.$

R is dense and large: we should avoid assembling it!
 If we are using Krylov subspaces, we can employ Arnoldi-like relations to this end:

$$AV_k = [V_k, \hat{v}_k]\underline{H}_k$$
 and $B^H W_j = [W_j, \hat{w}_j]\underline{K}_j$,

with $[V_k, \hat{v}_k]$ and $[W_j, \hat{w}_j]$ having orthonormal columns. $\checkmark \text{ If } \exists C_1^{(k)} \text{ and } C_2^{(j)} \text{ s.t. } C_1 = [V_k, \hat{v}_k] C_1^{(k)} \text{ and } C_2 = [W_j, \hat{w}_j] C_2^{(j)}$ $\|R\|_F = \|\underline{H}_k Y[I, 0] + [I; 0] Y \underline{K}_j^H - C_1^{(k)} (C_2^{(j)})^H \|_F.$

The matrix in the last norm is small if k and j are small, if we are under the conditions on the spaces we can **monitor the residual along the way**.

 \bigcirc We can use different approximation space dimensions for A and B.

 \bigcirc We can use different approximation space dimensions for A and B.

S We can use different approximation spaces of the same dimension.

- \bigcirc We can use different approximation space dimensions for A and B.
- S We can use different approximation spaces of the same dimension.
- We could use nonsymmetric Lanczos (*oblique* subspaces) if $B = A^H$ and $C_1 C_2^*$ is nonsymmetric to build simultaneously $K_i(A, C_1)$ and $K_i(A, C_2)$.

- \bigcirc We can use different approximation space dimensions for A and B.
- S We can use different approximation spaces of the same dimension.
- We could use nonsymmetric Lanczos (*oblique* subspaces) if $B = A^H$ and $C_1 C_2^*$ is nonsymmetric to build simultaneously $K_j(A, C_1)$ and $K_j(A, C_2)$.
- S We could use Krylov methods with restart to save memory.

- \bigcirc We can use different approximation space dimensions for A and B.
- S We can use different approximation spaces of the same dimension.
- We could use nonsymmetric Lanczos (*oblique* subspaces) if $B = A^H$ and $C_1 C_2^*$ is nonsymmetric to build simultaneously $K_i(A, C_1)$ and $K_i(A, C_2)$.
- S We could use Krylov methods with restart to save memory.
- If A and B are symmetric (and not necessarily equal), we could use short-term block recurrences.

- \bigcirc We can use different approximation space dimensions for A and B.
- S We can use different approximation spaces of the same dimension.
- We could use nonsymmetric Lanczos (*oblique* subspaces) if $B = A^H$ and $C_1 C_2^*$ is nonsymmetric to build simultaneously $K_i(A, C_1)$ and $K_i(A, C_2)$.
- S We could use Krylov methods with restart to save memory.
- If A and B are symmetric (and not necessarily equal), we could use short-term block recurrences.
- The review by Simoncini 2016 has pointers to all the different strategies available.

- \bigcirc We can use different approximation space dimensions for A and B.
- S We can use different approximation spaces of the same dimension.
- We could use nonsymmetric Lanczos (*oblique* subspaces) if $B = A^H$ and $C_1 C_2^*$ is nonsymmetric to build simultaneously $K_i(A, C_1)$ and $K_i(A, C_2)$.
- S We could use Krylov methods with restart to save memory.
- If A and B are symmetric (and not necessarily equal), we could use short-term block recurrences.
- E The review by Simoncini 2016 has pointers to all the different strategies available.

? Where were we?

For the two equations we wanted to solve we have then the following questions:

- Is our C low-rank?
- **?** What type of Krylov subspace should we select?
- Ooes any of this stuff converge at all?

 \checkmark For the 1D+1D case we have to solve

$$A_N W + W B_M^T = F$$
, with $F = [\mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)}] \cdots |\Delta t \mathbf{f}^M]_{N \times M}$

with $(\mathbf{f}^{(m)})_i = f(x_i, t_m)$.

$$A_N W + W B_M^T = F$$
, with $F = [\mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)} | \cdots | \Delta t \mathbf{f}^M]_{N \times M}$,

with $(\mathbf{f}^{(m)})_i = f(x_i, t_m)$.

 ${\ensuremath{\checkmark}}$ For the 1D+2D case we have to solve for $m=0,\ldots,M-1$

$$\left(\frac{1}{2}I_{N_x}-\Delta t\,\tilde{G}_{N_x}\right)\tilde{W}^{(m+1)}+\tilde{W}^{(m+1)}\left(\frac{1}{2}I^{N_y}-\Delta t\,\tilde{G}_{N_y}\right)^{T}=\tilde{W}^{(m)}+\Delta tF^{(m+1)},$$

with $(F^{(m+1)})_{i,j} = f(x_i, y_j, t_{m+1}).$

$$A_N W + W B_M^T = F$$
, with $F = [\mathbf{W}^{(0)} + \Delta t \mathbf{f}^{(1)} | \cdots | \Delta t \mathbf{f}^M]_{N \times M}$,

with $(\mathbf{f}^{(m)})_i = f(x_i, t_m)$.

 \checkmark For the 1D+2D case we have to solve for $m=0,\ldots,M-1$

$$\left(\frac{1}{2}I_{N_x}-\Delta t\tilde{G}_{N_x}\right)\tilde{W}^{(m+1)}+\tilde{W}^{(m+1)}\left(\frac{1}{2}I^{N_y}-\Delta t\tilde{G}_{N_y}\right)^{T}=\tilde{W}^{(m)}+\Delta tF^{(m+1)},$$

with $(F^{(m+1)})_{i,j} = f(x_i, y_j, t_{m+1}).$

? Low-Rank

When is it that these matrices have a fixed, size-independent "small" rank?

If a function
$$f(x, y) = f_1(x)f_2(y)$$
 then

(

$f(x_1, y_1)$	$f(x_1, y_2)$		$f(x_1, y_n)$
$f(x_2, y_1)$	$f(x_2, y_2)$	• • •	$f(x_2, y_n)$
÷	÷	· · .	÷
$f(x_n, y_1)$	$f(x_n, y_2)$		$f(x_n, y_n)$

If a function
$$f(x, y) = f_1(x)f_2(y)$$
 then

$ \begin{bmatrix} f_1(x_1) f_2(y_1) \\ f_1(x_2) f_2(y_1) \end{bmatrix} $	$f_1(x_1)f_2(y_2) f_1(x_2)f_2(y_2)$	 	$ \begin{array}{c} f_1(x_1) f_2(y_n) \\ f_1(x_2) f_2(y_n) \end{array} $
$\vdots \\ f_1(x_n)f_2(y_1)$	$\vdots \\ f_1(x_n)f_2(y_2)$	· 	$\vdots f_1(x_n)f_2(y_n) \rfloor$

? If a function $f(x, y) = f_1(x)f_2(y)$ then

$$\begin{bmatrix} f_1(x_1)f_2(y_1) & f_1(x_1)f_2(y_2) & \cdots & f_1(x_1)f_2(y_n) \\ f_1(x_2)f_2(y_1) & f_1(x_2)f_2(y_2) & \cdots & f_1(x_2)f_2(y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_n)f_2(y_1) & f_1(x_n)f_2(y_2) & \cdots & f_1(x_n)f_2(y_n) \end{bmatrix} = \begin{bmatrix} f_1(x_1) \\ f_1(x_2) \\ \vdots \\ f_1(x_n) \end{bmatrix} \begin{bmatrix} f_2(y_1) & f_2(y_2) & \cdots & f_n(y_n) \end{bmatrix}$$

• If a function $f(x, y) = f_1(x)f_2(y)$ then

 $\begin{bmatrix} f_1(x_1)f_2(y_1) & f_1(x_1)f_2(y_2) & \cdots & f_1(x_1)f_2(y_n) \\ f_1(x_2)f_2(y_1) & f_1(x_2)f_2(y_2) & \cdots & f_1(x_2)f_2(y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_n)f_2(y_1) & f_1(x_n)f_2(y_2) & \cdots & f_1(x_n)f_2(y_n) \end{bmatrix} = \begin{bmatrix} f_1(x_1) \\ f_1(x_2) \\ \vdots \\ f_1(x_n) \end{bmatrix} \begin{bmatrix} f_2(y_1) & f_2(y_2) & \cdots & f_n(y_n) \end{bmatrix}$

• To have a simple example:

```
n = 10;
f1 = @(x) exp(-2*x); f2 = @(y) sin(2*pi*y); f = @(x,y) f1(x).*f2(y);
x = linspace(0,1,n); y = linspace(0,1,n);
[X,Y] = meshgrid(x,y);
A = f(X.',Y.'); a1 = f1(x); a2 = f2(y);
norm(A-a1.'*a2)
```

that answers us >> ans = 0.

• If a function $f(x, y) = f_1(x)f_2(y)$ then

$$\begin{bmatrix} f_1(x_1)f_2(y_1) & f_1(x_1)f_2(y_2) & \cdots & f_1(x_1)f_2(y_n) \\ f_1(x_2)f_2(y_1) & f_1(x_2)f_2(y_2) & \cdots & f_1(x_2)f_2(y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_n)f_2(y_1) & f_1(x_n)f_2(y_2) & \cdots & f_1(x_n)f_2(y_n) \end{bmatrix} = \begin{bmatrix} f_1(x_1) \\ f_1(x_2) \\ \vdots \\ f_1(x_n) \end{bmatrix} \begin{bmatrix} f_2(y_1) & f_2(y_2) & \cdots & f_n(y_n) \end{bmatrix}$$

What happens if f(x, y) is not separable? E.g., if $f(x, y) = \sin(\pi(x + y))$?

```
n = 10;
f = @(x,y) sin(pi*(x+y));
x = linspace(0,1,n);
y = linspace(0,1,n);
[X,Y] = meshgrid(x,y); A = f(X.',Y.');
sv = svd(A);
```


• If a function $f(x, y) = f_1(x)f_2(y)$ then

$$\begin{bmatrix} f_1(x_1)f_2(y_1) & f_1(x_1)f_2(y_2) & \cdots & f_1(x_1)f_2(y_n) \\ f_1(x_2)f_2(y_1) & f_1(x_2)f_2(y_2) & \cdots & f_1(x_2)f_2(y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_n)f_2(y_1) & f_1(x_n)f_2(y_2) & \cdots & f_1(x_n)f_2(y_n) \end{bmatrix} = \begin{bmatrix} f_1(x_1) \\ f_1(x_2) \\ \vdots \\ f_1(x_n) \end{bmatrix} \begin{bmatrix} f_2(y_1) & f_2(y_2) & \cdots & f_n(y_n) \end{bmatrix}$$

What happens if f(x, y) is not separable? E.g., if $f(x, y) = \sin(\pi(x + y))$?

 $\sin(\pi(x+y)) = \sin(\pi x)\cos(\pi y) + \cos(\pi x)\sin(\pi y)$

is the sum of two separable functions, i.e., we get a matrix that has rank equal to 2.

• If a function $f(x, y) = f_1(x)f_2(y)$ then

$$\begin{bmatrix} f_1(x_1)f_2(y_1) & f_1(x_1)f_2(y_2) & \cdots & f_1(x_1)f_2(y_n) \\ f_1(x_2)f_2(y_1) & f_1(x_2)f_2(y_2) & \cdots & f_1(x_2)f_2(y_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(x_n)f_2(y_1) & f_1(x_n)f_2(y_2) & \cdots & f_1(x_n)f_2(y_n) \end{bmatrix} = \begin{bmatrix} f_1(x_1) \\ f_1(x_2) \\ \vdots \\ f_1(x_n) \end{bmatrix} \begin{bmatrix} f_2(y_1) & f_2(y_2) & \cdots & f_n(y_n) \end{bmatrix}$$

What happens if f(x, y) is not separable? E.g., if $f(x, y) = \sin(\pi(x + y))$?

$$\sin(\pi(x+y)) = \sin(\pi x)\cos(\pi y) + \cos(\pi x)\sin(\pi y)$$

is the **sum of** two **separable functions**, i.e., we get a matrix that has rank equal to 2. We can try to **generalize** this **decomposition idea** to more general functions!

We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
cheb.xy
ff=@(x,y)exp(-40*(x.^2-x.*y+2*y.^2-1/2).^2);
f=chebfun2(ff);
levels = 0.1:0.1:0.9;
contour(f,levels);
axis([-1 1 -1 1]);
axis square
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k$$
 Čebyšëv polynomials.

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

```
levels = 0.1:0.1:0.9;
for K = 1:9
  contour(chebfun2(ff,K),levels)
  xlim([-1 1]), axis equal
end
```


We can approximate a function of two variables as the sum of separable functions

$$f(x,y) = \sum_{k=1}^{K} f_k T_k(x) T_k(y), \quad \{T_k(\cdot)\}_k \text{ Čebyšëv polynomials.}$$

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider
$$f(x, y) = \exp(-40(x^2 - xy + 2y^2 - 1/2)^2)$$
.

$$F = (f(x_i, x_j))_{i,j} \qquad \operatorname{rank}(F) = 10^{-20} \begin{bmatrix} 10^{-0} & 0 & 0 & 0 & 0 \\ 0 & 10^{-40} & 0 & 0 \end{bmatrix} \approx 25.$$

• Not every right-hand side will have a small-enough rank!

• Not every right-hand side will have a small-enough rank!

Whenever we have closed form expression of the involved functions we can work with polynomial basis expansion to discover the rank.

- Not every right-hand side will have a small-enough rank!
- Whenever we have closed form expression of the involved functions we can work with polynomial basis expansion to discover the rank.
- **‡** To actually compute the decomposition $C = C_1 C_2^H$ we need we can either
- Not every right-hand side will have a small-enough rank!
- Whenever we have closed form expression of the involved functions we can work with polynomial basis expansion to discover the rank.
- **‡** To actually compute the decomposition $C = C_1 C_2^H$ we need we can either
 - *is* assemble everything and use the **SVD**,

- Not every right-hand side will have a small-enough rank!
- Whenever we have closed form expression of the involved functions we can work with polynomial basis expansion to discover the rank.
- **‡** To actually compute the decomposition $C = C_1 C_2^H$ we need we can either
 - *is* assemble everything and use the **SVD**,
 - work with polynomial expansion and truncate it for small enough coefficients, e.g., (Beckermann and Townsend 2019; Carvajal, Chapman, and Geddes 2005; Townsend and Trefethen 2013),

- Not every right-hand side will have a small-enough rank!
- Whenever we have closed form expression of the involved functions we can work with polynomial basis expansion to discover the rank.
- **‡** To actually compute the decomposition $C = C_1 C_2^H$ we need we can either
 - *is* assemble everything and use the **SVD**,
 - work with polynomial expansion and truncate it for small enough coefficients, e.g., (Beckermann and Townsend 2019; Carvajal, Chapman, and Geddes 2005; Townsend and Trefethen 2013),
 - using algorithm that only need to compute *few* entries of *A*, such as Adaptive-Cross-Approximation (Tyrtyshnikov 2000), or RandSVD-type algorithms (Halko, Martinsson, and Tropp 2011).

- Not every right-hand side will have a small-enough rank!
- Whenever we have closed form expression of the involved functions we can work with polynomial basis expansion to discover the rank.
- **‡** To actually compute the decomposition $C = C_1 C_2^H$ we need we can either
 - *is* assemble everything and use the **SVD**,
 - work with polynomial expansion and truncate it for small enough coefficients, e.g., (Beckermann and Townsend 2019; Carvajal, Chapman, and Geddes 2005; Townsend and Trefethen 2013),
 - using algorithm that only need to compute *few* entries of *A*, such as Adaptive-Cross-Approximation (Tyrtyshnikov 2000), or RandSVD-type algorithms (Halko, Martinsson, and Tropp 2011).

I Approximating approximating we could get where we wanted...

Let us remember that the approximation of the low-rank term must be done together with the approximation induced by the FDE solution method. We may not need to go as far as machine precision. $^{18/38}$

If we are now in the case of a **low rank** right-hand side, we have to select Krylov subspaces for the spaces \mathcal{V} and \mathcal{W} .

• From the work we have done in the last couple of lectures, we know how to solve linear systems involving discretization of 1D problems,

If we are now in the case of a **low rank** right-hand side, we have to select Krylov subspaces for the spaces \mathcal{V} and \mathcal{W} .

• From the work we have done in the last couple of lectures, we know how to solve linear systems involving discretization of 1D problems,

Rational (block) Krylov subspace can therefore be a good choice!

$$\begin{split} \mathcal{V} &= \operatorname{range}\{[(A + \sigma_1 I)^{-1} C_1, (A + \sigma_2 I)^{-1} (A + \sigma_1 I)^{-1} C_1, \ldots]\},\\ \mathcal{W} &= \operatorname{range}\{[(B^H + \eta_1 I)^{-1} C_2, (B^H + \eta_2 I)^{-1} (B^H + \eta_1 I)^{-1} C_2, \ldots]\}, \end{split}$$

If we are now in the case of a **low rank** right-hand side, we have to select Krylov subspaces for the spaces \mathcal{V} and \mathcal{W} .

• From the work we have done in the last couple of lectures, we know how to solve linear systems involving discretization of 1D problems,

Rational (block) Krylov subspace can therefore be a good choice!

$$\begin{split} \mathcal{V} &= \operatorname{range}\{[(A + \sigma_1 I)^{-1} C_1, (A + \sigma_2 I)^{-1} (A + \sigma_1 I)^{-1} C_1, \ldots]\},\\ \mathcal{W} &= \operatorname{range}\{[(B^H + \eta_1 I)^{-1} C_2, (B^H + \eta_2 I)^{-1} (B^H + \eta_1 I)^{-1} C_2, \ldots]\}, \end{split}$$

Output the select the poles?

If we are now in the case of a **low rank** right-hand side, we have to select Krylov subspaces for the spaces \mathcal{V} and \mathcal{W} .

• From the work we have done in the last couple of lectures, we know how to solve linear systems involving discretization of 1D problems,

Rational (block) Krylov subspace can therefore be a good choice!

$$\begin{split} \mathcal{V} &= \operatorname{range}\{[(A + \sigma_1 I)^{-1} C_1, (A + \sigma_2 I)^{-1} (A + \sigma_1 I)^{-1} C_1, \ldots]\},\\ \mathcal{W} &= \operatorname{range}\{[(B^H + \eta_1 I)^{-1} C_2, (B^H + \eta_2 I)^{-1} (B^H + \eta_1 I)^{-1} C_2, \ldots]\}, \end{split}$$

- Output the select the poles?
- A This is not an easy problem in general! A maybe lazy (but surprisingly well behaving) choice is to set $\{\sigma_i, \eta_i\} \in \{0, \infty\} \Rightarrow$ if we choose the two values alternately, then we get the Extended Krylov Subspace.

The Extended Krylov Subspace approach

If $B = A^T$ and $C = C_1 C_2^T$ with $C_1 = C_2$, we can generate the space:

$$\mathbb{EK}(A, C_1) = \operatorname{range}([C_1, A^{-1}C_1, AC_1, A^{-2}C_1, A^2C_1, \ldots]) = \mathcal{V} = \mathcal{W}.$$

The resulting algorithm is the KPIK method by (Simoncini 2007), and can be easily extended to solve the general case, by building both

$$\mathcal{V} = \mathbb{EK}(A, C_1) = \text{range}([C_1, A^{-1}C_1, AC_1, A^{-2}C_1, A^2C_1, \ldots]),$$

$$\mathcal{W} = \mathbb{EK}(B^T, C_2) = \text{range}([C_2, B^{-T}C_2, B^TC_2, A^{-2T}C_2, A^{2T}C_2, \ldots]).$$

The Extended Krylov Subspace approach

If $B = A^T$ and $C = C_1 C_2^T$ with $C_1 = C_2$, we can generate the space:

$$\mathbb{EK}(A, C_1) = \operatorname{range}([C_1, A^{-1}C_1, AC_1, A^{-2}C_1, A^2C_1, \ldots]) = \mathcal{V} = \mathcal{W}.$$

The resulting algorithm is the KPIK method by (Simoncini 2007), and can be easily extended to solve the general case, by building both

$$\mathcal{V} = \mathbb{EK}(A, C_1) = \operatorname{range}([C_1, A^{-1}C_1, AC_1, A^{-2}C_1, A^2C_1, \ldots]),$$

$$\mathcal{W} = \mathbb{EK}(B^T, C_2) = \operatorname{range}([C_2, B^{-T}C_2, B^TC_2, A^{-2T}C_2, A^{2T}C_2, \ldots]).$$

For our two problems, we have to solve systems and do mat-vec with matrices

1D:
$$A = \frac{-\Delta t}{h_N^{\alpha}} (\theta G_N + (1 - \theta) G_N^T) \qquad B = T_M (1 - e^{i\theta})$$

2D:
$$A = \frac{1}{2} I_{N_x} - \frac{\Delta t}{h_{N_x}^{\alpha}} (\theta G_{N_x} + (1 - \theta) G_{N_x}^T) \qquad B = \frac{1}{2} I_{N_y} - \frac{\Delta t}{h_{N_y}^{\alpha}} (\theta G_{N_y} + (1 - \theta) G_{N_y}^T)$$

Let us start from the $1D{+}1D$ case

$$\begin{cases} \frac{\partial W}{\partial t} = \Gamma(3-\alpha) x^{\alpha RL} D^{\alpha}_{[0,x]} W + \Gamma(3-\alpha)(2-x)^{\alpha RL} D^{\alpha}_{[x,2]} W - x(x-2) e^{-t}, \\ W(0,t) = W(1,t) = 0, \quad W(x,0) = 5x(2-x); \end{cases}$$

We can **discretize it** in the usual way:

```
w0 = Q(x) 5 * x * (2-x);
hN = 2/(N-1); x = 0:hN:2;
dt = hN; t = 0:dt:1; M = length(t);
dplus=@(x,t)gamma(3-alpha).*x.^alpha;
dmin=@(x,t)gamma(3-alpha).*(2-x).^alpha;
f = Q(x,t) -x \cdot (x-2) \cdot \exp(-t);
G = glmatrix(N, alpha);
Gr = G; Grt = G.';
Dplus = diag(dplus(x,0));
Dminus = diag(dmin(x,0));
I = eve(N,N); e = ones(N,1);
```

```
A = -dt*(Dplus*Gr +
\rightarrow Dminus*Grt)/hN^alpha;
B = spdiags([-e,e],-1:0,M,M);
[X,T] = meshgrid(x,t);
C = dt * f(X,T);
C(1,:) = wO(x) + C(1.:):
C = -C';
[U,S,V] = svd(C):
C1 = U(:,1:2) * sqrt(S(1:2,1:2));
C2 = (sqrt(S(1:2,1:2)))*
→ V(:,1:2).').':
```

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,

→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!


```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = 2M	IT	Rel. Residual
2	2 ⁵	7	4.982093e-10
	2 ⁶	11	7.629176e-11
	2 ⁷	15	3.721767e-10
	2 ⁸	21	2.406077e-10
	2 ⁹	28	4.726518e-10
	2 ¹⁰	37	8.250742e-10
	2^{11}	50	5.928325e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = 2M	IT	Rel. Residual
3	2 ⁵	8	7.473189e-41
	2 ⁶	10	3.324155e-10
	2 ⁷	14	1.876221e-10
	2 ⁸	18	6.104754e-10
	2 ⁹	24	4.098504e-10
	2 ¹⁰	31	5.142375e-10
	2^{11}	40	6.702602e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = 2M	IT	Rel. Residual
4	2 ⁵	7	4.900654e-10
	2 ⁶	10	4.402728e-11
	2 ⁷	13	1.970841e-10
	2 ⁸	17	2.024635e-10
	2 ⁹	22	5.120085e-10
	2^{10}	28	8.263324e-10
	2^{11}	36	8.596848e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = 2M	IT	Rel. Residual
5	2 ⁵	7	1.235969e-10
	2 ⁶	9	2.799035e-10
	2 ⁷	13	1.007848e-10
	2 ⁸	16	6.145733e-10
	2 ⁹	21	7.639171e-10
	2 ¹⁰	27	5.857467e-10
	2^{11}	34	8.065585e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = 2M	IT	Rel. Residual
6	2 ⁵	7	2.480357e-11
	2 ⁶	9	8.683894e-11
	2 ⁷	13	7.692141e-11
	2 ⁸	16	3.792143e-10
	2 ⁹	21	3.991222e-10
	2 ¹⁰	26	6.017048e-10
	2^{11}	33	6.133773e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = 2M	IT	Rel. Residual
7	2 ⁵	7	5.588528e-12
	2 ⁶	8	6.692127e-10
	2 ⁷	12	8.189936e-10
	2 ⁸	16	3.403250e-10
	2 ⁹	20	9.093120e-10
	2^{10}	26	3.550244e-10
	2^{11}	32	7.478792e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = 2M	IT	Rel. Residual
8	2 ⁵	6	6.097527e-10
	2 ⁶	8	9.737670e-11
	2 ⁷	13	6.202872e-11
	2 ⁸	16	2.193864e-10
	2 ⁹	20	7.469866e-10
	2^{10}	25	8.191797e-10
	2^{11}	32	5.086938e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

								50
32	7	8	7	7	7	7	6	- 45
64	11	10	10	9	9	8	8	- 40
128	15	14	13	13	13	12	13	- 35
256	21	18	17	16	16	16	16	- 30
512	28	24	22	21	21	20	20	- 25
1024	37	31	28	27	26	26	25	- 15
2048	50	40	36	34	33	32	32	- 10
	1.2	1.3	1.4	1.5	1.6	1.7	1.8	

We can then try the $1\mathrm{D}{+}2\mathrm{D}$ case

$$\begin{split} \frac{\partial W}{\partial t} &= \Gamma(3-\alpha) x^{\alpha \ RL} D^{\alpha}_{[0,x]} W + \Gamma(3-\alpha) (2-x)^{\alpha RL} D^{\alpha}_{[x,2]} W \\ &+ \Gamma(3-\alpha) y^{\alpha \ RL} D^{\alpha}_{[0,y]} W + \Gamma(3-\alpha) (2-y)^{\alpha RL} D^{\alpha}_{[y,2]} W \\ &+ \sin(\pi x) \sin(\pi y) e^{-t}, \\ W(x,y,t) &= 0, \\ W(x,y,0) &= 5x(2-x)y(2-y), \end{split}$$
(x,y) $\in \partial[0,2]^2,$

for which the discretization proceeds along the usual lines, i.e,

We can then try the $1\mathrm{D}{+}2\mathrm{D}$ case

$$\begin{split} \frac{\partial W}{\partial t} &= \Gamma(3-\alpha) x^{\alpha \ RL} D^{\alpha}_{[0,x]} W + \Gamma(3-\alpha) (2-x)^{\alpha RL} D^{\alpha}_{[x,2]} W \\ &+ \Gamma(3-\alpha) y^{\alpha \ RL} D^{\alpha}_{[0,y]} W + \Gamma(3-\alpha) (2-y)^{\alpha RL} D^{\alpha}_{[y,2]} W \\ &+ \sin(\pi x) \sin(\pi y) e^{-t}, \\ W(x,y,t) &= 0, \\ W(x,y,0) &= 5x(2-x)y(2-y), \end{split}$$
(x,y) $\in \partial[0,2]^2,$

for which the discretization proceeds along the usual lines, i.e,

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!


```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = M	IT	Rel. Residual
.2	2 ⁵	7	8.572314e-12
	2 ⁶	9	1.035235e-10
	2 ⁷	10	6.376925e-10
	2 ⁸	11	4.294848e-10
	2 ⁹	11	4.831316e-10
	2 ¹⁰	11	3.340377e-10
	2^{11}	10	8.493637e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = M	IT	Rel. Residual
3	2 ⁵	7	7.117681e-11
	2 ⁶	9	7.410001e-11
	2 ⁷	10	6.311608e-10
	2 ⁸	11	6.629092e-10
	2 ⁹	11	7.935697e-10
	2 ¹⁰	11	5.256769e-10
	2^{11}	11	3.021361e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = M	IT	Rel. Residual
4	2 ⁵	7	6.199844e-11
	2 ⁶	9	5.440959e-11
	2 ⁷	10	6.223106e-10
	2 ⁸	12	2.743756e-10
	2 ⁹	12	6.270319e-10
	2^{10}	12	4.310692e-10
	2^{11}	11	4.849822e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = M	IT	Rel. Residual
5	2 ⁵	7	5.108938e-11
	2 ⁶	8	7.696608e-10
	2 ⁷	10	5.554438e-10
	2 ⁸	12	3.501633e-10
	2 ⁹	13	4.696907e-10
	2 ¹⁰	13	5.839644e-10
	2^{11}	12	6.172378e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = M	IT	Rel. Residual
6	2 ⁵	7	4.147318e-11
	2 ⁶	9	1.120891e-10
	2 ⁷	10	4.652358e-10
	2 ⁸	12	3.624143e-10
	2 ⁹	13	6.835564e-10
	2^{10}	14	5.920602e-10
	2^{11}	13	8.882506e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = M	IT	Rel. Residual
7	2 ⁵	7	3.321348e-11
	2 ⁶	9	9.437180e-11
	2 ⁷	10	7.551800e-10
	2 ⁸	12	3.268160e-10
	2 ⁹	13	7.715645e-10
	2 ¹⁰	14	8.954668e-10
	2^{11}	15	5.806398e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

α	N = M	IT	Rel. Residual
.8	2 ⁵	7	2.639521e-11
	2 ⁶	9	7.654578e-11
	2 ⁷	10	6.909946e-10
	2 ⁸	12	4.424195e-10
	2 ⁹	13	7.255110e-10
	2 ¹⁰	15	4.728355e-10
	2^{11}	15	8.400505e-10

```
m = 100;
tol = 1e-9;
[LA,UA] = lu(A); % Direct solutions!
[LB,UB] = lu(B);
[X1,X2,res]=kpik_sylv(A,LA,UA,
→ B,LB,UB,C1,C2,m,tol);
SOL = X1*X2'; % Not clever al all!
```

- We are using LU-factorization and direct solutions;
- We are reassembling the solution!

								15
32	7	7	7	7	7	7	7	- 14
64	9	9	9	8	9	9	9	- 13
128	10	10	10	10	10	10	10	- 12
256	11	11	12	12	12	12	12	- 11
512	11	11	12					- 10
1024	11	11	12		14	14		- 9
2048	10	11	11	12	13			- 8
	1.2	1.3	1.4	1.5	1.6	1.7	1.8	

? What can we say about the convergence?

? What can we say about the convergence?

C If A is symmetric and positive definite, and $B = A^T$, i.e., we are solving a Lyapunov equation, and using **polynomial Krylov subspace**:

Theorem (Simoncini and Druskin 2009, Proposition 3.1)

Let A be symmetric and positive definite, and let λ_{\min} be the smallest eigenvalue of A. Let $\hat{\lambda}_{\min}$, $\hat{\lambda}_{\max}$ be the extreme eigenvalue of $A + \lambda_{\min}I$ and $\hat{\kappa} = \hat{\lambda}_{\max}/\hat{\lambda}_{\min}$. Then

$$\|X - X_m\| \leq 4 \frac{\sqrt{\hat{\kappa}} + 1}{\hat{\lambda}_{\min}\sqrt{\hat{\kappa}}} \left(\frac{\sqrt{\hat{\kappa}} - 1}{\sqrt{\hat{\kappa}} + 1}\right)^m.$$

? What can we say about the convergence?

C If A is symmetric and positive definite, and $B = A^T$, i.e., we are solving a Lyapunov equation, and using **polynomial Krylov subspace**:

Theorem (Simoncini and Druskin 2009, Proposition 3.1)

Let A be symmetric and positive definite, and let λ_{\min} be the smallest eigenvalue of A. Let $\hat{\lambda}_{\min}$, $\hat{\lambda}_{\max}$ be the extreme eigenvalue of $A + \lambda_{\min}I$ and $\hat{\kappa} = \hat{\lambda}_{\max}/\hat{\lambda}_{\min}$. Then

$$\|X - X_m\| \leq 4 \frac{\sqrt{\hat{\kappa}} + 1}{\hat{\lambda}_{\min}\sqrt{\hat{\kappa}}} \left(\frac{\sqrt{\hat{\kappa}} - 1}{\sqrt{\hat{\kappa}} + 1}\right)^m.$$

A If $B = A^T$ but A is **no longer symmetric**, one then needs again bounds related to the Field-of-Values of A, see (Simoncini and Druskin 2009).

If we have $B \neq A^T$ things are more involved and due to (Beckermann 2011), and we need preliminary work.

E First of all, we need a more manageable expression of the rational Krylov subspace, let us re-brand the poles in the extended complex plane $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ as

$$z_{A,1},\ldots,z_{A,m}\in\overline{\mathbb{C}}\setminus\Lambda(A),\qquad z_{B,1},\ldots,z_{B,n}\in\overline{\mathbb{C}}\setminus\Lambda(B),$$

and introduce the polynomials

$$Q_A(z) = \prod_{\substack{j=1 \ z_{A,j} \neq \infty}}^m (z - z_{A,j}) \text{ and } Q_B(z) = \prod_{\substack{j=1 \ z_{B,j} \neq \infty}}^n (z - z_{A,j}).$$

If we have $B \neq A^T$ things are more involved and due to (Beckermann 2011), and we need preliminary work.

E First of all, we need a more manageable expression of the rational Krylov subspace, let us re-brand the poles in the extended complex plane $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ as

$$z_{A,1},\ldots,z_{A,m}\in\overline{\mathbb{C}}\setminus\Lambda(A),\qquad z_{B,1},\ldots,z_{B,n}\in\overline{\mathbb{C}}\setminus\Lambda(B),$$

and introduce the polynomials

$$Q_A(z) = \prod_{\substack{j=1\\ z_{A,j} \neq \infty}}^m (z - z_{A,j}) \text{ and } Q_B(z) = \prod_{\substack{j=1\\ z_{B,j} \neq \infty}}^n (z - z_{A,j}).$$

The two rational spaces can then be written as

$$\mathcal{V} = \{R_A(A)C_1 : R_A \in \mathbb{P}_{m-1}/Q_A\}, \qquad \mathcal{W} = \{R_B(B)^H C_2 : R_B \in \mathbb{P}_{n-1}/Q_B\}.$$

 \checkmark Consider the **rational functions** for the projected matrices A_m and B_n on \mathcal{V} and \mathcal{W}

$$R_A^G(z) = \frac{\det(zI - A)}{Q_A(z)} \in \mathbb{P}_m/Q_A, \qquad R_B^G(z) = \frac{\det(zI - B_n)}{Q_B(z)} \in \mathbb{P}_n/Q_B$$

 \checkmark Consider the **rational functions** for the projected matrices A_m and B_n on \mathcal{V} and \mathcal{W}

$$R^G_A(z) = \frac{\det(zI - A)}{Q_A(z)} \in \mathbb{P}_m/Q_A, \qquad R^G_B(z) = \frac{\det(zI - B_n)}{Q_B(z)} \in \mathbb{P}_n/Q_B$$

Theorem (Beckermann 2011, Theorem 2.1)

Let $\operatorname{rank}(C) = 1$. The rational Galerkin residual ρ can be decomposed into the sum

$$\rho = \rho_{1,2} + \rho_{2,1} + \rho_{2,2}, \qquad \|\rho\|_F^2 = \|\rho_{1,2}\|_F^2 + \|\rho_{2,1}\|_F^2 + \|\rho_{2,2}\|_F^2$$

with, $C_{1,m} = U^H C_1$, $C_{2,n} = V^H C_2$, and

$$\begin{split} \rho_{1,2} U \frac{1}{R_B^G}(A_m) C_{1,m} C_2^H R_B^G(B), \quad \rho_{2,1} &= R_A^G(A) C_1 C_{2,n}^H \frac{1}{R_A^G}(B_n) V^H, \\ \rho_{2,2} &= \frac{R_A^G(A) C_1 C_2^H R_B^G(B)}{R_A^G(\infty) R_B^G(\infty)}. \end{split}$$

 \checkmark Consider the rational functions for the projected matrices A_m and B_n on \mathcal{V} and \mathcal{W}

$$R_A^G(z) = \frac{\det(zI - A)}{Q_A(z)} \in \mathbb{P}_m/Q_A, \qquad R_B^G(z) = \frac{\det(zI - B_n)}{Q_B(z)} \in \mathbb{P}_n/Q_B$$

Theorem (Beckermann 2011, Theorem 2.1)

Let rank(C) = 1. The rational Galerkin residual ρ can be decomposed into the sum

$$\rho = \rho_{1,2} + \rho_{2,1} + \rho_{2,2}, \qquad \|\rho\|_F^2 = \|\rho_{1,2}\|_F^2 + \|\rho_{2,1}\|_F^2 + \|\rho_{2,2}\|_F^2,$$

with, $C_{1,m} = U^H C_1$, $C_{2,n} = V^H C_2$, and

$$\|\rho_{2,2}\|_{F} = \inf_{\substack{R_{A} \in \mathbb{P}_{m}/Q_{A} \\ R_{B} \in \mathbb{P}_{n}/Q_{B}}} \left\| \frac{R_{A}(A)C_{1}C_{2}^{H}R_{B}(B)}{R_{A}(\infty)R_{B}(\infty)} \right\|_{F} = \|(I - UU^{H})C_{1}C_{2}^{H}(I - VV^{H})\|_{F},$$

 \checkmark Consider the rational functions for the projected matrices A_m and B_n on \mathcal{V} and \mathcal{W}

$$R_A^G(z) = \frac{\det(zI - A)}{Q_A(z)} \in \mathbb{P}_m/Q_A, \qquad R_B^G(z) = \frac{\det(zI - B_n)}{Q_B(z)} \in \mathbb{P}_n/Q_B$$

Theorem (Beckermann 2011, Theorem 2.1)

Let rank(C) = 1. The rational Galerkin residual ρ can be decomposed into the sum

$$\rho = \rho_{1,2} + \rho_{2,1} + \rho_{2,2}, \qquad \|\rho\|_F^2 = \|\rho_{1,2}\|_F^2 + \|\rho_{2,1}\|_F^2 + \|\rho_{2,2}\|_F^2,$$

with, $C_{1,m} = U^H C_1$, $C_{2,n} = V^H C_2$, and

$$\|\rho_{1,2}\|_{F} = \min_{R_{B} \in \mathbb{P}_{m}/Q_{B}} \left[\|R_{B}(A_{m})C_{1,m}C_{2}^{H}R_{B}(B)\|_{F} + c_{0} \|\frac{1}{R_{B}}(A_{m})C_{1,m}C_{2,n}^{H}R_{B}(B_{n})\|_{F} \right],$$

for $c_0 = 2 \operatorname{diam}(W(A), W(B)) / \operatorname{dist}(W(A), W(B))$.

 \checkmark Consider the rational functions for the projected matrices A_m and B_n on \mathcal{V} and \mathcal{W}

$$R_A^G(z) = \frac{\det(zI - A)}{Q_A(z)} \in \mathbb{P}_m/Q_A, \qquad R_B^G(z) = \frac{\det(zI - B_n)}{Q_B(z)} \in \mathbb{P}_n/Q_B$$

Theorem (Beckermann 2011, Theorem 2.1)

Let rank(C) = 1. The rational Galerkin residual ρ can be decomposed into the sum

$$\rho = \rho_{1,2} + \rho_{2,1} + \rho_{2,2}, \qquad \|\rho\|_F^2 = \|\rho_{1,2}\|_F^2 + \|\rho_{2,1}\|_F^2 + \|\rho_{2,2}\|_F^2,$$

with, $C_{1,m} = U^H C_1$, $C_{2,n} = V^H C_2$, and

$$\|\rho_{2,1}\|_{F} = \min_{R_{A} \in \mathbb{P}_{m}/Q_{A}} \left[\|R_{A}(A)C_{1}C_{2,n}^{H}\frac{1}{R_{A}}(B_{n})\|_{F} + c_{0}\|R_{A}(A_{m})C_{1,m}C_{2,n}^{H}\frac{1}{R_{A}}(B_{n})\|_{F} \right],$$

for $c_0 = 2 \operatorname{diam}(W(A), W(B)) / \operatorname{dist}(W(A), W(B))$.

 \checkmark Consider the rational functions for the projected matrices A_m and B_n on \mathcal{V} and \mathcal{W}

$$R_A^G(z) = \frac{\det(zI - A)}{Q_A(z)} \in \mathbb{P}_m/Q_A, \qquad R_B^G(z) = \frac{\det(zI - B_n)}{Q_B(z)} \in \mathbb{P}_n/Q_B$$

Now we have a **representation of the residual** in the **orthogonal bases** associated to the given Krylov subspaces, and furthermore we know that $\rho_{2,2} = 0$ if at least one of the $z_{A,j}$ or $z_{B,j}$ is ∞ , i.e., if either of the initial vectors are in the subspace.

 \checkmark Consider the rational functions for the projected matrices A_m and B_n on \mathcal{V} and \mathcal{W}

$$R_A^G(z) = \frac{\det(zI - A)}{Q_A(z)} \in \mathbb{P}_m/Q_A, \qquad R_B^G(z) = \frac{\det(zI - B_n)}{Q_B(z)} \in \mathbb{P}_n/Q_B$$

Now we have a **representation of the residual** in the **orthogonal bases** associated to the given Krylov subspaces, and furthermore we know that $\rho_{2,2} = 0$ if at least one of the $z_{A,j}$ or $z_{B,j}$ is ∞ , i.e., if either of the initial vectors are in the subspace.

The bounds are then obtained by having upper-bounds of the quantities

$$E_m(\diamondsuit, Q_{\diamondsuit}, z) = \min_{p \in \mathbb{P}_{\heartsuit}} \frac{\left\| \frac{P}{Q_{\bigstar}}(\bigstar) \right\|}{\left| \frac{P}{Q_{\bigstar}}(z) \right|}, \text{ for } \bigstar = \{A, B\}, \heartsuit = \{m, n\}.$$

 \checkmark Consider the rational functions for the projected matrices A_m and B_n on \mathcal{V} and \mathcal{W}

$$R_A^G(z) = \frac{\det(zI - A)}{Q_A(z)} \in \mathbb{P}_m/Q_A, \qquad R_B^G(z) = \frac{\det(zI - B_n)}{Q_B(z)} \in \mathbb{P}_n/Q_B$$

- Now we have a **representation of the residual** in the **orthogonal bases** associated to the given Krylov subspaces, and furthermore we know that $\rho_{2,2} = 0$ if at least one of the $z_{A,j}$ or $z_{B,j}$ is ∞ , i.e., if either of the initial vectors are in the subspace.
- The bounds are then obtained by having upper-bounds of the quantities

$$E_m(\spadesuit, Q_{\spadesuit}, z) = \min_{p \in \mathbb{P}_{\heartsuit}} \frac{\left\| \frac{P}{Q_{\spadesuit}}(\bigstar) \right\|}{\left| \frac{P}{Q_{\spadesuit}}(z) \right|}, \text{ for } \spadesuit = \{A, B\}, \heartsuit = \{m, n\}.$$

⇒ This can be faced by using the upper bound given by Crouziex upper-bound for matrix-functions.

Convergence: potential theory

▶ In order to obtain the bounds and the rate of convergence, we need to work with the **Green functions** of $\overline{\mathbb{C}} \setminus W(A)$ and $\overline{\mathbb{C}} \setminus W(B)$ with poles at $\zeta \in \mathbb{C}$ called $g_A(\cdot, \zeta)$ and $g_B(\cdot, \zeta)$ respectively; (Saff and Totik 1997).

Convergence: potential theory

▶ In order to obtain the bounds and the rate of convergence, we need to work with the **Green functions** of $\overline{\mathbb{C}} \setminus W(A)$ and $\overline{\mathbb{C}} \setminus W(B)$ with poles at $\zeta \in \mathbb{C}$ called $g_A(\cdot, \zeta)$ and $g_B(\cdot, \zeta)$ respectively; (Saff and Totik 1997).

With this potential functions the bound can then be expressed in terms of the functions

$$u_{\mathcal{A},m}(z) = \exp\left(-\sum_{j=1}^m g_{\mathcal{A}}(z, z_{\mathcal{A},j})
ight)$$
, and $u_{\mathcal{B},n}(z) = \exp\left(-\sum_{j=1}^n g_{\mathcal{B}}(z, z_{\mathcal{B},j})
ight)$.

Convergence: potential theory

▶ In order to obtain the bounds and the rate of convergence, we need to work with the **Green functions** of $\overline{\mathbb{C}} \setminus W(A)$ and $\overline{\mathbb{C}} \setminus W(B)$ with poles at $\zeta \in \mathbb{C}$ called $g_A(\cdot, \zeta)$ and $g_B(\cdot, \zeta)$ respectively; (Saff and Totik 1997).

With this potential functions the bound can then be expressed in terms of the functions

$$u_{A,m}(z) = \exp\left(-\sum_{j=1}^{m} g_A(z, z_{A,j})\right), \text{ and } u_{B,n}(z) = \exp\left(-\sum_{j=1}^{n} g_B(z, z_{B,j})\right).$$

A mad research idea

Given the case we are interested in, can we find **optimal poles**, i.e., the one minimizing the bounds and have both α robustness, and M and N independence?

What do we do if the space coefficients are not separable?

What do we do if the space coefficients are not separable?We decompose

$$d^{\pm}(x,y) = \sum_{k=1}^{K} t_k^{\pm} T_k(x) T_k(y)$$

and substitute in our equation obtaining

$$\sum_{k=1}^{K} \left(\tilde{A}_k X + X \tilde{B}_k^T \right) = C_1 C_2^T.$$

What do we do if the space coefficients are not separable?We decompose

$$d^{\pm}(x,y) = \sum_{k=1}^{K} t_k^{\pm} T_k(x) T_k(y)$$

and substitute in our equation obtaining

$$\sum_{k=1}^{K} \left(\tilde{A}_k X + X \tilde{B}_k^T \right) = C_1 C_2^T.$$

We can try generalize the Galerkin projection

$$\sum_{k=1}^{2K} \hat{A}_k X \hat{B}_k = C_1 C_2^T \Rightarrow \sum_{k=1}^{2K} (V_m^T \hat{A}_k V_m) X (W_m^T \hat{B}_k W_m) = V_m C_1 (W_m^T C_2)^T,$$

What do we do if the space coefficients are not separable?We decompose

$$d^{\pm}(x,y) = \sum_{k=1}^{K} t_k^{\pm} T_k(x) T_k(y)$$

and substitute in our equation obtaining

$$\sum_{k=1}^{K} \left(\tilde{A}_k X + X \tilde{B}_k^T \right) = C_1 C_2^T.$$

We can try generalize the Galerkin projection

$$\sum_{k=1}^{2\kappa} \hat{A}_k X \hat{B}_k = C_1 C_2^{\mathsf{T}} \Rightarrow \sum_{k=1}^{2\kappa} (V_m^{\mathsf{T}} \hat{A}_k V_m) X (W_m^{\mathsf{T}} \hat{B}_k W_m) = V_m C_1 (W_m^{\mathsf{T}} C_2)^{\mathsf{T}},$$

How do we select V and W? How do we generate nested subspace? How do we solve the reduced multiterm equation?

What do we do if the space coefficients are not separable?We decompose

$$d^{\pm}(x,y) = \sum_{k=1}^{K} t_k^{\pm} T_k(x) T_k(y)$$

and substitute in our equation obtaining

$$\sum_{k=1}^{K} \left(\tilde{A}_k X + X \tilde{B}_k^T \right) = C_1 C_2^T.$$

We can try generalize the Galerkin projection

$$\sum_{k=1}^{2\kappa} \hat{A}_k X \hat{B}_k = C_1 C_2^{\mathsf{T}} \Rightarrow \sum_{k=1}^{2\kappa} (V_m^{\mathsf{T}} \hat{A}_k V_m) X (W_m^{\mathsf{T}} \hat{B}_k W_m) = V_m C_1 (W_m^{\mathsf{T}} C_2)^{\mathsf{T}},$$

The How do we select \mathcal{V} and \mathcal{W} ? How do we generate nested subspace? How do we solve the reduced multiterm equation? \Rightarrow many more questions than answers... \mathfrak{S} .

What if the **convergence rate** is **poor**?

• Let's blow up the bridges

? What if the **convergence rate** is **poor**?

• Let's blow up the bridges

? What if the **convergence rate** is **poor**?

? What if the **convergence rate** is **poor**?

Since convergence depends on the spectrum, we may be tempted to precondition the equation with a matrix P, i.e.,

$$(P^{-1}AP)P^{-1}XP^{-H} + P^{-1}XP^{-H}(P^{H}BP^{-H}) = P^{-1}CP^{-H},$$

that is of no use since $P^{-1}AP \sim A$ and $P^{-1}BP \sim B$.

(\mathbf{P} Can we use the Kronecker structure to put together $\mathbf{1D+2D}$ case as a single matrix equation or, more generally, $\mathbf{1D+dD}$ equations as a single matrix equation?

? What if the **convergence rate** is **poor**?

 \bigcirc Since convergence depends on the spectrum, we may be tempted to precondition the equation with a matrix P, i.e.,

$$(P^{-1}AP)P^{-1}XP^{-H} + P^{-1}XP^{-H}(P^{H}BP^{-H}) = P^{-1}CP^{-H},$$

that is of no use since $P^{-1}AP \sim A$ and $P^{-1}BP \sim B$.

 \bigcirc Can we use the Kronecker structure to put together 1D+2D case as a single matrix equation or, more generally, 1D+dD equations as a single matrix equation?

F This is a whole *different can of worms* and it's called *tensor equations*.

? What if the **convergence rate** is **poor**?

Since convergence depends on the spectrum, we may be tempted to precondition the equation with a matrix P, i.e.,

$$(P^{-1}AP)P^{-1}XP^{-H} + P^{-1}XP^{-H}(P^{H}BP^{-H}) = P^{-1}CP^{-H},$$

that is of no use since $P^{-1}AP \sim A$ and $P^{-1}BP \sim B$.

 \Rightarrow the only possibility is playing around with the poles.

() Can we use the **Kronecker structure** to put together **1D+2D** case as a **single matrix equation** or, more generally, **1D+dD equations** as a **single matrix equation**?

F This is a whole *different can of worms* and it's called *tensor equations*.

What if the right-hand side is not low rank?

? What if the **convergence rate** is **poor**?

Since convergence depends on the spectrum, we may be tempted to precondition the equation with a matrix P, i.e.,

$$(P^{-1}AP)P^{-1}XP^{-H} + P^{-1}XP^{-H}(P^{H}BP^{-H}) = P^{-1}CP^{-H},$$

that is of no use since $P^{-1}AP \sim A$ and $P^{-1}BP \sim B$.

 \Rightarrow the only possibility is playing around with the poles.

() Can we use the **Kronecker structure** to put together **1D+2D** case as a **single matrix equation** or, more generally, **1D+dD equations** as a **single matrix equation**?

F This is a whole *different can of worms* and it's called *tensor equations*.

- **W**hat if the **right-hand side** is **not low rank**?
- We can use some approximation strategy, solve the matrix-equation incompletely and use it as a preconditioner inside a FGMRES method, or *turn to other* structures...

Global low-rank matrices is not the only setting in which computations can be spared!

Global low-rank matrices is not the only setting in which computations can be spared!

Quasiseparable matrix

A matrix A is *quasiseparable* of order k if the maximum of the ranks of all its submatrices contained in the strictly upper or lower part is less or equal than k.

Global low-rank matrices is not the only setting in which computations can be spared!

Quasiseparable matrix

A matrix A is *quasiseparable* of order k if the maximum of the ranks of all its submatrices contained in the strictly upper or lower part is less or equal than k.

Example: k-banded matrices

A banded matrix with bandwidth k is quasiseparable of order (at most) k. In particular, diagonal matrices are quasiseparable of order 0, tridiagonal matrices are quasiseparable of order 1, *etc*.

Global low-rank matrices is not the only setting in which computations can be spared!

Quasiseparable matrix

A matrix A is *quasiseparable* of order k if the maximum of the ranks of all its submatrices contained in the strictly upper or lower part is less or equal than k.

Example: k-banded matrices

A banded matrix with bandwidth k is quasiseparable of order (at most) k. In particular, diagonal matrices are quasiseparable of order 0, tridiagonal matrices are quasiseparable of order 1, *etc*.

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.7)

Let A and B be **symmetric positive definite** matrices of **quasiseparable** rank k_A and k_B , respectively, and suppose that the spectra of A and B are both contained in the interval [a, b]. Then, if X solves the Sylvester equation AX + XB = C, with C of **quasiseparable** rank k_C , a generic off-diagonal block Y of X satisfies

$$\frac{\sigma_{1+k\ell}(Y)}{\sigma_1(Y)} \leq 4\rho^{-2\ell},$$

where $k \triangleq k_A + k_B + k_C$, $\rho = \exp\left(\frac{\pi^2}{2\mu(\frac{b}{a})}\right)$ and $\mu(\cdot)$ the Grötzsch ring function

$$\mu(\lambda) \triangleq \frac{\pi}{2} \frac{\mathcal{K}(\sqrt{1-\lambda^2})}{\mathcal{K}(\lambda)}, \qquad \mathcal{K}(\lambda) \triangleq \int_0^1 \frac{1}{(1-t^2)(1-\lambda^2t^2)} \,\mathrm{d}t$$

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.7)

Let A and B be **symmetric positive definite** matrices of **quasiseparable** rank k_A and k_B , respectively, and suppose that the spectra of A and B are both contained in the interval [a, b]. Then, if X solves the Sylvester equation AX + XB = C, with C of **quasiseparable** rank k_C , a generic off-diagonal block Y of X satisfies

$$\frac{\sigma_{1+k\ell}(Y)}{\sigma_1(Y)} \leq 4\rho^{-2\ell},$$

where $k \triangleq k_A + k_B + k_C$, $\rho = \exp\left(\frac{\pi^2}{2\mu(\frac{b}{a})}\right)$ and $\mu(\cdot)$ the Grötzsch ring function

$$\mu(\lambda) \triangleq \frac{\pi}{2} \frac{\mathcal{K}(\sqrt{1-\lambda^2})}{\mathcal{K}(\lambda)}, \qquad \mathcal{K}(\lambda) \triangleq \int_0^1 \frac{1}{(1-t^2)(1-\lambda^2t^2)} \,\mathrm{d}t$$

As usual, the **non-symmetric case** requires using the field-of-values!

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.12)

Let A, B be matrices of quasiseparable rank k_A and k_B respectively and such that $W(A) \subseteq E$ and $W(-B) \subseteq F$. Consider the Sylvester equation AX + XB = C, with C of quasiseparable rank k_C . Then a generic off-diagonal block Y of the solution X satisfies

$$\frac{\sigma_{1+k\ell}(Y)}{\sigma_1(Y)} \leq \mathcal{C}^2 \cdot Z_{\ell}(E,F), \qquad k := k_A + k_B + k_C.$$

Where $Z_{\ell}(E, F)$ is the solution of the **Zolotarev problem**

$$Z_{\ell}(E,F) riangleq \inf_{r(x) \in \mathcal{R}_{\ell,\ell}} rac{\max_{x \in E} |r(x)|}{\min_{y \in F} |r(y)|}, \qquad \ell \geq 1,$$

for $\mathcal{R}_{\ell,\ell}$ is the set of rational functions of degree at most (ℓ, ℓ) , and \mathcal{C} is the Crouzeix universal constant.

Zolotarev's third problem is exactly the computation of

$$Z_\ell({\sf E},{\sf F}) riangleq \inf_{r(x)\in {\cal R}_{\ell,\ell}} rac{\max_{x\in {\sf E}}|r(x)|}{\min_{y\in {\sf F}}|r(y)|}, \qquad \ell\geq 1,$$

for two given sets E, F and a degree ℓ , *informally*:

"Find a rational function that is as small as possible on a set E while being ≥ 1 in absolute value on another set F"

Zolotarev's third problem is exactly the computation of

$$Z_\ell({\sf E},{\sf F}) riangleq \inf_{r(x)\in {\cal R}_{\ell,\ell}} rac{\max_{x\in {\cal E}}|r(x)|}{\min_{y\in {\cal F}}|r(y)|}, \qquad \ell\geq 1,$$

for two given sets E, F and a degree ℓ , *informally*:

"Find a rational function that is as small as possible on a set E while being ≥ 1 in absolute value on another set F"

 \bigcirc For general sets E and F the solution is not explicitly known.

Zolotarev's third problem is exactly the computation of

$$Z_\ell({\sf E},{\sf F}) riangleq \inf_{r(x)\in {\cal R}_{\ell,\ell}} rac{\max_{x\in {\cal E}}|r(x)|}{\min_{y\in {\cal F}}|r(y)|}, \qquad \ell\geq 1,$$

for two given sets E, F and a degree ℓ , *informally*:

"Find a rational function that is as small as possible on a set E while being ≥ 1 in absolute value on another set F"

- \bigcirc For general sets E and F the solution is not explicitly known.
- 🙁 However, there are cases where a solution is known.

Zolotarev's third problem is exactly the computation of

$$Z_\ell({\sf E},{\sf F}) riangleq \inf_{r(x)\in {\cal R}_{\ell,\ell}} rac{\max_{x\in {\cal E}}|r(x)|}{\min_{y\in {\cal F}}|r(y)|}, \qquad \ell\geq 1,$$

for two given sets E, F and a degree ℓ , *informally*.

"Find a rational function that is as small as possible on a set E while being ≥ 1 in absolute value on another set F"

 \bigcirc For general sets E and F the solution is not explicitly known.

🙁 However, there are cases where a solution is known.

Example: two equal intervals

One can prove that for E = [-b, -1] and F = [1, b] the solution is

$$\sup_{x\in[-b,1]\cup[1,b]}|R(x)-\operatorname{sgn}(x)|=\frac{\sqrt{Z_{\ell}(E,F)}}{1+Z_{\ell}(E,F)}$$

Zolotarev's third problem is exactly the computation of

$$Z_\ell({\sf E},{\sf F}) riangleq \inf_{r(x)\in {\cal R}_{\ell,\ell}} rac{\max_{x\in {\cal E}}|r(x)|}{\min_{y\in {\cal F}}|r(y)|}, \qquad \ell\geq 1,$$

for two given sets E, F and a degree ℓ , *informally*:

"Find a rational function that is as small as possible on a set E while being ≥ 1 in absolute value on another set F"

 \bigcirc For general sets E and F the solution is not explicitly known.

🙁 However, there are cases where a solution is known.

Example: two equal intervals

One can prove that for E = [-b, -1] and F = [1, b] the solution is

$$\sup_{x \in [-b,1] \cup [1,b]} |R(x) - \operatorname{sgn}(x)| = \frac{\sqrt{Z_{\ell}(E,F)}}{1 + Z_{\ell}(E,F)} \Rightarrow \text{ This is Zolotarev 4}^{\text{th}} \text{ problem!}$$

A closed form solution, involving Jacobi elliptic functions, is available in the RKToolbox

```
b = 3; \ \% E = [-b, -1] \text{ and } F = [1, b]
k = 8; % Degree of rational approximant to sign.
% Solution to Z's fourth problem:
r = rkfun.gallery('sign', k/2, b);
% Plot the computed rational function:
x = linspace(-5, 5, 1000);
y1 = linspace(-3, -1, 1000);
v2 = linspace(1, 3, 1000);
fill([-b -1 -1 -b -b], 1.5*[-1 -1 1 1 -1], .9*[1 1
\rightarrow 1]).
hold on
fill([b 1 1 b b],1.5*[-1 -1 1 1 -1],.9*[1 1 1])
[~,11,12] = plotyy(x,r(x),[y1 0 y2],[(1-abs(r(y1)))
\rightarrow NaN (1-abs(r(y2)))]);
11.LineWidth = 2; 12.LineWidth = 2;
hold off
```


The Zolotarev 4th Problem

A closed form solution, involving Jacobi elliptic functions, is available in the RKToolbox

```
b = 3: % E = [-b, -1] and F = [1, b]
k = 8; % Degree of rational approximant to sign.
% Solution to Z's fourth problem:
r = rkfun.gallery('sign', k/2, b);
% Plot the computed rational function:
x = linspace(-5, 5, 1000);
y1 = linspace(-3, -1, 1000);
v2 = linspace(1, 3, 1000);
fill([-b -1 -1 -b -b], 1.5*[-1 -1 1 1 -1], .9*[1 1
\rightarrow 1]).
hold on
fill([b 1 1 b b],1.5*[-1 -1 1 1 -1],.9*[1 1 1])
[,11,12] = plotyy(x,r(x),[y1 \ 0 \ y2],[(1-abs(r(y1)))]
\rightarrow NaN (1-abs(r(y2)))]);
11.LineWidth = 2; 12.LineWidth = 2;
hold off
```


Solve for
$$Z_{\ell}(E, F)$$
 s.t. $\sup_{x \in [-b,1] \cup [1,b]} |R(x) - \operatorname{sgn}(x)| = \frac{\sqrt{Z_{\ell}(E,F)}}{1 + Z_{\ell}(E,F)}$

```
% Extrema for [-1,-1/b]\cup [1/b,1]:
K = ellipke(1-1/b^2);
[sn, cn, dn] = ellipj((0:k)*K/k, 1-1/b^2);
% Transplant to [-b,-1]\cup [1,b]:
extrema = b*dn;
vals = 1-r(extrema);
c = mean( vals(1:2:end) );
e = eig( [ 2-4/c^2 1 ; 1 0 ] );
Zk = min(abs(e))
```

From which we obtain Zk = 4.3542e-14.

The Zolotarev 3rd Problem

To visualize the function realizing the extrema, one can use a Mobius transform to convert the best rational approximation to the sgn function that solves the 4th problem r(x) to the extremal rational function $R_{\ell,\ell}(x)$ solving the 3rd:

$$R_{\ell,\ell}(x) = \frac{\frac{1+Z_{\ell}(E,F)}{(1-Z_{\ell}(E,F))r(x)}}{\left(1 - \frac{1+Z_{\ell}(E,F)}{1-Z_{\ell}(E,F)}r(x)\right)}$$

To visualize the function realizing the extrema, one can use a Mobius transform to convert the best rational approximation to the sgn function that solves the 4th problem r(x) to the extremal rational function $R_{\ell,\ell}(x)$ solving the 3rd:

$$R_{\ell,\ell}(x) = \frac{\frac{1 + Z_{\ell}(E,F)}{(1 - Z_{\ell}(E,F))r(x)}}{\left(1 - \frac{1 + Z_{\ell}(E,F)}{1 - Z_{\ell}(E,F)}r(x)\right)}$$

There are other cases for which one can solve the 3rd problem, e.g., *unsymmetrical intervals*, or *rectangles* (Istace and Thiran 1995).

To visualize the function realizing the extrema, one can use a Mobius transform to convert the best rational approximation to the sgn function that solves the 4th problem r(x) to the extremal rational function $R_{\ell,\ell}(x)$ solving the 3rd:

$$R_{\ell,\ell}(x) = \frac{\frac{1 + Z_{\ell}(E,F)}{(1 - Z_{\ell}(E,F))r(x)}}{\left(1 - \frac{1 + Z_{\ell}(E,F)}{1 - Z_{\ell}(E,F)}r(x)\right)}$$

- There are other cases for which one can solve the 3rd problem, e.g., *unsymmetrical intervals*, or *rectangles* (Istace and Thiran 1995).
- If we are satisfied by the quasi-separability rank of the solution we can then attempt it!

Solution We have reformulated several of our problems in terms of matrix equations,

- \oslash We have discussed projection methods for the solution of Sylvester equations,
- We have seen some limitations of the approach and shown a possible extension.

Next up

- 📋 More on rank-structured matrices and related solution strategies,
- 📋 All-at-once in time: using different methods to march in time than the standard ones,
- 📋 Still some other approaches with structured preconditioners.

Bibliography I

- Bartels, R. H. and G. W. Stewart (Sept. 1972). "Solution of the Matrix Equation AX + XB = C [F4]". In: Commun. ACM 15.9, pp. 820–826. ISSN: 0001-0782. DOI: 10.1145/361573.361582. URL: https://doi.org/10.1145/361573.361582.
- Beckermann, B. (2011). "An error analysis for rational Galerkin projection applied to the Sylvester equation". In: SIAM J. Numer. Anal. 49.6, pp. 2430–2450. ISSN: 0036-1429. DOI: 10.1137/110824590. URL: https://doi.org/10.1137/110824590.
- Beckermann, B. and A. Townsend (2019). "Bounds on the singular values of matrices with displacement structure". In: SIAM Rev. 61.2. Revised reprint of "On the singular values of matrices with displacement structure" [MR3717820], pp. 319–344. ISSN: 0036-1445. DOI: 10.1137/19M1244433. URL: https://doi.org/10.1137/19M1244433.
- Breiten, T., V. Simoncini, and M. Stoll (2016). "Low-rank solvers for fractional differential equations". In: *Electron. Trans. Numer. Anal.* 45, pp. 107–132.
- Carvajal, O. A., F. W. Chapman, and K. O. Geddes (2005). "Hybrid symbolic-numeric integration in multiple dimensions via tensor-product series". In: *Proceedings of the 2005 international symposium on Symbolic and algebraic computation*, pp. 84–91.

Bibliography II

- Driscoll, T. A., N. Hale, and L. N. Trefethen (2014). Chebfun guide.
- Gohberg, I., T. Kailath, and V. Olshevsky (1995). "Fast Gaussian elimination with partial pivoting for matrices with displacement structure". In: *Math. Comp.* 64.212, pp. 1557–1576. ISSN: 0025-5718. DOI: 10.2307/2153371. URL: https://doi.org/10.2307/2153371.
- Golub, G., S. Nash, and C. Van Loan (1979). "A Hessenberg-Schur method for the problem AX + XB= C". In: IEEE Transactions on Automatic Control 24.6, pp. 909–913. DOI: 10.1109/TAC.1979.1102170.
- Halko, N., P. G. Martinsson, and J. A. Tropp (2011). "Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions". In: SIAM Rev. 53.2, pp. 217–288. ISSN: 0036-1445. DOI: 10.1137/090771806. URL: https://doi.org/10.1137/090771806.
- Istace, M.-P. and J.-P. Thiran (1995). "On the third and fourth Zolotarev problems in the complex plane". In: SIAM J. Numer. Anal. 32.1, pp. 249–259. ISSN: 0036-1429. DOI: 10.1137/0732009. URL: https://doi.org/10.1137/0732009.

Bibliography III

- Massei, S., D. Palitta, and L. Robol (2018). "Solving rank-structured Sylvester and Lyapunov equations". In: SIAM J. Matrix Anal. Appl. 39.4, pp. 1564–1590. ISSN: 0895-4798. DOI: 10.1137/17M1157155. URL: https://doi.org/10.1137/17M1157155.
- Saff, E. B. and V. Totik (1997). Logarithmic potentials with external fields. Vol. 316. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Appendix B by Thomas Bloom. Springer-Verlag, Berlin, pp. xvi+505. ISBN: 3-540-57078-0. DOI: 10.1007/978-3-662-03329-6. URL: https://doi.org/10.1007/978-3-662-03329-6.
- Simoncini, V. (2007). "A new iterative method for solving large-scale Lyapunov matrix equations". In: SIAM J. Sci. Comput. 29.3, pp. 1268–1288. ISSN: 1064-8275. DOI: 10.1137/06066120X. URL: https://doi.org/10.1137/06066120X.
- (2016). "Computational methods for linear matrix equations". In: SIAM Rev. 58.3, pp. 377-441. ISSN: 0036-1445. DOI: 10.1137/130912839. URL: https://doi.org/10.1137/130912839.

- Simoncini, V. and V. Druskin (2009). "Convergence analysis of projection methods for the numerical solution of large Lyapunov equations". In: SIAM J. Numer. Anal. 47.2, pp. 828–843. ISSN: 0036-1429. DOI: 10.1137/070699378. URL: https://doi.org/10.1137/070699378.
- Townsend, A. and L. N. Trefethen (2013). "An extension of Chebfun to two dimensions". In: SIAM J. Sci. Comput. 35.6, pp. C495–C518. ISSN: 1064-8275. DOI: 10.1137/130908002. URL: https://doi.org/10.1137/130908002.
- Tyrtyshnikov, E. E. (2000). "Incomplete cross approximation in the mosaic-skeleton method". In: vol. 64. 4. International GAMM-Workshop on Multigrid Methods (Bonn, 1998), pp. 367–380. DOI: 10.1007/s006070070031. URL: https://doi.org/10.1007/s006070070031.