An introduction to fractional calculus

Fundamental ideas and numerics

Fabio Durastante

Università di Pisa fabio.durastante@unipi.it fdurastante.github.io

October, 2022

Let's start again from the problem we wanted to solve

$$AX + XB^T = C, \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{m \times m}, \ X, C \in \mathbb{R}^{n \times m},$$

with A, B, and C quasiseparable

Quasiseparable matrix

A matrix A is *quasiseparable* of order k if the maximum of the ranks of all its submatrices contained in the strictly upper or lower part is less or equal than k.

 $\stackrel{\scriptsize ext{
m e}}{
m e}$ We have seen that A, B, and C quasiseparable $\,$ \Rightarrow

X with decay of the singular values of off-diagonal blocks of C.

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.12)

Let A, B be matrices of quasiseparable rank k_A and k_B respectively and such that $W(A) \subseteq E$ and $W(-B) \subseteq F$. Consider the Sylvester equation AX + XB = C, with C of quasiseparable rank k_C . Then a generic off-diagonal block Y of the solution X satisfies

$$\frac{\sigma_{1+k\ell}(Y)}{\sigma_1(Y)} \leq \mathcal{C}^2 \cdot Z_{\ell}(E,F), \qquad k := k_A + k_B + k_C.$$

Where $Z_{\ell}(E, F)$ is the solution of the **Zolotarev problem**

$$Z_{\ell}(E,F) riangleq \inf_{r(x) \in \mathcal{R}_{\ell,\ell}} rac{\max_{x \in E} |r(x)|}{\min_{y \in F} |r(y)|}, \qquad \ell \geq 1,$$

for $\mathcal{R}_{\ell,\ell}$ is the set of rational functions of degree at most (ℓ, ℓ) , and \mathcal{C} is the Crouzeix universal constant.

? Do the *decaying singular values* in the blocks implies the existence of a **quasiseparable approximant**?

O Do the *decaying singular values* in the blocks implies the existence of a **quasiseparable approximant**?

 ϵ -quasiseparable matrices of rank k (ϵ -qsrank k)

We say that A has ϵ -quasiseparable rank k if, for every off-diagonal block Y, $\sigma_{k+1}(Y) \leq \epsilon$. If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A has lower (respectively upper) ϵ -quasiseparable rank k.

O Do the *decaying singular values* in the blocks implies the existence of a **quasiseparable approximant**?

ϵ -quasiseparable matrices of rank k (ϵ -qsrank k)

We say that A has ϵ -quasiseparable rank k if, for every off-diagonal block Y, $\sigma_{k+1}(Y) \leq \epsilon$. If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A has lower (respectively upper) ϵ -quasiseparable rank k.

• Submatrices and off-diagonal blocks

If a matrix A has ϵ -quasiseparable rank k, then any of its principal submatrix A' has ϵ -quasiseparable rank k.

Any off-diagonal block Y of A' is also an off-diagonal block of $A \Rightarrow \sigma_{k+1}(Y) \le \epsilon$.

O Do the *decaying singular values* in the blocks implies the existence of a **quasiseparable approximant**?

ϵ -quasiseparable matrices of rank k (ϵ -qsrank k)

We say that A has ϵ -quasiseparable rank k if, for every off-diagonal block Y, $\sigma_{k+1}(Y) \leq \epsilon$. If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A has lower (respectively upper) ϵ -quasiseparable rank k.

• Submatrices and off-diagonal blocks

If a matrix A has ϵ -quasiseparable rank k, then any of its principal submatrix A' has ϵ -quasiseparable rank k.

Any off-diagonal block Y of A' is also an off-diagonal block of $A \Rightarrow \sigma_{k+1}(Y) \le \epsilon$.

For \oplus the direct sum

Technical lemma

Let A be a matrix with ϵ -quasiseparable rank k, Q any $(k + 1) \times (k + 1)$ unitary matrix. Then, $(I_{n-k-1} \oplus Q)A$ also has ϵ -quasiseparable rank k.

O Do the *decaying singular values* in the blocks implies the existence of a **quasiseparable approximant**?

 ϵ -quasiseparable matrices of rank k (ϵ -qsrank k)

We say that A has ϵ -quasiseparable rank k if, for every off-diagonal block Y, $\sigma_{k+1}(Y) \leq \epsilon$. If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A has lower (respectively upper) ϵ -quasiseparable rank k.

Q acts on the tall block of A without changing its singular values, while the small one has small rank thanks to the small number of rows.

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ -quasiseparable rank k, for $\epsilon > 0$. Then, there exists a matrix δA of norm bounded by $\|\delta A\|_2 \le 2\sqrt{n} \cdot \epsilon$ so that $A + \delta A$ is k-quasiseparable.

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ -quasiseparable rank k, for $\epsilon > 0$. Then, there exists a matrix δA of norm bounded by $\|\delta A\|_2 \le 2\sqrt{n} \cdot \epsilon$ so that $A + \delta A$ is k-quasiseparable.

• A matrix with ϵ -quasiseparable rank of k can be well-approximated by a matrix with exact quasiseparable rank k!

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ -quasiseparable rank k, for $\epsilon > 0$. Then, there exists a matrix δA of norm bounded by $\|\delta A\|_2 \le 2\sqrt{n} \cdot \epsilon$ so that $A + \delta A$ is k-quasiseparable.

• A matrix with ϵ -quasiseparable rank of k can be well-approximated by a matrix with exact quasiseparable rank k!

• If the spectra of A and -B are well-separated in the Zolotarev sense, we can preserve structure!

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ -quasiseparable rank k, for $\epsilon > 0$. Then, there exists a matrix δA of norm bounded by $\|\delta A\|_2 \le 2\sqrt{n} \cdot \epsilon$ so that $A + \delta A$ is k-quasiseparable.

• A matrix with ϵ -quasiseparable rank of k can be well-approximated by a matrix with exact quasiseparable rank k!

• If the spectra of A and -B are well-separated in the Zolotarev sense, we can preserve structure!

• How can we operate efficiently with these matrix structures?

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ -quasiseparable rank k, for $\epsilon > 0$. Then, there exists a matrix δA of norm bounded by $\|\delta A\|_2 \le 2\sqrt{n} \cdot \epsilon$ so that $A + \delta A$ is k-quasiseparable.

• A matrix with ϵ -quasiseparable rank of k can be well-approximated by a matrix with exact quasiseparable rank k!

• If the spectra of A and -B are well-separated in the Zolotarev sense, we can preserve structure!

0	How	can	we	operate	efficier	ntly	with	these
matrix structures?								

Reduced cost for BLAS-like operations,

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ -quasiseparable rank k, for $\epsilon > 0$. Then, there exists a matrix δA of norm bounded by $\|\delta A\|_2 \le 2\sqrt{n} \cdot \epsilon$ so that $A + \delta A$ is k-quasiseparable.

• A matrix with ϵ -quasiseparable rank of k can be well-approximated by a matrix with exact quasiseparable rank k!

• If the spectra of A and -B are well-separated in the Zolotarev sense, we can preserve structure!

- How can we operate efficiently with these matrix structures?
- Reduced cost for BLAS-like operations,
- E Contained storage cost.

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ -quasiseparable rank k, for $\epsilon > 0$. Then, there exists a matrix δA of norm bounded by $\|\delta A\|_2 \le 2\sqrt{n} \cdot \epsilon$ so that $A + \delta A$ is k-quasiseparable.

• A matrix with ϵ -quasiseparable rank of k can be well-approximated by a matrix with exact quasiseparable rank k!

• If the spectra of A and -B are well-separated in the Zolotarev sense, we can preserve structure!

- How can we operate efficiently with these matrix structures?
- **Reduced cost** for BLAS-like operations,
- **EXAMPLE** Contained storage cost.
 - Hierarchical matrix formats!

There exist many hierarchical matrix formats:

- ≁ H-Matrices,
- $\checkmark \mathcal{H}^2$ -Matrices,
- Hierarchical Off-Diagonal Low-Rank (HODLR),
- Hierarchically SemiSeparable (HSS),
- Block Low-Rank (BLR).

There exist many hierarchical matrix formats:

- 差 H-Matrices,
- $\checkmark \mathcal{H}^2$ -Matrices,
- Hierarchical Off-Diagonal Low-Rank (HODLR),
- Hierarchically SemiSeparable (HSS),
- Block Low-Rank (BLR).

() The topic would deserve a Ph.D. course on its own...

There exist many hierarchical matrix formats:

- 🔑 H-Matrices,
- $\checkmark \mathcal{H}^2$ -Matrices,
- Hierarchical Off-Diagonal Low-Rank (HODLR),
- Hierarchically SemiSeparable (HSS),
- Block Low-Rank (BLR).

 \bigcirc The topic would deserve a Ph.D. course on its own... We are gonna focus only on the case of HODLR matrices (Hackbusch 2015, Chapter 3).

Hierarchical matrix formats

There exist many hierarchical matrix formats:

- 差 H-Matrices,
- $\checkmark \mathcal{H}^2$ -Matrices,
- Hierarchical Off-Diagonal Low-Rank (HODLR),
- Hierarchically SemiSeparable (HSS),
- Block Low-Rank (BLR).

• The topic would deserve a Ph.D. course on its own... We are gonna focus only on the case of HODLR matrices (Hackbusch 2015, Chapter 3).

HODLR-matrices

The general idea:

The grey blocks are low rank matrices represented in a compressed form,
 the diagonal blocks in the last step are stored as dense matrices.

HODLR-matrices

The general idea:

The grey blocks are low rank matrices represented in a compressed form,
 the diagonal blocks in the last step are stored as dense matrices.
 We need now a formal definition and a way to define operations.

🜲 Cluster tree

Given $n \in \mathbb{N}$, let \mathcal{T}_p be a completely balanced binary tree of depth p whose nodes are subsets of $\{1, \ldots, n\}$. We say that \mathcal{T}_p is a *cluster tree* if it satisfies:

🜲 Cluster tree

Given $n \in \mathbb{N}$, let \mathcal{T}_p be a completely balanced binary tree of depth p whose nodes are subsets of $\{1, \ldots, n\}$. We say that \mathcal{T}_p is a *cluster tree* if it satisfies:

Y The root is $I_1^0 := I = \{1, ..., n\}.$

🜲 Cluster tree

Given $n \in \mathbb{N}$, let \mathcal{T}_p be a completely balanced binary tree of depth p whose nodes are subsets of $\{1, \ldots, n\}$. We say that \mathcal{T}_p is a *cluster tree* if it satisfies:

Y The root is
$$I_1^0 := I = \{1, ..., n\}.$$

The nodes at level ℓ , denoted by $I_1^{\ell}, \ldots, I_{2^{\ell}}^{\ell}$, form a partitioning of $\{1, \ldots, n\}$ into consecutive indices:

$$I_i^{\ell} = \{n_{i-1}^{(\ell)} + 1 \dots, n_i^{(\ell)} - 1, n_i^{(\ell)}\}$$

for some integers $0 = n_0^{(\ell)} \le n_1^{(\ell)} \le \cdots \le n_{2^{\ell}}^{(\ell)} = n$, $\ell = 0, \ldots p$. In particular, if $n_{i-1}^{(\ell)} = n_i^{(\ell)}$ then $l_i^{\ell} = \emptyset$.

🜲 Cluster tree

Given $n \in \mathbb{N}$, let \mathcal{T}_p be a completely balanced binary tree of depth p whose nodes are subsets of $\{1, \ldots, n\}$. We say that \mathcal{T}_p is a *cluster tree* if it satisfies:

Y The root is
$$I_1^0 := I = \{1, ..., n\}.$$

The nodes at level ℓ , denoted by $I_1^{\ell}, \ldots, I_{2^{\ell}}^{\ell}$, form a partitioning of $\{1, \ldots, n\}$ into consecutive indices:

$$I_i^{\ell} = \{n_{i-1}^{(\ell)} + 1 \dots, n_i^{(\ell)} - 1, n_i^{(\ell)}\}$$

for some integers $0 = n_0^{(\ell)} \le n_1^{(\ell)} \le \cdots \le n_{2^\ell}^{(\ell)} = n, \ \ell = 0, \dots p$. In particular, if $n_{i-1}^{(\ell)} = n_i^{(\ell)}$ then $I_i^{\ell} = \emptyset$.

i The node I_i^{ℓ} has children $I_{2i-1}^{\ell+1}$ and $I_{2i}^{\ell+1}$, for any $1 \leq \ell \leq p-1$. The children form a partitioning of their parent.

🜲 Cluster tree

Given $n \in \mathbb{N}$, let \mathcal{T}_p be a completely balanced binary tree of depth p whose nodes are subsets of $\{1, \ldots, n\}$. We say that \mathcal{T}_p is a *cluster tree* if it satisfies:

Y The root is
$$I_1^0 := I = \{1, ..., n\}.$$

The nodes at level ℓ , denoted by $I_1^{\ell}, \ldots, I_{2^{\ell}}^{\ell}$, form a partitioning of $\{1, \ldots, n\}$ into consecutive indices:

$$I_i^{\ell} = \{n_{i-1}^{(\ell)} + 1 \dots, n_i^{(\ell)} - 1, n_i^{(\ell)}\}$$

for some integers $0 = n_0^{(\ell)} \le n_1^{(\ell)} \le \cdots \le n_{2^{\ell}}^{(\ell)} = n, \ \ell = 0, \dots p$. In particular, if $n_{i-1}^{(\ell)} = n_i^{(\ell)}$ then $I_i^{\ell} = \emptyset$.

i The node I_i^{ℓ} has children $I_{2i-1}^{\ell+1}$ and $I_{2i}^{\ell+1}$, for any $1 \leq \ell \leq p-1$. The children form a partitioning of their parent.

P Nodes at a level ℓ partition A into a $2^{\ell} \times 2^{\ell}$ block matrix with blocks $\{A(I_i^{\ell}, I_i^{\ell})\}_{i,i=1}^{2^{\ell}}$.

Y The root $I = \{1, ..., 8\}$, *i* Nodes at level 1: I_1^1 and I_1^2 ,

Y The root $I = \{1, ..., 8\}$, Nodes at level 1: I_1^1 and I_1^2 , Nodes at level 2: $\mathbf{A}(I_1^1) = \{I_1^2, I_2^2\}$, $\mathbf{A}(I_2^1) = \{I_3^2, I_4^2\}$,

Y The root $I = \{1, ..., 8\}$, Nodes at level 1: I_1^1 and I_1^2 , Nodes at level 2: $\mathcal{P}(I_1^1) = \{I_1^2, I_2^2\}$, $\mathcal{P}(I_2^1) = \{I_3^2, I_4^2\}$, Nodes at level 3: $\mathcal{P}(I_1^2) = \{I_1^3, I_2^3\}$, ..., $\mathcal{P}(I_4^2) = \{I_7^3, I_8^3\}$.

HODLR-matrices: definition

HODLR matrix

Let $A \in \mathbb{R}^{n \times n}$ and consider a cluster tree \mathcal{T}_p .

1. Given $k \in \mathbb{N}$, A is said to be a (\mathcal{T}_p, k) -HODLR matrix if every off-diagonal block

 $A(I_i^\ell, I_j^\ell)$ such that I_i^ℓ and I_j^ℓ are siblings in $\mathcal{T}_p, \quad \ell = 1, \dots, p,$

has rank at most k.

2. The HODLR rank of A (with respect to T_p) is the smallest integer k such that A is a (T_p, k) -HODLR matrix.

HODLR-matrices: definition

HODLR matrix

Let $A \in \mathbb{R}^{n \times n}$ and consider a cluster tree \mathcal{T}_p .

1. Given $k \in \mathbb{N}$, A is said to be a (\mathcal{T}_p, k) -HODLR matrix if every off-diagonal block

 $A(I_i^\ell, I_j^\ell)$ such that I_i^ℓ and I_j^ℓ are siblings in \mathcal{T}_p , $\ell = 1, \dots, p$,

has rank at most k.

- 2. The HODLR rank of A (with respect to T_p) is the smallest integer k such that A is a (T_p, k) -HODLR matrix.
- Y \mathcal{T}_p is often chosen to be as balanced as possible, i.e., cardinalities of I_i^{ℓ} are nearly equal for a given ℓ , with a dept determined by a minimal diagonal block size n_{\min} .

HODLR-matrices: definition

HODLR matrix

Let $A \in \mathbb{R}^{n \times n}$ and consider a cluster tree \mathcal{T}_p .

1. Given $k \in \mathbb{N}$, A is said to be a (\mathcal{T}_p, k) -HODLR matrix if every off-diagonal block

 $A(I_i^\ell, I_j^\ell)$ such that I_i^ℓ and I_j^ℓ are siblings in \mathcal{T}_p , $\ell = 1, \dots, p$,

has rank at most k.

- 2. The HODLR rank of A (with respect to T_p) is the smallest integer k such that A is a (T_p, k) -HODLR matrix.
- Y T_p is often chosen to be as balanced as possible, i.e., cardinalities of I^ℓ_i are nearly equal for a given ℓ, with a dept determined by a minimal diagonal block size n_{min}.
 The classical choice is to have a binary tree, i.e., n = 2^p n_{min}.

HODLR-matrices: occupied space

If we assume identical ranks k and a balanced partitioning then

Storage for off-diagonal blocks $A(I_i^{\ell}, I_j^{\ell}) = U_i^{(\ell)}(V_j^{(\ell)})^{T}$, $U_i^{(\ell)}, V_j^{(\ell)} \in \mathbb{R}^{m_{\ell} \times k}$: On level $\ell > 0$ there are 2^{ℓ} off-diagonal blocks

$$2k\sum_{\ell=1}^{p} 2^{\ell}m_{\ell} = 2kn_{0}\sum_{\ell=1}^{p} 2^{\ell}2^{p-\ell}2kn_{0}p2^{p} = 2knp = 2kn\log_{2}(n/n_{0}),$$

HODLR-matrices: occupied space

If we assume identical ranks k and a balanced partitioning then

Storage for off-diagonal blocks $A(I_i^{\ell}, I_j^{\ell}) = U_i^{(\ell)}(V_j^{(\ell)})^{T}$, $U_i^{(\ell)}, V_j^{(\ell)} \in \mathbb{R}^{m_{\ell} \times k}$: On level $\ell > 0$ there are 2^{ℓ} off-diagonal blocks

$$2k\sum_{\ell=1}^{p} 2^{\ell}m_{\ell} = 2kn_{0}\sum_{\ell=1}^{p} 2^{\ell}2^{p-\ell}2kn_{0}p2^{p} = 2knp = 2kn\log_{2}(n/n_{0}),$$

Storage requirements for diagonal blocks

$$2^p n_0^2 = n n_0,$$

HODLR-matrices: occupied space

If we assume identical ranks k and a balanced partitioning then

Storage for off-diagonal blocks $A(I_i^{\ell}, I_j^{\ell}) = U_i^{(\ell)}(V_j^{(\ell)})^{T}$, $U_i^{(\ell)}, V_j^{(\ell)} \in \mathbb{R}^{m_{\ell} \times k}$: On level $\ell > 0$ there are 2^{ℓ} off-diagonal blocks

$$2k\sum_{\ell=1}^{p} 2^{\ell}m_{\ell} = 2kn_{0}\sum_{\ell=1}^{p} 2^{\ell}2^{p-\ell}2kn_{0}p2^{p} = 2knp = 2kn\log_{2}(n/n_{0}),$$

Storage requirements for diagonal blocks

$$2^p n_0^2 = n n_0,$$

Total, assuming $n_0 = O(1)$, is then

 $O(kn \log n)$.
HODLR-matrices: occupied space

If we assume identical ranks k and a balanced partitioning then

Storage for off-diagonal blocks $A(I_i^{\ell}, I_j^{\ell}) = U_i^{(\ell)}(V_j^{(\ell)})^{T}$, $U_i^{(\ell)}, V_j^{(\ell)} \in \mathbb{R}^{m_{\ell} \times k}$: On level $\ell > 0$ there are 2^{ℓ} off-diagonal blocks

$$2k\sum_{\ell=1}^{p} 2^{\ell}m_{\ell} = 2kn_{0}\sum_{\ell=1}^{p} 2^{\ell}2^{p-\ell}2kn_{0}p2^{p} = 2knp = 2kn\log_{2}(n/n_{0}),$$

Storage requirements for diagonal blocks

$$2^p n_0^2 = n n_0,$$

Total, assuming $n_0 = O(1)$, is then

 $O(kn \log n)$.

• Both requirements on ranks and partitioning can be relaxed to obtain similar results.

Is non trivial to construct structured representations efficiently, especially if you want to avoid computing the whole n^2 coefficients!

Is non trivial to construct structured representations efficiently, especially if you want to avoid computing the whole n^2 coefficients!

Y Build a **cluster tree** \mathcal{T}_p for the given index set,

A Is non trivial to construct structured representations efficiently, especially if you want to avoid computing the whole n^2 coefficients!

Y Build a **cluster tree** \mathcal{T}_p for the given index set,

If A is **dense**:

Use Householder **QR decomposition** with column pivoting or **SVD** on off-diagonal blocks,

A Is non trivial to construct structured representations efficiently, especially if you want to avoid computing the whole n^2 coefficients!

Y Build a **cluster tree** \mathcal{T}_p for the given index set,

If A is **dense**:

- Use Householder **QR decomposition** with column pivoting or **SVD** on off-diagonal blocks,
- ✓ The rank of each off-diagonal block $A(I_i^p, I_j^p)$ is chosen such that the spectral norm of the approximation error is bounded by ϵ times $||A(I_i^p, I_j^p)||_2$.

A Is non trivial to construct structured representations efficiently, especially if you want to avoid computing the whole n^2 coefficients!

Y Build a **cluster tree** \mathcal{T}_p for the given index set,

If A is **dense**:

- Use Householder **QR decomposition** with column pivoting or **SVD** on off-diagonal blocks,
- **/** The rank of each off-diagonal block $A(I_i^p, I_j^p)$ is chosen such that the spectral norm of the approximation error is bounded by ϵ times $||A(I_i^p, I_j^p)||_2$.

If A is **sparse**:

Use a **two sided Lanczos method** only requiring matrix-vector multiplications with an off-diagonal block and its transpose, combined with recompression to each off-diagonal block.

A Is non trivial to construct structured representations efficiently, especially if you want to avoid computing the whole n^2 coefficients!

Y Build a **cluster tree** \mathcal{T}_p for the given index set,

If A is **dense**:

- Use Householder **QR decomposition** with column pivoting or **SVD** on off-diagonal blocks,
- **/** The rank of each off-diagonal block $A(I_i^p, I_j^p)$ is chosen such that the spectral norm of the approximation error is bounded by ϵ times $||A(I_i^p, I_j^p)||_2$.

If A is **sparse**:

- Use a **two sided Lanczos method** only requiring matrix-vector multiplications with an off-diagonal block and its transpose, combined with recompression to each off-diagonal block.
- If A is **structured** use an *ad-hoc* constructor!

Theorem (Fiedler 2010, Theorem A)

Let \mathbf{x}, \mathbf{y} two real vectors of length N, with ascending and descending ordered entries, respectively. Moreover, we denote with $C(\mathbf{x}, \mathbf{y})$ the Cauchy matrix defined by

$$C_{ij}=rac{1}{x_i-y_j}, \qquad i,j=1,\ldots,N.$$

If $C(\mathbf{x}, \mathbf{y}) = C(\mathbf{x}, \mathbf{y})^T$, $x_i \in [a, b]$, $y_j \in [c, d]$ with a > d, then $C(\mathbf{x}, \mathbf{y})$ is positive definite.

Theorem (Fiedler 2010, Theorem A)

Let \mathbf{x}, \mathbf{y} two real vectors of length N, with ascending and descending ordered entries, respectively. Moreover, we denote with $C(\mathbf{x}, \mathbf{y})$ the Cauchy matrix defined by

$$C_{ij}=rac{1}{x_i-y_j}, \qquad i,j=1,\ldots,N.$$

If $C(\mathbf{x}, \mathbf{y}) = C(\mathbf{x}, \mathbf{y})^T$, $x_i \in [a, b]$, $y_j \in [c, d]$ with a > d, then $C(\mathbf{x}, \mathbf{y})$ is positive definite.

Theorem (Beckermann and Townsend 2019, Theorem 5.5)

Let H be a positive semidefinite Hankel matrix of size N. Then, the ϵ -rank of H is bounded by

$$\operatorname{rank}_{\epsilon}(H) \leq 2 + 2\left\lceil \frac{2}{\pi^2} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{16}{\epsilon}\right) \right\rceil \triangleq \mathfrak{B}(N,\epsilon).$$

We need to work with $G_N \in \mathbb{R}^{N \times N}$

$$G_{N} = -\begin{bmatrix} g_{1}^{(\alpha)} & g_{0}^{(\alpha)} & 0 & \cdots & 0 & 0\\ g_{2}^{(\alpha)} & g_{1}^{(\alpha)} & g_{0}^{(\alpha)} & 0 & \cdots & 0\\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots\\ g_{N-1}^{(\alpha)} & g_{N-1}^{(\alpha)} & g_{1}^{(\alpha)} & g_{0}^{(\alpha)}\\ g_{N-1}^{(\alpha)} & g_{N-1}^{(\alpha)} & \cdots & g_{2}^{(\alpha)} & g_{1}^{(\alpha)} \end{bmatrix} \begin{bmatrix} \text{Lemma (Massei, Mazza, and Robol 2019)} \\ \text{Consider the Hankel matrix } H \text{ defined as} \\ H = (h_{ij}), \quad h_{ij} = g_{i+j}^{(\alpha)}, \\ \text{for } 1 \le \alpha \le 2. \text{ Then, } H \text{ is positive semidefinite.} \end{bmatrix}$$

Show that H is obtained as the sum of a positive definite Cauchy matrix and a positive semidefinite matrix.

 \blacktriangleright Use the result by Beckermann and Townsend 2019.

Proof. For $k \ge 2$ we rewrite $g_k^{(\alpha)}$ as

$$g_k^{(\alpha)} = \frac{(-1)^k}{k!} \alpha(\alpha - 1) \dots (\alpha - k + 1)$$

= $\frac{\alpha(\alpha - 1)}{k!} (k - \alpha - 1)(k - \alpha - 2) \dots (2 - \alpha)$
= $\alpha(\alpha - 1) \frac{\Gamma(k - \alpha)}{\Gamma(k + 1)\Gamma(2 - \alpha)}.$

Proof. For $k \ge 2$ we rewrite $g_k^{(\alpha)}$ as

$$g_k^{(\alpha)} = lpha(lpha-1)rac{\Gamma(k-lpha)}{\Gamma(k+1)\Gamma(2-lpha)}.$$

Use the Gauss representation of the Euler $\boldsymbol{\Gamma}$

$$\Gamma(z) = \lim_{m \to \infty} \frac{m! m^z}{z(z+1)(z+2) \dots (z+m)}, \quad z \neq \{0, -1, -2, \dots\},$$

we rewrite

$$g_k^{(\alpha)} = \alpha(\alpha-1) \lim_{m \to \infty} \frac{1}{m!m^3} \prod_{p=0}^m \frac{k+1+p}{k-\alpha+p} (2-\alpha+p).$$

Proof. For $k \ge 2$ we rewrite $g_k^{(\alpha)}$ as

$$g_k^{(\alpha)} = \alpha(\alpha-1) rac{\Gamma(k-\alpha)}{\Gamma(k+1)\Gamma(2-\alpha)}.$$

We rewrite

$$H = \lim_{m \to +\infty} H_0 \circ \ldots \circ H_m, \qquad (H_p)_{ij} = \frac{i+j+1+p}{i+j-\alpha+p}$$

for \circ the Hadamard product, $\{H_j\}_{j=0}^m$ Hankel matrices.

Proof. For $k \ge 2$ we rewrite $g_k^{(\alpha)}$ as

$$g_k^{(\alpha)} = lpha(lpha-1)rac{\Gamma(k-lpha)}{\Gamma(k+1)\Gamma(2-lpha)}.$$

We rewrite

$$H = \lim_{m \to +\infty} H_0 \circ \ldots \circ H_m, \qquad (H_p)_{ij} = \frac{i+j+1+p}{i+j-\alpha+p}$$

for \circ the Hadamard product, $\{H_j\}_{j=0}^m$ Hankel matrices. Schur Product Theorem tells us that "the Hadamard product of two positive definite matrices is also a positive definite matrix" \Rightarrow If $H_0 \circ \ldots \circ H_m$ is positive semidefinite for every *m* then *H* is also positive semidefinite.

Proof. For $k \geq 2$ we rewrite $g_k^{(\alpha)}$ as

$$g_k^{(\alpha)} = lpha(lpha-1)rac{\Gamma(k-lpha)}{\Gamma(k+1)\Gamma(2-lpha)}.$$

We rewrite

$$H = \lim_{m \to +\infty} H_0 \circ \ldots \circ H_m, \qquad (H_p)_{ij} = \frac{i+j+1+p}{i+j-\alpha+p}$$

for \circ the Hadamard product, $\{H_j\}_{j=0}^m$ Hankel matrices. Rewrite

$$(H_p)_{ij} = \frac{i+j+1+p}{i+j-\alpha+p} = 1 + \frac{\alpha+1}{i+j-\alpha+p}$$

Proof. For $k \ge 2$ we rewrite $g_k^{(\alpha)}$ as

$$g_k^{(\alpha)} = lpha(lpha-1)rac{\Gamma(k-lpha)}{\Gamma(k+1)\Gamma(2-lpha)}.$$

We rewrite

$$H = \lim_{m \to +\infty} H_0 \circ \ldots \circ H_m, \qquad (H_p)_{ij} = \frac{i+j+1+p}{i+j-\alpha+p}$$

for \circ the Hadamard product, $\{H_j\}_{j=0}^m$ Hankel matrices. Rewrite

$$(H_p)_{ij} = 1 + \frac{\alpha + 1}{i + j - \alpha + p}, \quad H_p = \mathbf{1}\mathbf{1}^T + (\alpha + 1) \cdot C(\mathbf{x}, -\mathbf{x}), \quad \mathbf{x} = \begin{bmatrix} 1\\ \vdots\\ N \end{bmatrix} + \frac{p - \alpha}{2}\mathbf{1},$$

 $x \ge 0$ for $\alpha < 2$, thus C(x, -x) is PD. Then H_p is positive semidefinite as the sum of a PD and positive semidefinite matrix.

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\epsilon}(G_{N}) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^{2}} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\epsilon}\right) \right\rceil$$

Proof.

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\epsilon}(G_{N}) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^{2}} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\epsilon}\right) \right\rceil$$

Proof. We just need to work on the lower triangle, for the upper the rank is at most 1 (Hessenberg).

For every $\varepsilon > 0$, the ε -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\epsilon}(G_N) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^2} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\epsilon}\right) \right\rceil$$

Proof. Let $Y \in \mathbb{R}^{s \times t}$ be any lower off-diagonal block of G_N . Without loss of generality we assume that Y is maximal, i.e. s + t = N.

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\epsilon}(G_{N}) \leq \mathfrak{B}\left(N,\frac{\epsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^{2}}\log\left(\frac{4}{\pi}N\right)\log\left(\frac{32}{\epsilon}\right) \right\rceil$$

Proof. Let $Y \in \mathbb{R}^{s \times t}$ be any lower off-diagonal block of G_N . Without loss of generality we assume that Y is maximal, i.e. s + t = N. (If $\operatorname{rank}(Y + \delta Y) = k$ and $\|\delta Y\|_2 \le \varepsilon \|G_N\|_2$ then the submatrices of δY verify the analogous claim for the corresponding ones of Y.)

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\epsilon}(G_N) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^2} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\epsilon}\right) \right\rceil$$

Proof. Let $Y \in \mathbb{R}^{s \times t}$ be any lower off-diagonal block of G_N . Without loss of generality we assume that Y is maximal, i.e. s + t = N. Entries Y are given by $Y_{ij} = -g_{1+i-j+t}^{(\alpha)}$. Call $h = \max\{s, t\}$, and A the $h \times h$ matrix defined by $A_{ij} = -g_{1+i-j+h}^{(\alpha)}$.

$$A = \begin{bmatrix} & & \\ & &$$

Proof. Let $Y \in \mathbb{R}^{s \times t}$ be any lower off-diagonal block of G_N . Without loss of generality we assume that Y is maximal, i.e. s + t = N. Entries Y are given by $Y_{ij} = -g_{1+i-j+t}^{(\alpha)}$. Call $h = \max\{s, t\}$, and A the $h \times h$ matrix defined by $A_{ij} = -g_{1+i-j+h}^{(\alpha)}$. Y coincides with either the last t columns or the first s rows of A.

For every
$$1 \le i \le s$$
 and $1 \le j \le t$ one have
 $Y_{ij} = -g_{1+i-j+t}^{(\alpha)} = -g_{1+i-(j-t+h)+h}^{(\alpha)} = A_{i,j-t+h}$.
Proof. Let $Y \in \mathbb{R}^{s \times t}$ be any lower off-diagonal block of G_N . Without loss of generality we
assume that Y is maximal, i.e. $s + t = N$.
Entries Y are given by $Y_{ij} = -g_{1+i-j+t}^{(\alpha)}$. Call $h = \max\{s, t\}$, and A the $h \times h$ matrix defined

by $A_{ij} = -g_{1+i-j+h}^{(\alpha)}$. Y coincides with either the last t columns or the first s rows of A.

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\epsilon}(G_N) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^2} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\epsilon}\right) \right\rceil$$

Proof. Let $Y \in \mathbb{R}^{s \times t}$ be any lower off-diagonal block of G_N . Without loss of generality we assume that Y is maximal, i.e. s + t = N. Entries Y are given by $Y_{ij} = -g_{1+i-j+t}^{(\alpha)}$. Call $h = \max\{s, t\}$, and A the $h \times h$ matrix defined by $A_{ij} = -g_{1+i-j+h}^{(\alpha)}$. Y coincides with either the last t columns or the first s rows of A. In particular, Y is a submatrix of A and therefore $||Y||_2 \le ||A||_2$.

Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\epsilon}(G_{N}) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^{2}} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\epsilon}\right) \right\rceil$$

Proof. Let $Y \in \mathbb{R}^{s \times t}$ be any lower off-diagonal block of G_N . Without loss of generality we assume that Y is maximal, i.e. s + t = N. Entries Y are given by $Y_{ij} = -g_{1+i-j+t}^{(\alpha)}$. Call $h = \max\{s, t\}$, and A the $h \times h$ matrix defined by $A_{ij} = -g_{1+i-j+h}^{(\alpha)}$. Y coincides with either the last t columns or the first s rows of A. In particular, Y is a submatrix of A and therefore $||Y||_2 \le ||A||_2$. We need now to estimate $||A||_2$ in terms of $||G_N||_2$, thus we partition

$$A = \begin{bmatrix} A^{(11)} & A^{(12)} \\ A^{(21)} & A^{(22)} \end{bmatrix}, \qquad A^{(ij)} \in \mathbb{C}^{m_{ij} \times n_{ij}}, \qquad \begin{cases} m_{1j} = n_{i1} = \lceil \frac{h}{2} \rceil \\ m_{2j} = n_{i2} = \lfloor \frac{h}{2} \rfloor \end{cases}, \qquad \begin{cases} h \le N - 1, \\ m_{i,j} + n_{i,j} \le N, \end{cases}$$

Proof. and consider the subdiagonal block $T^{(ij)}$ of G_N defined by

$$T^{(ij)} = G_N(N - m_{ij} + 1: N, N - m_{ij} - n_{ij} + 1: N - m_{ij}), \qquad i, j = 1, 2, \qquad egin{array}{c} T^{(ij)} \in \mathbb{R}^{m_{ij} imes n_{ij}}, \ m_{ij} + n_{ij} \leq N. \end{array}$$

Proof. and consider the subdiagonal block $T^{(ij)}$ of G_N defined by

$$T^{(ij)} = G_N(N - m_{ij} + 1 : N, N - m_{ij} - n_{ij} + 1 : N - m_{ij}), \qquad i, j = 1, 2, \qquad \begin{array}{l} T^{(ij)} \in \mathbb{R}^{m_{ij} \times n_{ij}}, \\ m_{ij} + n_{ij} \leq N. \end{array}$$

• Since
$$g_j^{(\alpha)} > g_{j+1}^{(\alpha)} > 0$$
, $|\mathcal{T}^{(ij)}| \ge |\mathcal{A}^{(ij)}|$ for every $i, j = 1, 2$,

Proof. and consider the subdiagonal block $T^{(ij)}$ of G_N defined by

$$T^{(ij)} = G_N(N - m_{ij} + 1 : N, N - m_{ij} - n_{ij} + 1 : N - m_{ij}), \qquad i, j = 1, 2, \qquad egin{array}{c} T^{(ij)} \in \mathbb{R}^{m_{ij} imes n_{ij}}, \ m_{ij} + n_{ij} \leq N. \end{array}$$

O Since g_j^(α) > g_{j+1}^(α) > 0, |T^(ij)| ≥ |A^(ij)| for every i, j = 1, 2,
 ➢ Being T^(ij) and A^(ij) nonpositive and the 2 norm monotonous, ||A^(ij)||₂ ≤ ||T^(ij)||₂.

Proof. and consider the subdiagonal block $T^{(ij)}$ of G_N defined by

$$T^{(ij)} = G_N(N - m_{ij} + 1 : N, N - m_{ij} - n_{ij} + 1 : N - m_{ij}), \qquad i, j = 1, 2, \qquad egin{array}{c} T^{(ij)} \in \mathbb{R}^{m_{ij} imes n_{ij}}, \ m_{ij} + n_{ij} \leq N. \end{array}$$

Since g_j^(α) > g_{j+1}^(α) > 0, |T^(ij)| ≥ |A^(ij)| for every i, j = 1, 2,
▶ Being T^(ij) and A^(ij) nonpositive and the 2 norm monotonous, ||A^(ij)||₂ ≤ ||T^(ij)||₂.
P By exploiting

$$\begin{split} \|A\|_{2} &\leq \left\| \begin{bmatrix} A^{(11)} \\ A^{(22)} \end{bmatrix} \right\|_{2} + \left\| \begin{bmatrix} A^{(12)} \\ A^{(21)} \end{bmatrix} \right\|_{2} \\ &= \max\{ \|A^{(11)}\|_{2}, \|A^{(22)}\|_{2}\} + \max\{ \|A^{(12)}\|_{2}, \|A^{(21)}\|_{2}\} \end{split} \Rightarrow \|A\|_{2} \leq 2\|G_{N}\|_{2}.$$

Proof. and consider the subdiagonal block $T^{(ij)}$ of G_N defined by

$$T^{(ij)} = G_N(N - m_{ij} + 1 : N, N - m_{ij} - n_{ij} + 1 : N - m_{ij}), \qquad i, j = 1, 2, \qquad egin{array}{c} T^{(ij)} \in \mathbb{R}^{m_{ij} imes n_{ij}}, \ m_{ij} + n_{ij} \leq N. \end{array}$$

Since g_j^(α) > g_{j+1}^(α) > 0, |T^(ij)| ≥ |A^(ij)| for every i, j = 1, 2,
▶ Being T^(ij) and A^(ij) nonpositive and the 2 norm monotonous, ||A^(ij)||₂ ≤ ||T^(ij)||₂.
P By exploiting

$$\begin{split} \|A\|_{2} &\leq \left\| \begin{bmatrix} A^{(11)} \\ A^{(22)} \end{bmatrix} \right\|_{2} + \left\| \begin{bmatrix} A^{(12)} \\ A^{(21)} \end{bmatrix} \right\|_{2} \\ &= \max\{ \|A^{(11)}\|_{2}, \|A^{(22)}\|_{2}\} + \max\{ \|A^{(12)}\|_{2}, \|A^{(21)}\|_{2}\} \end{split} \Rightarrow \|A\|_{2} \leq 2\|G_{N}\|_{2}.$$

Conclude by the result on Hankel matrices!

Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\varepsilon}(G_N) \leq \mathfrak{B}\left(N, \frac{\varepsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^2} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\varepsilon}\right) \right\rceil$$

Proof. We call J the $h \times h$ flip matrix, so that -AJ is Hankel and positive semidefinite:

$$\operatorname{rank}_{\frac{\epsilon}{2}}(A) = \operatorname{rank}_{\frac{\epsilon}{2}}(AJ) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right).$$

Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\varepsilon}(G_N) \leq \mathfrak{B}\left(N, \frac{\varepsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^2} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\varepsilon}\right) \right\rceil$$

Proof. We call J the $h \times h$ flip matrix, so that -AJ is Hankel and positive semidefinite:

$$\operatorname{rank}_{\frac{\epsilon}{2}}(A) = \operatorname{rank}_{\frac{\epsilon}{2}}(AJ) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right).$$

Y is a submatrix of A, thus there exists δY such that

$$\|\delta Y\|_2 \leq \varepsilon \|G_N\|_2$$
 and $\operatorname{rank}(Y + \delta Y) \leq \mathfrak{B}\left(N, \frac{\varepsilon}{2}\right)$.

Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every $\epsilon > 0$, the ϵ -qsrank of G_N is bounded by

$$\operatorname{qsrank}_{\varepsilon}(G_N) \leq \mathfrak{B}\left(N, \frac{\varepsilon}{2}\right) = 2 + 2\left\lceil \frac{2}{\pi^2} \log\left(\frac{4}{\pi}N\right) \log\left(\frac{32}{\varepsilon}\right) \right\rceil$$

Proof. We call J the $h \times h$ flip matrix, so that -AJ is Hankel and positive semidefinite:

$$\operatorname{rank}_{\frac{\epsilon}{2}}(A) = \operatorname{rank}_{\frac{\epsilon}{2}}(AJ) \leq \mathfrak{B}\left(N, \frac{\epsilon}{2}\right).$$

Y is a submatrix of A, thus there exists δY such that

$$\|\delta Y\|_2 \leq \varepsilon \|G_N\|_2$$
 and $\operatorname{rank}(Y + \delta Y) \leq \mathfrak{B}\left(N, rac{\epsilon}{2}
ight).$

 $\Rightarrow \operatorname{qsrank}_{\epsilon}(G_N) \leq \mathfrak{B}(N, \frac{\epsilon}{2}).$

Let's do some experiments with the Chm-toolbox (Massei, Robol, and Kressner 2020).

```
function G = glhodlrmatrix(N,alpha,tol)
%%GLMATRIX produces the GL discretization of
% the Riemann-Liouville derivative in HODLR
% format
g = gl(N, alpha);
c = zeros(N, 1);
r = zeros(1.N):
r(1:2) = g(2:-1:1);
c(1:N) = g(2:end);
hodlroption( 'threshold', tol);
G = hodlr('toeplitz',c,r);
end
```

Let's do some experiments with the Cohm-toolbox (Massei, Robol, and Kressner 2020).

```
function G = glhodlrmatrix(N,alpha,tol)
%%GLMATRIX produces the GL discretization of
% the Riemann-Liouville derivative in HODLR
% format
g = gl(N, alpha);
c = zeros(N, 1):
r = zeros(1,N);
r(1:2) = g(2:-1:1);
c(1:N) = g(2:end);
hodlroption( 'threshold', tol);
G = hodlr('toeplitz',c,r);
end
```


G = glhodlrmatrix(6000,1.5,1e-6);

Let's do some experiments with the Cohm-toolbox (Massei, Robol, and Kressner 2020).

```
function G = glhodlrmatrix(N,alpha,tol)
%%GLMATRIX produces the GL discretization of
% the Riemann-Liouville derivative in HODLR
% format
g = gl(N, alpha);
c = zeros(N, 1):
r = zeros(1,N);
r(1:2) = g(2:-1:1);
c(1:N) = g(2:end);
hodlroption( 'threshold', tol);
G = hodlr('toeplitz',c,r);
end
```


G = glhodlrmatrix(6000,1.5,1e-9);
HODLR of Grünwald–Letnikov

Let's do some experiments with the Chm-toolbox (Massei, Robol, and Kressner 2020).

```
function G = glhodlrmatrix(N,alpha,tol)
%%GLMATRIX produces the GL discretization of
% the Riemann-Liouville derivative in HODLR
% format
g = gl(N, alpha);
c = zeros(N, 1);
r = zeros(1,N);
r(1:2) = g(2:-1:1);
c(1:N) = g(2:end);
hodlroption( 'threshold', tol);
G = hodlr('toeplitz',c,r);
end
```


G = glhodlrmatrix(6000,1.5,1e-12);

Matrix G_N was only a piece of the whole discretization matrix

$$A_N = I_N + rac{\Delta t}{h^lpha} \left(D^+_{(m)} G_N + D^-_{(m)} G^T_N
ight),$$

does it share the same structure?

Matrix G_N was only a piece of the whole discretization matrix

$$A_N = I_N + rac{\Delta t}{h^{lpha}} \left(D^+_{(m)} G_N + D^-_{(m)} G^T_N
ight),$$

does it share the same structure?

Corollary (Massei, Mazza, and Robol 2019, Corollary 3.16)

$$\operatorname{qsrank}_{\varepsilon}(A_N) \leq 3 + 2 \left\lceil \frac{2}{\pi^2} \log \left(\frac{4}{\pi} N \right) \log \left(\frac{32}{\widehat{\varepsilon}} \right) \right\rceil, \quad \widehat{\varepsilon} \triangleq \frac{\|A_N\|}{\|G_N\| \cdot \max\{\|D_{(m)}^+\|, \|D_{(m)}^-\|\}} \varepsilon.$$

Matrix G_N was only a piece of the whole discretization matrix

$$A_N = I_N + rac{\Delta t}{h^{lpha}} \left(D^+_{(m)} G_N + D^-_{(m)} G^T_N
ight),$$

does it share the same structure?

Corollary (Massei, Mazza, and Robol 2019, Corollary 3.16)

$$\operatorname{qsrank}_{\epsilon}(A_{N}) \leq 3 + 2 \left\lceil \frac{2}{\pi^{2}} \log \left(\frac{4}{\pi} N \right) \log \left(\frac{32}{\widehat{\epsilon}} \right) \right\rceil, \quad \widehat{\epsilon} \triangleq \frac{\|A_{N}\|}{\|G_{N}\| \cdot \max\{\|D_{(m)}^{+}\|, \|D_{(m)}^{-}\|\}} \epsilon.$$

Proof. Result is invariant under scaling, so assume wlog that $\frac{\Delta t}{b^{\alpha}} = 1$.

HODLR Matrix: the whole discretization

Matrix G_N was only a piece of the whole discretization matrix

$$\mathcal{A}_{N} = \mathcal{I}_{N} + rac{\Delta t}{h^{lpha}} \left(D^{+}_{(m)} \mathcal{G}_{N} + D^{-}_{(m)} \mathcal{G}^{T}_{N}
ight),$$

does it share the same structure?

Corollary (Massei, Mazza, and Robol 2019, Corollary 3.16)

$$\operatorname{qsrank}_{\epsilon}(A_N) \leq 3 + 2 \left\lceil \frac{2}{\pi^2} \log \left(\frac{4}{\pi} N \right) \log \left(\frac{32}{\hat{\epsilon}} \right) \right\rceil, \quad \hat{\epsilon} \triangleq \frac{\|A_N\|}{\|G_N\| \cdot \max\{\|D_{(m)}^+\|, \|D_{(m)}^-\|\}} \epsilon.$$

Proof. Result is invariant under scaling, so assume wlog that $\frac{\Delta t}{h^{\alpha}} = 1$. A generic off-diagonal block Y, wlog in the lower triangular part, If Y does not intersect the first subdiagonal, is a subblock of $D_{(m)}^+ G_N$, so there exists a perturbation δY with norm bounded by $\|\delta Y\| \leq \|D_{(m)}^+\|\|G_N\| \cdot \hat{\epsilon}$ such that $Y + \delta Y$ has rank at most $\mathfrak{B}(N, \hat{\epsilon}/2)$. In particular, δY satisfies $\|\delta Y\| \leq \|A_N\| \cdot \epsilon$.

HODLR Matrix: the whole discretization

Matrix G_N was only a piece of the whole discretization matrix

$$A_N = I_N + rac{\Delta t}{h^{lpha}} \left(D^+_{(m)} G_N + D^-_{(m)} G^T_N
ight),$$

does it share the same structure?

Corollary (Massei, Mazza, and Robol 2019, Corollary 3.16)

$$\operatorname{qsrank}_{\varepsilon}(A_{N}) \leq 3 + 2 \left\lceil \frac{2}{\pi^{2}} \log \left(\frac{4}{\pi} N \right) \log \left(\frac{32}{\widehat{\varepsilon}} \right) \right\rceil, \quad \widehat{\varepsilon} \triangleq \frac{\|A_{N}\|}{\|G_{N}\| \cdot \max\{\|D_{(m)}^{+}\|, \|D_{(m)}^{-}\|\}} \varepsilon.$$

Proof. Result is invariant under scaling, so assume wlog that $\frac{\Delta t}{h^{\alpha}} = 1$. Since we have excluded one subdiagonal, a generic off-diagonal block Y we can find a perturbation with norm bounded by $||A_N|| \cdot \epsilon$ such that $Y + \delta Y$ has rank $1 + \mathfrak{B}(N, \hat{\epsilon}/2)$.

? What are right-hand sides functions f(x, y, t) so that the matrix C has a HODLR structure?

? What are right-hand sides functions f(x, y, t) so that the matrix C has a HODLR structure?

Consider the function

 $f(x,y) = \log\left(\tau + |x-y|\right), \quad \tau > 0.$

? What are right-hand sides functions f(x, y, t) so that the matrix C has a HODLR structure?

Consider the function

 $f(x,y) = \log\left(\tau + |x-y|\right), \quad \tau > 0.$

If we discretize it by *finite differences* on a rectangular domain we find

 $C_{i,j} = \log\left(\tau + |x_i - y_j|\right)$

? What are right-hand sides functions f(x, y, t) so that the matrix C has a HODLR structure?

Consider the function

 $f(x,y) = \log\left(\tau + |x-y|\right), \quad \tau > 0.$

If we discretize it by *finite differences* on a rectangular domain we find

 $C_{i,j} = \log\left(\tau + |x_i - y_j|\right)$

The modulus function it is not regular in the whole domain but it is analytic when the sign of x - y is constant.

? What are right-hand sides functions f(x, y, t) so that the matrix C has a HODLR structure?

Consider the function

 $f(x,y) = \log\left(\tau + |x-y|\right), \quad \tau > 0.$

If we discretize it by *finite differences* on a rectangular domain we find

 $C_{i,j} = \log\left(\tau + |x_i - y_j|\right)$

- The modulus function it is not regular in the whole domain but it is analytic when the sign of x - y is constant.
- We can use again Chebyshev basis to approximate it in a separable fashion.


```
x = linspace(0,1,N); y = linspace(0,1,N);
[X,Y] = meshgrid(x,y); tau = 1;
C = log(tau + abs(X-Y)); hC = hodlr(C);
```

Separability (a bit more formally)

Separable expansion (Hackbusch 2015, Definition 4.4)

Take a function $\chi(x,y): X \times Y \to \mathbb{R}$, we call

$$\chi(x,y) = \sum_{\nu=1}^{r} \phi_{\nu}^{(r)}(x) \psi_{\nu}^{(r)}(y) + R_{r}(x,y), \quad \text{for } x \in X, \ y \in Y,$$

a separable expansion of χ with r terms in $X \times Y$ with remainder R_r .

To have an idea of the **goodness** of the *separable expansion*, we would like to have $\{||R_r||_{\infty}, ||R_r||_{\mathbb{L}^p}\} \xrightarrow{r \to 0} 0$ as fast as possible, e.g., **exponentially**.

Separability (a bit more formally)

Separable expansion (Hackbusch 2015, Definition 4.4)

Take a function $\chi(x, y) : X \times Y \to \mathbb{R}$, we call

$$\chi(x,y) = \sum_{\nu=1}^{r} \phi_{\nu}^{(r)}(x) \psi_{\nu}^{(r)}(y) + R_{r}(x,y), \quad \text{for } x \in X, \ y \in Y,$$

a separable expansion of χ with r terms in $X \times Y$ with remainder R_r .

Separability (a bit more formally)

Separable expansion (Hackbusch 2015, Definition 4.4)

Take a function $\chi(x,y):X imes Y
ightarrow \mathbb{R}$, we call

$$\chi(x,y) = \sum_{\nu=1}^{r} \phi_{\nu}^{(r)}(x) \psi_{\nu}^{(r)}(y) + R_{r}(x,y), \quad \text{for } x \in X, \ y \in Y,$$

a separable expansion of χ with r terms in $X \times Y$ with remainder R_r .

✓ To have an idea of the goodness of the separable expansion, we would like to have {||R_r||_∞, ||R_r||_⊥} ^{r→0}/→ 0 as fast as possible, e.g., exponentially.
 ◊ If ||R_r|| ≤ c₁ exp(-c₂r^α) ⇒ ||R_r|| ≤ ε if r ≥ [((1/c₂ log^{1/α} c_{1/ε}))] = O(log^{1/α} 1/ε) ε → 0.
 ✓ We can use Taylor expansions, Chebyshev expansion, Hermite/Lagrange interpolation, cross approximation... In all the cases, the behavior of R_r is tied to the regularity of χ(x, y); see (Hackbusch 2015, Chapter 4).

We now have everything represented in the right format, but can we operate with it?

? We now have **everything represented in the right format**, but can we operate with it? y = Ax: Matrix-vector products, *recursively*:

$$\begin{aligned} \mathbf{y}(l_1^1) &= \mathcal{A}(l_1^1, l_1^1) \mathbf{x}(l_1^1) + \mathcal{A}(l_1^1, l_2^1) \mathbf{x}(l_2^1), \\ \mathbf{y}(l_2^1) &= \mathcal{A}(l_2^1, l_1^1) \mathbf{x}(l_1^1) + \mathcal{A}(l_2^1, l_2^1) \mathbf{x}(l_2^1). \end{aligned}$$

? We now have **everything represented in the right format**, but can we operate with it? y = Ax: Matrix-vector products, *recursively*:

$$\begin{aligned} \mathbf{y}(l_1^1) &= \mathcal{A}(l_1^1, l_1^1) \mathbf{x}(l_1^1) + \mathcal{A}(l_1^1, l_2^1) \mathbf{x}(l_2^1), \\ \mathbf{y}(l_2^1) &= \mathcal{A}(l_2^1, l_1^1) \mathbf{x}(l_1^1) + \mathcal{A}(l_2^1, l_2^1) \mathbf{x}(l_2^1). \end{aligned}$$

t Off-diagonal blocks $A(I_1^1, I_2^1)$ and $A(I_2^1, I_1^1)$ are obtained by multiplying $n/2 \times n/2$ low-rank matrix with vector. This **cost** $c_{LR\cdot x}(n/2) = 2nk$.

? We now have **everything represented in the right format**, but can we operate with it? y = Ax: Matrix-vector products, *recursively*:

$$\begin{aligned} \mathbf{y}(l_1^1) &= \mathcal{A}(l_1^1, l_1^1)\mathbf{x}(l_1^1) + \mathcal{A}(l_1^1, l_2^1)\mathbf{x}(l_2^1), \\ \mathbf{y}(l_2^1) &= \mathcal{A}(l_2^1, l_1^1)\mathbf{x}(l_1^1) + \mathcal{A}(l_2^1, l_2^1)\mathbf{x}(l_2^1). \end{aligned}$$

◊ Off-diagonal blocks A(I₁¹, I₂¹) and A(I₂¹, I₁¹) are obtained by multiplying n/2 × n/2 low-rank matrix with vector. This cost c_{LR·x}(n/2) = 2nk.
 ◊ Diagonal blocks are processed recursively at a cost

$$c_{A\cdot\mathbf{x}}(n) = 2c_{A\cdot\mathbf{x}}(n/2) + 4kn + n.$$

? We now have **everything represented in the right format**, but can we operate with it? y = Ax: Matrix-vector products, *recursively*:

$$\begin{aligned} \mathbf{y}(l_1^1) &= \mathcal{A}(l_1^1, l_1^1) \mathbf{x}(l_1^1) + \mathcal{A}(l_1^1, l_2^1) \mathbf{x}(l_2^1), \\ \mathbf{y}(l_2^1) &= \mathcal{A}(l_2^1, l_1^1) \mathbf{x}(l_1^1) + \mathcal{A}(l_2^1, l_2^1) \mathbf{x}(l_2^1). \end{aligned}$$

◊ Off-diagonal blocks A(I₁¹, I₂¹) and A(I₂¹, I₁¹) are obtained by multiplying n/2 × n/2 low-rank matrix with vector. This cost c_{LR·x}(n/2) = 2nk.
 ◊ Diagonal blocks are processed recursively at a cost

$$c_{\mathbf{A}\cdot\mathbf{x}}(n) = 2c_{\mathbf{A}\cdot\mathbf{x}}(n/2) + 4kn + n.$$

Master theorem (divide and conquer): $c_{A \cdot x}(n) = (4k + 1) \log_2(n) n$.

C = A + B: Adding two equally partitioned HODLR matrices **increases the ranks** of off-diagonal blocks by a factor 2.

C = A + B: Adding two equally partitioned HODLR matrices **increases the ranks** of off-diagonal blocks by a factor 2.

t We need truncation $\mathfrak{T}_k(A(I_1^{\ell}, I_j^{\ell}) + B(I_1^{\ell}, I_j^{\ell}))$, costs

$$c_{\mathsf{LR}+\mathsf{LR}} = c_{\mathsf{SVD}} \times (nk^2 + k^3),$$

where c_{SVD} is the cost of the given low-rank truncation algorithm (SVD, rand-SVD, QR, ...)

C = A + B: Adding two equally partitioned HODLR matrices **increases the ranks** of off-diagonal blocks by a factor 2.

• We need truncation
$$\mathfrak{T}_k(A(I_1^\ell, I_j^\ell) + B(I_1^\ell, I_j^\ell))$$
, costs

$$c_{\mathsf{LR}+\mathsf{LR}} = c_{\mathsf{SVD}} \times (nk^2 + k^3),$$

where c_{SVD} is the cost of the given low-rank truncation algorithm (SVD, rand-SVD, QR, . . .)

Total cost is then:

$$\sum_{\ell=1}^{p} 2^{\ell} c_{\mathsf{LR}+\mathsf{LR}}(m_{\ell}) = c_{\mathsf{SVD}} \sum_{\ell=1}^{p} 2^{\ell} (k^{3} + m_{\ell} k^{2})$$
$$\leq c_{\mathsf{SVD}} \left(2^{p+1} k^{3} + \sum_{\ell=1}^{p} 2^{\ell} 2^{p-\ell} n_{0} k^{2} \right)$$
$$\leq c_{\mathsf{SVD}} \left(2nk^{3} + n \log_{2}(n)k^{2} \right).$$

where \blacksquare is a $n/2 \times n/2$ HODLR matrix and \square is a low-rank block.

1. $\blacksquare \cdot \blacksquare \cdot \bullet$ of 2 HODLR n/2 matrices,

- 1. $\blacksquare \cdot \blacksquare \cdot$ of 2 HODLR n/2 matrices,
- 2. $\square \cdot \square \cdot of$ 2 low-rank blocks,

- 2. $\square \cdot \square \cdot$ of 2 low-rank blocks.
- 1. $\blacksquare \cdot \blacksquare \cdot$ of 2 HODLR $\frac{n}{2}$ matrices. 3. $\blacksquare \cdot \blacksquare \cdot$ of HODLR times low-rank.

- 1. $\blacksquare \cdot \blacksquare \cdot \text{ of 2 HODLR } n/2 \text{ matrices,}$
- 2. $\square \cdot \square \cdot of$ 2 low-rank blocks,

- 3. $\blacksquare \cdot \blacksquare \cdot \circ f$ HODLR times low-rank,
- 4. $\Box \cdot \blacksquare \cdot \bullet$ of low-rank times HODLR.

C = AB: Matrix-matrix multiplication can also be done recursively

where \blacksquare is a $n/2 \times n/2$ HODLR matrix and \square is a low-rank block.

 1. ➡ · ➡ · of 2 HODLR n/2 matrices,
 3. ➡ · ■ · of HODLR times low-rank,

 2. ■ · ■ · of 2 low-rank blocks,
 4. ■ · ➡ · of low-rank times HODLR.

$$c_{H \cdot H}(n) = 2 (c_{H \cdot H}(n/2) + c_{LR \cdot LR}(n/2) + c_{H \cdot LR}(n/2) + c_{LR \cdot H}(n/2) + c_{LR \cdot H}(n/2) + c_{LR + LR}(n/2))$$

C = AB: Matrix-matrix multiplication can also be done recursively

where \blacksquare is a $n/2 \times n/2$ HODLR matrix and \square is a low-rank block.

1. $\blacksquare \cdot \blacksquare \cdot$ of 2 HODLR n/2 matrices,3. $\blacksquare \cdot \blacksquare \cdot$ of HODLR times low-rank,2. $\blacksquare \cdot \blacksquare \cdot$ of 2 low-rank blocks,4. $\blacksquare \cdot \blacksquare \cdot$ of low-rank times HODLR.

$$c_{H \cdot H}(n) = 2 (c_{H \cdot H}(n/2) + c_{LR \cdot LR}(n/2) + c_{H \cdot LR}(n/2) + c_{LR \cdot H}(n/2) + c_{LR \cdot H}(n/2) + c_{LR + LR}(n/2))$$

 $c_{\text{LR}\cdot\text{LR}}(n) = 4nk^2$

C = AB: Matrix-matrix multiplication can also be done recursively

where \blacksquare is a $n/2 \times n/2$ HODLR matrix and \square is a low-rank block.

1. $\blacksquare \cdot \blacksquare \cdot \text{ of } 2 \text{ HODLR } \frac{n}{2} \text{ matrices},$ 2. $\blacksquare \cdot \blacksquare \cdot \text{ of } 2 \text{ low-rank blocks},$ $c_{H,H}(n) = 2 (c_{H,H}(\frac{n}{2}) + c_{I,B,I,R}(\frac{n}{2}) + c_{H,I,R}(\frac{n}{2}) + c_{I,B,H}(\frac{n}{2})$ 3. $\blacksquare \cdot \blacksquare \cdot \text{ of HODLR times low-rank,}$ 4. $\blacksquare \cdot \blacksquare \cdot \text{ of low-rank times HODLR.}$

 $+ \frac{c_{H+LR}(n/2)}{c_{LR+LR}(n/2)}$

 $c_{H\cdot LR}(n) = c_{LR\cdot H} = kc_{Hv}(n) = k(4k+1)\log_2(n)n$

C = AB: Matrix-matrix multiplication can also be done recursively

where \blacksquare is a $n/2 \times n/2$ HODLR matrix and \square is a low-rank block.

1. $\blacksquare \cdot \blacksquare \cdot \text{ of } 2 \text{ HODLR } n/2 \text{ matrices},$ 2. $\blacksquare \cdot \blacksquare \cdot \text{ of } 2 \text{ low-rank blocks},$ $c_{H\cdot H}(n) = 2 (c_{H\cdot H}(n/2) + c_{LR\cdot LR}(n/2) + c_{H\cdot LR}(n/2) + c_{LR\cdot H}(n/2) + c_{LR\cdot H}(n/2))$ $c_{H+LR}(n) = c_{H+H}(n) = c_{SVD}(nk^3 + n\log(n)k^2)$

where \blacksquare is a $n/2 \times n/2$ HODLR matrix and \square is a low-rank block.

1. $\blacksquare \cdot \blacksquare \cdot$ of 2 HODLR n/2 matrices,3. $\blacksquare \cdot \blacksquare \cdot$ of HODLR times low-rank,2. $\blacksquare \cdot \blacksquare \cdot$ of 2 low-rank blocks,4. $\blacksquare \cdot \blacksquare \cdot$ of low-rank times HODLR.

Total cost $c_{H \cdot H}(n) \in O(k^3 n \log n + k^2 n \log^2 n)$.

Approximate solution of a linear system $A\mathbf{x} = \mathbf{b}$ with HODLR matrix A:

Approximate solution of a linear system $A\mathbf{x} = \mathbf{b}$ with HODLR matrix A:

 $A \approx LU$ Approximate LU-factorization $A \approx LU$ in HODLR format:

Approximate solution of a linear system $A\mathbf{x} = \mathbf{b}$ with HODLR matrix A:

 $A \approx LU$ Approximate LU-factorization $A \approx LU$ in HODLR format:

Forward substitution to solve $L\mathbf{y} = \mathbf{b}$, Backward substitution to solve $U\mathbf{x} = \mathbf{y}$. Approximate solution of a linear system $A\mathbf{x} = \mathbf{b}$ with HODLR matrix A:

 $A \approx LU$ Approximate LU-factorization $A \approx LU$ in HODLR format:

Forward substitution to solve $L\mathbf{y} = \mathbf{b}$,

Backward substitution to solve $U\mathbf{x} = \mathbf{y}$.

We need to analyze the two steps separately.
Approximate LU factorization, on level $\ell=1{\rm :}$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} U_{11} & U_{12} \\ O & U_{22} \end{bmatrix}$$

Approximate LU factorization, on level $\ell=1{\rm :}$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} U_{11} & U_{12} \\ O & U_{22} \end{bmatrix}$$

It is done in four steps

1. Compute LU factors L_{11} , U_{11} of A_{11} ,

Approximate LU factorization, on level $\ell=1{\rm :}$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} U_{11} & U_{12} \\ O & U_{22} \end{bmatrix}$$

- 1. Compute LU factors L_{11} , U_{11} of A_{11} ,
- 2. Compute $U_{12} = L_{11}^{-1} A_{12}$ by forward substitution,

Approximate LU factorization, on level $\ell=1{\rm :}$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} U_{11} & U_{12} \\ O & U_{22} \end{bmatrix}$$

- 1. Compute LU factors L_{11} , U_{11} of A_{11} ,
- 2. Compute $U_{12} = L_{11}^{-1} A_{12}$ by forward substitution,
- 3. Compute $L_{21} = A_{21}U_{11}^{-1}$ by backward substitution,

Approximate LU factorization, on level $\ell = 1$:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} U_{11} & U_{12} \\ O & U_{22} \end{bmatrix}$$

- 1. Compute LU factors L_{11} , U_{11} of A_{11} ,
- 2. Compute $U_{12} = L_{11}^{-1} A_{12}$ by forward substitution,
- 3. Compute $L_{21} = A_{21}U_{11}^{-1}$ by backward substitution,
- 4. Compute LU factors L_{22} , U_{22} of $A_{22} L_{21}U_{12}$.

Approximate LU factorization, on level $\ell = 1$:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} U_{11} & U_{12} \\ O & U_{22} \end{bmatrix}$$

It is done in four steps

- 1. Compute LU factors L_{11} , U_{11} of A_{11} ,
- 2. Compute $U_{12} = L_{11}^{-1} A_{12}$ by forward substitution,
- 3. Compute $L_{21} = A_{21}U_{11}^{-1}$ by backward substitution,
- 4. Compute LU factors L_{22} , U_{22} of $A_{22} L_{21}U_{12}$.

The analysis of the cost is *analogous to the matrix-matrix multiplication case*, **but** we need to know how to do and how-much does forward/backward substitution costs.

Forward substitution with lower triangular L in HODLR format: $\mathbf{y} = L^{-1}\mathbf{b}$

$$\mathcal{L} = egin{bmatrix} \mathcal{L}_{11} & O \ \mathcal{L}_{21} & \mathcal{L}_{22} \end{bmatrix}, \quad \mathbf{y} = egin{bmatrix} \mathbf{y}_1 \ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{b} = egin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \end{bmatrix}$$

with L_{21} low-rank, and L_{11} , L_{22} HODLR.

Forward substitution with lower triangular L in HODLR format: $\mathbf{y} = L^{-1}\mathbf{b}$

$$L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

with L_{21} low-rank, and L_{11} , L_{22} HODLR.

1. Solve $L_{11}y_1 = b_1$,

Forward substitution with lower triangular L in HODLR format: $\mathbf{y} = L^{-1}\mathbf{b}$

$$\mathcal{L} = \begin{bmatrix} \mathcal{L}_{11} & O \\ \mathcal{L}_{21} & \mathcal{L}_{22} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

with L_{21} low-rank, and L_{11} , L_{22} HODLR.

- 1. Solve $L_{11}\mathbf{y}_1 = \mathbf{b}_1$,
- 2. Compute $\tilde{\mathbf{b}}_2 = \mathbf{b}_2 \mathcal{L}_{21}\mathbf{y}_1$,

Forward substitution with lower triangular L in HODLR format: $\mathbf{y} = L^{-1}\mathbf{b}$

$$L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

with L_{21} low-rank, and L_{11} , L_{22} HODLR.

- 1. Solve $L_{11}\mathbf{y}_1 = \mathbf{b}_1$,
- 2. Compute $\tilde{\mathbf{b}}_2 = \mathbf{b}_2 L_{21}\mathbf{y}_1$,
- 3. Solve $L_{22}\mathbf{y}_2 = \tilde{\mathbf{b}}_2$.

Forward substitution with lower triangular L in HODLR format: $\mathbf{y} = L^{-1}\mathbf{b}$

$$L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

with L_{21} low-rank, and L_{11} , L_{22} HODLR.

- 1. Solve $L_{11}y_1 = b_1$,
- 2. Compute $\tilde{\mathbf{b}}_2 = \mathbf{b}_2 L_{21}\mathbf{y}_1$,
- 3. Solve $L_{22}\mathbf{y}_2 = \tilde{\mathbf{b}}_2$.

Cost recursively:

$$c_{\rm forw} = 2c_{\rm forw}(n/2) + (2k+1)n.$$

Forward substitution with lower triangular L in HODLR format: $\mathbf{y} = L^{-1}\mathbf{b}$

$$L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

with L_{21} low-rank, and L_{11} , L_{22} HODLR.

- 1. Solve $L_{11}y_1 = b_1$,
- 2. Compute $\tilde{\mathbf{b}}_2 = \mathbf{b}_2 L_{21}\mathbf{y}_1$,
- 3. Solve $L_{22}\mathbf{y}_2 = \tilde{\mathbf{b}}_2$.

Cost recursively:

$$c_{forw} = 2c_{forw}(n/2) + (2k+1)n.$$

On level $\ell = p$, we have the direct solution of $2^p = n/n_0$ linear systems of size $n_0 \times n_0$.

Forward substitution with lower triangular L in HODLR format: $\mathbf{y} = L^{-1}\mathbf{b}$

$$L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

with L_{21} low-rank, and L_{11} , L_{22} HODLR.

- 1. Solve $L_{11}\mathbf{y}_1 = \mathbf{b}_1$,
- 2. Compute $\tilde{\mathbf{b}}_2 = \mathbf{b}_2 L_{21}\mathbf{y}_1$,
- 3. Solve $L_{22}\mathbf{y}_2 = \tilde{\mathbf{b}}_2$.

Cost recursively:

$$c_{forw} = 2c_{forw}(n/2) + (2k+1)n.$$

On level $\ell = p$, we have the direct solution of $2^p = n/n_0$ linear systems of size $n_0 \times n_0$. Total cost $c_{\text{forw}} \in O(kn \log(n))$, and analogously for backward substitution.

Forward substitution with lower triangular L in HODLR format: $\mathbf{y} = L^{-1}\mathbf{b}$

$$L = \begin{bmatrix} L_{11} & O \\ L_{21} & L_{22} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$$

with L_{21} low-rank, and L_{11} , L_{22} HODLR.

- 1. Solve $L_{11}\mathbf{y}_1 = \mathbf{b}_1$,
- 2. Compute $\tilde{\mathbf{b}}_2 = \mathbf{b}_2 L_{21}\mathbf{y}_1$,
- 3. Solve $L_{22}\mathbf{y}_2 = \tilde{\mathbf{b}}_2$.

Cost recursively:

$$c_{forw} = 2c_{forw}(n/2) + (2k+1)n.$$

On level $\ell = p$, we have the direct solution of $2^p = n/n_0$ linear systems of size $n_0 \times n_0$. Total cost $c_{\text{forw}} \in O(kn \log(n))$, and analogously for backward substitution. Total cost $c_{\text{LU}}(n) \lesssim c_{H\cdot H}(n) \in O(k^3 n \log n + k^2 n \log^2 n)$.

The Chm-toolbox (Massei, Robol, and Kressner 2020) contains all the routines.

- They overload the standard MATLAB operation by the same name, i.e., if you have variables in the right class you operate directly in this format.
- ↑ One can use different **cluster tree** T_p to get smaller ranks. They are determined by the partitioning of the index set on the leaf level and represented as the vector $\mathbf{c} = [n_1^{(p)}, \ldots, n_{2^p}^{(p)}]$, change it to change the HODLR matrix.

Operation	HODLR complexity				
A*v	$\mathcal{O}(kn \log n)$				
A\v	$\mathcal{O}(k^2 n \log^2 n)$				
A+B	$\mathcal{O}(k^2 n \log n)$				
A*B	$\mathcal{O}(k^2 n \log^2 n)$				
A∖B	$\mathcal{O}(k^2 n \log^2 n)$				
inv(A)	$\mathcal{O}(k^2 n \log^2 n)$				
A.*B 2	$\mathcal{O}(k^4 n \log n)$				
<pre>lu(A), chol(A)</pre>	$\mathcal{O}(k^2 n \log^2 n)$				
qr(A)	$\mathcal{O}(k^2 n \log^2 n)$				
compression	$\mathcal{O}(k^2 n \log(n))$				

²The complexity of the Hadamard product is dominated by the recompression stage due to the k^2 HODLR rank of $A \circ B$. Without recompression the cost is $O(k^2 n \log n)$.

We can modify our first example to get a solution for the 1D problem in the new format.

```
%% Discretization
N = 2^7; hN = 1/(N-1); x = 0:hN:1; dt = hN;
alpha = 1.5; % Coefficients
dplus=@(x)gamma(3-alpha).*x.^alpha;
dminus=@(x)gamma(3-alpha).*(1-x).^alpha;
w = Q(x) 5 * x * (1-x):
tol = 1e-9: % HODLR building
tic:
G = glhodlrmatrix(N,alpha,tol);
Dplus = hodlr('diagonal',dplus(x));
Dminus = hodlr('diagonal',dminus(x));
I = hodlr('eye', N);
nu = hN^alpha/dt;
A = nu*I - (Dplus*G + Dminus*G');
buildtime = toc;
```

```
%% Solving
[L,U] = lu(A):
flu = Q() lu(A):
timelu = timeit(flu,2);
w = w(x).':
solvetime = 0:
for i=1:N
 tic;
 W = U \setminus (L \setminus (nu * W)):
 solvetime = solvetime + toc:
end
solvetime = solvetime/N:
```

We can modify our first example to get a solution for the 1D problem in the new format.

```
%% Discretization
N = 2^7; hN = 1/(N-1); x = 0:hN:1; dt = hN;
alpha = 1.5; % Coefficients
dplus=@(x)gamma(3-alpha).*x.^alpha;
dminus=@(x)gamma(3-alpha).*(1-x).^alpha;
w = Q(x) 5 * x * (1-x):
tol = 1e-9: % HODLR building
tic;
G = glhodlrmatrix(N,alpha,tol);
Dplus = hodlr('diagonal',dplus(x));
Dminus = hodlr('diagonal',dminus(x));
I = hodlr('eye', N);
nu = hN^alpha/dt;
A = nu*I - (Dplus*G + Dminus*G');
buildtime = toc;
```

```
%% Solving
[L,U] = lu(A):
flu = Q() lu(A):
timelu = timeit(flu,2);
w = w(x).':
solvetime = 0:
for i=1:N
 tic;
 W = U \setminus (L \setminus (nu * W)):
 solvetime = solvetime + toc:
end
solvetime = solvetime/N:
```

```
• Let us try looking at the timings.
```

We take lpha=1.5, and $arepsilon=10^{-9}$

Ν	Build (s)	LU (s)	Avg. Solve (s)
2 ⁷	8.96e-03	1.44e-04	2.93e-04
2 ⁸	1.35e-02	4.63e-04	3.33e-04
2 ⁹	3.14e-02	2.05e-03	5.41e-04
2^{10}	7.28e-02	6.21e-03	9.35e-04
2^{11}	1.59e-01	1.63e-02	1.75e-03
2^{12}	3.85e-01	4.33e-02	3.68e-03
2^{13}	8.81e-01	1.27e-01	7.99e-03
2^{14}	$2.19e{+}00$	3.73e-01	1.55e-02

EXAMPLA Largest matrix occupies 46.25 Mb, against the 2 Gb of the dense storage and the 0.87 Mb of storing three diagonals and $2 \times (2N - 1)$ for the Toeplitz storage.

We take lpha=1.5, and $arepsilon=10^{-9}$

				101 – Build time (s)
Ν	Build (s)	LU (s)	Avg. Solve (s)	10^{-1} LU time (s)
27	8.96e-03	1.44e-04	2.93e-04	$\overline{2}$ 10 ⁰ Avg. solve time (s)
2 ⁸	1.35e-02	4.63e-04	3.33e-04	
2 ⁹	3.14e-02	2.05e-03	5.41e-04	() 10 2
2^{10}	7.28e-02	6.21e-03	9.35e-04	
2^{11}	1.59e-01	1.63e-02	1.75e-03	$\vdash_{10^{-3}}$
2^{12}	3.85e-01	4.33e-02	3.68e-03	
2^{13}	8.81e-01	1.27e-01	7.99e-03	10^{-4} 10^{2} 10^{3} 10^{4}
2^{14}	2.19e+00	3.73e-01	1.55e-02	10 10 10 N
				/ •

EXAMPLE Largest matrix occupies 46.25 Mb, against the 2 Gb of the dense storage and the 0.87 Mb of storing three diagonals and $2 \times (2N - 1)$ for the Toeplitz storage.

We take lpha=1.5, and $arepsilon=10^{-9}$

				-						
Ν	Build (s)	LU (s)	Avg. Solve (s)		10 ³			-		
27	8.96e-03	1.44e-04	2.93e-04		Ę					
2 ⁸	1.35e-02	4.63e-04	3.33e-04	npə	10^{2}	1				Ē
2 ⁹	3.14e-02	2.05e-03	5.41e-04	pee		/ /		Duild	1	-
2^{10}	7.28e-02	6.21e-03	9.35e-04	S	10 ¹				time	Ξ
2^{11}	1.59e-01	1.63e-02	1.75e-03						me colvo i	time
2^{12}	3.85e-01	4.33e-02	3.68e-03		100			Avg.	solve	
2^{13}	8.81e-01	1.27e-01	7.99e-03		10 -		0.5	1		1.5
2^{14}	2.19e+00	3.73e-01	1.55e-02					N		$\cdot 10^4$

Example 2 Gb of the dense storage and the 0.87 Mb of storing three diagonals and $2 \times (2N - 1)$ for the Toeplitz storage.

To solve the Sylvester equation with HODLR coefficients

$$AX + XB^T = C,$$
 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, X, C \in \mathbb{R}^{n \times m},$

we can use the integral formulation

$$X = \int_0^{+\infty} e^{-At} C e^{-B^T t} \, \mathrm{d}t.$$

To solve the Sylvester equation with HODLR coefficients

$$AX + XB^T = C,$$
 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, X, C \in \mathbb{R}^{n \times m},$

we can use the integral formulation

$$X = \int_0^{+\infty} e^{-At} C e^{-B^T t} \, \mathrm{d}t.$$

We perform the *change of variables*: $t = f(\theta) \triangleq L \cdot \cot(\frac{\theta}{2})^2$, rewriting the integral as

$$X = 2L \int_0^{\pi} \frac{\sin(\theta)}{(1 - \cos(\theta))^2} e^{-Af(\theta)} C e^{-B^T f(\theta)} d\theta,$$

with L a parameter to be optimized for convergence.

We now have an integral on a finite domain \Rightarrow Gauss-Legendre quadrature

$$X pprox \sum_{j=1}^m \omega_j \cdot e^{-Af(\theta_j)} C e^{-B^T f(\theta_j)},$$

for $\{\theta_j, w_j\}_{j=1}^m$ are the Legendre points and weights, and $\omega_j = 2Lw_j \cdot \frac{\sin(\theta_j)}{(1-\cos(\theta_i))^2}$.

We now have an integral on a finite domain \Rightarrow Gauss-Legendre quadrature

$$X pprox \sum_{j=1}^m \omega_j \cdot e^{-Af(\theta_j)} C e^{-B^T f(\theta_j)},$$

for $\{\theta_j, w_j\}_{j=1}^m$ are the Legendre points and weights, and $\omega_j = 2Lw_j \cdot \frac{\sin(\theta_j)}{(1-\cos(\theta_j))^2}$. **?** The **dominant cost** is now computing $e^{-Af(\theta_j)}$ and $e^{-B^T f(\theta_j)}$, how do we do it?

We now have an integral on a finite domain \Rightarrow **Gauss-Legendre quadrature**

$$X \approx \sum_{j=1}^{m} \omega_j \cdot e^{-Af(\theta_j)} C e^{-B^T f(\theta_j)},$$

for $\{\theta_j, w_j\}_{j=1}^m$ are the Legendre points and weights, and $\omega_j = 2Lw_j \cdot \frac{\sin(\theta_j)}{(1-\cos(\theta_j))^2}$. **?** The **dominant cost** is now computing $e^{-Af(\theta_j)}$ and $e^{-B^T f(\theta_j)}$, how do we do it? **?** A **good idea** could be using *rational approximation* to $\exp(t)$

We now have an integral on a finite domain \Rightarrow **Gauss-Legendre quadrature**

$$X pprox \sum_{j=1}^m \omega_j \cdot e^{-Af(\theta_j)} C e^{-B^T f(\theta_j)},$$

for $\{\theta_j, w_j\}_{j=1}^m$ are the Legendre points and weights, and $\omega_j = 2Lw_j \cdot \frac{\sin(\theta_j)}{(1-\cos(\theta_j))^2}$. The dominant cost is now computing $e^{-Af(\theta_j)}$ and $e^{-B^T f(\theta_j)}$, how do we do it? A good idea could be using rational approximation to $\exp(t)$ (d, d)-Padé with scaling and squaring $e^A = (e^{2^{-k}A})^{2^k}$ and $k = \lceil \log_2 ||A||_2 \rceil$.

We now have an integral on a finite domain \Rightarrow Gauss-Legendre quadrature

$$X pprox \sum_{j=1}^m \omega_j \cdot e^{-Af(\theta_j)} C e^{-B^T f(\theta_j)},$$

for $\{\theta_j, w_j\}_{j=1}^m$ are the Legendre points and weights, and $\omega_j = 2Lw_j \cdot \frac{\sin(\theta_j)}{(1-\cos(\theta_j))^2}$. The dominant cost is now computing $e^{-Af(\theta_j)}$ and $e^{-B^T f(\theta_j)}$, how do we do it? A good idea could be using rational approximation to $\exp(t)$ (d, d)-Padé with scaling and squaring $e^A = (e^{2^{-k}A})^{2^k}$ and $k = \lceil \log_2 ||A||_2 \rceil$. Rational Chebyshev function (Popolizio and Simoncini 2008):

$$e^x \approx rac{r_1}{x-s_1} + \ldots + rac{r_d}{x-s_d}.$$

requiring d inversions and additions that is uniformly accurate for every positive value of t, and thus is better in the case in which $||A||_2$ is large.

```
Input: lyap_integral
A. B. C. m:
/* Solves AX + XB^T = C with m
     integration points
                                                            */
L \leftarrow 100; /* Should be tuned for
 accuracy! */
[w, \theta] \leftarrow \text{GaussLegendrePts } m:
 /* Integration points and weights
 on [0, \pi] * /
X \leftarrow 0_{n \times n}:
for i = 1, ..., m do
     f \leftarrow L \cdot \cot(\frac{\theta_i}{2})^2;
     X \leftarrow X + w_i \frac{\sin(\theta_i)}{(1-\cos\theta_i)^2} \cdot \operatorname{expm} (-f \cdot A) \cdot
      C \cdot \operatorname{expm} \left( -f \cdot B^T \right):
```

end

 $X \leftarrow 2L \cdot X;$

Input: lyap_integral A, B, C, m;/* Solves $AX + XB^T = C$ with m integration points */ $L \leftarrow 100$: /* Should be tuned for accuracy! */ $[w, \theta] \leftarrow \text{GaussLegendrePts } m$: /* Integration points and weights on $[0, \pi] * /$ $X \leftarrow 0_{n \times n}$: for i = 1, ..., m do $f \leftarrow L \cdot \cot(\frac{\theta_i}{2})^2;$ $X \leftarrow X + w_i \frac{\sin(\theta_i)}{(1 - \cos \theta_i)^2} \cdot \operatorname{expm}(-f \cdot A) \cdot$ $C \cdot \operatorname{expm}(-f \cdot B^T)$:

end

 $X \leftarrow 2L \cdot X;$

Mixed structures

If the right-hand side C is low-rank, and the structure in the matrices A and B is HODLR, thus permitting to perform fast matrix vector multiplications and system solutions; then we can apply the *extended Krylov subspace method* we had already seen.

Input: lyap_integral A, B, C, m;/* Solves $AX + XB^T = C$ with m integration points */ $L \leftarrow 100$; /* Should be tuned for accuracy! */ $[w, \theta] \leftarrow \text{GaussLegendrePts } m$: /* Integration points and weights on $[0, \pi] * /$ $X \leftarrow 0_{n \times n}$: for i = 1, ..., m do $f \leftarrow L \cdot \cot(\frac{\theta_i}{2})^2;$ $X \leftarrow X + w_i \frac{\sin(\theta_i)}{(1 - \cos \theta_i)^2} \cdot \operatorname{expm} (-f \cdot A) \cdot$ $C \cdot \operatorname{expm}(-f \cdot B^T)$:

end

 $X \leftarrow 2L \cdot X;$

Mixed structures

If the right-hand side C is low-rank, and the structure in the matrices A and B is HODLR, thus permitting to perform fast matrix vector multiplications and system solutions; then we can apply the *extended Krylov subspace method* we had already seen.

Build

 $\mathbb{EK}_{s}(A, U) = \operatorname{span}\{U, A^{-1}U, AU, \ldots\}$ $\mathbb{EK}_{s}(B^{T}, V) = \operatorname{span}\{V, B^{-T}V, B^{T}V, \ldots\},$

Input: lyap_integral A. B. C. m: /* Solves $AX + XB^T = C$ with m integration points */ $L \leftarrow 100$; /* Should be tuned for accuracy! */ $[w, \theta] \leftarrow \text{GaussLegendrePts } m$: /* Integration points and weights on $[0, \pi] * /$ $X \leftarrow 0_{n \times n}$: for i = 1, ..., m do $f \leftarrow L \cdot \cot(\frac{\theta_i}{2})^2;$ $X \leftarrow X + w_i \frac{\sin(\theta_i)}{(1 - \cos \theta_i)^2} \cdot \operatorname{expm} (-f \cdot A) \cdot$ $C \cdot \operatorname{expm}(-f \cdot B^T)$:

end

 $X \leftarrow 2L \cdot X;$

Mixed structures

If the right-hand side C is low-rank, and the structure in the matrices A and B is HODLR, thus permitting to perform fast matrix vector multiplications and system solutions; then we can apply the *extended Krylov subspace method* we had already seen.

Build $\mathbb{EK}_{s}(A, U)$, $\mathbb{EK}_{s}(B^{T}, V)$, project on $\tilde{A}_{s} = U_{s}^{*}AU_{s}$, $\tilde{B}_{s} = V_{s}^{*}BV_{s}$, $\tilde{U} = U_{s}^{*}U$, and $\tilde{V} = V_{s}^{*}V$.

Input: lyap_integral A. B. C. m: /* Solves $AX + XB^T = C$ with m integration points */ $L \leftarrow 100$; /* Should be tuned for accuracy! */ $[w, \theta] \leftarrow \text{GaussLegendrePts } m$: /* Integration points and weights on $[0, \pi] * /$ $X \leftarrow 0_{n \times n}$: for i = 1, ..., m do $f \leftarrow L \cdot \cot(\frac{\theta_i}{2})^2;$ $X \leftarrow X + w_i \frac{\sin(\theta_i)}{(1 - \cos \theta_i)^2} \cdot \operatorname{expm}(-f \cdot A) \cdot$ $C \cdot \operatorname{expm}(-f \cdot B^T)$:

end

 $X \leftarrow 2L \cdot X;$

Mixed structures

If the right-hand side C is low-rank, and the structure in the matrices A and B is HODLR, thus permitting to perform fast matrix vector multiplications and system solutions; then we can apply the *extended Krylov subspace method* we had already seen.

Build $\mathbb{EK}_{s}(A, U)$, $\mathbb{EK}_{s}(B^{T}, V)$, project on $\tilde{A}_{s} = U_{s}^{*}AU_{s}$, $\tilde{B}_{s} = V_{s}^{*}BV_{s}$, $\tilde{U} = U_{s}^{*}U$, and $\tilde{V} = V_{s}^{*}V$. Solve $\tilde{A}_{s}X_{s} + X_{s}\tilde{B}_{s} = \tilde{U}\tilde{V}^{T}$ with dense arithmetic.

Input: lyap_integral A, B, C, m;/* Solves $AX + XB^T = C$ with m integration points */ $L \leftarrow 100$; /* Should be tuned for accuracy! */ $[w, \theta] \leftarrow \text{GaussLegendrePts } m$: /* Integration points and weights on $[0, \pi] * /$ $X \leftarrow 0_{n \times n}$: for i = 1, ..., m do $f \leftarrow L \cdot \cot(\frac{\theta_i}{2})^2;$ $X \leftarrow X + w_i \frac{\sin(\theta_i)}{(1 - \cos \theta_i)^2} \cdot \operatorname{expm} (-f \cdot A) \cdot$ $C \cdot \operatorname{expm}(-f \cdot B^T)$:

end

 $X \leftarrow 2L \cdot X;$

Mixed structures

If the right-hand side C is low-rank, and the structure in the matrices A and B is HODLR, thus permitting to perform fast matrix vector multiplications and system solutions; then we can apply the *extended Krylov subspace method* we had already seen.

Build $\mathbb{EK}_{s}(A, U)$, $\mathbb{EK}_{s}(B^{T}, V)$, project on $\tilde{A}_{s} = U_{s}^{*}AU_{s}$, $\tilde{B}_{s} = V_{s}^{*}BV_{s}$, $\tilde{U} = U_{s}^{*}U$, and $\tilde{V} = V_{s}^{*}V$. Solve $\tilde{A}_{s}X_{s} + X_{s}\tilde{B}_{s} = \tilde{U}\tilde{V}^{T}$ with **dense arithmetic**. An approximation is $U_{s}X_{s}V_{s}^{*}$.

Input: lyap_integral A, B, C, m/* Solves $AX + XB^T = C$ with m integration points */ /* Should be tuned for $L \leftarrow 100$: accuracy! */ $[w, \theta] \leftarrow \text{GaussLegendrePts } m$; /* Integration points and weights on $[0, \pi] * /$ $X \leftarrow 0_{n \times n}$: for i = 1, ..., m do $f \leftarrow L \cdot \cot(\frac{\theta_i}{2})^2;$ $X \leftarrow X + w_i \frac{\sin(\theta_i)}{(1 - \cos \theta_i)^2} \cdot \operatorname{expm} (-f \cdot A) \cdot$ $C \cdot \operatorname{expm}(-f \cdot B^T)$: end

 $X \leftarrow 2L \cdot X;$

Mixed structures

If the right-hand side C is low-rank, and the structure in the matrices A and B is HODLR, thus permitting to perform fast matrix vector multiplications and system solutions; then we can apply the *extended Krylov subspace method* we had already seen.

Build $\mathbb{EK}_{s}(A, U)$, $\mathbb{EK}_{s}(B^{T}, V)$, project on $\tilde{A}_{s} = U_{s}^{*}AU_{s}$, $\tilde{B}_{s} = V_{s}^{*}BV_{s}$, $\tilde{U} = U_{s}^{*}U$, and $\tilde{V} = V_{s}^{*}V$. Solve $\tilde{A}_{s}X_{s} + X_{s}\tilde{B}_{s} = \tilde{U}\tilde{V}^{T}$ with **dense arithmetic**. An approximation is $U_{s}X_{s}V_{s}^{*}$. Another viable approach in the literature is (Kressner, Massei, and Robol 2019).

A numerical test (Massei, Mazza, and Robol 2019)

We use the usual square $[0,1]^2$, and the source f

 $f(x, y, t) = 100 \cdot (\sin(10\pi x) \cos(\pi y) + \sin(10t) \sin(\pi x) \cdot y(1-y)).$

for both constant coefficient $d^+ = d^- = 1$, and variable coefficients

$$\begin{aligned} & d_1^+(x) = \Gamma(1.2)(1+x)^{\alpha_1}, \qquad d_1^-(x) = \Gamma(1.2)(2-x)^{\alpha_1}, \\ & d_2^+(y) = \Gamma(1.2)(1+y)^{\alpha_2}, \qquad d_2^-(y) = \Gamma(1.2)(2-y)^{\alpha_2}. \end{aligned}$$

The fractional orders are $\alpha_1=1.3, \alpha_2=1.7$, and $\alpha_1=1.7, \alpha_2=1.9$. Methods are

 \blacktriangleright Sylvester by Extended-Krylov with stopping $\epsilon = 10^{-6}$ (HODLR),

 \checkmark HODLR arithmetic is set to work with a truncation of 10^{-8} .

Sylvester by Extended-Krylov with stopping $\epsilon = 10^{-6}$ (Breiten, Simoncini, and Stoll 2016),

 \checkmark Inner solve with: GMRES with tolerance 10^{-7} and structured preconditioners,

A numerical test (Massei, Mazza, and Robol 2019)

Ν	$t_{ m HODLR}$	$t_{ m BSS}$	$\mathrm{rank}_\varepsilon$	$qsrank_\varepsilon$
512	0.26	1.26	14	11
1,024	0.17	1.75	15	11
2,048	0.31	3.57	15	12
4,096	0.58	9.21	16	12
8,192	1.17	18.14	16	13
16,384	2.48	37.24	16	13
32,768	5.18	77.28	16	14
65,536	11.76	168.29	15	14

A numerical test (Massei, Mazza, and Robol 2019)

Ν	$t_{ m HODLR}$	$t_{ m BSS}$	$\mathrm{rank}_\varepsilon$	$qsrank_\varepsilon$
512	0.13	0.7	17	10
1,024	0.2	1.4	18	10
2,048	0.37	2.85	19	11
4,096	0.79	6.53	20	11
8,192	1.67	11.57	20	11
16,384	3.98	22.2	21	11
32,768	8.56	47.75	22	11
65,536	23.86	91.53	23	11

Constant coefficient with $\alpha_1 = 1.7$ and $\alpha_2 = 1.9$.

FD_Example.m from github.com/numpi/fme

A numerical test (Massei, Mazza, and Robol 2019)

Non-constant coefficient case with $\alpha_1 = 1.3$ and $\alpha_2 = 1.7$.

Ν	$t_{ m HODLR}$	$t_{ m BSS}$	$\mathrm{rank}_\varepsilon$	$qsrank_\varepsilon$
512	0.1	0.95	14	10
1,024	0.16	1.45	14	11
2,048	0.29	2.83	15	12
4,096	0.55	7.39	16	12
8,192	1.11	13.02	16	13
16,384	2.41	24.27	16	13
32,768	5.02	44.5	16	14
65,536	11.28	76.78	16	14

A numerical test (Massei, Mazza, and Robol 2019)

Non-constant coefficient case with $\alpha_1 = 1.7$ and $\alpha_2 = 1.9$.

Ν	$t_{ m HODLR}$	$t_{ m BSS}$	$\mathrm{rank}_\varepsilon$	$qsrank_\varepsilon$
512	0.11	0.73	18	10
1,024	0.2	1.37	19	10
2,048	0.4	2.17	20	11
4,096	0.92	4.59	21	11
8,192	2.28	9.31	22	11
16,384	4.51	16.89	22	11
32,768	11.33	33.19	23	12
65,536	26.71	64.73	24	12

U There is an advantage with respect to using Toeplitz-based BLAS like operations,

♥ There is an advantage with respect to using Toeplitz-based BLAS like operations,
 ▶ In (Massei, Mazza, and Robol 2019) they are solving the case

$$\left(\frac{1}{2}I_{N_x}-\Delta t\,\tilde{G}_{N_x}\right)\tilde{W}^{(m+1)}+\tilde{W}^{(m+1)}\left(\frac{1}{2}I_{N_y}-\Delta t\,\tilde{G}_{N_y}\right)^T=\tilde{W}^{(m)}+\Delta tF^{(m+1)},\ m=0,\ldots,M-1.$$

here the spectrum is *fictitiously independent from the discretization*, i.e., all matrix-equation solvers perform a number of iteration independent from the system size: the cost is reduced to the extended Krylov subspace cost! **But** we still have time-stepping to do.

There is an advantage with respect to using Toeplitz-based BLAS like operations,
 In (Massei, Mazza, and Robol 2019) they are solving the case

$$\left(\frac{1}{2}I_{N_x} - \Delta t \tilde{G}_{N_x}\right) \tilde{W}^{(m+1)} + \tilde{W}^{(m+1)} \left(\frac{1}{2}I_{N_y} - \Delta t \tilde{G}_{N_y}\right)^T = \tilde{W}^{(m)} + \Delta t F^{(m+1)}, \ m = 0, \dots, M-1.$$

here the spectrum is *fictitiously independent from the discretization*, i.e., all matrix-equation solvers perform a number of iteration independent from the system size: the cost is reduced to the extended Krylov subspace cost! **But** we still have time-stepping to do.

? The case in which the matrix equation solver has a number of iterations dependent on the problem size is not yet resolved:

B Low-rank but
 [™] no preconditioner – VS –
 [™] Full memory but
 [™] preconditioners
 [™]
 [™]

There is an advantage with respect to using Toeplitz-based BLAS like operations,
 In (Massei, Mazza, and Robol 2019) they are solving the case

$$\left(\frac{1}{2}I_{N_x} - \Delta t \tilde{G}_{N_x}\right) \tilde{W}^{(m+1)} + \tilde{W}^{(m+1)} \left(\frac{1}{2}I_{N_y} - \Delta t \tilde{G}_{N_y}\right)^T = \tilde{W}^{(m)} + \Delta t F^{(m+1)}, \ m = 0, \dots, M-1.$$

here the spectrum is *fictitiously independent from the discretization*, i.e., all matrix-equation solvers perform a number of iteration independent from the system size: the cost is reduced to the extended Krylov subspace cost! **But** we still have time-stepping to do.

? The case in which the matrix equation solver has a number of iterations dependent on the problem size is not yet resolved:

Low-rank but no preconditioner - VS - no Full memory but preconditioners
 Still looking for a way to solve everything all-at-once compactly.

Conclusion and summary

- We have seen how to work with matrices in HODLR format,
- We have discussed a couple of strategy to solve Sylvester equations with HODLR coefficients,
- We have applied all the machinery to solve a time step of a 2D equation FDE.

Next up

- Back to all-at-once solution with respect to both space and time,
- 📋 Linear multistep formulas in boundary value form,
- 📋 Structured preconditioner for LMFs,
- 📋 Tensor-Train reformulation of the problem.

Bibliography I

- Beckermann, B. and A. Townsend (2019). "Bounds on the singular values of matrices with displacement structure". In: SIAM Rev. 61.2. Revised reprint of "On the singular values of matrices with displacement structure" [MR3717820], pp. 319–344. ISSN: 0036-1445. DOI: 10.1137/19M1244433. URL: https://doi.org/10.1137/19M1244433.
- Breiten, T., V. Simoncini, and M. Stoll (2016). "Low-rank solvers for fractional differential equations". In: *Electron. Trans. Numer. Anal.* 45, pp. 107–132.
- Fiedler, M. (2010). "Notes on Hilbert and Cauchy matrices". In: Linear Algebra Appl. 432.1, pp. 351–356. ISSN: 0024-3795. DOI: 10.1016/j.laa.2009.08.014. URL: https://doi.org/10.1016/j.laa.2009.08.014.
- Hackbusch, W. (2015). *Hierarchical matrices: algorithms and analysis*. Vol. 49. Springer Series in Computational Mathematics. Springer, Heidelberg, pp. xxv+511. ISBN: 978-3-662-47323-8; 978-3-662-47324-5. DOI: 10.1007/978-3-662-47324-5. URL: https://doi.org/10.1007/978-3-662-47324-5.

Bibliography II

- Kressner, D., S. Massei, and L. Robol (2019). "Low-rank updates and a divide-and-conquer method for linear matrix equations". In: SIAM J. Sci. Comput. 41.2, A848–A876. ISSN: 1064-8275. DOI: 10.1137/17M1161038. URL: https://doi.org/10.1137/17M1161038.
- Massei, S., M. Mazza, and L. Robol (2019). "Fast solvers for two-dimensional fractional diffusion equations using rank structured matrices". In: SIAM J. Sci. Comput. 41.4, A2627–A2656. ISSN: 1064-8275. DOI: 10.1137/18M1180803. URL: https://doi.org/10.1137/18M1180803.
- Massei, S., D. Palitta, and L. Robol (2018). "Solving rank-structured Sylvester and Lyapunov equations". In: SIAM J. Matrix Anal. Appl. 39.4, pp. 1564–1590. ISSN: 0895-4798. DOI: 10.1137/17M1157155. URL: https://doi.org/10.1137/17M1157155.
- Massei, S., L. Robol, and D. Kressner (2020). "hm-toolbox: MATLAB software for HODLR and HSS matrices". In: SIAM J. Sci. Comput. 42.2, pp. C43–C68. ISSN: 1064-8275. DOI: 10.1137/19M1288048. URL: https://doi.org/10.1137/19M1288048.

Popolizio, M. and V. Simoncini (2008). "Acceleration techniques for approximating the matrix exponential operator". In: SIAM J. Matrix Anal. Appl. 30.2, pp. 657–683. ISSN: 0895-4798. DOI: 10.1137/060672856. URL: https://doi.org/10.1137/060672856.