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Sylvester with quasiseparable matrices
Let’s start again from the problem we wanted to solve

AX + XBT = C , A ∈ Rn×n, B ∈ Rm×m, X ,C ∈ Rn×m,

with A, B, and C quasiseparable

Quasiseparable matrix

A matrix A is quasiseparable of order k if
the maximum of the ranks of all its
submatrices contained in the strictly
upper or lower part is less or equal
than k .

� We have seen that A, B, and C quasiseparable ⇒ X with decay of the singular values
of off-diagonal blocks of C .
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Sylvester with quasiseparable matrices

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.12)

Let A,B be matrices of quasiseparable rank kA and kB respectively and such that
W (A) ⊆ E and W (−B) ⊆ F . Consider the Sylvester equation AX + XB = C , with C of
quasiseparable rank kC . Then a generic off-diagonal block Y of the solution X satisfies

σ1+kℓ(Y )

σ1(Y )
≤ C2 · Zℓ(E ,F ), k := kA + kB + kC .

Where Zℓ(E ,F ) is the solution of the Zolotarev problem

Zℓ(E ,F ) ≜ inf
r(x)∈Rℓ,ℓ

maxx∈E |r(x)|

miny∈F |r(y)|
, ℓ ≥ 1,

for Rℓ,ℓ is the set of rational functions of degree at most (ℓ, ℓ), and C is the Crouzeix
universal constant.
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Sylvester with quasiseparable matrices

® Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

ϵ-quasiseparable matrices of rank k (ε-qsrank k)

We say that A has ϵ-quasiseparable rank k if, for every off-diagonal block Y , σk+1(Y ) ≤ ϵ.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) ϵ-quasiseparable rank k.

3 / 40



Sylvester with quasiseparable matrices

® Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

ϵ-quasiseparable matrices of rank k (ε-qsrank k)

We say that A has ϵ-quasiseparable rank k if, for every off-diagonal block Y , σk+1(Y ) ≤ ϵ.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) ϵ-quasiseparable rank k.

3 / 40



Sylvester with quasiseparable matrices

® Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

ϵ-quasiseparable matrices of rank k (ε-qsrank k)

We say that A has ϵ-quasiseparable rank k if, for every off-diagonal block Y , σk+1(Y ) ≤ ϵ.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) ϵ-quasiseparable rank k.
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then any of its principal submatrix A ′ has
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Any off-diagonal block Y of A ′ is also an
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then any of its principal submatrix A ′ has
ϵ-quasiseparable rank k .

Any off-diagonal block Y of A ′ is also an
off-diagonal block of A ⇒ σk+1(Y ) ≤ ϵ.

For ⊕ the direct sum

Technical lemma

Let A be a matrix with ϵ-quasiseparable
rank k , Q any (k + 1)× (k + 1) unitary
matrix. Then, (In−k−1 ⊕ Q)A also has
ϵ-quasiseparable rank k.
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Sylvester with quasiseparable matrices

® Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

ϵ-quasiseparable matrices of rank k (ε-qsrank k)

We say that A has ϵ-quasiseparable rank k if, for every off-diagonal block Y , σk+1(Y ) ≤ ϵ.
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Q

A =
Q acts on the tall block of A without
changing its singular values, while the
small one has small rank thanks to the

small number of rows.
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Sylvester with quasiseparable matrices

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ-quasiseparable rank k , for ϵ > 0. Then, there exists a matrix δA of norm
bounded by ∥δA∥2 ≤ 2

√
n · ϵ so that A+ δA is k-quasiseparable.

4 A matrix with ϵ-quasiseparable
rank of k can be well-approximated
by a matrix with exact quasisepara-
ble rank k!

4 If the spectra of A and −B
are well-separated in the Zolotarev
sense, we can preserve structure!

® How can we operate efficiently with these
matrix structures?

J Reduced cost for BLAS-like operations,

: Contained storage cost.

� Hierarchical matrix formats!
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Hierarchical matrix formats

There exist many hierarchical matrix formats:

å H-Matrices,

å H2-Matrices,

å Hierarchical Off-Diagonal Low-Rank (HODLR),

å Hierarchically SemiSeparable (HSS),

å Block Low-Rank (BLR).

Â The topic would deserve a Ph.D. course on its own. . . We are gonna focus only on the
case of HODLR matrices (Hackbusch 2015, Chapter 3).
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HODLR-matrices

The general idea:

e The grey blocks are low rank matrices represented in a compressed form,

g the diagonal blocks in the last step are stored as dense matrices.

z We need now a formal definition and a way to define operations.
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HODLR-matrices: trees

� Cluster tree

Given n ∈ N, let Tp be a completely balanced binary tree of depth p whose nodes are
subsets of {1, . . . , n}. We say that Tp is a cluster tree if it satisfies:

à The root is I 01 := I = {1, . . . , n}.


 The nodes at level ℓ, denoted by I ℓ1, . . . , I
ℓ
2ℓ
, form a partitioning of {1, . . . , n} into

consecutive indices:
I ℓi = {n

(ℓ)
i−1 + 1 . . . , n

(ℓ)
i − 1, n

(ℓ)
i }

for some integers 0 = n
(ℓ)
0 ≤ n

(ℓ)
1 ≤ · · · ≤ n

(ℓ)

2ℓ
= n, ℓ = 0, . . . p. In particular, if

n
(ℓ)
i−1 = n

(ℓ)
i then I ℓi = ∅.


 The node I ℓi has children I ℓ+1
2i−1 and I ℓ+1

2i , for any 1 ≤ ℓ ≤ p − 1. The children form a
partitioning of their parent.

� Nodes at a level ℓ partition A into a 2ℓ × 2ℓ block matrix with blocks {A(I ℓi , I
ℓ
j )}

2ℓ
i ,j=1.
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HODLR-matrices: trees

I = {1, 2, 3, 4, 5, 6, 7, 8}

I 11 = {1, 2, 3, 4} I 12 = {5, 6, 7, 8}

I 21 = {1, 2} I 22 = {3, 4} I 23 = {5, 6} I 24 = {7, 8}

I 31 = {1} I 32 = {2} I 33 = {3} I 34 = {4} I 35 = {5} I 36 = {6} I 37 = {7} I 38 = {8}

à The root I = {1, . . . , 8},


 Nodes at level 1: I 11 and I 21 ,


 Nodes at level 2: 
(I 11 )= {I 21 , I
2
2 }, 
(I 12 )= {I 23 , I

2
4 },


 Nodes at level 3: 
(I 21 ) = {I 31 , I
3
2 }, . . ., 
(I 24 ) = {I 37 , I

3
8 }.

ℓ = 0
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HODLR-matrices: definition

HODLR matrix

Let A ∈ Rn×n and consider a cluster tree Tp.
1. Given k ∈ N, A is said to be a (Tp, k)-HODLR matrix if every off-diagonal block

A(I ℓi , I
ℓ
j ) such that I ℓi and I ℓj are siblings in Tp, ℓ = 1, . . . , p,

has rank at most k .

2. The HODLR rank of A (with respect to Tp) is the smallest integer k such that A is a
(Tp, k)-HODLR matrix.

à Tp is often chosen to be as balanced as possible, i.e., cardinalities of I ℓi are nearly
equal for a given ℓ, with a dept determined by a minimal diagonal block size nmin.

Ó The classical choice is to have a binary tree, i.e., n = 2pnmin.
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HODLR-matrices: occupied space
If we assume identical ranks k and a balanced partitioning then

L Storage for off-diagonal blocks A(I ℓi , I
ℓ
j ) = U

(ℓ)
i (V

(ℓ)
j )T , U

(ℓ)
i ,V

(ℓ)
j ∈ Rmℓ×k :

On level ℓ > 0 there are 2ℓ off-diagonal blocks

2k

p∑
ℓ=1

2ℓmℓ = 2kn0

p∑
ℓ=1

2ℓ2p−ℓ2kn0p2
p = 2knp = 2kn log2(n/n0),

L Storage requirements for diagonal blocks

2pn20 = nn0,

N Total, assuming n0 = O(1), is then

O(kn log n).

� Both requirements on ranks and partitioning can be relaxed to obtain similar results.
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HODLR-matrices: building the representation

. Is non trivial to construct structured representations efficiently, especially if you want
to avoid computing the whole n2 coefficients!

à Build a cluster tree Tp for the given index set,

If A is dense:

e Use Householder QR decomposition with column pivoting or SVD on off-diagonal
blocks,

å The rank of each off-diagonal block A(I pi , I
p
j ) is chosen such that the spectral norm

of the approximation error is bounded by ϵ times ∥A(I pi , I
p
j )∥2.

If A is sparse:

e Use a two sided Lanczos method only requiring matrix-vector multiplications with
an off-diagonal block and its transpose, combined with recompression to each
off-diagonal block.

If A is structured use an ad-hoc constructor!
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HODLR of Grünwald–Letnikov

Theorem (Fiedler 2010, Theorem A)

Let x, y two real vectors of length N, with ascending and descending ordered entries,
respectively. Moreover, we denote with C (x, y) the Cauchy matrix defined by

Cij =
1

xi − yj
, i , j = 1, . . . ,N.

If C (x, y) = C (x, y)T , xi ∈ [a, b], yj ∈ [c , d ] with a > d , then C (x, y) is positive definite.

Theorem (Beckermann and Townsend 2019, Theorem 5.5)

Let H be a positive semidefinite Hankel matrix of size N. Then, the ϵ-rank of H is
bounded by

rankϵ(H) ≤ 2+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
16

ϵ

)⌉
≜ B(N, ϵ).
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HODLR of Grünwald–Letnikov

We need to work with GN ∈ RN×N

GN = −



g
(α)
1 g

(α)
0 0 · · · 0 0

g
(α)
2 g

(α)
1 g

(α)
0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g
(α)
N−1

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
N g

(α)
N−1 · · · · · · g

(α)
2 g

(α)
1



Lemma (Massei, Mazza, and Robol
2019)

Consider the Hankel matrix H defined as

H = (hij), hij = g
(α)
i+j ,

for 1 ≤ α ≤ 2. Then, H is positive
semidefinite.

� Show that H is obtained as the sum of a positive definite Cauchy matrix and a positive
semidefinite matrix.

� Use the result by Beckermann and Townsend 2019.
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HODLR of Grünwald–Letnikov

Proof. For k ≥ 2 we rewrite g
(α)
k as

g
(α)
k =

(−1)k

k!
α(α− 1) . . . (α− k + 1)

=
α(α− 1)

k!
(k − α− 1)(k − α− 2) . . . (2− α)

= α(α− 1)
Γ(k − α)

Γ(k + 1)Γ(2− α)
.
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Proof. For k ≥ 2 we rewrite g
(α)
k as

g
(α)
k = α(α− 1)

Γ(k − α)

Γ(k + 1)Γ(2− α)
.

Use the Gauss representation of the Euler Γ

Γ(z) = lim
m→∞ m!mz

z(z + 1)(z + 2) . . . (z +m)
, z ̸= {0,−1,−2, . . .},

we rewrite

g
(α)
k = α(α− 1) lim

m→∞ 1

m!m3

m∏
p=0

k + 1+ p

k − α+ p
(2− α+ p).
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Proof. For k ≥ 2 we rewrite g
(α)
k as

g
(α)
k = α(α− 1)

Γ(k − α)

Γ(k + 1)Γ(2− α)
.

We rewrite

H = lim
m→+∞H0 ◦ . . . ◦ Hm, (Hp)ij =

i + j + 1+ p

i + j − α+ p

for ◦ the Hadamard product, {Hj }
m
j=0 Hankel matrices.
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m→+∞H0 ◦ . . . ◦ Hm, (Hp)ij =

i + j + 1+ p

i + j − α+ p

for ◦ the Hadamard product, {Hj }
m
j=0 Hankel matrices. Schur Product Theorem tells us that

“the Hadamard product of two positive definite matrices is also a positive definite matrix”⇒ If H0 ◦ . . . ◦Hm is positive semidefinite for every m then H is also positive semidefinite.
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HODLR of Grünwald–Letnikov

Proof. For k ≥ 2 we rewrite g
(α)
k as

g
(α)
k = α(α− 1)

Γ(k − α)

Γ(k + 1)Γ(2− α)
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We rewrite

H = lim
m→+∞H0 ◦ . . . ◦ Hm, (Hp)ij =

i + j + 1+ p

i + j − α+ p

for ◦ the Hadamard product, {Hj }
m
j=0 Hankel matrices. Rewrite

(Hp)ij =
i + j + 1+ p

i + j − α+ p
= 1+

α+ 1

i + j − α+ p

, Hp = 11T+(α+1)·C (x,−x), x =

1...
N

+p − α

2
1,
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HODLR of Grünwald–Letnikov
Proof. For k ≥ 2 we rewrite g

(α)
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(α)
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i + j − α+ p

for ◦ the Hadamard product, {Hj }
m
j=0 Hankel matrices. Rewrite

(Hp)ij = 1+
α+ 1

i + j − α+ p
, Hp = 11T + (α+ 1) · C (x,−x), x =

1...
N

+
p − α

2
1,

x ≥ 0 for α < 2, thus C (x,−x) is PD. Then Hp is positive semidefinite as the sum of a
PD and positive semidefinite matrix.
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HODLR of Grünwald–Letnikov

Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every ϵ > 0, the ϵ-qsrank of GN is bounded by

qsrankϵ(GN) ≤ B
(
N,
ϵ

2

)
= 2+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ϵ

)⌉
.

Proof.
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qsrankϵ(GN) ≤ B
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ϵ

2

)
= 2+ 2

⌈
2

π2
log
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π
N

)
log
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ϵ
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.

Proof. We just need to work on the lower triangle, for the upper the rank is at most 1
(Hessenberg).
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ϵ
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.

Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N.
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log
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ϵ

)⌉
.

Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N. (If rank(Y + δY ) = k and ∥δY ∥2 ≤ ϵ∥GN∥2
then the submatrices of δY verify the analogous claim for the corresponding ones of Y .)
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Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every ϵ > 0, the ϵ-qsrank of GN is bounded by

qsrankϵ(GN) ≤ B
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ϵ

2

)
= 2+ 2
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π2
log

(
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π
N

)
log

(
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ϵ

)⌉
.

Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N.
Entries Y are given by Yij = −g

(α)
1+i−j+t . Call h = max{s, t}, and A the h × h matrix

defined by Aij = −g
(α)
1+i−j+h.
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HODLR of Grünwald–Letnikov

A = Y

For every 1 ≤ i ≤ s and 1 ≤ j ≤ t one have

Yij = −g
(α)
1+i−j+t = −g

(α)
1+i−(j−t+h)+h = Ai ,j−t+h.

Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N.
Entries Y are given by Yij = −g

(α)
1+i−j+t . Call h = max{s, t}, and A the h×h matrix defined

by Aij = −g
(α)
1+i−j+h.Y coincides with either the last t columns or the first s rows of A.
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1+i−j+h.Y coincides with either the last t columns or the first s rows of

A. In particular, Y is a submatrix of A and therefore ∥Y ∥2 ≤ ∥A∥2.
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Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N.
Entries Y are given by Yij = −g

(α)
1+i−j+t . Call h = max{s, t}, and A the h × h matrix

defined by Aij = −g
(α)
1+i−j+h.Y coincides with either the last t columns or the first s rows of

A. In particular, Y is a submatrix of A and therefore ∥Y ∥2 ≤ ∥A∥2. Ó We need now to
estimate ∥A∥2 in terms of ∥GN∥2, thus we partition

A =

[
A(11) A(12)

A(21) A(22)

]
, A(ij) ∈ Cmij×nij ,

{
m1j = ni1 = ⌈h2⌉
m2j = ni2 = ⌊h2⌋

,

{
h ≤ N − 1,

mi ,j + ni ,j ≤ N,
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HODLR of Grünwald–Letnikov
Proof. and consider the subdiagonal block T (ij) of GN defined by

T (ij) = GN(N−mij +1 : N,N−mij −nij +1 : N−mij), i , j = 1, 2,
T (ij) ∈ Rmij×nij ,

mij + nij ≤ N.

4 Since g
(α)
j > g

(α)
j+1 > 0, |T (ij)| ≥ |A(ij)| for every i , j = 1, 2,

� Being T (ij) and A(ij) nonpositive and the 2 norm monotonous, ∥A(ij)∥2 ≤ ∥T (ij)∥2.
� By exploiting

∥A∥2 ≤
∥∥∥∥[A(11)

A(22)

]∥∥∥∥
2

+

∥∥∥∥[ A(12)

A(21)

]∥∥∥∥
2

= max{∥A(11)∥2, ∥A(22)∥2}+max{∥A(12)∥2, ∥A(21)∥2}
⇒ ∥A∥2 ≤ 2∥GN∥2.

X Conclude by the result on Hankel matrices!
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HODLR of Grünwald–Letnikov

Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every ϵ > 0, the ϵ-qsrank of GN is bounded by

qsrankϵ(GN) ≤ B
(
N,
ϵ

2

)
= 2+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ϵ

)⌉
.

Proof. We call J the h × h flip matrix, so that −AJ is Hankel and positive semidefinite:

rankϵ
2
(A) = rankϵ

2
(AJ) ≤ B

(
N,
ϵ

2

)
.

Y is a submatrix of A, thus there exists δY such that
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)
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HODLR of Grünwald–Letnikov

Let’s do some experiments with the § hm-toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)

%%GLMATRIX produces the GL discretization of

% the Riemann-Liouville derivative in HODLR

% format

g = gl(N,alpha);

c = zeros(N,1);

r = zeros(1,N);

r(1:2) = g(2:-1:1);

c(1:N) = g(2:end);

hodlroption( 'threshold', tol);

G = hodlr('toeplitz',c,r);

end
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HODLR of Grünwald–Letnikov

Let’s do some experiments with the § hm-toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)

%%GLMATRIX produces the GL discretization of

% the Riemann-Liouville derivative in HODLR

% format

g = gl(N,alpha);

c = zeros(N,1);

r = zeros(1,N);

r(1:2) = g(2:-1:1);

c(1:N) = g(2:end);

hodlroption( 'threshold', tol);

G = hodlr('toeplitz',c,r);

end G = glhodlrmatrix(6000,1.5,1e-12);

18 / 40
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HODLR Matrix: the whole discretization

Matrix GN was only a piece of the whole discretization matrix

AN = IN +
∆t

hα

(
D+
(m)GN + D−

(m)G
T
N

)
,

does it share the same structure?

Corollary (Massei, Mazza, and Robol 2019, Corollary 3.16)

qsrankϵ(AN) ≤ 3+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ϵ̂

)⌉
, ϵ̂ ≜

∥AN∥
∥GN∥ ·max{∥D+

(m)∥, ∥D−
(m)∥}

ϵ.
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Proof. Result is invariant under scaling, so assume wlog that ∆t
hα = 1.
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∥AN∥
∥GN∥ ·max{∥D+

(m)∥, ∥D−
(m)∥}

ϵ.

Proof. Result is invariant under scaling, so assume wlog that ∆t
hα = 1. A generic

off-diagonal block Y , wlog in the lower triangular part, If Y does not intersect the first
subdiagonal, is a subblock of D+

(m)GN , so there exists a perturbation δY with norm

bounded by ∥δY ∥ ≤ ∥D+
(m)∥∥GN∥ · ϵ̂ such that Y + δY has rank at most B(N, ϵ̂/2). In

particular, δY satisfies ∥δY ∥ ≤ ∥AN∥ · ϵ.
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(m)∥, ∥D−
(m)∥}

ϵ.

Proof. Result is invariant under scaling, so assume wlog that ∆t
hα = 1. Since we have

excluded one subdiagonal, a generic off-diagonal block Y we can find a perturbation with
norm bounded by ∥AN∥ · ϵ such that Y + δY has rank 1+B(N, ϵ̂/2).

19 / 40



A HODLR right-hand side

® What are right-hand sides functions f (x , y , t) so that the matrix C has a HODLR
structure?

Consider the function
f (x , y) = log (τ+ |x − y |) , τ > 0.

Ó If we discretize it by finite differences on
a rectangular domain we find

Ci ,j = log (τ+ |xi − yj |)

� The modulus function it is not regular
in the whole domain but it is analytic
when the sign of x − y is constant.

� We can use again Chebyshev basis to
approximate it in a separable fashion.

20 / 40



A HODLR right-hand side

® What are right-hand sides functions f (x , y , t) so that the matrix C has a HODLR
structure?

Consider the function
f (x , y) = log (τ+ |x − y |) , τ > 0.

Ó If we discretize it by finite differences on
a rectangular domain we find

Ci ,j = log (τ+ |xi − yj |)

� The modulus function it is not regular
in the whole domain but it is analytic
when the sign of x − y is constant.

� We can use again Chebyshev basis to
approximate it in a separable fashion.

0
1

0.1

0.2

0.3

1

0.4

f(
x
,y

)

0.8

0.5

y

0.5

0.6

0.6

x

0.7

0.4
0.2

0 0

20 / 40



A HODLR right-hand side

® What are right-hand sides functions f (x , y , t) so that the matrix C has a HODLR
structure?

Consider the function
f (x , y) = log (τ+ |x − y |) , τ > 0.

Ó If we discretize it by finite differences on
a rectangular domain we find

Ci ,j = log (τ+ |xi − yj |)

� The modulus function it is not regular
in the whole domain but it is analytic
when the sign of x − y is constant.

� We can use again Chebyshev basis to
approximate it in a separable fashion.

0
1

0.1

0.2

0.3

1

0.4

f(
x
,y

)

0.8

0.5

y

0.5

0.6

0.6

x

0.7

0.4
0.2

0 0

20 / 40



A HODLR right-hand side

® What are right-hand sides functions f (x , y , t) so that the matrix C has a HODLR
structure?

Consider the function
f (x , y) = log (τ+ |x − y |) , τ > 0.

Ó If we discretize it by finite differences on
a rectangular domain we find

Ci ,j = log (τ+ |xi − yj |)

� The modulus function it is not regular
in the whole domain but it is analytic
when the sign of x − y is constant.

� We can use again Chebyshev basis to
approximate it in a separable fashion.

0
1

0.1

0.2

0.3

1

0.4

f(
x
,y

)

0.8

0.5

y

0.5

0.6

0.6

x

0.7

0.4
0.2

0 0

20 / 40



A HODLR right-hand side
® What are right-hand sides functions f (x , y , t) so that the matrix C has a HODLR
structure?

Consider the function
f (x , y) = log (τ+ |x − y |) , τ > 0.

Ó If we discretize it by finite differences on
a rectangular domain we find

Ci ,j = log (τ+ |xi − yj |)

� The modulus function it is not regular
in the whole domain but it is analytic
when the sign of x − y is constant.

� We can use again Chebyshev basis to
approximate it in a separable fashion.

x = linspace(0,1,N); y = linspace(0,1,N);

[X,Y] = meshgrid(x,y); tau = 1;

C = log(tau + abs(X-Y)); hC = hodlr(C);
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Separability (a bit more formally)

Separable expansion (Hackbusch 2015, Definition 4.4)

Take a function χ(x , y) : X × Y → R, we call

χ(x , y) =
r∑
ν=1

ϕ
(r)
ν (x)ψ

(r)
ν (y) + Rr (x , y), for x ∈ X , y ∈ Y ,

a separable expansion of χ with r terms in X × Y with remainder Rr .

å To have an idea of the goodness of the separable expansion, we would like to have

{∥Rr∥∞, ∥Rr∥Lp }
r→0−→ 0 as fast as possible, e.g., exponentially.

Ó If ∥Rr∥ ≤ c1 exp(−c2r
α) ⇒ ∥Rr∥ ≤ ε if r ≥

⌈(
1
c2
log

1/α c1
ε

)⌉
= O(log

1/α 1/ε) ε→ 0.

� We can use Taylor expansions, Chebyshev expansion, Hermite/Lagrange interpolation,
cross approximation. . . In all the cases, the behavior of Rr is tied to the regularity of
χ(x , y); see (Hackbusch 2015, Chapter 4).
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BLAS with HODLR format

® We now have everything represented in the right format, but can we operate with it?

y = Ax: Matrix-vector products, recursively:

y(I 11 ) = A(I 11 , I
1
1 )x(I

1
1 ) + A(I 11 , I

1
2 )x(I

1
2 ),

y(I 12 ) = A(I 12 , I
1
1 )x(I

1
1 ) + A(I 12 , I

1
2 )x(I

1
2 ).

Ó Off-diagonal blocks A(I 11 , I
1
2 ) and A(I 12 , I

1
1 ) are obtained by multiplying

n/2 × n/2 low-rank matrix with vector. This cost cLR·x(n/2) = 2nk.
Ó Diagonal blocks are processed recursively at a cost

cA·x(n) = 2cA·x(n/2) + 4kn + n.

Master theorem (divide and conquer): cA·x(n) = (4k + 1) log2(n)n.
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BLAS with HODLR format

C = A+ B: Adding two equally partitioned HODLR matrices increases the ranks of
off-diagonal blocks by a factor 2.

Ó We need truncation Tk(A(I
ℓ
1, I

ℓ
j ) + B(I ℓ1, I

ℓ
j )), costs

cLR+LR = cSVD × (nk2 + k3),

where cSVD is the cost of the given low-rank truncation algorithm (SVD,
rand-SVD, QR, . . .)

Total cost is then:
p∑
ℓ=1

2ℓcLR+LR(mℓ) =cSVD

p∑
ℓ=1

2ℓ(k3 +mℓk
2)

≤cSVD

(
2p+1k3 +

p∑
ℓ=1

2ℓ2p−ℓn0k
2

)
≤cSVD

(
2nk3 + n log2(n)k

2
)
.
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BLAS with HODLR format

C = AB: Matrix-matrix multiplication can also be done recursively

· =

 · + · · + ·

· + · · + ·


where is a n/2 × n/2 HODLR matrix and is a low-rank block.

1. · · of 2 HODLR n/2 matrices,

2. · · of 2 low-rank blocks,

3. · · of HODLR times low-rank,

4. · · of low-rank times HODLR.
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BLAS with HODLR format
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BLAS with HODLR format

Approximate solution of a linear system Ax = b with HODLR matrix A:

A ≈ LU Approximate LU-factorization A ≈ LU in HODLR format:

≈ ·

Forward substitution to solve Ly = b,

Backward substitution to solve Ux = y.

We need to analyze the two steps separately.
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BLAS with HODLR format

Approximate LU factorization, on level ℓ = 1:

A =

[
A11 A12

A21 A22

]
, L =

[
L11 O
L21 L22

]
, U =

[
U11 U12

O U22

]
It is done in four steps

1. Compute LU factors L11, U11 of A11,

2. Compute U12 = L−1
11 A12 by forward substitution,

3. Compute L21 = A21U
−1
11 by backward substitution,

4. Compute LU factors L22, U22 of A22 − L21U12.

The analysis of the cost is analogous to the matrix-matrix multiplication case, but we need
to know how to do and how-much does forward/backward substitution costs.
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BLAS with HODLR format
Forward substitution with lower triangular L in HODLR format: y = L−1b

L =

[
L11 O
L21 L22

]
, y =

[
y1
y2

]
, b =

[
b1
b2

]
with L21 low-rank, and L11, L22 HODLR.

1. Solve L11y1 = b1,

2. Compute b̃2 = b2 − L21y1,

3. Solve L22y2 = b̃2.

Cost recursively:
cforw = 2cforw(n/2) + (2k + 1)n.

On level ℓ = p, we have the direct solution of 2p = n/n0 linear systems of size n0 × n0.
N Total cost cforw ∈ O(kn log(n)), and analogously for backward substitution.
N Total cost cLU(n) ≲ cH·H(n) ∈ O(k3n log n + k2n log2 n).
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BLAS with HODLR format

The § hm-toolbox (Massei, Robol, and
Kressner 2020) contains all the routines.

Ð They overload the standard MATLAB
operation by the same name, i.e., if you
have variables in the right class you
operate directly in this format.

à One can use different cluster tree Tp to
get smaller ranks. They are determined
by the partitioning of the index set on
the leaf level and represented as the

vector c = [n
(p)
1 , . . . , n

(p)
2p ], change it to

change the HODLR matrix.

Operation HODLR complexity

A*v O(kn log n)
A\v O(k2n log2 n)
A+B O(k2n log n)
A*B O(k2n log2 n)
A\B O(k2n log2 n)
inv(A) O(k2n log2 n)
A.*B2 O(k4n log n)

lu(A), chol(A) O(k2n log2 n)
qr(A) O(k2n log2 n)

compression O(k2n log(n))

2The complexity of the Hadamard product is dominated by the recompression stage due to the k2

HODLR rank of A ◦ B. Without recompression the cost is O(k2n log n).
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HODLR solver for the 1D case
We can modify our first example to get a solution for the 1D problem in the new format.

%% Discretization

N = 2^7; hN = 1/(N-1); x = 0:hN:1; dt = hN;

alpha = 1.5; % Coefficients

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

w = @(x) 5*x.*(1-x);

tol = 1e-9; % HODLR building

tic;

G = glhodlrmatrix(N,alpha,tol);

Dplus = hodlr('diagonal',dplus(x));

Dminus = hodlr('diagonal',dminus(x));

I = hodlr('eye', N);

nu = hN^alpha/dt;

A = nu*I -(Dplus*G + Dminus*G');

buildtime = toc;

%% Solving

[L,U] = lu(A);

flu = @() lu(A);

timelu = timeit(flu,2);

w = w(x).';

solvetime = 0;

for i=1:N

tic;

w = U\(L\(nu*w));

solvetime = solvetime + toc;

end

solvetime = solvetime/N;

Â Let us try looking at the
timings.
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HODLR solver for the 1D case

We take α = 1.5, and ε = 10−9

N Build (s) LU (s) Avg. Solve (s)

27 8.96e-03 1.44e-04 2.93e-04
28 1.35e-02 4.63e-04 3.33e-04
29 3.14e-02 2.05e-03 5.41e-04
210 7.28e-02 6.21e-03 9.35e-04
211 1.59e-01 1.63e-02 1.75e-03
212 3.85e-01 4.33e-02 3.68e-03
213 8.81e-01 1.27e-01 7.99e-03
214 2.19e+00 3.73e-01 1.55e-02

: Largest matrix occupies 46.25 Mb, against the 2 Gb of the dense storage and the 0.87
Mb of storing three diagonals and 2× (2N − 1) for the Toeplitz storage.
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Back to Sylvester (Massei, Palitta, and Robol 2018)

To solve the Sylvester equation with HODLR coefficients

AX + XBT = C , A ∈ Rn×n, B ∈ Rm×m, X ,C ∈ Rn×m,

we can use the integral formulation

X =

∫+∞
0

e−AtCe−BT t dt.

We perform the change of variables: t = f (θ) ≜ L · cot
(
θ
2

)2
, rewriting the integral as

X = 2L

∫π
0

sin(θ)

(1− cos(θ))2
e−Af (θ)Ce−BT f (θ) dθ,

with L a parameter to be optimized for convergence.
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Back to Sylvester (Massei, Palitta, and Robol 2018)
We now have an integral on a finite domain ⇒ Gauss-Legendre quadrature

X ≈
m∑
j=1

ωj · e−Af (θj )Ce−BT f (θj ),

for {θj ,wj }
m
j=1 are the Legendre points and weights, and ωj = 2Lwj · sin(θj )

(1−cos(θj ))2
.

® The dominant cost is now computing e−Af (θj ) and e−BT f (θj ), how do we do it?

Ð A good idea could be using rational approximation to exp(t)

� (d , d)-Padé with scaling and squaring eA = (e2
−kA)2

k
and k = ⌈log2 ∥A∥2⌉.

� Rational Chebyshev function (Popolizio and Simoncini 2008):

ex ≈ r1
x − s1

+ . . .+
rd

x − sd
.

requiring d inversions and additions that is uniformly accurate for every positive value
of t, and thus is better in the case in which ∥A∥2 is large.
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® The dominant cost is now computing e−Af (θj ) and e−BT f (θj ), how do we do it?

Ð A good idea could be using rational approximation to exp(t)

� (d , d)-Padé with scaling and squaring eA = (e2
−kA)2

k
and k = ⌈log2 ∥A∥2⌉.

� Rational Chebyshev function (Popolizio and Simoncini 2008):

ex ≈ r1
x − s1

+ . . .+
rd

x − sd
.

requiring d inversions and additions that is uniformly accurate for every positive value
of t, and thus is better in the case in which ∥A∥2 is large.
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Back to Sylvester (Massei, Palitta, and Robol 2018)
Input: lyap integral
A,B,C ,m;

/* Solves AX + XBT = C with m
integration points */

L← 100 ; /* Should be tuned for

accuracy! */

[w , θ]← GaussLegendrePtsm ;
/* Integration points and weights

on [0, π] */

X ← 0n×n;
for i = 1, . . . ,m do

f ← L · cot(θi

2 )
2;

X ← X + wi
sin(θi)

(1−cosθi)2
· expm (−f · A) ·

C · expm (−f · BT );

end
X ← 2L · X ;

Mixed structures

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.
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structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.

Build

EKs(A,U) = span{U,A−1U,AU, . . .}

EKs(B
T ,V ) = span{V ,B−TV ,BTV , . . .},
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s U, and

Ṽ = V ∗
s V . Solve ÃsXs + Xs B̃s = ŨṼ T

with dense arithmetic.
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Ṽ = V ∗
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T ,V ), project on

Ãs = U∗
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s BVs , Ũ = U∗
s U, and

Ṽ = V ∗
s V . Solve ÃsXs + Xs B̃s = ŨṼ T

with dense arithmetic. An approximation is
UsXsV

∗
s . Another viable approach in the
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2019).
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A numerical test (Massei, Mazza, and Robol 2019)

We use the usual square [0, 1]2, and the source f

f (x , y , t) = 100 · (sin(10πx) cos(πy) + sin(10t) sin(πx) · y(1− y)) .

for both constant coefficient d+ = d− = 1, and variable coefficients

d+
1 (x) = Γ(1.2)(1+ x)α1 , d−

1 (x) = Γ(1.2)(2− x)α1 ,

d+
2 (y) = Γ(1.2)(1+ y)α2 , d−

2 (y) = Γ(1.2)(2− y)α2 .

The fractional orders are α1 = 1.3, α2 = 1.7, and α1 = 1.7, α2 = 1.9. Methods are

� Sylvester by Extended-Krylov with stopping ϵ = 10−6 (HODLR),

å HODLR arithmetic is set to work with a truncation of 10−8.

� Sylvester by Extended-Krylov with stopping ϵ = 10−6 (Breiten, Simoncini, and Stoll
2016),

å Inner solve with: GMRES with tolerance 10−7 and structured preconditioners,
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A numerical test (Massei, Mazza, and Robol 2019)

Constant coefficient with α1 = 1.3 and α2 = 1.7.

N tHODLR tBSS rankϵ qsrankϵ

512 0.26 1.26 14 11
1,024 0.17 1.75 15 11
2,048 0.31 3.57 15 12
4,096 0.58 9.21 16 12
8,192 1.17 18.14 16 13
16,384 2.48 37.24 16 13
32,768 5.18 77.28 16 14
65,536 11.76 168.29 15 14 103 104 105

10−1

100

101

102

N

T
im

e
(s
)

HODLR
BSS

Ð FD_Example.m from § github.com/numpi/fme
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A numerical test (Massei, Mazza, and Robol 2019)

Constant coefficient with α1 = 1.7 and α2 = 1.9.

N tHODLR tBSS rankϵ qsrankϵ

512 0.13 0.7 17 10
1,024 0.2 1.4 18 10
2,048 0.37 2.85 19 11
4,096 0.79 6.53 20 11
8,192 1.67 11.57 20 11
16,384 3.98 22.2 21 11
32,768 8.56 47.75 22 11
65,536 23.86 91.53 23 11 103 104 105

10−1

100

101

102

N

T
im

e
(s
)

HODLR
BSS

Ð FD_Example.m from § github.com/numpi/fme
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A numerical test (Massei, Mazza, and Robol 2019)

Non-constant coefficient case with α1 = 1.3 and α2 = 1.7.

N tHODLR tBSS rankϵ qsrankϵ

512 0.1 0.95 14 10
1,024 0.16 1.45 14 11
2,048 0.29 2.83 15 12
4,096 0.55 7.39 16 12
8,192 1.11 13.02 16 13
16,384 2.41 24.27 16 13
32,768 5.02 44.5 16 14
65,536 11.28 76.78 16 14 103 104 105

10−1

100

101

102

N

T
im

e
(s
)

HODLR
BSS

Ð FD_Example_vc.m from § github.com/numpi/fme
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A numerical test (Massei, Mazza, and Robol 2019)

Non-constant coefficient case with α1 = 1.7 and α2 = 1.9.

N tHODLR tBSS rankϵ qsrankϵ

512 0.11 0.73 18 10
1,024 0.2 1.37 19 10
2,048 0.4 2.17 20 11
4,096 0.92 4.59 21 11
8,192 2.28 9.31 22 11
16,384 4.51 16.89 22 11
32,768 11.33 33.19 23 12
65,536 26.71 64.73 24 12 103 104 105

10−1

100

101

102

N

T
im

e
(s
)

HODLR
BSS

Ð FD_Example_vc.m from § github.com/numpi/fme
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The tale of the matrix equation: the moral of the story.

Â There is an advantage with respect to using Toeplitz-based BLAS like operations,

m In (Massei, Mazza, and Robol 2019) they are solving the case(
1

2
INx − ∆tG̃Nx

)
W̃ (m+1)+W̃ (m+1)

(
1

2
INy − ∆tG̃Ny

)T

= W̃ (m)+∆tF (m+1), m = 0, . . . ,M−1.

here the spectrum is fictitiously independent from the discretization, i.e., all
matrix-equation solvers perform a number of iteration independent from the system
size: the cost is reduced to the extended Krylov subspace cost! But we still have
time-stepping to do.

® The case in which the matrix equation solver has a number of iterations dependent on
the problem size is not yet resolved:

⌣ Low-rank but Ò no preconditioner – VS – Ò Full memory but ⌣ preconditioners

, Still looking for a way to solve everything all-at-once compactly.
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Conclusion and summary

¥ We have seen how to work with matrices in HODLR format,

¥ We have discussed a couple of strategy to solve Sylvester equations with HODLR
coefficients,

¥ We have applied all the machinery to solve a time step of a 2D equation FDE.

Next up

Á Back to all-at-once solution with respect to both space and time,

Á Linear multistep formulas in boundary value form,

Á Structured preconditioner for LMFs,

Á Tensor-Train reformulation of the problem.
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