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Sylvester with quasiseparable matrices

Let’s start again from the problem we wanted to solve
AX +XBT = C, AcR™" BeR™M X CeR™M

with A, B, and C quasiseparable

Quasiseparable matrix

A matrix A is quasiseparable of order k if
the maximum of the ranks of all its
submatrices contained in the strictly —_

upper or lower part is less or equal
than k.

X with decay of the singular values

We have seen that A, B, and C quasiseparable = of off-diagonal blocks of C.
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Sylvester with quasiseparable matrices

Theorem (Massei, Palitta, and Robol , Theorem 2.12)
Let A, B be matrices of quasiseparable rank kaq and kg respectively and such that

W(A) C E and W(—B) C F. Consider the Sylvester equation AX + XB = C, with C of
quasiseparable rank kc. Then a generic off-diagonal block Y of the solution X satisfies

o14ke(Y)

<C%2.Z(EF k = ka + kg + kc.

Where Z;(E, F) is the solution of the Zolotarev problem

Zf(E) F) £ inf Inf.iXXE—E“(XNa £>1,
r(x)ER¢,e MINycF r(y)l

for Ry, is the set of rational functions of degree at most ({,£), and C is the Crouzeix
universal constant.
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Sylvester with quasiseparable matrices

© Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?
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€-quasiseparable matrices of rank k (e-qsrank k)

We say that A has e-quasiseparable rank k if, for every off-diagonal block Y, ox1(Y) < €.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) e-quasiseparable rank k.
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Sylvester with quasiseparable matrices

© Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

€-quasiseparable matrices of rank k (e-qsrank k)

We say that A has e-quasiseparable rank k if, for every off-diagonal block Y, ox1(Y) < €.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) e-quasiseparable rank k.

@ Submatrices and off-diagonal blocks

If a matrix A has e-quasiseparable rank k,
then any of its principal submatrix A’ has
€-quasiseparable rank k.

Any off-diagonal block Y of A’ is also an
off-diagonal block of A = ox;1(Y) < €.
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Sylvester with quasiseparable matrices

© Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

e-quasiseparable matrices of rank k (e-gqsrank k)

We say that A has e-quasiseparable rank k if, for every off-diagonal block Y, ox1(Y) < €.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) e-quasiseparable rank k.

F the direct
@ Submatrices and off-diagonal blocks or & the direct sum
If a matrix A has e-quasiseparable rank k, Technical lemma

then any of its principal submatrix A" has Let A be a matrix with e-quasiseparable
e-quasiseparable rank k. rank k, @ any (k +1) x (k + 1) unitary
Any off-diagonal block Y of A’ is also an matrlx._ Ve, e & QA aleo e
off-diagonal block of A = o41(Y) < €. e-quasiseparable rank k.

3/40



Sylvester with quasiseparable matrices

© Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

€-quasiseparable matrices of rank k (e-gsrank k)

We say that A has e-quasiseparable rank k if, for every off-diagonal block Y, ox1(Y) < €.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) e-quasiseparable rank k.

‘ e Q@ acts on the tall block of A without

; ; changing its singular values, while the
0 I N R ___ small one has small rank thanks to the
‘ 1 ' small number of rows.

A =
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Sylvester with quasiseparable matrices

Theorem (Massei, Palitta, and Robol , Theorem 2.16)

Let A be of e-quasiseparable rank k, for € > 0. Then, there exists a matrix A of norm
bounded by ||8Al|2 < 24/n - € so that A+ 8A is k-quasiseparable.
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Sylvester with quasiseparable matrices

Theorem (Massei, Palitta, and Robol , Theorem 2.16)

Let A be of e-quasiseparable rank k, for € > 0. Then, there exists a matrix A of norm
bounded by ||8Al|2 < 24/n - € so that A+ 8A is k-quasiseparable.

@ A matrix with e-quasiseparable
rank of k can be well-approximated

by a matrix with exact quasisepara-
ble rank k!

© How can we operate efficiently with these
matrix structures?

E¥ Reduced cost for BLAS-like operations,

KX Contained storage cost.
@ |f the spectra of A and —B
are well-separated in the Zolotarev
sense, we can preserve structure!

Hierarchical matrix formats!
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Hierarchical matrix formats

There exist many hierarchical matrix formats:

& H-Matrices,
& H2-Matrices,
# Hierarchical Off-Diagonal Low-Rank (HODLR),

P 4 Hierarchically SemiSeparable (HSS),
# Block Low-Rank (BLR).
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HODLR-matrices

The general idea:

@ The grey blocks are low rank matrices represented in a compressed form,

& the diagonal blocks in the last step are stored as dense matrices.
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HODLR-matrices

The general idea:

@8 The grey blocks are low rank matrices represented in a compressed form,
& the diagonal blocks in the last step are stored as dense matrices.

&k \We need now a formal definition and a way to define operations.
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HODLR-matrices: trees

% Cluster tree

Given n € N, let 7, be a completely balanced binary tree of depth p whose nodes are
subsets of {1,...,n}. We say that 7, is a cluster tree if it satisfies:
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Given n € N, let 7, be a completely balanced binary tree of depth p whose nodes are
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% Theroot is I := 1 ={1,...,n}.

@ The nodes at level {, denoted by If, ceny 122, form a partitioning of {1,..., n} into

consecutive indices: . . .
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HODLR-matrices: trees

% Cluster tree

Given n € N, let 7, be a completely balanced binary tree of depth p whose nodes are
subsets of {1,...,n}. We say that 7, is a cluster tree if it satisfies:

% Theroot is I := 1 ={1,...,n}.

@ The nodes at level {, denoted by If, ceny 12%, form a partitioning of {1,..., n} into

consecutive indices: . . .
I} :{n§31+1...,n5 ) —1,n§ )}

for some integers 0 = n(()e) < n:(le) <. <L né? =n, L=0,...p. In particular, if

nEe_)l = n,(-z) then I,-e = 0.
@ The node /! has children I3, and I;, for any 1 < ¢ < p — 1. The children form a
partitioning of their parent.
@ Nodes at a level £ partition A into a 2¢ x 2% block matrix with blocks {A(l,-"', lf)},?j-:l.
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HODLR-matrices: trees

I = {1>2>3)4>536>7>8}
—

Ill :{1)2)3)4} I21 :{5)6)7) 8}

T T
I12 :{1)2} I22 :{3)4} I32 :{5)6} I42 :{7)8}
K K K K
B={1 B={2 B={38 =4 =& =6 £F={7 §={8

(=0

% The root | ={1,...,8},
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HODLR-matrices: trees

I:{1>2)3)4)5»6>7)8}
—
111 :{132)3)4} 121 :{5>6)7)8}
/1 :{1>2} Iz :{334} I3 :{536} I4 :{738}

S S S ™
P={1 5=} =038 =4 K={06 k=6 F={7 ={8

(=1

% The root | ={1,...,8},
@ Nodes at level 1: /i and /2,
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HODLR-matrices: trees

I = {1»2)3)4) 5, 6»7)8}

—

Ill :{1)2)3)4} I21 :{5)6)7) 8}

T T
Il2 :{1)2} I22 :{3)4} I32 :{5)6} I42 :{7)8}
K K K K
B} B-{ B-13) B-& B={5 B=6 BE-{7 -1

% The root I ={1,...,8}, S
& Nodes at level 1: I} and /2, B

@ Nodes at level 2: @(I1)= {12, 12}, @(1})={I2, 12}, I
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HODLR-matrices: trees

I = {1»2)3)4) 5, 6»7)8}

—
I21 =1{5,6,7,8}

T T
7 ={1,2} I3 =1{3,4} I3 ={5,6} 2 =1{7,8)
K K K™ K
P={1) 5=} 5= k=4 K= k=6 F={7 ={8

Ill = {1) 2) 3) 4}

(=3

% The root | ={1,...,8},

/& Nodes at level 1: /11 and /12,

@ Nodes at level 2: @(I1)= {12, 12}, @(1})={I2, 12},

@ Nodes at level 3: @(12) ={13, 13}, ..., @(12) = {13, 13}.
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HODLR-matrices: definition

Let A€ R"™" and consider a cluster tree 7.
1. Given k € N, A is said to be a (7,, k)-HODLR matrix if every off-diagonal block

ALY, Ij-e) such that /{ and If’ are siblings in 7,, £=1,...,p,

has rank at most k.

2. The HODLR rank of A (with respect to 77,) is the smallest integer k such that A is a
(75, k)-HODLR matrix.
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HODLR-matrices: definition

HODLR matrix

Let A€ R"™" and consider a cluster tree 7.
1. Given k € N, A is said to be a (7,, k)-HODLR matrix if every off-diagonal block

ALY, Ij-e) such that /{ and lf are siblings in 7,, £=1,...,p,

has rank at most k.

2. The HODLR rank of A (with respect to 7) is the smallest integer k such that A is a
(75, k)-HODLR matrix.

Y’ T, is often chosen to be as balanced as possible, i.e., cardinalities of / are nearly
equal for a given £, with a dept determined by a minimal diagonal block size nyy.

£ The classical choice is to have a binary tree, i.e., n = 2Pny;,.
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HODLR-matrices: occupied space

If we assume identical ranks k and a balanced partitioning then

E® Storage for off-diagonal blocks A(I,-e, /je) = Ui(e)(V.m)T, U,.(e), ij e Rmexk,

J
On level £ > 0 there are 2° off-diagonal blocks

P P
2k Z 28 my = 2kng Z 202P=2knop2P = 2knp = 2kn log, (7/no),
(=1 =1
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HODLR-matrices: occupied space

If we assume identical ranks k and a balanced partitioning then

B Storage for off-diagonal blocks A(/, /jz) = Ui(e)(V.m)T, U,.(e), v e gmexk,

J J

On level £ > 0 there are 2° off-diagonal blocks

P P
2k Z 28 my = 2kng Z 202P=2knop2P = 2knp = 2kn log, (7/no),
(=1 =1

B Storage requirements for diagonal blocks
2Pn3 = nno,
B Total, assuming ng = O(1), is then

O(knlog n).

© Both requirements on ranks and partitioning can be relaxed to obtain similar results.
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HODLR-matrices: building the representation

A s non trivial to construct structured representations efficiently, especially if you want
to avoid computing the whole n? coefficients!
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% Build a cluster tree 7, for the given index set,

If Ais dense:
@ Use Householder QR decomposition with column pivoting or SVD on off-diagonal

blocks,
# The rank of each off-diagonal block A(I,-p, IJ-p) is chosen such that the spectral norm

of the approximation error is bounded by e times [[A(/7, I7)]|2.
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A s non trivial to construct structured representations efficiently, especially if you want
to avoid computing the whole n? coefficients!
% Build a cluster tree 7, for the given index set,
If Ais dense:
@ Use Householder QR decomposition with column pivoting or SVD on off-diagonal
blocks,
# The rank of each off-diagonal block A(I,-p, IJ-p) is chosen such that the spectral norm
of the approximation error is bounded by € times ||A(/7, ljp)||2.
If A is sparse:

@ Use a two sided Lanczos method only requiring matrix-vector multiplications with
an off-diagonal block and its transpose, combined with recompression to each
off-diagonal block.
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HODLR-matrices: building the representation

A s non trivial to construct structured representations efficiently, especially if you want
to avoid computing the whole n? coefficients!
% Build a cluster tree 7, for the given index set,
If Ais dense:
@ Use Householder QR decomposition with column pivoting or SVD on off-diagonal
blocks,
# The rank of each off-diagonal block A(I,-p, IJ-p) is chosen such that the spectral norm
of the approximation error is bounded by € times ||A(/7, ljp)||2.
If A is sparse:

@ Use a two sided Lanczos method only requiring matrix-vector multiplications with
an off-diagonal block and its transpose, combined with recompression to each
off-diagonal block.

If A is structured use an ad-hoc constructor!
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HODLR of Grunwald-Letnikov

Theorem (Fiedler , Theorem A)

Let x,y two real vectors of length N, with ascending and descending ordered entries,
respectively. Moreover, we denote with C(x,y) the Cauchy matrix defined by

1

)
X,'—yj

Gj= ij=1,...,N.

If C(x,y) = C(x,y)7, x; € [a,b], y; € [c,d] with a> d, then C(x,y) is positive definite.
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HODLR of Grunwald-Letnikov

Theorem (Fiedler , Theorem A)

Let x,y two real vectors of length N, with ascending and descending ordered entries,

respectively. Moreover, we denote with C(x,y) the Cauchy matrix defined by
1 ..
Cyj = , ij=1,...,N.
Xi —Yj

If C(x,y) = C(x,y)7, x; € [a,b], y; € [c,d] with a> d, then C(x,y) is positive definite.

Theorem (Beckermann and Townsend , Theorem 5.5)

Let H be a positive semidefinite Hankel matrix of size N. Then, the e-rank of H is
bounded by

2 4 16\7 4
< = = i |} .
ranke(H) <242 [712 log (nN) log ( < )-‘ B(N,e)
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HODLR of Grunwald-Letnikov

We need to work with Gy € RVxN

(o)
o
&

g
(o)
1

()
En-1

g

g

g

g

Lemma (Massei, Mazza, and Robol

)

Consider the Hankel matrix H defined as

H=(hy),  hj=gi),

for 1 < o« < 2. Then, H is positive
semidefinite.

/" Show that H is obtained as the sum of a positive definite Cauchy matrix and a positive
semidefinite matrix.

¥ Use the result by Beckermann and Townsend 2019.

13/40



HODLR of Grunwald-Letnikov

Proof. For k > 2 we rewrite g,E“) as

g = p oa(oe—1)...(x—k+1)
:(x(“k'_1)(k—oc—1)(k—oc—2)...(2—oc)
oo 1) Ik — o)

Tk+1)r2—o)

14 /40



HODLR of Grunwald-Letnikov

Proof. For k > 2 we rewrite g,E“J as

IMNk—«)
Mk+1r2—o)"

8 = o(oc—1)

Use the Gauss representation of the Euler I’

m!m*

I'z) =l 0,—1,—2,...
(2) mgnooz(z—l—l)(z—i—2)...(z+m)’ 270,712},
we rewrite .
1 k+1+0p
g’(‘a):oc(oc_l)n}g%om!m3 k— o+ (2—a+p)

14 /40



HODLR of Grunwald-Letnikov

Proof. For k > 2 we rewrite g,E“) as

Ik — )
Mk+1T2—«)"

g = ala—1)

We rewrite
H= lim Hpo...oHp, (Hp)ij =

m—-+0o0

i+j—a+p

for o the Hadamard product, {H;}”; Hankel matrices.

i+j+1+p
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HODLR of Grunwald-Letnikov

Proof. For k > 2 we rewrite g,((“) as

g(“) _ (X(O(—l) F(k—oc)
k MNk+1r2—o
We rewrite i1
o e o e e o o
H=tim Hoo...oHn (H”)’f—i+j—oc+p

for o the Hadamard product, {Hj}j";o Hankel matrices. Schur Product Theorem tells us that
“the Hadamard product of two positive definite matrices is also a positive definite matrix’
= If Hyo...oH,, is positive semidefinite for every m then H is also positive semidefinite.
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HODLR of Grunwald-Letnikov

Proof. For k > 2 we rewrite g,E“) as

() B 'k — o)
g ==V ie

We rewrite a1
H= lim Hyo...oHm  (Hp)y= -2 %P
m—+o0 I+)—a+p

for o the Hadamard product, {Hj}j’lo Hankel matrices. Rewrite

i+j+1—|—p_1 x+1
i+j—a+p i+j—a+p

( p)lj—

14 /40



HODLR of Grunwald-Letnikov

Proof. For k > 2 we rewrite g,((“] as

() B Ik — )
& ==V e )

We rewrite

n
H= lim Hyo...oHm  (Hp)j=_—dT1%P
m—+oo I+)—oa+p

for o the Hadamard product, {H;}[”, Hankel matrices. Rewrite

a+1 .
(Hpli =14 iy Ho= 11T+ (a1) Clox ), x= H R

x > 0 for « < 2, thus C(x,—x) is PD. Then H, is positive semidefinite as the sum of a

PD and positive semidefinite matrix. O
14 /40



HODLR of Grunwald-Letnikov

Proposition (Massei, Mazza, and Robol , Lemma 3.15)
For every € > 0, the e-gsrank of Gy is bounded by

2 4 2
asrank(Go) < B (W, £) =242 Z1og (2n) 10g (2))].

Proof.
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HODLR of Grunwald-Letnikov

Proposition (Massei, Mazza, and Robol , Lemma 3.15)
For every € > 0, the e-gsrank of Gy is bounded by
€ 2 4 32
gsrank, (Gy) < B (N, 5) —2 1 [ﬁ log (;{N) log (?ﬂ .
Proof. We just need to work on the lower triangle, for the upper the rank is at most 1
(Hessenberg).
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Proposition (Massei, Mazza, and Robol , Lemma 3.15)

For every € > 0, the e-gsrank of Gy is bounded by

€ 2 4 32
< == Sl = 2.
gsrank, (Gy) _‘B(N,2> 242 [7[2 log (nN) log( e)—‘
Proof. Let Y € RS*? be any lower off-diagonal block of Gy. Without loss of generality we

assume that Y is maximal, i.e. s+t = N. (If rank(Y +0Y) = k and [|8Y]|2 < €]|Gn]|2
then the submatrices of 0Y verify the analogous claim for the corresponding ones of Y.)
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Proposition (Massei, Mazza, and Robol , Lemma 3.15)
For every € > 0, the e-gsrank of Gy is bounded by

2 4 2
qsrank, (G) < B (N, £) =242 [ﬁ log (;N) log (%ﬂ .

Proof. Let Y € R*! be any lower off-diagonal block of Gy. Without loss of generality we

assume that Y is maximal, i.e. s+t =N.
Entries Y are given by Y; = —g: ... Call h=max{s, t}, and A the h x h matrix

defined by Aj = —g{%)_..
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HODLR of Grunwald-Letnikov

y Y, — g S

| For every 1 < i <sand 1< <t one have

|

: TE1tijrt = T 8iqi(j—t+h)+h Aij—t+h-
|

Proof Let Y € R*! be any lower off-diagonal block of Gy. Without loss of generality we
assume that Y is maximal, i.e. s+t =N.

Entries Y are given by Yj; = —g;": ... Call h =max{s, t}, and A the hx h matrix defined

by Ajj = —gl(i)ifﬂh. Y coincides with either the last ¢t columns or the first s rows of A.
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Forevery 1 </ <sand1l < <tonehave

_ () () _
Y Yij T814i—j+t =  Eiti—(j—t+h)+h = Aij—tth-

Proof. Let Y € Rs” be any lower off-diagonal block of Gy. Without loss of generality we

assume that Y is maximal, i.e. s+t =N.

Entries Y are given by Y = —g;": ... Call h =max{s, t}, and A the hx h matrix defined

by Ajj = —gl(i)ifﬂh. Y coincides with either the last t columns or the first s rows of A.
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HODLR of Grunwald-Letnikov

Proposition (Massei, Mazza, and Robol , Lemma 3.15)
For every € > 0, the e-gsrank of Gy is bounded by
€ 2 4 32
gsrank.(Gy) < B <N, 5) =2+2 [? log (;N) log (?)—‘ .
Proof. Let Y € RS*! be any lower off-diagonal block of Gy. Without loss of generality we

assume that Y is maximal, i.e. s+t =N.

Entries Y are given by Yj; = _gl(i)i—j+t' Call h = max{s, t}, and A the h x h matrix
defined by A;; = — 1(5':),._j+h.Y coincides with either the last t columns or the first s rows of
A. In particular, Y is a submatrix of A and therefore || Y||2 < ||All2.
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Proposition (Massei, Mazza, and Robol , Lemma 3.15)
For every € > 0, the e-gsrank of Gy is bounded by

2 4 2
gsrank, (Gy) < B <N> g) =2+2 [? log (EN) log (3?)—‘ .

Proof. Let Y € RS*! be any lower off-diagonal block of Gy. Without loss of generality we
assume that Y is maximal, i.e. s+t =N.
Entries Y are given by Yj = —gl(i)ifjﬂ. Call h = max{s, t}, and A the h x h matrix

defined by Aj; = — {f_)i_jJrh.Y coincides with either the last t columns or the first s rows of
A. In particular, Y is a submatrix of A and therefore || Y||2 < ||Al|2. 8 We need now to

estimate ||Al|2 in terms of ||Gy/|2, thus we partition

A(ll) A(lz):| .. my; = njp = [
A— A(IJ) e Cmi X nij J !
e ) C my=mal

NI NI

1 h<N—1,
7 mij+nig <N,
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HODLR of Grunwald-Letnikov

Proof. and consider the subdiagonal block TW) of Gy defined by

T(Ij) c Rm,‘anij,

TW = Gy(N—my+1: N,N—mj—nj+1: N—my),  ij=1,2 i+ g < N,
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Proof. and consider the subdiagonal block TW) of Gy defined by

T(ij) c Rm;jxn,-j,

TW = Gy(N—my+1: N,N—mj—nj+1: N—my),  ij=1,2 i+ g < N,

@ Since gj(“) > gj(ﬂ >0, |[TW| > |AW)| for every i,j = 1,2,
/¥ Being T and AW) nonpositive and the 2 norm monotonous, ||AW) |, < || TW||,.
@ By exploiting

(11)
1AL, < H [A

Al12)
e ]

Am)] 2 [Am) 2 = [IAll2 < 2[|Gn2-
= max{[| AT 2, || A% 12} + max{]| AT |, |AZY]|}
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Proof. and consider the subdiagonal block TW) of Gy defined by

T(ij) c Rm;jxn,-j,

TW = Gy(N—my+1: N,N—mj—nj+1: N—my),  ij=1,2 i+ g < N,

@ Since gj(“) > gj(ﬂ >0, |[TW| > |AW)| for every i,j = 1,2,
/¥ Being T and AW) nonpositive and the 2 norm monotonous, ||AW) |, < || TW||,.
@ By exploiting

(11)
1AL, < H [A

Al12)
e ]

Am)} > [A”” > = [1All2 < 2/|Gn]l2.
= max{ A™]J2, [ AP[o} + max{|| AT, [ ARV}

@ Conclude by the result on Hankel matrices!
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HODLR of Grunwald-Letnikov

Proposition (Massei, Mazza, and Robol , Lemma 3.15)
For every € > 0, the e-gsrank of Gy is bounded by

2 4 2
qsranke(GN) < B <N) g) =242 ’V? log (;{N) log (3?)—‘ .

Proof. We call J the h x h flip matrix, so that —AJ is Hankel and positive semidefinite:

€
ranke (A) = ranks (AJ) < B (N, 5) .
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For every € > 0, the e-gsrank of Gy is bounded by

€ 2 4 32
< =) = il = 220
gsrank.(Gy) < B <N, 2) 242 [7[2 log (WN) log ( - )—‘
Proof. We call J the h x h flip matrix, so that —AJ is Hankel and positive semidefinite:
€
ranke (A) = ranks (AJ) < B <N, 5) .

Y is a submatrix of A, thus there exists Y such that
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HODLR of Grunwald-Letnikov

Proposition (Massei, Mazza, and Robol , Lemma 3.15)

For every € > 0, the e-gsrank of Gy is bounded by

2 4 2
gsrank,(Gn) < B (N, ) =2+2 [; log ( /v) log (%ﬂ :

P
Proof. We call J the h x h flip matrix, so that —AJ is Hankel and positive semidefinite:
ranke (A) = ranks (AJ) < B <N, g) .
Y is a submatrix of A, thus there exists Y such that

I5Y]|2 < €]|Gu]l> and rank(Y +8Y) < B (N, g) .

= gsrank (Gy) < B (N, §). O

17/40



HODLR of Grunwald-Letnikov

Let's do some experiments with the €) hm—toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)
AKGLMATRIX produces the GL discretization of
the Riemann-Liouville derivative in HODLR
format

gl(N,alpha);

zeros(N,1);

r = zeros(1,N);

r(1:2) = g(2:-1:1);

c(1:N) = g(2:end);

hodlroption( 'threshold', tol);

G = hodlr('toeplitz',c,r);

end

0 0B 52 s
Il
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Let's do some experiments with the €) hm-toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)

AAGLMATRIX produces the GL discretization of
the Riemann-Liouville derivative in HOUDLR
format
= gl(N,alpha);
zeros(N,1);
zeros(1,N);

SR

o 09
]

r
r(1:2)
c(1:N)

hodlroption( 'threshold', tol);
G = hodlr('toeplitz',c,r);

end

g(2:-1:1);
g(2:end) ;
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G = glhodlrmatrix(6000,1.5,1e-6);
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HODLR of Grunwald-Letnikov

Let's do some experiments with the €) hm-toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)

AAGLMATRIX produces the GL discretization of
the Riemann-Liouville derivative in HOUDLR
format
= gl(N,alpha);
zeros(N,1);
zeros(1,N);

SR

o 09
]

r
r(1:2)
c(1:N)

hodlroption( 'threshold', tol);
G = hodlr('toeplitz',c,r);

end

g(2:-1:1);
g(2:end) ;

0

Gt

17
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[ 1000 2000 3000 4000 5000 6000

G = glhodlrmatrix(6000,1.5,1e-9);
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HODLR of Grunwald-Letnikov

Let's do some experiments with the €) hm—toolbox (Massei, Robol, and Kressner 2020).

0
g

function G = glhodlrmatrix(N,alpha,tol) 1000
AKGLMATRIX produces the GL discretization of
the Riemann-Liouville derivative in HODLR
format

gl(N,alpha);

zeros(N,1); 2000
r = zeros(1,N);

r(1:2) = g(2:—1:1); 5000
c(1:N) = g(2:end);

hodlroption( 'threshold', tol); 6000 ; 1000 2000 3000 4000 5000 eooo
G = hodlr('toeplitz',c,r);

end G = glhodlrmatrix(6000,1.5,1e-12);

2000

BN

3000

O 0”
]
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HODLR Matrix: the whole discretization

Matrix Gy was only a piece of the whole discretization matrix

AN_IN+h (D+ Gy + D, GN)

does it share the same structure?
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HODLR Matrix: the whole discretization

Matrix Gy was only a piece of the whole discretization matrix

At + _ T
An=In+ (Do G + D G )
does it share the same structure?
Corollary (Massei, Mazza, and Robol , Corollary 3.16)

2 4 32 | An|
gsrank,_(Ay) <3+2 [— log (—N) log (7)-‘ el .
) e \n &)1 = TGl max{lD],, T, 1D,
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HODLR Matrix: the whole discretization

Matrix Gy was only a piece of the whole discretization matrix

Ay = Iy + 2t (D G + D{py G )

he

does it share the same structure?

Corollary (Massei, Mazza, and Robol , Corollary 3.16)

2 4 32 R 1A
gsrank, (Ay) <3+2 [— log (—N) log ( )—‘ €
e m o\ n e )| Il - max{[[DF,, I, 1D I

Proof. Result is invariant under scaling, so assume wlog that % =1

(1>
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HODLR Matrix: the whole discretization

Matrix Gy was only a piece of the whole discretization matrix

At -
An = In+ = (Do G + D, G ),

does it share the same structure?

Corollary (Massei, Mazza, and Robol , Corollary 3.16)

2 1oe (4 32 lAnl
gsrank, (Ay) < 3+2 [— log (—N) log (7)-‘ el ___..
) LN e )> ° " TGull- max{D],, I, 10,1}

Proof. Result is invariant under scaling, so assume wlog that % = 1. A generic
off-diagonal block Y, wlog in the lower triangular part, If Y does not intersect the first
subdiagonal, is a subblock of D(+m) Gy, so there exists a perturbation 0 Y with norm

bounded by [|3Y]| < HD(J;,)HHGNH - € such that Y + 8Y has rank at most B(N,¢/2). In
particular, 8Y satisfies [|0Y]| < ||An]| - €.
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HODLR Matrix: the whole discretization

Matrix Gy was only a piece of the whole discretization matrix

At T
An = In+ o (D G + D, G ),

does it share the same structure?
, Corollary 3.16)

Corollary (Massei, Mazza, and Robol

2 4 32 R [An||
gsrank, (Ay) <3+2 [— log (—N) log (7)-‘ €= ——€.
¢ us 7'( € ’ |Gwll -maX{HD(";n)H,HD(m)H}

Proof. Result is invariant under scaling, so assume wlog that % = 1. Since we have
excluded one subdiagonal, a generic off-diagonal block Y we can find a perturbation with
norm bounded by ||An|| - € such that Y +8Y has rank 1+ B(N,¢/2). O
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A HODLR right-hand side

@ What are right-hand sides functions f(x, y, t) so that the matrix C has a HODLR
structure?
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@ The modulus function it is not regular
in the whole domain but it is analytic
when the sign of x — y is constant.

20/40



A HODLR right-hand side

© What are right-hand sides functions f(x, y, t) so that the matrix C has a HODLR
structure?

Consider the function i
fix,y)=log(t+|x—yl), T>0. w0

& If we discretize it by finite differences on 0
a rectangular domain we find 1000

1200

1400

Cij =log (T + Ixi — y;l)

1600

1800

@ The modulus function it is not regular 2000

. . . . . 0 500 1000 1500 2000

in the whole domain but it is analytic

when the sign of x — y is constant. e o Mmsrea (i, W)s 7 = Lnopneedi, 1)
/¥ We can use again Chebyshev basis to [X,Y] = meshgrid(x,y); tau = 1;

C = log(tau + abs(X-Y)); hC = hodlr(C);

approximate it in a separable fashion.
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Separability (a bit more formally)

Separable expansion (Hackbusch , Definition 4.4)
Take a function X(x,y): X x Y — R, we call

Zd’v y)+R(x,y), forxeX,yeY,

a separable expansion of x with r terms in X x Y with remainder R,.

# To have an idea of the goodness of the separable expansion, we would like to have
{[|Rllcoy || RrllLe} 80 as fast as possible, e.g., exponentially.
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Separability (a bit more formally)

Separable expansion (Hackbusch , Definition 4.4)
Take a function X(x,y): X x Y — R, we call

Zd’v V) 4+ R(x,y), forxeX,yeY,

a separable expansion of x with r terms in X x Y with remainder R,.

# To have an idea of the goodness of the separable expansion, we would like to have
{l|Rrllcoy || RrllLe} 280 as fast as possible, e.g., exponentially.

& If ||R| < crexp(—car®) = |R|| < e if r > K L og"/® °1)] = O(log"*1/¢) € — 0.

/% We can use Taylor expansions, Chebyshev expansion, Hermite/Lagrange interpolation,

cross approximation. .. In all the cases, the behavior of R, is tied to the regularity of
X(x,y); see (Hackbusch 2015, Chapter 4).
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BLAS with HODLR format

© We now have everything represented in the right format, but can we operate with it?
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© We now have everything represented in the right format, but can we operate with it?

y = Ax: Matrix-vector products, recursively:
y(I) = AL, 1
y(l3) = A3, I

& Off-diagonal blocks A(/,1}) and A(I},I}) are obtained by multiplying
n/2 x n/2 low-rank matrix with vector. This cost ¢ r.x(7/2) = 2nk.
& Diagonal blocks are processed recursively at a cost

cax(n) =2cax(n/2) + 4kn + n.
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BLAS with HODLR format

© We now have everything represented in the right format, but can we operate with it?

y = Ax: Matrix-vector products, recursively:

() = A,
y(B) =AU,

& Off-diagonal blocks A(/,1}) and A(I},I}) are obtained by multiplying
n/2 x n/2 low-rank matrix with vector. This cost ¢ r.x(7/2) = 2nk.
& Diagonal blocks are processed recursively at a cost

cax(n) =2cax(n/2) + 4kn + n.

Master theorem (divide and conquer): cax(n) = (4k + 1)log,(n)n.
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BLAS with HODLR format

C = A+ B: Adding two equally partitioned HODLR matrices increases the ranks of
off-diagonal blocks by a factor 2.
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C = A+ B: Adding two equally partitioned HODLR matrices increases the ranks of
off-diagonal blocks by a factor 2.
£ We need truncation T, (A(/f, If) + B(I{, I})), costs
CLR+LR = CsvD X (nk® + k%),

where csyp is the cost of the given low-rank truncation algorithm (SVD,
rand-SVD, QR, ...)
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BLAS with HODLR format

C = A+ B: Adding two equally partitioned HODLR matrices increases the ranks of
off-diagonal blocks by a factor 2.
£ We need truncation T, (A(/f, If) + B(I{, I})), costs

2, .3
CLR+LR = CsvDp X (nk® + k?),

where csyp is the cost of the given low-rank truncation algorithm (SVD,
rand-SVD, QR, ...)
Total cost is then:

p P
Y 2ariir(m) =csyp ) 2'(K> + mik?)
=1 =1

p
<csvDp <2p+1k3 + Z 2€2p€n0k2>
=1

<csvp (2nk3 + nlogz(n)k2) .
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BLAS with HODLR format

g OO RO O
) O OO+

where B is a n/2 x n/2 HODLR matrix and O is a low-rank block.
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where B is a n/2 x n/2 HODLR matrix and O is a low-rank block.
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BLAS with HODLR format

C = AB: Matrix-matrix multiplication can also be done recursively

s

N tnln).tatnl.
) O OO+

where B is a n/2 x n/2 HODLR matrix and O is a low-rank block.

1. lH-HH - of 2 HODLR n/2 matrices, 3. Bg-[]- of HODLR times low-rank,

2. []-[]- of 2 low-rank blocks,
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BLAS with HODLR format

C = AB: Matrix-matrix multiplication can also be done recursively

s

e e O+
e+ 0 [+

where EH is a n/2 x n/2 HODLR matrix and O is a low-rank block.

1. FH-B - of 2 HODLR n/2 matrices, 3. -] of HODLR times low-rank,

2. []-[]- of 2 low-rank blocks, 4. []-H - of low-rank times HODLR.

cH.H(n) =2 (cH.H(7/2) + aLrLr(7/2) + cH.Lr(7/2) + cLr.H(7/2)
+cHeLr(7/2) + cLryLR(7/2))
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C = AB: Matrix-matrix multiplication can also be done recursively
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where B is a n/2 x n/2 HODLR matrix and O is a low-rank block.

1. FH-B - of 2 HODLR n/2 matrices, 3. -] of HODLR times low-rank,

2. []-[]- of 2 low-rank blocks, 4. []-H - of low-rank times HODLR.

cH.H(n) =2 (cH.H(7/2) + cLrLr(7/2) + cHLr(7/2) + cLr.H(7/2)
+cHeLr(7/2) + cLr4LR(7/2))

CLR~LR(”) = 4nk2
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BLAS with HODLR format

C = AB: Matrix-matrix multiplication can also be done recursively

s

(=N "R NRINR - SRR~
=== " A - PR s

where B is a n/2 x n/2 HODLR matrix and O is a low-rank block.

1. f§-Hd - of 2 HODLR n/2 matrices, 3. B§-[]- of HODLR times low-rank,

2. []-[]- of 2 low-rank blocks, 4. []-H - of low-rank times HODLR.

cH.H(n) =2 (cH.H(7/2) + cLrLr(7/2) + cH.Lr(7/2) + cLr.H(7/2)
+cHLr(7/2) + cLryLr(7/2))

cH.LR(N) = cLr-H = kcpy(n) = k(4k + 1) logy(n)n
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BLAS with HODLR format

C = AB: Matrix-matrix multiplication can also be done recursively

s

Bl ") [mEnt."
e [+

where B is a n/2 x n/2 HODLR matrix and O is a low-rank block.

1. FH-B - of 2 HODLR n/2 matrices, 3. -] of HODLR times low-rank,

2. []-[]- of 2 low-rank blocks, 4. []-H - of low-rank times HODLR.

cH.H(n) =2 (cH.H(7/2) + cLrLr(7/2) + cH.Lr(7/2) + cLr.H(7/2)
+cHeLr(7/2) + cLr4LR(7/2))

cH+Lr(N) = cin(n) = csyp(nk® 4+ nlog(n)k?)
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BLAS with HODLR format

C = AB: Matrix-matrix multiplication can also be done recursively

s

e e O+
O O OO+

where B is a n/2 x n/2 HODLR matrix and O is a low-rank block.

1. FH-B - of 2 HODLR n/2 matrices,
2. []-[]- of 2 low-rank blocks,

BB Total cost cyy.iy(n) € O(k3nlog n+ k2nlog? n).

3. -] - of HODLR times low-rank,
4. []-B - of low-rank times HODLR.
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BLAS with HODLR format

Approximate solution of a linear system Ax = b with HODLR matrix A:
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BLAS with HODLR format

Approximate solution of a linear system Ax = b with HODLR matrix A:

A= LU Approximate LU-factorization A ~ LU in HODLR format:

%

Forward substitution to solve Ly = b,

Backward substitution to solve Ux =y.
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BLAS with HODLR format

Approximate solution of a linear system Ax = b with HODLR matrix A:
A=~ LU Approximate LU-factorization A~ LU in HODLR format:

%

Forward substitution to solve Ly = b,

Backward substitution to solve Ux =y.

We need to analyze the two steps separately.

25 /40



BLAS with HODLR format

Approximate LU factorization, on level £ = 1:

Al A Ly O } [Un UIZ]
A= L= L U=
[A21 A2J [L21 L O U

It is done in four steps

26 /40



BLAS with HODLR format

Approximate LU factorization, on level £ = 1:

Al A Ly O } [Un UIZ]
A= L= L U=
[A21 A2J [L21 L O U

It is done in four steps
1. Compute LU factors Li1, U1 of Aq1,

26 /40



BLAS with HODLR format

Approximate LU factorization, on level £ = 1:

Al A Ly O } [Un
A= . L= . U=
[A21 A22} [L21 L )

It is done in four steps
1. Compute LU factors Li1, U1 of Aq1,
2. Compute Uyp = LfllAlz by forward substitution,

Uiz
Uz

26 /40



BLAS with HODLR format

Approximate LU factorization, on level £ = 1:

Al A Ly O } [Un
A= . L= . U=
[A21 A22} [L21 L )

It is done in four steps
1. Compute LU factors Li1, U1 of Aq1,
2. Compute Uyp = LfllAlz by forward substitution,
3. Compute Ly; = Ay U by backward substitution,

Uiz
Uz

26 /40
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Approximate LU factorization, on level £ = 1:
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It is done in four steps
1. Compute LU factors Li1, U1 of Aq1,
2. Compute Uyp = LfllAlz by forward substitution,
3. Compute Ly; = Ay U by backward substitution,
4. Compute LU factors Ly, Uz of Axp — Lr1 Uss.

Uiz
Uz

26 /40



BLAS with HODLR format

Approximate LU factorization, on level £ = 1:

Al A Ly O } [Un UIZ]
A= L= L U=
[A21 A2J [L21 L O U

It is done in four steps
1. Compute LU factors Li1, U1 of Aq1,
2. Compute Uyp = LfllAlz by forward substitution,
3. Compute Ly; = Ay U by backward substitution,
4. Compute LU factors Ly, Uz of Axp — Lr1 Uss.

The analysis of the cost is analogous to the matrix-matrix multiplication case, but we need
to know how to do and how-much does forward/backward substitution costs.
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BLAS with HODLR format

Forward substitution with lower triangular L in HODLR format: y = L~'b

Li; O y1 by
L = = b =
[L21 Lzz} Y [Y2 ’ b,

with Lyq low-rank, and L1, Lo HODLR.
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BLAS with HODLR format

Forward substitution with lower triangular L in HODLR format: y = L~'b

Ly O y1 by
L == = b =
[L21 Lzz}’ y [Y2 ’ b,
with Lyq low-rank, and L1, Lo HODLR.
1. Solve L11y1 = bl,
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BLAS with HODLR format

Forward substitution with lower triangular L in HODLR format: y = L~'b

Ly O y1 by
L == = b =
[L21 Lzz}’ y [Y2 ’ b,
with Lyq low-rank, and L1, Lo HODLR.
1. Solve L11y1 = bl,

2. Compute by = by — Loiys,
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BLAS with HODLR format

Forward substitution with lower triangular L in HODLR format: y = L~'b

Ly O h} [bl]
L == = b =
[L21 Lzz}’ y [Y2 ’ b,
with Lyq low-rank, and L1, Lo HODLR.
1. Solve L11y1 = bl,

2. Compute by = by — Loiys,
3. Solve L22Y2 = f)g.
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BLAS with HODLR format

Forward substitution with lower triangular L in HODLR format: y = L~'b

Li; O y1 by
L = = b —
[L21 Lzz} Y [Y2 ’ b,

with Lyq low-rank, and L1, Lo HODLR.

1. Solve L11y; = by,
2. Compute by = by — Loiys,
3. Solve L22Y2 = f)g.

Cost recursively:
Crorw — 2Cforw(”/2) + (2/( + 1)[7
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BLAS with HODLR format

Forward substitution with lower triangular L in HODLR format: y = L~'b

Ly O y1 by
L = = b —
[L21 Ln|” Y7 |ya]” b,
with Lyq low-rank, and L1, Lo HODLR.
1. Solve L11y1 = bl,
2. Compute by = by — Loiys,

3. Solve L22Y2 = f)g.

Cost recursively:
Crorw — 2Cforw(”/2) + (2/( + 1)[7

On level £ = p, we have the direct solution of 2P = n/ny linear systems of size ng X ng.
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BLAS with HODLR format

Forward substitution with lower triangular L in HODLR format: y = L~'b

Ly O y1 by
L == = b =
[L21 Lzz}’ y [Y2 ’ b,
with Lyq low-rank, and L1, Lo HODLR.
1. Solve L11y1 = bl,

2. Compute by =by — Loyy1,
3. Solve Lyys = f)g.
Cost recursively:
Corw = 2Ciorw (/2) + (2k + 1) n.

On level £ = p, we have the direct solution of 2P = n/ny linear systems of size ng X ng.
BE Total cost ciorw € O(knlog(n)), and analogously for backward substitution.
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BLAS with HODLR format

Forward substitution with lower triangular L in HODLR format: y = L~'b

Li; O y1 by
L = = b =
[L21 Lzz} Y [Y2 ’ b,

with Lyq low-rank, and L1, Lo HODLR.
1. Solve L11y1 = bl,

2. Compute by = by — Loiys,
3. Solve L22Y2 = f)g.

Cost recursively:
Crorw — 2Cforw(”/2) + (2/( + 1)[7

On level £ = p, we have the direct solution of 2P = n/ny linear systems of size ng X ng.
BB Total cost crony € O(knlog(n)), and analogously for backward substitution.
BB Total cost qy(n) < cp.p(n) € O(k3nlog n+ k?nlog? n).
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BLAS with HODLR format

The €) hm-toolbox (Massei, Robol, and

Kressner ) contains all the routines. Operation HODLR complexity

<[> They overload the standard MATLAB AA\irV O(?IEI;Z i(())gzn ,)7)
operation by the same name, i.e., if you A+B (’)(k2nlogg n)
have variables in the right class you A5B O(K2nlog? n)
operate directly in this format. A\B O(K2nlog? n)

% One can use different cluster tree 7, to inv(A) O(k2nlog? n)
get smaller ranks. They are determined A +B2 O(k*nlog n)
by the partitioning of the index set on 1u(A), chol(A) O(k2nlog? n)
the leaf level (:;?d repreus);ented as th.e qr (A) O(k2nlog? n)
vector ¢ = [n;"",..., ny, ], change it to compression O(k2nlog(n))

change the HODLR matrix.

2The complexity of the Hadamard product is dominated by the recompression stage due to the k>

HODLR rank of Ao B. Without recompression the cost is @(k*nlog n).
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HODLR solver for the 1D case

We can modify our first example to get a solution for the 1D problem in the new format.

4% Discretization 4% Solving

N =2"7; hN = 1/(N-1); x = 0:hN:1; dt = hN; [L,U] = 1uh);

alpha = 1.5; % Coefficients flu = @() lu(h);
dplus=0(x)gamma(3-alpha) .*x. alpha; timelu = timeit(flu,2);
dminus=@(x)gamma(3-alpha) .*(1-x) . alpha; w=wx.';

w = 0(x) 5*x.*(1-x); solvetime = 0;

tol = 1e-9; / HODLR butilding for i=1:N

tic; tic;

G = glhodlrmatrix(N,alpha,tol); w = U\(L\ (nu*w)) ;

Dplus = hodlr('diagonal',dplus(x)); solvetime = solvetime + toc;
Dminus = hodlr('diagonal',dminus(x)); end

I = hodlr('eye', N); solvetime = solvetime/N;

nu = hN"alpha/dt;
A = nuxI -(Dplus*G + Dminus*G');
buildtime = toc;
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HODLR solver for the 1D case

We can modify our first example to get a solution for the 1D problem in the new format.

4% Discretization 4% Solving

N =2"7; hN = 1/(N-1); x = 0:hN:1; dt = hN; [L,U] = 1uh);

alpha = 1.5; % Coefficients flu = @() lu(h);
dplus=0(x)gamma(3-alpha) .*x. alpha; timelu = timeit(flu,2);
dminus=@(x)gamma(3-alpha) .*(1-x) . alpha; w=wx.';

w = 0(x) 5*x.*(1-x); solvetime = 0;

tol = 1e-9; / HODLR butilding for i=1:N

tic; tic;

G = glhodlrmatrix(N,alpha,tol); w = U\(L\ (nu*w)) ;

Dplus = hodlr('diagonal',dplus(x)); solvetime = solvetime + toc;
Dminus = hodlr('diagonal',dminus(x)); end

I = hodlr('eye', N); solvetime = solvetime/N;

nu = hN"alpha/dt;
A = nuxI -(Dplus*G + Dminus*G');
buildtime = toc;

© Let us try looking at the

timings. 29/40



HODLR solver for the 1D case

We take o« = 1.5, and ¢ = 1079

N

Build (s) LU (s)

Avg. Solve (s)

27
28
29
210
211
212
213
214

8.96e-03 1.44e-04
1.35e-02 4.63e-04
3.14e-02 2.05e-03
7.28e-02 6.21e-03
1.59e-01 1.63e-02
3.85e-01 4.33e-02
8.81e-01 1.27e-01
2.19e+00 3.73e-01

2.93e-04
3.33e-04
5.41e-04
9.35e-04
1.75e-03
3.68e-03
7.99e-03
1.55e-02

0

2000

4000

6000

8000

10000

12000

14000

16000

0

2000

4000

6000

8000

10000 12000 14000 16000

KX | argest matrix occupies 46.25 Mb, against the 2 Gb of the dense storage and the 0.87
Mb of storing three diagonals and 2 x (2N — 1) for the Toeplitz storage.
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—#- Build time (s)
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9
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N
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HODLR solver for the 1D case

We take o« = 1.5, and ¢ = 1079

N

Build (s) LU (s)

Avg. Solve (s)

27
28
29
210

211
212

213
214

8.96e-03 1.44e-04
1.35e-02 4.63e-04
3.14e-02 2.05e-03
7.28e-02 6.21e-03
1.59e-01 1.63e-02
3.85e-01 4.33e-02
8.81e-01 1.27e-01
2.19e+00 3.73e-01

2.93e-04
3.33e-04
5.41e-04
9.35e-04
1.75e-03
3.68e-03
7.99e-03
1.55e-02

Speedup

103
102
=@ Build time
10t :
-o— LU time
Avg. solve time
0 | | |
10 0.5 1 1.5
N -10%

KX | argest matrix occupies 46.25 Mb, against the 2 Gb of the dense storage and the 0.87
Mb of storing three diagonals and 2 x (2NN — 1) for the Toeplitz storage.
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Back to Sylvester (Massei, Palitta, and Robol

To solve the Sylvester equation with HODLR coefficients
AX +XBT =, AeR™" BeR™M X CeR™™m

we can use the integral formulation

—+o00 T
X = J e AtCe B tdt.
0
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Back to Sylvester (Massei, Palitta, and Robol

To solve the Sylvester equation with HODLR coefficients

AX +XBT =, AeR™" BeR™M X CeR™™m

we can use the integral formulation

—+o00 T
X = J e AtCe B tdt.
0

We perform the change of variables: t = f(0) £ L - cot (%)2, rewriting the integral as

)

T[ Sln(e) —_Af(0 _RT
X=2L| —— 0 eAUce B 0 qp
L (1—cos(0))? ° ¢

with L a parameter to be optimized for convergence.
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Back to Sylvester (Massei, Palitta, and Robol )

We now have an integral on a finite domain = Gauss-Legendre quadrature

m
X ~ Z w; - e—Af(ej)Ce—BTf(ej))
j=1

sin(0;)

for {0}, Wj}j’ll are the Legendre points and weights, and w; = 2Lw; - T=cos(0,])7"
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m
i _RT .
X A~ ij L e AF8) ce=BTF8))
j=1
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Back to Sylvester (Massei, Palitta, and Robol )

We now have an integral on a finite domain = Gauss-Legendre quadrature

m
X ~ Z w; - e—Af(ej)Ce—BTf(ej))
j=1

for {0}, Wj}j’ll are the Legendre points and weights, and w; = 2Lw; - %.

© The dominant cost is now computing e A% and e B0 how do we do it?
<[> A good idea could be using rational approximation to exp(t)

B\ (d, d)-Padé with scaling and squaring e* = (2 “A)2" and k = [log, || All2].
B Rational Chebyshev function (Popolizio and Simoncini ):

n rd
e~ ~ +...+ .
X — 51 X — S4q

requiring d inversions and additions that is uniformly accurate for every positive value

of t, and thus is better in the case in which ||A||2 is large.
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Back to Sylvester (Massei, Palitta, and Robol

)

Input: lyap_integral

A B, C,m;

/* Solves AX+ XBT = C with m
integration points */

L« 100 ; /* Should be tuned for

accuracy! */

[w, 0] «+ GaussLegendrePts m ;

/* Integration points and weights
on [0,71] */

XHOan;
fori=1,...,mdo
f L-cot(%)%

X — X+ Wii(ls_iﬁfgdz - expm (—f - A) -

C-expm (—f-BT);
end
X 2L X,
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Back to Sylvester (Massei, Palitta, and Robol 2018)

Input: lyap_integral

A B, C,m;

/* Solves AX +XBT = C with m
integration points */

L+ 100 ; /* Should be tuned for

accuracy! */
[w, 0] « GaussLegendrePts m ;
/* Integration points and weights
on [0,71] */
X & Opxn;
fori=1,...,mdo
0iy2.
f L~cot(7).,(9 )
sin(0;
X=X+ w (1—cos 0;)2 °
C-expm (—f-BT);

expm (—f - A) -

end
X «2L-X;

Mixed structures

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.
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Back to Sylvester (Massei, Palitta, and Robol 2018)

Input: lyap_integral

A B, C,m;

/* Solves AX +XBT = C with m
integration points */

L+ 100 ; /* Should be tuned for

accuracy! */
[w, 0] « GaussLegendrePts m ;
/* Integration points and weights
on [0,71] */
X & Opxn;
fori=1,...,mdo
0iy2.
f L~cot(7).,(9 )
sin(0;
X=X+ w (1—cos 0;)2
C-expm (—f-BT);

- expm (—f - A) -

end
X «2L-X;

Mixed structures

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.

Build

EK,(A, U) = span{U, A" 1U, AU, ...}
EK(B",V)=span{V,B"TV,B"V,.. .},

33/40



Back to Sylvester (Massei, Palitta, and Robol 2018)

Input: lyap_integral

A B, C,m;

/* Solves AX +XBT = C with m
integration points */

L+ 100 ; /* Should be tuned for

accuracy! */
[w, 0] « GaussLegendrePts m ;
/* Integration points and weights
on [0,71] */
X ¢ Onxn;
fori=1,...,mdo
f e L-cot($)%

X=X+ w (1S—i:<ggé),-)2

C-expm (—f-BT);

- expm (—f - A) -

end
X «2L-X;

Mixed structures

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.

Build EK,(A, U), EKs(BT, V), project on

As = Uz AUs, By = V2BV,, U = Uz U, and
V=VV.
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Back to Sylvester (Massei, Palitta, and Robol )

Input: lyap_integral

A B, C,m;

/* Solves AX +XBT = C with m
integration points */

L« 100 ; /* Should be tuned for

accuracy! */

[w, 0] «+ GaussLegendrePts m ;

/* Integration points and weights

n [0,71] */
X ¢ Onxn;
fori=1,...,mdo
f L-cot(%)%
X HX‘FW[%- expm (—f - A) -
C-expm (—f-BT);

end
X 2L X;

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.

Build EK(A, U), EK, (BT, V), project on
As = Ur AU, Bs = VIBV, U~ UiU, and

V= ViV. SoIveA Xs + XsBs = UVT
with dense arithmetic.
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Back to Sylvester (Massei, Palitta, and Robol )

Input: lyap_integral

A B, C,m,
/* Solves AX+ XBT = C with m

integration points */ If the right-hand side C is low-rank, and the
L + 100 ; /* Should be tuned for structure in the matrices A and B is HODLR,

accuracy! */
[w, 0] «+ GaussLegendrePts m ;
/* Integration points and weights

thus permitting to perform fast matrix vector
multiplications and system solutions; then we

on [0.70 */ can apply the extended Krylov subspace
X 0’X ) method we had already seen.
fori=1,...,mdo

Build EK (A, U), EKs(BT, V), project on
As = UXAUs, Bs = VBV, U= UrU, and
V= VZV. Solve AXs + XsBs = UVT
with dense arithmetic. An approximation is
Us Xs VY.

f L-cot(%)%
XHX‘FW[%- expm (—f - A) -
C-expm (—f-BT);

end

X «2L-X;
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Back to Sylvester (Massei, Palitta, and Robol )

Input: lyap_integral

A B, C,m,

/* Solves AX + XBT = C with m
integration points */

L« 100 ; /* Should be tuned for

accuracy! */
[w, 0] «+ GaussLegendrePts m ;
/* Integration points and weights
n [0,71] */
X ¢ Onxn;
fori=1,...,mdo
f L-cot(%)z;( )
sin(0;
X=X+ Wi (1—cos 0;)2

C-expm (—f-BT);

- expm (—f - A) -

end
X 2L -X;

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.

Build EK(A, U), EKs(BT, V), project on
As = UrAUs, Bs = V#BV;, U = U:U, and
V = VIV, Solve AXs + XsBs = UVT
with dense arithmetic. An approximation is
UsXsVZ. Another viable approach in the
literature is (Kressner, Massei, and Robol

).
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A numerical test (Massei, Mazza, and Robol )

We use the usual square [0, 1]%, and the source f
f(x,y,t) =100 - (sin(107tx) cos(my) + sin(10t) sin(7tx) - y(1 — y)).
for both constant coefficient d = d~ = 1, and variable coefficients

dif (x) =T
dy (y) =T

The fractional orders are &; = 1.3, xp = 1.7, and «; = 1.7, xp = 1.9. Methods are
/¥ Sylvester by Extended-Krylov with stopping € = 107 (HODLR),
& HODLR arithmetic is set to work with a truncation of 108,
/¥ Sylvester by Extended-Krylov with stopping € = 1075 (Breiten, Simoncini, and Stoll

M(1.2)(1 4 x)™, di (x) =T(1.2)(2 — x)™,
ri.2

J1+y)*?,  dy(y) =T(1.2)(2—y)*.

/& Inner solve with: GMRES with tolerance 10~7 and structured preconditioners,
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A numerical test (Massei, Mazza, and Robol )

Constant coefficient with oc; = 1.3 and ap = 1.7.

FI T In——— R T T

N tgopLr tess ranke gsrank, 102 §: Hg?éR E
512 0.6 126 14 11 N i ]
1,024 0.17 175 15 11 <2 10t h g
2,048 031 357 15 12 £ i ]
4096 058 921 16 12 =l )
8102 117 18.14 16 13 107}
16,384 2.48 37.24 16 13 i ]
32,768 5.18 77.28 16 14 10-1 b e ]
65,536 11.76 168.29 15 14 103 10% 10°

N

<[> FD_Example.m from €) github.com/numpi/fme
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A numerical test (Massei, Mazza, and Robol

Constant coefficient with oc; = 1.7 and oy = 1.9.

N tgopLr tBss ranke gsrank,

512 0.13 0.7 17 10
1,024 0.2 1.4 18 10
2,048 037 285 19 11
409 0.79 6.53 20 11
8,192 1.67 11.57 20 11
16,384 3.98 222 21 11
32,768 8.56 47.75 22 11
65,536 23.86 91.53 23 11

102

10!

Time (s)

100

101

<[> FD_Example.m from €) github.com/numpi/fme

—eo—HODLR

-=— BSS

103

N

10*

10°
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A numerical test (Massei, Mazza, and Robol )

Non-constant coefficient case with «; = 1.3 and o = 1.7.

N  tgopLr tmss ranke gsrank,

512 0.1 0.95 14 10
1,024 0.16 1.45 14 11
2,048 0.29 283 15 12
4,006 055 7.39 16 12
8,192 1.11 13.02 16 13
16,384 2.41 2427 16 13
32,768 5.02 445 16 14
65,536 11.28 76.78 16 14

<[> FD_Example_vc.m from () github.com/numpi/fme

102

~ 10!

Time (s

100

1071

—eo—HODLR
-=— BSS

Ll | Cooonnd

103 104 10°
N
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A numerical test (Massei, Mazza, and Robol )

Non-constant coefficient case with o¢; = 1.7 and oo = 1.9.

102;““”\ T T T TTTTTT T H“‘UE
N  thopLr tsss ranke gsrank, & —o—HODLR
'|—=— BSS i
512 0.11 0.73 18 10 Tt
1,024 02 137 19 10 w i ]
2,048 0.4 217 20 11 2 i ]
4,096 0.92 459 21 11 100} :
8,192 228 931 22 11 g ]
16,384 451 16.89 22 11 i .
32,768 11.33 33.19 23 12 10t L o
65,536 26.71 64.73 24 12 103 104 105

N

<[> FD_Example_vc.m from ) github.com/numpi/fme
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© There is an advantage with respect to using Toeplitz-based BLAS like operations,
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P» In (Massei, Mazza, and Robol ) they are solving the case

1 =\ - . 1 -\
<2/NX — AtGNX) Wm+) pylm+1) (2/Ny — AtGNy> = WM pAtFm Y m=o0,..., M—1.

here the spectrum is fictitiously independent from the discretization, i.e., all
matrix-equation solvers perform a number of iteration independent from the system
size: the cost is reduced to the extended Krylov subspace cost! But we still have
time-stepping to do.
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© There is an advantage with respect to using Toeplitz-based BLAS like operations,
P» In (Massei, Mazza, and Robol ) they are solving the case

1 =\ - . 1 -\
<2/NX — AtGNX) Wm+) pylm+1) (2/Ny — AtGNy> = WM pAtFm Y m=o0,..., M—1.

here the spectrum is fictitiously independent from the discretization, i.e., all
matrix-equation solvers perform a number of iteration independent from the system
size: the cost is reduced to the extended Krylov subspace cost! But we still have
time-stepping to do.

© The case in which the matrix equation solver has a number of iterations dependent on
the problem size is not yet resolved:
® Low-rank but @ no preconditioner — VS — @ Full memory but @ preconditioners

¥ Still looking for a way to solve everything all-at-once compactly.
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Conclusion and summary

@ We have seen how to work with matrices in HODLR format,

@ We have discussed a couple of strategy to solve Sylvester equations with HODLR
coefficients,

@ We have applied all the machinery to solve a time step of a 2D equation FDE.

Next up
B Back to all-at-once solution with respect to both space and time,
B Linear multistep formulas in boundary value form,
B Structured preconditioner for LMFs,

B Tensor-Train reformulation of the problem.
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