
An introduction to fractional calculus
Fundamental ideas and numerics

Fabio Durastante
Università di Pisa

fabio.durastante@unipi.it
� fdurastante.github.io

October, 2022

mailto:fabio.durastante@unipi.it
https://fdurastante.github.io

All-at-once

We have seen that for a problem of the form
ut = L(u), u : Ω× [0,T]→ Rd , Ω ⊆ Rd

u(x, 0) = u0(x),

B(u) = 0, x ∈ ∂Ω.

with

Ó L(·) a linear and autonomous differential operator (possibly involving fractional
derivatives),

� or changing ut with
CADα[0,t]u,

we can rewrite it as a single linear system/matrix equation.

To abstract the procedure let’s think about working the Method Of Line way!

1 / 46

All-at-once

We have seen that for a problem of the form
ut = Lh(u), u : Rn × [0,T]→ Rn

u(0) = u0,

Bh(u) = 0.

with

Ó L(·) a linear and autonomous differential operator (possibly involving fractional
derivatives),

� or changing ut with
CADα[0,t]u,

we can rewrite it as a single linear system/matrix equation.

To abstract the procedure let’s think about working the Method Of Line way!

1 / 46

All-at-once: system of autonomous ODE

Following the MOL trail, we now have to solve a system of autonomous ODEs:

Mut(t) = Lu(t), M, L ∈ Rn×n,

� that could be a differential-algebraic system of equations (DAE) if det(M) = 0.

Ó To formulate the all-at-once procedure, one has to select a method to march in time
the solution:

å Linear multistep methods,
å Runge-Kutta methods,
å General linear methods (a mix of the two above strategies).

2 / 46

All-at-once: system of autonomous ODE

Following the MOL trail, we now have to solve a system of autonomous ODEs:

Mut(t) = Lu(t), M, L ∈ Rn×n,

� that could be a differential-algebraic system of equations (DAE) if det(M) = 0.

Ó To formulate the all-at-once procedure, one has to select a method to march in time
the solution:

å Linear multistep methods,
å Runge-Kutta methods,
å General linear methods (a mix of the two above strategies).

2 / 46

All-at-once: system of autonomous ODE

Following the MOL trail, we now have to solve a system of autonomous ODEs:

Mut(t) = Lu(t), M, L ∈ Rn×n,

� that could be a differential-algebraic system of equations (DAE) if det(M) = 0.

Ó To formulate the all-at-once procedure, one has to select a method to march in time
the solution:

å Linear multistep methods,
å Runge-Kutta methods,
å General linear methods (a mix of the two above strategies).

2 / 46

Linear Multistep Methods
Given a general ODE of the form

u ′(t) = f (t, u(t)), u(t0) = u0,

a k-step LMM is a recursion of the form with step-size h = tn+k − tn+k−1 > 0

k∑
j=0

αjun+j =

k∑
j=0

hβj fn+j , fm ≜ f (tm, ym),

with coefficients αj ∈ R and βj ∈ R (j = 0, . . . , k), and we are interested only in implicit
methods, i.e., βk ̸= 0.

They can be analyzed by looking at the polynomials

ρ(ζ) =

k∑
j=0

αjζ
j = (ζ− 1)

k−1∑
j=0

γjζ
j = (ζ− 1) · ρR(ζ), σ(ζ) =

k∑
j=0

βjζ
j .

3 / 46

Linear Multistep Methods
Given a general ODE of the form

u ′(t) = f (t, u(t)), u(t0) = u0,

a k-step LMM is a recursion of the form with step-size h = tn+k − tn+k−1 > 0

k∑
j=0

αjun+j =

k∑
j=0

hβj fn+j , fm ≜ f (tm, ym),

with coefficients αj ∈ R and βj ∈ R (j = 0, . . . , k), and we are interested only in implicit
methods, i.e., βk ̸= 0.
They can be analyzed by looking at the polynomials

ρ(ζ) =

k∑
j=0

αjζ
j = (ζ− 1)

k−1∑
j=0

γjζ
j = (ζ− 1) · ρR(ζ), σ(ζ) =

k∑
j=0

βjζ
j .

3 / 46

Linear Multistep Methods

0-stable method

A method is 0-stable if all roots of ρ(ζ) = (ζ− 1) · ρR(ζ) = 0 lie inside or on the unit
circle, with no multiple unimodular roots.

� Zero stability is necessary for convergence,

å It is a condition on the extraneous operator ρR(ζ), i.e., a condition on the k
coefficients {γj }

k−1
j=0 .

A-stable method

The behavior of these methods can be analyzed by applying them on the test problem
y ′ = ky subject to the initial condition y(0) = 1 with k ∈ C. The solution of this equation
is y(t) = ekt . If the numerical method exhibits the same behavior of the solution for a
fixed step size, then the method is said to be A-stable.

Ó Usually one ends up with limitations involving the admissible h.

4 / 46

Linear Multistep Methods

0-stable method

A method is 0-stable if all roots of ρ(ζ) = (ζ− 1) · ρR(ζ) = 0 lie inside or on the unit
circle, with no multiple unimodular roots.

� Zero stability is necessary for convergence,

å It is a condition on the extraneous operator ρR(ζ), i.e., a condition on the k
coefficients {γj }

k−1
j=0 .

A-stable method

The behavior of these methods can be analyzed by applying them on the test problem
y ′ = ky subject to the initial condition y(0) = 1 with k ∈ C. The solution of this equation
is y(t) = ekt . If the numerical method exhibits the same behavior of the solution for a
fixed step size, then the method is said to be A-stable.

Ó Usually one ends up with limitations involving the admissible h.

4 / 46

Linear Multistep Methods

0-stable method

A method is 0-stable if all roots of ρ(ζ) = (ζ− 1) · ρR(ζ) = 0 lie inside or on the unit
circle, with no multiple unimodular roots.

� Zero stability is necessary for convergence,

å It is a condition on the extraneous operator ρR(ζ), i.e., a condition on the k
coefficients {γj }

k−1
j=0 .

A-stable method

The behavior of these methods can be analyzed by applying them on the test problem
y ′ = ky subject to the initial condition y(0) = 1 with k ∈ C. The solution of this equation
is y(t) = ekt . If the numerical method exhibits the same behavior of the solution for a
fixed step size, then the method is said to be A-stable.

Ó Usually one ends up with limitations involving the admissible h.
4 / 46

Linear Multistep Methods: initial values

If we use a LMM with k > 1 we need more starting values than the one we have!

We are interested in diffusion dominated problems, thus Backward-Differentiation
Formulas are a common choice.

{αk }k , βk = 1, βj = 0, j ≤ k

BDF2 1/2 −2 3/2
BDF3 −1/3 3/2 −3 11/6
BDF4 1/4 −4/3 3 −4 25/12
BDF5 −1/5 5/4 −10/3 5 −5 137/60
BDF6 1/6 −6/5 15/4 −20/3 15/2 −6 147/60

� Methods with k > 6 are not zero-stable so they cannot be used.

å If we want to use BDF6 we need 5 initial conditions, and have only one.

� We can use lower order BDFs to generate the step we need.

5 / 46

Linear Multistep Methods: initial values

If we use a LMM with k > 1 we need more starting values than the one we have!

We are interested in diffusion dominated problems, thus Backward-Differentiation
Formulas are a common choice.

{αk }k , βk = 1, βj = 0, j ≤ k

BDF2 1/2 −2 3/2
BDF3 −1/3 3/2 −3 11/6
BDF4 1/4 −4/3 3 −4 25/12
BDF5 −1/5 5/4 −10/3 5 −5 137/60
BDF6 1/6 −6/5 15/4 −20/3 15/2 −6 147/60

� Methods with k > 6 are not zero-stable so they cannot be used.

å If we want to use BDF6 we need 5 initial conditions, and have only one.

� We can use lower order BDFs to generate the step we need.

5 / 46

Linear Multistep Methods: initial values

If we use a LMM with k > 1 we need more starting values than the one we have!

We are interested in diffusion dominated problems, thus Backward-Differentiation
Formulas are a common choice.

{αk }k , βk = 1, βj = 0, j ≤ k

BDF2 1/2 −2 3/2
BDF3 −1/3 3/2 −3 11/6
BDF4 1/4 −4/3 3 −4 25/12
BDF5 −1/5 5/4 −10/3 5 −5 137/60
BDF6 1/6 −6/5 15/4 −20/3 15/2 −6 147/60

� Methods with k > 6 are not zero-stable so they cannot be used.

å If we want to use BDF6 we need 5 initial conditions, and have only one.

� We can use lower order BDFs to generate the step we need.

5 / 46

Linear Multistep Methods: initial values

If we use a LMM with k > 1 we need more starting values than the one we have!

We are interested in diffusion dominated problems, thus Backward-Differentiation
Formulas are a common choice.

{αk }k , βk = 1, βj = 0, j ≤ k

BDF2 1/2 −2 3/2
BDF3 −1/3 3/2 −3 11/6
BDF4 1/4 −4/3 3 −4 25/12
BDF5 −1/5 5/4 −10/3 5 −5 137/60
BDF6 1/6 −6/5 15/4 −20/3 15/2 −6 147/60

� Methods with k > 6 are not zero-stable so they cannot be used.

å If we want to use BDF6 we need 5 initial conditions, and have only one.

� We can use lower order BDFs to generate the step we need.

5 / 46

Linear Multistep Methods: initial values

If we use a LMM with k > 1 we need more starting values than the one we have!

We are interested in diffusion dominated problems, thus Backward-Differentiation
Formulas are a common choice.

{αk }k , βk = 1, βj = 0, j ≤ k

BDF2 1/2 −2 3/2
BDF3 −1/3 3/2 −3 11/6
BDF4 1/4 −4/3 3 −4 25/12
BDF5 −1/5 5/4 −10/3 5 −5 137/60
BDF6 1/6 −6/5 15/4 −20/3 15/2 −6 147/60

� Methods with k > 6 are not zero-stable so they cannot be used.

å If we want to use BDF6 we need 5 initial conditions, and have only one.

� We can use lower order BDFs to generate the step we need.

5 / 46

Linear Multistep Methods

From what we have seen in the last lectures we can write down the problem as

(Am ⊗Mn − hBm ⊗ Ln)u = f ,

6 / 46

Linear Multistep Methods

From what we have seen in the last lectures we can write down the problem as

(Am ⊗Mn − hBm ⊗ Ln)u = f ,

Am =



1
−2 3/2
3/2 −3 11/6

−4/3 3 −4 25/12
5/4 −10/3 5 −5 137/60

−6/5 15/4 −20/3 15/2 −6 147/60
1/6 −6/5 15/4 −20/3 15/2 −6 147/60
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .


(m−1)×(m−1)

6 / 46

Linear Multistep Methods

From what we have seen in the last lectures we can write down the problem as

(Am ⊗Mn − hBm ⊗ Ln)u = f ,

Bm =


1

1
. . .

1


(m−1)×(m−1)

6 / 46

Linear Multistep Methods

From what we have seen in the last lectures we can write down the problem as

(Am ⊗Mn − hBm ⊗ Ln)u = f ,

f =



u0 + f (t1)
−1/2u0 + f (t2)
1/3u0 + f (t3)
−1/4u0 + f (t4)
1/5u0 + f (t5)
−1/6u0 + f (t6)

f (t7)
...


6 / 46

A simple example

L = [-2, 1; 0, -3]; % Problem

y0 = [1;1];

n = length(L);

% Discretize

m = 100;

T = linspace(0,10,m); h = T(2)-T(1);

r = zeros(m-1,1); c = zeros(m-1,1);

r(1:7)=[147/60,-6,15/2,-20/3,15/4,-6/5,1/6];

c(1) = 147/60;

A = toeplitz(r,c);

A(1,1) = 1; % Fix BCs

A(2,1) = -2; A(2,2) = 3/2;

A(3,1) = 3/2; A(3,2) = -3; A(3,3) = 11/6;

A(4,1) = -4/3; A(4,2) = 3; A(4,3) = -4;

A(4,4) = 25/12;↪→
A(5,1) = 5/4; A(5,2) = -10/3; A(5,3) = 5;

A(5,4) = -5; A(5,5) = 137/60;

In = speye(n,n);

Im = speye(m-1,m-1);

%% Build rhs:

b = zeros((m-1)*n,1);

b(1:2) = y0;

b(3:4) = -1/2*y0;

b(5:6) = 1/3*y0;

b(7:8) = -1/4*y0;

b(9:10) = 1/5*y0;

b(11:12) = -1/6*y0;

% SOLVE (Linear system)

M = kron(A,In)-h*kron(Im,L);

x = M\b;

7 / 46

A simple example
We can compare the solution with ode15s, and visualize it

[tt,yy] = ode15s(@(t,y) L*y,T,y0);

X = reshape(x,n,m-1);

X = [y0,X];

% Plot

plot(T,X(1,:),'r-',T,X(2,:),'b-',...

T,yy(:,1),'ro',...

T,yy(:,2),'bo');

O We could solve everything using a
matrix-equation based solver,

� but we are looking at a case in which
m = 2 with a “non refinable” space
operator.

0 2 4 6 8 10

0

0.5

1

� What can we say about the Am matrix?

8 / 46

A simple example
We can compare the solution with ode15s, and visualize it

[tt,yy] = ode15s(@(t,y) L*y,T,y0);

X = reshape(x,n,m-1);

X = [y0,X];

% Plot

plot(T,X(1,:),'r-',T,X(2,:),'b-',...

T,yy(:,1),'ro',...

T,yy(:,2),'bo');

O We could solve everything using a
matrix-equation based solver,

� but we are looking at a case in which
m = 2 with a “non refinable” space
operator.

0 2 4 6 8 10

0

0.5

1

� What can we say about the Am matrix?

8 / 46

A simple example
We can compare the solution with ode15s, and visualize it

[tt,yy] = ode15s(@(t,y) L*y,T,y0);

X = reshape(x,n,m-1);

X = [y0,X];

% Plot

plot(T,X(1,:),'r-',T,X(2,:),'b-',...

T,yy(:,1),'ro',...

T,yy(:,2),'bo');

O We could solve everything using a
matrix-equation based solver,

� but we are looking at a case in which
m = 2 with a “non refinable” space
operator.

0 2 4 6 8 10

0

0.5

1

� What can we say about the Am matrix?

8 / 46

A simple example
We can compare the solution with ode15s, and visualize it

[tt,yy] = ode15s(@(t,y) L*y,T,y0);

X = reshape(x,n,m-1);

X = [y0,X];

% Plot

plot(T,X(1,:),'r-',T,X(2,:),'b-',...

T,yy(:,1),'ro',...

T,yy(:,2),'bo');

O We could solve everything using a
matrix-equation based solver,

� but we are looking at a case in which
m = 2 with a “non refinable” space
operator.

0 2 4 6 8 10

0

0.5

1

� What can we say about the Am matrix?

8 / 46

Matrix properties
Am is a banded Toeplitz matrix plus a rank correction.

Am =



1
−2 3/2
3/2 −3 11/6

−4/3 3 −4 25/12
5/4 −10/3 5 −5 137/60

−6/5 15/4 −20/3 15/2 −6 147/60
1/6 −6/5 15/4 −20/3 15/2 −6 147/60
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .


Ó We know the eigenvalues in closed form: it’s lower triangular!

Ó The Field-Of-Values contains the origin. . . bad for bounds!

Ò Its clearly non diagonalizable, if we try and look at the condition number of the
eigenvector matrix κ2(X100) = 7.30× 10111.

9 / 46

Matrix properties
Am is a banded Toeplitz matrix plus a rank correction.

Am =



1
−2 3/2
3/2 −3 11/6

−4/3 3 −4 25/12
5/4 −10/3 5 −5 137/60

−6/5 15/4 −20/3 15/2 −6 147/60
1/6 −6/5 15/4 −20/3 15/2 −6 147/60
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .


-5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Eigenvalues
FoV

Ó We know the eigenvalues in closed form: it’s lower triangular!

Ó The Field-Of-Values contains the origin. . . bad for bounds!

Ò Its clearly non diagonalizable, if we try and look at the condition number of the
eigenvector matrix κ2(X100) = 7.30× 10111.

9 / 46

Matrix properties
Am is a banded Toeplitz matrix plus a rank correction.

Am =



1
−2 3/2
3/2 −3 11/6

−4/3 3 −4 25/12
5/4 −10/3 5 −5 137/60

−6/5 15/4 −20/3 15/2 −6 147/60
1/6 −6/5 15/4 −20/3 15/2 −6 147/60
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .


-5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Eigenvalues
FoV

Ó We know the eigenvalues in closed form: it’s lower triangular!

Ó The Field-Of-Values contains the origin. . . bad for bounds!

Ò Its clearly non diagonalizable, if we try and look at the condition number of the
eigenvector matrix κ2(X100) = 7.30× 10111.

9 / 46

Matrix properties
Am is a banded Toeplitz matrix plus a rank correction.

Am =



1
−2 3/2
3/2 −3 11/6

−4/3 3 −4 25/12
5/4 −10/3 5 −5 137/60

−6/5 15/4 −20/3 15/2 −6 147/60
1/6 −6/5 15/4 −20/3 15/2 −6 147/60
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .


-5 0 5 10 15 20 25

-20

-15

-10

-5

0

5

10

15

20

Eigenvalues
FoV

Ó We know the eigenvalues in closed form: it’s lower triangular!

Ó The Field-Of-Values contains the origin. . . bad for bounds!

Ò Its clearly non diagonalizable, if we try and look at the condition number of the
eigenvector matrix κ2(X100) = 7.30× 10111.

9 / 46

Matrix properties

Indeed, already for the BDF1 (a.k.a. the implicit Euler method) we have

Am =


1
−1 1

. . .
. . .

−1 1


(m−1)×(m−1)

Ó It is a Jordan block, so no diagonalization,

® What do we expect for the matrix equation
solver?

Nothing good!

10 / 46

Matrix properties

Indeed, already for the BDF1 (a.k.a. the implicit Euler method) we have

Am =


1
−1 1

. . .
. . .

−1 1


(m−1)×(m−1)

Ó It is a Jordan block, so no diagonalization,

® What do we expect for the matrix equation
solver?

Nothing good!

10 / 46

Matrix properties

Indeed, already for the BDF1 (a.k.a. the implicit Euler method) we have

Am =


1
−1 1

. . .
. . .

−1 1


(m−1)×(m−1)

Ó It is a Jordan block, so no diagonalization,

® What do we expect for the matrix equation
solver?

Nothing good!

BDF1, α = 1.5

m n IT Residual

64 128 13 1.007848e-10
128 256 16 6.145733e-10
256 512 21 7.639171e-10
512 1024 27 5.857467e-10
1024 2048 34 8.065585e-10
2048 4096 42 9.819085e-10

10 / 46

Matrix properties

Indeed, already for the BDF1 (a.k.a. the implicit Euler method) we have

Am =


1
−1 1

. . .
. . .

−1 1


(m−1)×(m−1)

Ó It is a Jordan block, so no diagonalization,

® What do we expect for the matrix equation
solver?

Nothing good!

BDF1, α = 1.5

m n IT Residual

64 128 13 1.007848e-10
128 256 16 6.145733e-10
256 512 21 7.639171e-10
512 1024 27 5.857467e-10
1024 2048 34 8.065585e-10
2048 4096 42 9.819085e-10

BDF6, α = 1.5

m n IT Residual

64 128 21 3.651570e-10
128 256 33 1.746513e-10
256 512 71 2.530720e-15
512 1024 128 1.975160e-22

1024 2048 251 4.157259e-10
2048 4096 495 6.310887e-10

10 / 46

Matrix properties

Indeed, already for the BDF1 (a.k.a. the implicit Euler method) we have

Am =


1
−1 1

. . .
. . .

−1 1


(m−1)×(m−1)

Ó It is a Jordan block, so no diagonalization,

® What do we expect for the matrix equation
solver? Nothing good!

BDF1, α = 1.5

m n IT Residual

64 128 13 1.007848e-10
128 256 16 6.145733e-10
256 512 21 7.639171e-10
512 1024 27 5.857467e-10
1024 2048 34 8.065585e-10
2048 4096 42 9.819085e-10

BDF6, α = 1.5

m n IT Residual

64 128 21 3.651570e-10
128 256 33 1.746513e-10
256 512 71 2.530720e-15
512 1024 128 1.975160e-22

1024 2048 251 4.157259e-10
2048 4096 495 6.310887e-10

10 / 46

Linear Multistep Methods in Boundary Value Form

® Part of the problem, are those triangular matrices. Can we do something?

� If we use more than one step, we still need auxiliary formulas to close the iteration.

� We could distribute the conditions differently, that is, not all on the initial data.

µ−ν∑
j=−ν

αj+νun+j = h

µ−ν∑
j=−ν

βj+νfn+j , n = ν, . . . ,m − k + ν.

j k steps,

j ν initial conditions, and

j µ− ν final conditions,

j Described by ρ(z) = zν
∑k−ν

j=−ν αj+νz
j , and σ(z) = zν

∑k−ν
j=−ν βj+νz

j .

® How does this change matrices and stability?

11 / 46

Linear Multistep Methods in Boundary Value Form

® Part of the problem, are those triangular matrices. Can we do something?

� If we use more than one step, we still need auxiliary formulas to close the iteration.

� We could distribute the conditions differently, that is, not all on the initial data.

µ−ν∑
j=−ν

αj+νun+j = h

µ−ν∑
j=−ν

βj+νfn+j , n = ν, . . . ,m − k + ν.

j k steps,

j ν initial conditions, and

j µ− ν final conditions,

j Described by ρ(z) = zν
∑k−ν

j=−ν αj+νz
j , and σ(z) = zν

∑k−ν
j=−ν βj+νz

j .

® How does this change matrices and stability?

11 / 46

Linear Multistep Methods in Boundary Value Form

® Part of the problem, are those triangular matrices. Can we do something?

� If we use more than one step, we still need auxiliary formulas to close the iteration.

� We could distribute the conditions differently, that is, not all on the initial data.

µ−ν∑
j=−ν

αj+νun+j = h

µ−ν∑
j=−ν

βj+νfn+j , n = ν, . . . ,m − k + ν.

j k steps,

j ν initial conditions, and

j µ− ν final conditions,

j Described by ρ(z) = zν
∑k−ν

j=−ν αj+νz
j , and σ(z) = zν

∑k−ν
j=−ν βj+νz

j .

® How does this change matrices and stability?

11 / 46

Linear Multistep Methods in Boundary Value Form

® Part of the problem, are those triangular matrices. Can we do something?

� If we use more than one step, we still need auxiliary formulas to close the iteration.

� We could distribute the conditions differently, that is, not all on the initial data.

µ−ν∑
j=−ν

αj+νun+j = h

µ−ν∑
j=−ν

βj+νfn+j , n = ν, . . . ,m − k + ν.

j k steps,

j ν initial conditions, and

j µ− ν final conditions,

j Described by ρ(z) = zν
∑k−ν

j=−ν αj+νz
j , and σ(z) = zν

∑k−ν
j=−ν βj+νz

j .

® How does this change matrices and stability?

11 / 46

Linear Multistep Methods in Boundary Value Form

If we collect the matrices for the inner steps of a scalar ODE, we get

Am =



αν · · · αk
...

. . .
. . .

α0
. . .

. . .
. . .

. . . αk

. . .
. . .

...
α0 · · · αν


(m−ν)×(m−ν)

,Bm =



βν · · · βk
...

. . .
. . .

β0
. . .

. . .
. . .

. . . βk

. . .
. . .

...
β0 · · · βν


(m−ν)×(m−ν)

and the vectors
u = (uν, · · · , um−1)

T , f = (fν, · · · , fm−1)
T .

12 / 46

Linear Multistep Methods in Boundary Value Form
If we collect the matrices for the inner steps of a scalar ODE, we get Am, Bm, and the
vectors

u = (uν, · · · , um−1)
T , f = (fν, · · · , fm−1)

T .

Finding the system

Amu− hBmf = −



∑ν−1
j=0 (αjyj − hβj fj)

...
a0yν−1 − hβ0fν−1

0
...
0

αkym − hβk fm
...∑µ

j=1(αν+jym−1+j − hβν1+j fm−1+j).



4 Am and Bm are Toeplitz
matrices with lower
bandwidth ν and upper
bandwidth µ.

� We still need auxiliary
formulas to fix the
ν+ µ− 1 starting/ending
values.

12 / 46

Convergence and stability
Before concluding the construction, let’s focus on convergence and stability.

® Did we gain anything by moving on to a more difficult problem?

Sν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.2)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| < 1 < |zν+1| ≤ · · · ≤ |zν|.

Nν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.3)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| ≤ 1 < |zν+1| ≤ · · · ≤ |zν|.

being simple the roots of unit modulus.

4 If ν = k (µ = 0), these are the conditions for LMF 0-stability!

13 / 46

Convergence and stability
Before concluding the construction, let’s focus on convergence and stability.
® Did we gain anything by moving on to a more difficult problem?

Sν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.2)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| < 1 < |zν+1| ≤ · · · ≤ |zν|.

Nν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.3)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| ≤ 1 < |zν+1| ≤ · · · ≤ |zν|.

being simple the roots of unit modulus.

4 If ν = k (µ = 0), these are the conditions for LMF 0-stability!

13 / 46

Convergence and stability
Before concluding the construction, let’s focus on convergence and stability.
® Did we gain anything by moving on to a more difficult problem?

Sν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.2)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| < 1 < |zν+1| ≤ · · · ≤ |zν|.

Nν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.3)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| ≤ 1 < |zν+1| ≤ · · · ≤ |zν|.

being simple the roots of unit modulus.

4 If ν = k (µ = 0), these are the conditions for LMF 0-stability!

13 / 46

Convergence and stability
Before concluding the construction, let’s focus on convergence and stability.
® Did we gain anything by moving on to a more difficult problem?

Sν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.2)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| < 1 < |zν+1| ≤ · · · ≤ |zν|.

Nν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.3)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| ≤ 1 < |zν+1| ≤ · · · ≤ |zν|.

being simple the roots of unit modulus.

4 If ν = k (µ = 0), these are the conditions for LMF 0-stability!

13 / 46

Convergence and stability
Before concluding the construction, let’s focus on convergence and stability.
® Did we gain anything by moving on to a more difficult problem?

Sν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.2)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| < 1 < |zν+1| ≤ · · · ≤ |zν|.

Nν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.3)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| ≤ 1 < |zν+1| ≤ · · · ≤ |zν|.

being simple the roots of unit modulus.

4 If ν = k (µ = 0), these are the conditions for LMF 0-stability!
13 / 46

Convergence and stability
Let a−νaµ ̸= 0 and

Tn =



a0 · · · aµ
...

. . .
. . .

a−ν
. . .

. . .
. . .

. . . aµ
. . .

. . .
...

a−ν · · · a0


,

we consider the polynomial

p(z) =

µ∑
i=−ν

aiz
ν+i .

Lemma (Brugnano and Trigiante 1998,
Lemma 4.4.4)

If the polynomial p(z) associated with the
matrix Tn is an Nν,µ-polynomial, then T−1

n

has entries t
(−1)
i ,j such that

1. |t(−1)
i ,j | ≤ γ independent of N, for i ≥ j ,

2. |t(−1)
i ,j | ≤ ηξj−i for i < j , where η > 0

and 0 < ξ < 1 are independent of N.

14 / 46

Convergence and stability
Let a−νaµ ̸= 0 and

Tn =



a0 · · · aµ
...

. . .
. . .

a−ν
. . .

. . .
. . .

. . . aµ
. . .

. . .
...

a−ν · · · a0


,

we consider the polynomial

p(z) =

µ∑
i=−ν

aiz
ν+i .

Lemma (Brugnano and Trigiante 1998,
Lemma 4.4.4)

If the polynomial p(z) associated with the
matrix Tn is an Nν,µ-polynomial, then T−1

n

has entries t
(−1)
i ,j such that

1. |t(−1)
i ,j | ≤ γ independent of N, for i ≥ j ,

2. |t(−1)
i ,j | ≤ ηξj−i for i < j , where η > 0

and 0 < ξ < 1 are independent of N.

14 / 46

Convergence and stability

Let a−νaµ ̸= 0 and

Tn =



a0 · · · aµ
...

. . .
. . .

a−ν
. . .

. . .
. . .

. . . aµ
. . .

. . .
...

a−ν · · · a0


,

we consider the polynomial

p(z) =

µ∑
i=−ν

aiz
ν+i .

Lemma (Brugnano and Trigiante 1998,
Lemma 4.4.4)

If the polynomial p(z) associated with the
matrix Tn is an Nν,µ-polynomial, then T−1

n

has entries t
(−1)
i ,j such that

1. |t(−1)
i ,j | ≤ γ independent of N, for i ≥ j ,

2. |t(−1)
i ,j | ≤ ηξj−i for i < j , where η > 0

and 0 < ξ < 1 are independent of N.

4 ||T−1
n || ≤ γCn + η∆n,

with Cn =

1... . . .

1 · · · 1

,
14 / 46

Convergence and stability
Let a−νaµ ̸= 0 and

Tn =



a0 · · · aµ
...

. . .
. . .

a−ν
. . .

. . .
. . .

. . . aµ
. . .

. . .
...

a−ν · · · a0


,

we consider the polynomial

p(z) =

µ∑
i=−ν

aiz
ν+i .

Lemma (Brugnano and Trigiante 1998,
Lemma 4.4.4)

If the polynomial p(z) associated with the
matrix Tn is an Nν,µ-polynomial, then T−1

n

has entries t
(−1)
i ,j such that

1. |t(−1)
i ,j | ≤ γ independent of N, for i ≥ j ,

2. |t(−1)
i ,j | ≤ ηξj−i for i < j , where η > 0

and 0 < ξ < 1 are independent of N.

4 ||T−1
n || ≤ γCn + η∆n,

with ∆n the upper triangular Toeplitz matrix
with last column (ξn−1, . . . , ξ2, ξ, 0)T .

14 / 46

Convergence and stability

Theorem (Brugnano and Trigiante 1998, Theorem 4.4.3)

Ignoring the effect of round-off errors, a BVM with (ν, µ)-boundary conditions is
convergent if it is consistent and the polynomial ρ(z) is an Nν,µ-polynomial.

To reproduce the “0-stable + consistent ⇒ convergence” framework, we define:

0ν,µ-stability (Brugnano and Trigiante 1998, Definition 4.5.1)

A BVM with (ν, µ)-boundary conditions is 0ν,µ-stable if the corresponding polynomial ρ(z)
is an Nν,µ-polynomial.

(ν, µ)-Absolute stability (Brugnano and Trigiante 1998, Definition 4.7.1)

A BVM with (ν, µ)-boundary conditions is ν, µ-Absolutely stable for a given complex
number q it the polynomial π(z , q) = ρ(z) − qσ(z), is an Sν,µ-polynomial.

15 / 46

Convergence and stability

Theorem (Brugnano and Trigiante 1998, Theorem 4.4.3)

Ignoring the effect of round-off errors, a BVM with (ν, µ)-boundary conditions is
convergent if it is consistent and the polynomial ρ(z) is an Nν,µ-polynomial.

To reproduce the “0-stable + consistent ⇒ convergence” framework, we define:

0ν,µ-stability (Brugnano and Trigiante 1998, Definition 4.5.1)

A BVM with (ν, µ)-boundary conditions is 0ν,µ-stable if the corresponding polynomial ρ(z)
is an Nν,µ-polynomial.

(ν, µ)-Absolute stability (Brugnano and Trigiante 1998, Definition 4.7.1)

A BVM with (ν, µ)-boundary conditions is ν, µ-Absolutely stable for a given complex
number q it the polynomial π(z , q) = ρ(z) − qσ(z), is an Sν,µ-polynomial.

15 / 46

Convergence and stability

Theorem (Brugnano and Trigiante 1998, Theorem 4.4.3)

Ignoring the effect of round-off errors, a BVM with (ν, µ)-boundary conditions is
convergent if it is consistent and the polynomial ρ(z) is an Nν,µ-polynomial.

To reproduce the “0-stable + consistent ⇒ convergence” framework, we define:

0ν,µ-stability (Brugnano and Trigiante 1998, Definition 4.5.1)

A BVM with (ν, µ)-boundary conditions is 0ν,µ-stable if the corresponding polynomial ρ(z)
is an Nν,µ-polynomial.

(ν, µ)-Absolute stability (Brugnano and Trigiante 1998, Definition 4.7.1)

A BVM with (ν, µ)-boundary conditions is ν, µ-Absolutely stable for a given complex
number q it the polynomial π(z , q) = ρ(z) − qσ(z), is an Sν,µ-polynomial.

15 / 46

Convergence and stability

We have a degree of arbitrariness in deciding how and how many initial / final conditions
to set. Clearly ν has to be at least one (we do have an initial condition of our IVP), then
for the remaining we have to let (ν, µ)-Absolute stability guide us.

Correct use a consistent LMF is correctly used in q ∈ C−, where π(z , q) is an
Sν,µ-polynomial, if ν conditions are imposed at the initial points, and µ
conditions are posed at the end of the interval.

To have a livable life, one always consider family of methods for which the boundary of the
(ν, µ)-Absolutely stability region is a regular Jordan curve. More specifically, having that

Aν,µ = {q ∈ C : π(z , q) is an Sν,µ-polynomial},

has the origin on its boundary and is possibly equal to the whole C−.

16 / 46

Convergence and stability

We have a degree of arbitrariness in deciding how and how many initial / final conditions
to set. Clearly ν has to be at least one (we do have an initial condition of our IVP), then
for the remaining we have to let (ν, µ)-Absolute stability guide us.

Correct use a consistent LMF is correctly used in q ∈ C−, where π(z , q) is an
Sν,µ-polynomial, if ν conditions are imposed at the initial points, and µ
conditions are posed at the end of the interval.

To have a livable life, one always consider family of methods for which the boundary of the
(ν, µ)-Absolutely stability region is a regular Jordan curve. More specifically, having that

Aν,µ = {q ∈ C : π(z , q) is an Sν,µ-polynomial},

has the origin on its boundary and is possibly equal to the whole C−.

16 / 46

Convergence and stability

We have a degree of arbitrariness in deciding how and how many initial / final conditions
to set. Clearly ν has to be at least one (we do have an initial condition of our IVP), then
for the remaining we have to let (ν, µ)-Absolute stability guide us.

Correct use a consistent LMF is correctly used in q ∈ C−, where π(z , q) is an
Sν,µ-polynomial, if ν conditions are imposed at the initial points, and µ
conditions are posed at the end of the interval.

To have a livable life, one always consider family of methods for which the boundary of the
(ν, µ)-Absolutely stability region is a regular Jordan curve. More specifically, having that

Aν,µ = {q ∈ C : π(z , q) is an Sν,µ-polynomial},

has the origin on its boundary and is possibly equal to the whole C−.

16 / 46

A gallery of formulas
It is possible to reformulate many LMFs in this new format

Ó BDF ⇒ Generalized-BDF (GBDF):
∑k

i=0 αiun+i = hfn+j , j ∈ {0, 1, . . . , k}

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+2
2 , for even k ,

k+1
2 , for odd k.⇒ with this choice we no longer have the constraint of having at most k = 6

steps of the standard BDF!

Ó Adams-Moulton Methods ⇒ GAMM un+j − un+j−1 = h
∑k

i=0 βi fn+i

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+1
2 , for odd k,

k
2 , for even k .

[See the book (Brugnano and Trigiante 1998) for other possible generalizations.

17 / 46

A gallery of formulas
It is possible to reformulate many LMFs in this new format

Ó BDF ⇒ Generalized-BDF (GBDF):
∑k

i=0 αiun+i = hfn+j , j ∈ {0, 1, . . . , k}

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+2
2 , for even k ,

k+1
2 , for odd k.⇒ with this choice we no longer have the constraint of having at most k = 6

steps of the standard BDF!

Ó Adams-Moulton Methods ⇒ GAMM un+j − un+j−1 = h
∑k

i=0 βi fn+i

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+1
2 , for odd k,

k
2 , for even k .

[See the book (Brugnano and Trigiante 1998) for other possible generalizations.

17 / 46

A gallery of formulas
It is possible to reformulate many LMFs in this new format

Ó BDF ⇒ Generalized-BDF (GBDF):
∑k

i=0 αiun+i = hfn+j , j ∈ {0, 1, . . . , k}

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+2
2 , for even k ,

k+1
2 , for odd k .⇒ with this choice we no longer have the constraint of having at most k = 6

steps of the standard BDF!

Ó Adams-Moulton Methods ⇒ GAMM un+j − un+j−1 = h
∑k

i=0 βi fn+i

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+1
2 , for odd k,

k
2 , for even k .

[See the book (Brugnano and Trigiante 1998) for other possible generalizations.

17 / 46

A gallery of formulas
It is possible to reformulate many LMFs in this new format

Ó BDF ⇒ Generalized-BDF (GBDF):
∑k

i=0 αiun+i = hfn+j , j ∈ {0, 1, . . . , k}

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+2
2 , for even k ,

k+1
2 , for odd k .⇒ with this choice we no longer have the constraint of having at most k = 6

steps of the standard BDF!

Ó Adams-Moulton Methods ⇒ GAMM un+j − un+j−1 = h
∑k

i=0 βi fn+i

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+1
2 , for odd k ,

k
2 , for even k .

[See the book (Brugnano and Trigiante 1998) for other possible generalizations.
17 / 46

Additional formulas

� We need additional formulas for the k − 1 = ν+ µ− 1 boundary values.

18 / 46

Additional formulas
� We need additional formulas for the k − 1 = ν+ µ− 1 boundary values.

Am =



1 . . . 0

α
(1)
0 . . . α

(1)
k ,

...
...

α
(ν−1)
0 . . . α

(ν−1)
k

α0 . . . αk

α0 . . . αk

. . .
. . .

. . .

α0 . . . αk

α
(m−k+ν+1)
0 . . . α

(m−k+ν+1)
k

...
...

α
(m)
0 . . . α

(m)
k



,

18 / 46

Additional formulas
� We need additional formulas for the k − 1 = ν+ µ− 1 boundary values.

Bm =



0 . . . 0

β
(1)
0 . . . β

(1)
k ,

...
...

β
(ν−1)
0 . . . β

(ν−1)
k

β0 . . . βk

β0 . . . βk

. . .
. . .

. . .

β0 . . . βk

β
(m−k+ν+1)
0 . . . β

(m−k+ν+1)
k ,

...
...

β
(m)
0 . . . β

(m)
k



.

18 / 46

Additional formulas

� We need additional formulas for the k − 1 = ν+ µ− 1 boundary values.

Ó If we know how to compute them, then we end up having to solve the matrix
equation

MnUA
T
m − hLnUB

T
m = F ,

or the linear system

(Am ⊗Mn − hBm ⊗ Ln)u = f , where vec(U) = u, vec(F) = f .

� Let us build everything for using GBDFs and our fractional-in-space problem.

18 / 46

Additional formulas

� We need additional formulas for the k − 1 = ν+ µ− 1 boundary values.

Ó If we know how to compute them, then we end up having to solve the matrix
equation

MnUA
T
m − hLnUB

T
m = F ,

or the linear system

(Am ⊗Mn − hBm ⊗ Ln)u = f , where vec(U) = u, vec(F) = f .

� Let us build everything for using GBDFs and our fractional-in-space problem.

18 / 46

Generalized BDF

First we need to compute ρ(z) and σ(z)

function [ro,si] = rosi_bdf(k, j)

b = zeros(k+1,1); b(2) = 1;

ro = vsolve(-j:k-j, b(:));

si = zeros(k+1, 1); si(j+1) = 1;

end

å Coefficients are computed by imposing
consistency of maximal order p:

k∑
j=0

(j sαj − sj s−1βj) = 0,

s = 0, 1, . . . , p.

19 / 46

Generalized BDF

First we need to compute ρ(z) and σ(z)

function [ro,si] = rosi_bdf(k, j)

b = zeros(k+1,1); b(2) = 1;

ro = vsolve(-j:k-j, b(:));

si = zeros(k+1, 1); si(j+1) = 1;

end

å Coefficients are computed by imposing
consistency of maximal order p:

k∑
j=0

(j sαj − sj s−1βj) = 0,

s = 0, 1, . . . , p.

function f = vsolve(x, b)

f = b;

n = length(x)-1;

for k = 1:n

for i = n+1:-1:k+1

f(i) = f(i) - x(k)*f(i-1);

end

end

for k = n:-1:1

for i = k+1:n+1

f(i) = f(i)/(x(i) - x(i-k));

end

for i = k:n

f(i) = f(i) - f(i+1);

end

end

end
19 / 46

Generalized BDF

Then we use the ro_si routine to build the Am and Bm matrices

function [a,b] = mab(k, n)

nu = fix((k+2)/2);

a = spalloc(n, n+1, (k+1)*n);

b = a;

for i = 1:nu

[ro,si] = rosi_bdf(k, i);

a(i,1:k+1) = ro.';

b(i,1:k+1) = si.';

end

for i = nu+1:n-(k-nu)

a(i,i+1+(-nu:k-nu)) = ro.';

b(i,i+1+(-nu:k-nu)) = si.';

end

j = nu;

for i = n-(k-nu)+1:n

j = j + 1;

[ro,si] = rosi_bdf(k, j);

a(i,n+1+(-k:0)) = ro.';

b(i,n+1+(-k:0)) = si.';

end

end

Ð for i = 1:nu; end, initial conditions,

Ð for i = nu+1:n-(k-nu); end,
Toepltiz part,

Ð for i = n-(k-nu)+1:n; end, final
conditions.

20 / 46

Generalized BDF
We can use the routine to generate

[Alpha,Beta] = mab(k,m); A = Alpha(:,2:m+1); B = Beta(:,2:m+1);

and visualize them

0 5 10 15 20

nz = 136

0

5

10

15

20

0 5 10 15 20

nz = 20

0

5

10

15

20

4 The first column contains the coefficients needed to compute the right-hand-side.
21 / 46

Generalized BDF
We now need to build the right-hand-side

nk=n*(m+1);

b=zeros(nk,1); % Allocate the space for one more than needed

for j=1:m % Use the source to build the rhs:

b(1+j*n:(j+1)*n)=f(x,t0+j*h);

end

b(n+1:n*(m+1))=h*kron(Beta,speye(n))*b; % Correct with the betas coeff.s

b(1:n)=u0; % First block as the initial condition

% Correction coefficients:

Am = kron(Alpha(:,1),speye(n))-h*kron(Beta(:,1),L);

b(n+1:nk)=b(n+1:nk)-Am*u0; % Finish building RHS

And then we can solve the linear system

Mat = kron(A,M) - h*kron(B,L); rhs = b(n+1:nk);

u = Mat\rhs;

22 / 46

Generalized BDF

We can compare the solution with ode15s:

U = [u0,reshape(u,n,m)]; t = t0:h:tf;

[TT,UU] = ode15s(@(t,y) L*y +

f(x.',t),t,u0);↪→
E = abs(U-reshape(UU,m+1,n).');

figure(2)

subplot(1,3,1)

mesh(t,x,U);

xlabel('t');

ylabel('x');

title('GBDF(6,100) on 100')

subplot(1,3,2)

mesh(t,x,reshape(UU,m+1,n).')

xlabel('t');

ylabel('x');

title('ode15s')

subplot(1,3,3)

mesh(t,x,log10())

xlabel('t');

ylabel('x');

title('Error')

23 / 46

Generalized BDF

We can compare the solution with ode15s:

0

2

2

1

4

GBDF(6,100) on 100

x

1

t

6

0.5

0 0

0

2

2

1

4

ode15s

x

1

t

6

0.5

0 0

-6

2

-5

1

-4

Error

x

-3

1

t

-2

0.5

0 0

® What happens if we attempt solution via our matrix-equation solver?

23 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

2 32 64 16 1.08e-15
2 64 128 23 2.16e-10
2 128 256 30 4.72e-10
2 256 512 38 9.20e-10
2 512 1024 49 7.31e-10
2 1024 2048 62 7.82e-10
2 2048 4096 78 8.06e-10
2 4096 8192 97 9.24e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

3 32 64 15 7.18e-10
3 64 128 20 9.80e-10
3 128 256 26 7.77e-10
3 256 512 34 4.21e-10
3 512 1024 43 5.75e-10
3 1024 2048 54 8.05e-10
3 2048 4096 68 8.84e-10
3 4096 8192 85 9.87e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

4 32 64 16 1.19e-14
4 64 128 24 3.22e-10
4 128 256 31 4.05e-10
4 256 512 39 6.97e-10
4 512 1024 50 6.20e-10
4 1024 2048 63 7.70e-10
4 2048 4096 79 9.05e-10
4 4096 8192 99 9.05e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

5 32 64 16 1.72e-14
5 64 128 22 2.96e-10
5 128 256 28 4.90e-10
5 256 512 36 5.56e-10
5 512 1024 46 5.53e-10
5 1024 2048 58 7.10e-10
5 2048 4096 73 8.04e-10
5 4096 8192 91 9.75e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

6 32 64 16 3.46e-14
6 64 128 24 4.70e-10
6 128 256 31 5.73e-10
6 256 512 40 4.78e-10
6 512 1024 50 9.39e-10
6 1024 2048 64 7.69e-10
6 2048 4096 81 7.31e-10
6 4096 8192 100 1.10e-09

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

7 32 64 16 6.13e-15
7 64 128 22 6.60e-10
7 128 256 29 4.78e-10
7 256 512 37 7.04e-10
7 512 1024 47 8.47e-10
7 1024 2048 60 7.66e-10
7 2048 4096 76 7.36e-10
7 4096 8192 95 8.46e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

8 32 64 16 2.46e-14
8 64 128 24 5.41e-10
8 128 256 31 7.57e-10
8 256 512 40 6.53e-10
8 512 1024 51 7.34e-10
8 1024 2048 65 6.98e-10
8 2048 4096 82 7.42e-10
8 4096 8192 100 1.56e-09

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

8 32 64 16 2.46e-14
8 64 128 24 5.41e-10
8 128 256 31 7.57e-10
8 256 512 40 6.53e-10
8 512 1024 51 7.34e-10
8 1024 2048 65 6.98e-10
8 2048 4096 82 7.42e-10
8 4096 8192 100 1.56e-09

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

8 32 64 16 2.46e-14
8 64 128 24 5.41e-10
8 128 256 31 7.57e-10
8 256 512 40 6.53e-10
8 512 1024 51 7.34e-10
8 1024 2048 65 6.98e-10
8 2048 4096 82 7.42e-10
8 4096 8192 100 1.56e-09

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.

24 / 46

Structured preconditioner

Let’s now look for a different approach.

9 We can do matrix vector products with the system matrix without assembling the
matrix:

function [y] = Mprod(A,B,L,h,x)

[sp1,~] = size(A);

[m,~] = size(L);

X = reshape(x,m,sp1);

Y = X*A' - h*(L*X*B');

y = reshape(Y,m*sp1,1);

end

å The linear system is not symmetric: we can use either GMRES or Flexible-GMRES to
solve it.

� We just need to figure out a preconditioner.

25 / 46

Structured preconditioner

Let’s now look for a different approach.

9 We can do matrix vector products with the system matrix without assembling the
matrix:

function [y] = Mprod(A,B,L,h,x)

[sp1,~] = size(A);

[m,~] = size(L);

X = reshape(x,m,sp1);

Y = X*A' - h*(L*X*B');

y = reshape(Y,m*sp1,1);

end

å The linear system is not symmetric: we can use either GMRES or Flexible-GMRES to
solve it.

� We just need to figure out a preconditioner.

25 / 46

Structured preconditioner

Let’s now look for a different approach.

9 We can do matrix vector products with the system matrix without assembling the
matrix:

function [y] = Mprod(A,B,L,h,x)

[sp1,~] = size(A);

[m,~] = size(L);

X = reshape(x,m,sp1);

Y = X*A' - h*(L*X*B');

y = reshape(Y,m*sp1,1);

end

å The linear system is not symmetric: we can use either GMRES or Flexible-GMRES to
solve it.

� We just need to figure out a preconditioner.

25 / 46

Structured preconditioner

Let’s now look for a different approach.

9 We can do matrix vector products with the system matrix without assembling the
matrix:

function [y] = Mprod(A,B,L,h,x)

[sp1,~] = size(A);

[m,~] = size(L);

X = reshape(x,m,sp1);

Y = X*A' - h*(L*X*B');

y = reshape(Y,m*sp1,1);

end

å The linear system is not symmetric: we can use either GMRES or Flexible-GMRES to
solve it.

� We just need to figure out a preconditioner.

25 / 46

Structured preconditioner

The ø idea is again using a preconditioner that has the same structure:

P = Ăm ⊗Mn − hB̆m ⊗ L̃n,

[This idea comes from (Bertaccini 2000, 2001; Bertaccini and Ng 2001),

� How do we select the approximations Ăm, B̆m and L̃n?

Ó Am, Bm are Toeplitz + low-rank ⇒ Circulant or Fast-Transform preconditioners,
Ó L̃n has the quasi-Toeplitz structure we have seen, so we can use some of the

techniques we had already seen for this; (Bertaccini and Durastante 2018).

� It would be good to also have a parallel way of applying the preconditioner.

26 / 46

Structured preconditioner

The ø idea is again using a preconditioner that has the same structure:

P = Ăm ⊗Mn − hB̆m ⊗ L̃n,

[This idea comes from (Bertaccini 2000, 2001; Bertaccini and Ng 2001),

� How do we select the approximations Ăm, B̆m and L̃n?

Ó Am, Bm are Toeplitz + low-rank ⇒ Circulant or Fast-Transform preconditioners,
Ó L̃n has the quasi-Toeplitz structure we have seen, so we can use some of the

techniques we had already seen for this; (Bertaccini and Durastante 2018).

� It would be good to also have a parallel way of applying the preconditioner.

26 / 46

Structured preconditioner

The ø idea is again using a preconditioner that has the same structure:

P = Ăm ⊗Mn − hB̆m ⊗ L̃n,

[This idea comes from (Bertaccini 2000, 2001; Bertaccini and Ng 2001),

� How do we select the approximations Ăm, B̆m and L̃n?

Ó Am, Bm are Toeplitz + low-rank ⇒ Circulant or Fast-Transform preconditioners,
Ó L̃n has the quasi-Toeplitz structure we have seen, so we can use some of the

techniques we had already seen for this; (Bertaccini and Durastante 2018).

� It would be good to also have a parallel way of applying the preconditioner.

26 / 46

Structured preconditioner

The ø idea is again using a preconditioner that has the same structure:

P = Ăm ⊗Mn − hB̆m ⊗ L̃n,

[This idea comes from (Bertaccini 2000, 2001; Bertaccini and Ng 2001),

� How do we select the approximations Ăm, B̆m and L̃n?

Ó Am, Bm are Toeplitz + low-rank ⇒ Circulant or Fast-Transform preconditioners,
Ó L̃n has the quasi-Toeplitz structure we have seen, so we can use some of the

techniques we had already seen for this; (Bertaccini and Durastante 2018).

� It would be good to also have a parallel way of applying the preconditioner.

26 / 46

Structured preconditioner

� If Ăm and B̆m are circulant–like approximations of the Toeplitz (+ “low rank”)
matrices Am and Bm, and the mass matrix is the identity, then we can express the
eigenvalues of P as

ϕi − hψiλj , i = 1, . . . ,m, j = 1, . . . , n,

where

å {ϕi } are the eigenvalues of the circulant–like approximation Ă,
å {ψi } are the eigenvalues of the circulant–like approximation B̆,
å {λj } are the eigenvalues of the selected approximation of Jn.

® What circulant-like approximation do we want?

Ó An idea could be using Strang approximation (Gu et al. 2015)

Ps = s(Am)⊗ Im − hs(Bm)⊗ Ln,

27 / 46

Structured preconditioner

� If Ăm and B̆m are circulant–like approximations of the Toeplitz (+ “low rank”)
matrices Am and Bm, and the mass matrix is the identity, then we can express the
eigenvalues of P as

ϕi − hψiλj , i = 1, . . . ,m, j = 1, . . . , n,

where

å {ϕi } are the eigenvalues of the circulant–like approximation Ă,
å {ψi } are the eigenvalues of the circulant–like approximation B̆,
å {λj } are the eigenvalues of the selected approximation of Jn.

® What circulant-like approximation do we want?

Ó An idea could be using Strang approximation (Gu et al. 2015)

Ps = s(Am)⊗ Im − hs(Bm)⊗ Ln,

27 / 46

Structured preconditioner

� If Ăm and B̆m are circulant–like approximations of the Toeplitz (+ “low rank”)
matrices Am and Bm, and the mass matrix is the identity, then we can express the
eigenvalues of P as

ϕi − hψiλj , i = 1, . . . ,m, j = 1, . . . , n,

where

å {ϕi } are the eigenvalues of the circulant–like approximation Ă,
å {ψi } are the eigenvalues of the circulant–like approximation B̆,
å {λj } are the eigenvalues of the selected approximation of Jn.

® What circulant-like approximation do we want?
Ó An idea could be using Strang approximation (Gu et al. 2015)

Ps = s(Am)⊗ Im − hs(Bm)⊗ Ln,

27 / 46

Structured preconditioner

Ps = s(Am)⊗ Im − hs(Bm)⊗ Ln,

s(A) =



αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν



,

Ó s(B) can be built
analogously.

Ó s(A) is singular due to
the consistency
condition.

� It is a single 0
eigenvalue, so we can
move it by a rank 1
perturbation: s̃(·).

28 / 46

Structured preconditioner

Ps = s(Am)⊗ Im − hs(Bm)⊗ Ln,

s(A) =



αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν



,

Ó s(B) can be built
analogously.

Ó s(A) is singular due to
the consistency
condition.

� It is a single 0
eigenvalue, so we can
move it by a rank 1
perturbation: s̃(·).

28 / 46

Structured preconditioner

Ps̃ = s̃(A)m ⊗ In − hs̃(B)m ⊗ Ln.

s(A) =



αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν



,

Ó s(B) can be built
analogously.

Ó s(A) is singular due to
the consistency
condition.

� It is a single 0
eigenvalue, so we can
move it by a rank 1
perturbation: s̃(·).

28 / 46

Structured preconditioner

Ps̃ = s̃(A)m ⊗ In − hs̃(B)m ⊗ Ln.

s(A) =



αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν



,

Proposition (Bertaccini
2001, Proposition 4.1)

If L has eigenvalues µr
such that ℜ(µr) < −δ < 0,
r = 1, . . . ,m. Then the
preconditioner Ps̃ is
invertible for Aν,k−ν-stable
formulae.

28 / 46

Structured preconditioner

® What can we say about the clustering properties of this preconditioner?

Theorem (Bertaccini 2000, Theorem 4.1)

Let M = Am ⊗ In − hBm ⊗ Ln for an Aν,k−ν-stable formulae with k steps. Let P be the
block circulant preconditioner

P = Ăm ⊗Mn − hB̆m ⊗ Ln.

Then, for fixed δ > 0, there exists Cδ ≥ 0, mδ ≥ k such that, for all m ≥ mδ (m + 1 is the
size of A and B),

P−1M = I +M
(1)
δ +M

(2)
δ ,

where rank(M
(2)
δ) ≤ n[2(k + 1) + Cδ] and ∥M(1)

δ ∥2 ≤ δcL does not depend on m. If P is

defined as Strang’s circulant preconditioner, then Cδ = ∥M(1)
δ ∥ = 0.

29 / 46

Structured preconditioner
Another available choice is using instead {ω}-Circulant matrices, i.e.,

Pω = ω(Am)⊗ In − hω(Bm)⊗ Ln,

ω(Am) =



αν · · · αk ωα0 · · · ωαν−1

...
. . .

. . .
. . .

...

α0
. . .

. . . ωα0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

ωαk
. . .

. . . αk

...
. . .

. . .
. . .

...
ωαν+1 · · · ωαk α0 · · · αν



,

Ó ω(Bm) is defined
similarly.

� The usual choice is
setting ω = −1, i.e.,
the skew-circulant
preconditioner.

30 / 46

Stuctured preconditioner: application
To apply

P−1
ω v = (ω(Am)⊗ In − hω(Bm)⊗ Ln)

−1v,

We can use the diagonalization of ω(Am) and ω(Bm), i.e.,

P−1
ω v = (FΩ⊗ In)

−1(ΛA ⊗ In − hΛB ⊗ Ln)
−1(ΩHFH ⊗ In)

−1v.

1. Compute w = (Ω∗F ∗ ⊗ Im)
−1v = −VΩ−HF ,

2. Solve (ΛA ⊗ In − hΛB ⊗ Ln)
−1w by solving

(λi (A)In − hλi (B)Ln)zi = wi , i = 1, . . . ,m

with vec([w1, . . . ,wm]) = w, and similarly for z,

3. Compute y = (FΩ⊗ In)
−1z = −ZFHΩ−1.

- This step is embarrassingly parallel!

31 / 46

Stuctured preconditioner: application
To apply

P−1
ω v = (ω(Am)⊗ In − hω(Bm)⊗ Ln)

−1v,

We can use the diagonalization of ω(Am) and ω(Bm), i.e.,

P−1
ω v = (FΩ⊗ In)

−1(ΛA ⊗ In − hΛB ⊗ Ln)
−1(ΩHFH ⊗ In)

−1v.

1. Compute w = (Ω∗F ∗ ⊗ Im)
−1v = −VΩ−HF ,

2. Solve (ΛA ⊗ In − hΛB ⊗ Ln)
−1w by solving

(λi (A)In − hλi (B)Ln)zi = wi , i = 1, . . . ,m

with vec([w1, . . . ,wm]) = w, and similarly for z,

3. Compute y = (FΩ⊗ In)
−1z = −ZFHΩ−1.

- This step is embarrassingly parallel!
31 / 46

Numerical example

We use our favorite test problem with the space variant, nonsymmetric fractional operator
in space and α = 1.5, using GMRES(20) with a tolerance of 1e-9 using the P−1

preconditioner.

k = 2

n m It

64 32 30
128 64 31
256 128 31
512 256 31
1024 512 30

k = 3

n m It

64 32 32
128 64 33
256 128 34
512 256 34
1024 512 33

k = 4

n m It

64 32 35
128 64 38
256 128 39
512 256 39
1024 512 37

k = 5

n m It

64 32 38
128 64 45
256 128 48
512 256 50
1024 512 49

k = 6

n m It

64 32 46
128 64 53
256 128 58
512 256 62

1024 512 60

4 Reduced ⌣ iteration dependence, but paid with Ó full memory price!

32 / 46

Numerical example

We use our favorite test problem with the space variant, nonsymmetric fractional operator
in space and α = 1.5, using GMRES(20) with a tolerance of 1e-9 using the P−1

preconditioner.

k = 2

n m It

64 32 30
128 64 31
256 128 31
512 256 31
1024 512 30

k = 3

n m It

64 32 32
128 64 33
256 128 34
512 256 34
1024 512 33

k = 4

n m It

64 32 35
128 64 38
256 128 39
512 256 39
1024 512 37

k = 5

n m It

64 32 38
128 64 45
256 128 48
512 256 50
1024 512 49

k = 6

n m It

64 32 46
128 64 53
256 128 58
512 256 62

1024 512 60

4 Reduced ⌣ iteration dependence, but paid with Ó full memory price!

32 / 46

Further modifications
We can further approximate the preconditioner by selecting instead of Ln in

P−1
ω v = (ω(Am)⊗ In − hω(Bm)⊗ Ln)

−1v,

a suitable approximation, e.g.,

Ó gk(Ln) a bandwidth k approximation of the dense Ln matrix, i.e., using the
information on the decay of the coefficients (Bertaccini and Durastante 2018).

Ó A structured preconditioner based on GLT theory.

O Open areas of research

Ó Efficient solution strategies for the λi (A)In − hλi (B)Ln systems,

Ó Load-balancing issues for parallelism,

Ó Optimal poles selection for the matrix-equation based solvers,

Ó Multigrid solvers/preconditioners for (Am ⊗Mn − hBm ⊗ Ln)u = f .

33 / 46

Further modifications
We can further approximate the preconditioner by selecting instead of Ln in

P−1
ω v = (ω(Am)⊗ In − hω(Bm)⊗ Ln)

−1v,

a suitable approximation, e.g.,

Ó gk(Ln) a bandwidth k approximation of the dense Ln matrix, i.e., using the
information on the decay of the coefficients (Bertaccini and Durastante 2018).

Ó A structured preconditioner based on GLT theory.

O Open areas of research

Ó Efficient solution strategies for the λi (A)In − hλi (B)Ln systems,

Ó Load-balancing issues for parallelism,

Ó Optimal poles selection for the matrix-equation based solvers,

Ó Multigrid solvers/preconditioners for (Am ⊗Mn − hBm ⊗ Ln)u = f .

33 / 46

á Tensor Equations

� A different approach that can be of interest is to use another structure.

� Let us suppose that Ln is obtained as the discretization of a multidimensional fractional
operator, i.e.,

Ln =

ℓ∑
i=1

K−
m,ℓ

i−1⊗
p=1

I ⊗ G
(ℓ)

n1/ℓ
⊗

ℓ−1⊗
p=1

I + K+
n,ℓ

i−1⊗
p=1

I ⊗ G
(ℓ)

n1/ℓ

T
⊗

ℓ−1⊗
p=1

I


where K±

m,ℓ have also a Kronecker tensor structure whenever the functions {κj }
ℓ
j=1 are

separable in the xj variables.

The matrix: M = Am ⊗ In − hBm ⊗ Ln has now a lot of redundant information!

34 / 46

á Tensor Equations

� A different approach that can be of interest is to use another structure.

� Let us suppose that Ln is obtained as the discretization of a multidimensional fractional
operator, i.e.,

Ln =

ℓ∑
i=1

K−
m,ℓ

i−1⊗
p=1

I ⊗ G
(ℓ)

n1/ℓ
⊗

ℓ−1⊗
p=1

I + K+
n,ℓ

i−1⊗
p=1

I ⊗ G
(ℓ)

n1/ℓ

T
⊗

ℓ−1⊗
p=1

I


where K±

m,ℓ have also a Kronecker tensor structure whenever the functions {κj }
ℓ
j=1 are

separable in the xj variables.

The matrix: M = Am ⊗ In − hBm ⊗ Ln has now a lot of redundant information!

34 / 46

á Tensor Equations

� A different approach that can be of interest is to use another structure.

� Let us suppose that Ln is obtained as the discretization of a multidimensional fractional
operator, i.e.,

Ln =

ℓ∑
i=1

K−
m,ℓ

i−1⊗
p=1

I ⊗ G
(ℓ)

n1/ℓ
⊗

ℓ−1⊗
p=1

I + K+
n,ℓ

i−1⊗
p=1

I ⊗ G
(ℓ)

n1/ℓ

T
⊗

ℓ−1⊗
p=1

I


where K±

m,ℓ have also a Kronecker tensor structure whenever the functions {κj }
ℓ
j=1 are

separable in the xj variables.

The matrix: M = Am ⊗ In − hBm ⊗ Ln has now a lot of redundant information!

34 / 46

á Tensor Equations: thou shalt compress!

As we have done for the hierarchical formats, we want

v A compressed representation of M, possibly with a number of parameters that
grows poly-logarithmically with the overall size. . .

z A fast BLAS-like toolbox to solve our problem in this format.

There exists many formats for which this is possible, e.g., the CANDECOMP/PARAFAC
(CP) decomposition, the Tucker format, the Tensor Train (TT), the TT-Tucker, etc.; see
(Kolda and Bader 2009).

We focus on the � Tensor-Train format, since it has a simple enough toolbox to work
with: § TT-Toolbox.

35 / 46

https://github.com/oseledets/TT-Toolbox

á Tensor Equations: thou shalt compress!

As we have done for the hierarchical formats, we want

v A compressed representation of M, possibly with a number of parameters that
grows poly-logarithmically with the overall size. . .

z A fast BLAS-like toolbox to solve our problem in this format.

There exists many formats for which this is possible, e.g., the CANDECOMP/PARAFAC
(CP) decomposition, the Tucker format, the Tensor Train (TT), the TT-Tucker, etc.; see
(Kolda and Bader 2009).

We focus on the � Tensor-Train format, since it has a simple enough toolbox to work
with: § TT-Toolbox.

35 / 46

https://github.com/oseledets/TT-Toolbox

á Tensor Equations: thou shalt compress!

As we have done for the hierarchical formats, we want

v A compressed representation of M, possibly with a number of parameters that
grows poly-logarithmically with the overall size. . .

z A fast BLAS-like toolbox to solve our problem in this format.

There exists many formats for which this is possible, e.g., the CANDECOMP/PARAFAC
(CP) decomposition, the Tucker format, the Tensor Train (TT), the TT-Tucker, etc.; see
(Kolda and Bader 2009).

We focus on the � Tensor-Train format, since it has a simple enough toolbox to work
with: § TT-Toolbox.

35 / 46

https://github.com/oseledets/TT-Toolbox

� Tensor-Train

® But what is a tensor?

[A tensor is a multidimensional array, a ∈ R is a 0-tensor, v ∈ Rn1 is a 1-tensor,
A ∈ Rn1×n2 is a 2-tensor, A ∈ Rn1×n2×n3 is a 3-tensor, . . .

[A tensor is a multilinear maps with respect to a fixed finite-dimensional R vector
space V

A : V ∗ × · · · × V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

→ R,

[A tensor is an element of the tensor product of vector spaces

A ∈ V × · · · × V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

.

The definition we select depends on the operations we want to perform.

36 / 46

� Tensor-Train

® But what is a tensor?

[A tensor is a multidimensional array, a ∈ R is a 0-tensor, v ∈ Rn1 is a 1-tensor,
A ∈ Rn1×n2 is a 2-tensor, A ∈ Rn1×n2×n3 is a 3-tensor, . . .

[A tensor is a multilinear maps with respect to a fixed finite-dimensional R vector
space V

A : V ∗ × · · · × V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

→ R,

[A tensor is an element of the tensor product of vector spaces

A ∈ V × · · · × V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

.

The definition we select depends on the operations we want to perform.

36 / 46

� Tensor-Train

® But what is a tensor?

[A tensor is a multidimensional array, a ∈ R is a 0-tensor, v ∈ Rn1 is a 1-tensor,
A ∈ Rn1×n2 is a 2-tensor, A ∈ Rn1×n2×n3 is a 3-tensor, . . .

[A tensor is a multilinear maps with respect to a fixed finite-dimensional R vector
space V

A : V ∗ × · · · × V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

→ R,

[A tensor is an element of the tensor product of vector spaces

A ∈ V × · · · × V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

.

The definition we select depends on the operations we want to perform.

36 / 46

� Tensor-Train

® But what is a tensor?

[A tensor is a multidimensional array, a ∈ R is a 0-tensor, v ∈ Rn1 is a 1-tensor,
A ∈ Rn1×n2 is a 2-tensor, A ∈ Rn1×n2×n3 is a 3-tensor, . . .

[A tensor is a multilinear maps with respect to a fixed finite-dimensional R vector
space V

A : V ∗ × · · · × V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

→ R,

[A tensor is an element of the tensor product of vector spaces

A ∈ V × · · · × V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

.

The definition we select depends on the operations we want to perform.

36 / 46

� Tensor-Train

® But what is a tensor?

[A tensor is a multidimensional array, a ∈ R is a 0-tensor, v ∈ Rn1 is a 1-tensor,
A ∈ Rn1×n2 is a 2-tensor, A ∈ Rn1×n2×n3 is a 3-tensor, . . .

[A tensor is a multilinear maps with respect to a fixed finite-dimensional R vector
space V

A : V ∗ × · · · × V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

→ R,

[A tensor is an element of the tensor product of vector spaces

A ∈ V × · · · × V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

.

The definition we select depends on the operations we want to perform.

36 / 46

� Tensor-Train1

Let us start from trying to describe a vector associated with our discretization matrix M.

� A rank-k matrix A = U1U
T
2 each entry is a dot product of vectors of length k

A =
i1

i2

A(i1, i2) = U1(i1, :) · U2(:, i2),

where the two indices select the left and right vectors. In a tensor of order d we insert
d − 2 matrices between the two vectors:

T (i1, . . . , id) = U1(i1, :) · U2(:, :, i2) · . . . · Ud−1(:, :, id−1) · Ud(:, id)

. . .
nj

kj

kj−1

T (i1, . . . , id) =

1For part of this material, a sincere thanks to Stefano Massei.
37 / 46

� Tensor-Train1

Let us start from trying to describe a vector associated with our discretization matrix M.
� A rank-k matrix A = U1U

T
2 each entry is a dot product of vectors of length k

A =
i1

i2

A(i1, i2) = U1(i1, :) · U2(:, i2),

where the two indices select the left and right vectors.

In a tensor of order d we insert
d − 2 matrices between the two vectors:

T (i1, . . . , id) = U1(i1, :) · U2(:, :, i2) · . . . · Ud−1(:, :, id−1) · Ud(:, id)

. . .
nj

kj

kj−1

T (i1, . . . , id) =

1For part of this material, a sincere thanks to Stefano Massei.
37 / 46

� Tensor-Train1

Let us start from trying to describe a vector associated with our discretization matrix M.
� A rank-k matrix A = U1U

T
2 each entry is a dot product of vectors of length k

A =
i1

i2

A(i1, i2) = U1(i1, :) · U2(:, i2),

where the two indices select the left and right vectors. In a tensor of order d we insert
d − 2 matrices between the two vectors:

T (i1, . . . , id) = U1(i1, :) · U2(:, :, i2) · . . . · Ud−1(:, :, id−1) · Ud(:, id)

. . .
nj

kj

kj−1

T (i1, . . . , id) =

1For part of this material, a sincere thanks to Stefano Massei.
37 / 46

� Tensor-Train
More formally, a tensor T is in TT decomposition if it can be written as

. . .T (i1, . . . , id) =

• Smallest possible tuple (k1, . . . , kd−1) is called the TT-rank of T .

• Uj ∈ Ckj−1×nj×kj are called the TT cores of T (with k0 = kd = 1).

• If TT ranks are not large ⇝ high compression ratio as d grows.

• TT decomposition multilinear with respect to the cores.

If for any 1 ≤ µ ≤ d − 1 we group the first µ factors and last d − µ factors then

T (i1, . . . , iµ, iµ+1, . . . , id),

is the matrix-matrix product of two (large) matrices.

38 / 46

� Tensor-Train
More formally, a tensor T is in TT decomposition if it can be written as

T (i1, . . . , id) =

k1∑
j1=1

· · ·
kd−1∑

jd−1=1

U1(i1, j1)U2(j1, i2, j2) . . .Ud(jd−1, id).

• Smallest possible tuple (k1, . . . , kd−1) is called the TT-rank of T .

• Uj ∈ Ckj−1×nj×kj are called the TT cores of T (with k0 = kd = 1).

• If TT ranks are not large ⇝ high compression ratio as d grows.

• TT decomposition multilinear with respect to the cores.

If for any 1 ≤ µ ≤ d − 1 we group the first µ factors and last d − µ factors then

T (i1, . . . , iµ, iµ+1, . . . , id),

is the matrix-matrix product of two (large) matrices.

38 / 46

� Tensor-Train
More formally, a tensor T is in TT decomposition if it can be written as

T (i1, . . . , id) =

• Smallest possible tuple (k1, . . . , kd−1) is called the TT-rank of T .

• Uj ∈ Ckj−1×nj×kj are called the TT cores of T (with k0 = kd = 1).

• If TT ranks are not large ⇝ high compression ratio as d grows.

• TT decomposition multilinear with respect to the cores.

If for any 1 ≤ µ ≤ d − 1 we group the first µ factors and last d − µ factors then

T (i1, . . . , iµ, iµ+1, . . . , id),

is the matrix-matrix product of two (large) matrices.

38 / 46

� Tensor-Train
More formally, a tensor T is in TT decomposition if it can be written as

T (i1, . . . , id) =

k1∑
j1=1

· · ·
kd−1∑

jd−1=1

U1(i1, j1)U2(j1, i2, j2) . . .Ud(jd−1, id).

• Smallest possible tuple (k1, . . . , kd−1) is called the TT-rank of T .

• Uj ∈ Ckj−1×nj×kj are called the TT cores of T (with k0 = kd = 1).

• If TT ranks are not large ⇝ high compression ratio as d grows.

• TT decomposition multilinear with respect to the cores.

If for any 1 ≤ µ ≤ d − 1 we group the first µ factors and last d − µ factors then

T (i1, . . . , iµ, iµ+1, . . . , id),

is the matrix-matrix product of two (large) matrices.
38 / 46

� TT decomposition and matrix factorizations
The µth unfolding of T ∈ Cn1×···×nd is obtained by arranging the entries in a matrix

T<µ> ∈ C(n1···nµ)×(nµ+1···nd)

where the corresponding index map is given by

ind : Nn1×···×nd → N(n1···nµ)×(nµ+1···nd)

ind(i1, . . . , id) = (irow , icol),

where

irow = 1+

µ∑
s=1

(is − 1)
s−1∏
t=1

nt ,

icol = 1+
d∑

s=µ+1

(is − 1)
s−1∏

t=µ+1

nt

39 / 46

� TT decomposition and matrix factorizations
We can compute the compression of the tensor by computing the SVD of the unfoldings.

Lemma (Oseledets 2011)

The TT rank of a tensor T is given by
tt-rank(T) = (rank(T<1>), . . . , rank(T<d−1>)).

Input: Tensor T , ranks k1, . . . , kd)
Output: U1, . . . ,Ud .
k0 = kd = 1;
for µ = 1, . . . , d − 1 do

Reshape T into T<2> ∈ Ckµ−1nµ×(nµ+1...nd);

Compute rank-kµ approximation T<2> ≈ UΣV T (e.g. via SVD);

Reshape U into Uµ ∈ Ckµ−1×nµ×kµ ;

Update T via T<2> ← UTX<2> = ΣV T ;

end
Set Ud = T ;

Algorithm 1: TT-SVD(T , k1, . . . , kd)

[The proof is
obtained by simply
following the steps of
the algorithm.
� We can use
tolerances instead of
fixed ranks.

40 / 46

� TT decomposition and matrix factorizations

And we can estimate the resulting error using the best approximation properties of the SVD.

Theorem (Oseledets 2011)

Let TSVD denote the tensor in TT decomposition obtained from TT-SVD. Then

∥T − TSVD∥ ≤
√
ϵ21 + · · ·+ ϵ2d

where
ϵ2µ = ∥T<µ> − UΣV T∥2F = σ2kµ+1 + σ

2
kµ+2 +

Ó We can modify the algorithm to accommodate different compression algorithms than
the SVD,

Ó We can also compute the approximation via sketching algorithms, and avoiding using
all the entries of T .

41 / 46

� TT-Matrices and matrix-vector products
If a vector of length N = n1 × . . .× nd is treated as a d–dimensional tensor with mode
sizes nk , and represented in TT–format, the matrices acting on it have the form

M(i1, . . . , id , j1, . . . , jd) = M1(i1, j1) . . .M(id , jd), Mk(ik , jk) ∈ Rrk−1×rk ,

Ô the first block indexes i1, . . . , id enumerate the rows,

Ô the second block indexes j1, . . . , jd enumerate the columns.

Given M in TT–format, and a vector X in TT–format with cores Xk , and entries
X (j1, . . . , jd) then the matrix–vector multiplication amounts to the following sum

Y(i1, . . . , id) =
∑
j1,...,jd

M(i1, . . . , id , j1, . . . , jd)X (j1, . . . , jd) = Y1(i1) . . .Yd(id),

where Yk(ik) =
∑

jk
Mk(ik , jk)⊗ Xk(jk)

.The ranks of Y are the product of the ranks of
the matrix and of the vector! So we need to recompress after every matrix-vector product.

42 / 46

� TT-Matrices and matrix-vector products
If a vector of length N = n1 × . . .× nd is treated as a d–dimensional tensor with mode
sizes nk , and represented in TT–format, the matrices acting on it have the form

M(i1, . . . , id , j1, . . . , jd) = M1(i1, j1) . . .M(id , jd), Mk(ik , jk) ∈ Rrk−1×rk ,

Ô the first block indexes i1, . . . , id enumerate the rows,

Ô the second block indexes j1, . . . , jd enumerate the columns.

Given M in TT–format, and a vector X in TT–format with cores Xk , and entries
X (j1, . . . , jd) then the matrix–vector multiplication amounts to the following sum

Y(i1, . . . , id) =
∑
j1,...,jd

M(i1, . . . , id , j1, . . . , jd)X (j1, . . . , jd) = Y1(i1) . . .Yd(id),

where Yk(ik) =
∑

jk
Mk(ik , jk)⊗ Xk(jk)

.The ranks of Y are the product of the ranks of
the matrix and of the vector! So we need to recompress after every matrix-vector product.

42 / 46

� TT-Matrices and matrix-vector products
If a vector of length N = n1 × . . .× nd is treated as a d–dimensional tensor with mode
sizes nk , and represented in TT–format, the matrices acting on it have the form

M(i1, . . . , id , j1, . . . , jd) = M1(i1, j1) . . .M(id , jd), Mk(ik , jk) ∈ Rrk−1×rk ,

Ô the first block indexes i1, . . . , id enumerate the rows,

Ô the second block indexes j1, . . . , jd enumerate the columns.

Given M in TT–format, and a vector X in TT–format with cores Xk , and entries
X (j1, . . . , jd) then the matrix–vector multiplication amounts to the following sum

Y(i1, . . . , id) =
∑
j1,...,jd

M(i1, . . . , id , j1, . . . , jd)X (j1, . . . , jd) = Y1(i1) . . .Yd(id),

where Yk(ik) =
∑

jk
Mk(ik , jk)⊗ Xk(jk)

.The ranks of Y are the product of the ranks of
the matrix and of the vector! So we need to recompress after every matrix-vector product.

42 / 46

� TT-Matrices and matrix-vector products
If a vector of length N = n1 × . . .× nd is treated as a d–dimensional tensor with mode
sizes nk , and represented in TT–format, the matrices acting on it have the form

M(i1, . . . , id , j1, . . . , jd) = M1(i1, j1) . . .M(id , jd), Mk(ik , jk) ∈ Rrk−1×rk ,

Ô the first block indexes i1, . . . , id enumerate the rows,

Ô the second block indexes j1, . . . , jd enumerate the columns.

Given M in TT–format, and a vector X in TT–format with cores Xk , and entries
X (j1, . . . , jd) then the matrix–vector multiplication amounts to the following sum

Y(i1, . . . , id) =
∑
j1,...,jd

M(i1, . . . , id , j1, . . . , jd)X (j1, . . . , jd) = Y1(i1) . . .Yd(id),

where Yk(ik) =
∑

jk
Mk(ik , jk)⊗ Xk(jk) .The ranks of Y are the product of the ranks of

the matrix and of the vector! So we need to recompress after every matrix-vector product.
42 / 46

� TT-representation for our case

Ó We can use the same routine as before
to represent the two BVM matrices,

Ó We build a tensor in which all the modes
have size 2, this is usually called a
Quantized-TT (QTT) formulation:

� If we look at the values of k and
maximal tt-rank we find:

k 2 3 4 5 6 7 8

max(tt-rank(A)) 3 5 6 7 7 7 9

%% Time-dependent operator

kval = 5; % Grid power

m = 2^kval; % Number of time

steps↪→
k = 2;

[Alpha,Beta] = mab(k,m);

A = Alpha(:,2:m+1);

B = Beta(:,2:m+1);

t0 = 0;

tf = 1;

h = (tf-t0)/m;

tA = tt_matrix(full(A),1e-14);

tA = tt_reshape(tA,2*ones(kval,2));

tB = tt_eye(2,kval);

43 / 46

� TT-representation for our case

Ó We can use the same routine as before
to represent the two BVM matrices,

Ó We build a tensor in which all the modes
have size 2, this is usually called a
Quantized-TT (QTT) formulation:

tA=tt_matrix(full(A),1e-14);

tA=tt_reshape(tA,2*ones(kval,2));

� If we look at the values of k and
maximal tt-rank we find:

k 2 3 4 5 6 7 8

max(tt-rank(A)) 3 5 6 7 7 7 9

%% Time-dependent operator

kval = 5; % Grid power

m = 2^kval; % Number of time

steps↪→
k = 2;

[Alpha,Beta] = mab(k,m);

A = Alpha(:,2:m+1);

B = Beta(:,2:m+1);

t0 = 0;

tf = 1;

h = (tf-t0)/m;

tA = tt_matrix(full(A),1e-14);

tA = tt_reshape(tA,2*ones(kval,2));

tB = tt_eye(2,kval);

43 / 46

� TT-representation for our case

Ó We can use the same routine as before
to represent the two BVM matrices,

Ó We build a tensor in which all the modes
have size 2, this is usually called a
Quantized-TT (QTT) formulation:

tA=tt_matrix(full(A),1e-14);

tA=tt_reshape(tA,2*ones(kval,2));

� If we look at the values of k and
maximal tt-rank we find:

k 2 3 4 5 6 7 8

max(tt-rank(A)) 3 5 6 7 7 7 9

%% Time-dependent operator

kval = 5; % Grid power

m = 2^kval; % Number of time

steps↪→
k = 2;

[Alpha,Beta] = mab(k,m);

A = Alpha(:,2:m+1);

B = Beta(:,2:m+1);

t0 = 0;

tf = 1;

h = (tf-t0)/m;

tA = tt_matrix(full(A),1e-14);

tA = tt_reshape(tA,2*ones(kval,2));

tB = tt_eye(2,kval);

43 / 46

� TT-representation for our case

� We can act similarly also for the space
operator.

. We could be way more clever in the
representation of these matrices, these
are diagonal times Toeplitz, and we
could do something specialized, e.g.,
(Kazeev, Khoromskij, and Tyrtyshnikov
2013).

%% Compression of the space part

tL = tt_matrix(L,1e-14);

tL = tt_reshape(tL,2*ones(kval+1,2));

tM = tt_eye(2,kval+1);

%% Final assembly

tMat = tkron(tA,tM)-h*tkron(tB,tL);

® Now that we have everything in this format, how can we solve our problem?

TT-GMRES An option is to rephrase our favorite Krylov method using the TT arithmetic,
(Dolgov 2013) and adapt what we know to build a preconditioner (Bertaccini
and Durastante 2019).

AMEn Use a specialized solver for linear systems in TT format (Dolgov and
Savostyanov 2014).

44 / 46

� TT-representation for our case

� We can act similarly also for the space
operator.

. We could be way more clever in the
representation of these matrices, these
are diagonal times Toeplitz, and we
could do something specialized, e.g.,
(Kazeev, Khoromskij, and Tyrtyshnikov
2013).

%% Compression of the space part

tL = tt_matrix(L,1e-14);

tL = tt_reshape(tL,2*ones(kval+1,2));

tM = tt_eye(2,kval+1);

%% Final assembly

tMat = tkron(tA,tM)-h*tkron(tB,tL);

® Now that we have everything in this format, how can we solve our problem?

TT-GMRES An option is to rephrase our favorite Krylov method using the TT arithmetic,
(Dolgov 2013) and adapt what we know to build a preconditioner (Bertaccini
and Durastante 2019).

AMEn Use a specialized solver for linear systems in TT format (Dolgov and
Savostyanov 2014).

44 / 46

� TT-representation for our case

� We can act similarly also for the space
operator.

. We could be way more clever in the
representation of these matrices, these
are diagonal times Toeplitz, and we
could do something specialized, e.g.,
(Kazeev, Khoromskij, and Tyrtyshnikov
2013).

%% Compression of the space part

tL = tt_matrix(L,1e-14);

tL = tt_reshape(tL,2*ones(kval+1,2));

tM = tt_eye(2,kval+1);

%% Final assembly

tMat = tkron(tA,tM)-h*tkron(tB,tL);

® Now that we have everything in this format, how can we solve our problem?

TT-GMRES An option is to rephrase our favorite Krylov method using the TT arithmetic,
(Dolgov 2013) and adapt what we know to build a preconditioner (Bertaccini
and Durastante 2019).

AMEn Use a specialized solver for linear systems in TT format (Dolgov and
Savostyanov 2014).

44 / 46

� TT-representation for our case

� We can act similarly also for the space
operator.

. We could be way more clever in the
representation of these matrices, these
are diagonal times Toeplitz, and we
could do something specialized, e.g.,
(Kazeev, Khoromskij, and Tyrtyshnikov
2013).

%% Compression of the space part

tL = tt_matrix(L,1e-14);

tL = tt_reshape(tL,2*ones(kval+1,2));

tM = tt_eye(2,kval+1);

%% Final assembly

tMat = tkron(tA,tM)-h*tkron(tB,tL);

® Now that we have everything in this format, how can we solve our problem?

TT-GMRES An option is to rephrase our favorite Krylov method using the TT arithmetic,
(Dolgov 2013) and adapt what we know to build a preconditioner (Bertaccini
and Durastante 2019).

AMEn Use a specialized solver for linear systems in TT format (Dolgov and
Savostyanov 2014).

44 / 46

� TT-representation for our case

� We can act similarly also for the space
operator.

. We could be way more clever in the
representation of these matrices, these
are diagonal times Toeplitz, and we
could do something specialized, e.g.,
(Kazeev, Khoromskij, and Tyrtyshnikov
2013).

%% Compression of the space part

tL = tt_matrix(L,1e-14);

tL = tt_reshape(tL,2*ones(kval+1,2));

tM = tt_eye(2,kval+1);

%% Final assembly

tMat = tkron(tA,tM)-h*tkron(tB,tL);

® Now that we have everything in this format, how can we solve our problem?

TT-GMRES An option is to rephrase our favorite Krylov method using the TT arithmetic,
(Dolgov 2013) and adapt what we know to build a preconditioner (Bertaccini
and Durastante 2019).

AMEn Use a specialized solver for linear systems in TT format (Dolgov and
Savostyanov 2014).

44 / 46

í Concluding with an AMEn

Using AMEn (Dolgov and Savostyanov 2014) as

tx = amen_solve2(tMat,ttb,1e-6);

4 Behavior is similar to the matrix-equation solver,

� We could play around with different settings and options of the AMEn solver.

O Studying the right combination of parameters, representation, setups is still an open
problem for the BVM all-at-once approaches.

45 / 46

í Concluding with an AMEn
Using AMEn (Dolgov and Savostyanov 2014) as

tx = amen_solve2(tMat,ttb,1e-6);

k m n IT Residual max(tt-rank(A))

2 64 128 9 2.231e-07 22
2 128 256 10 3.428e-07 26
2 256 512 14 5.925e-07 30
2 512 1024 22 3.957e-07 33
2 1024 2048 35 6.034e-07 37
2 2048 4096 47 6.968e-07 42

4 Behavior is similar to the matrix-equation solver,
� We could play around with different settings and options of the AMEn solver.
O Studying the right combination of parameters, representation, setups is still an open

problem for the BVM all-at-once approaches.

45 / 46

í Concluding with an AMEn
Using AMEn (Dolgov and Savostyanov 2014) as

tx = amen_solve2(tMat,ttb,1e-6);

k m n IT Residual max(tt-rank(A))

3 64 128 8 2.252e-07 20
3 128 256 11 2.153e-07 24
3 256 512 15 2.138e-07 28
3 512 1024 18 2.950e-07 32
3 1024 2048 35 8.961e-07 36
3 2048 4096 50 3.821e-06 44

4 Behavior is similar to the matrix-equation solver,
� We could play around with different settings and options of the AMEn solver.
O Studying the right combination of parameters, representation, setups is still an open

problem for the BVM all-at-once approaches.

45 / 46

í Concluding with an AMEn
Using AMEn (Dolgov and Savostyanov 2014) as

tx = amen_solve2(tMat,ttb,1e-6);

k m n IT Residual max(tt-rank(A))

3 64 128 8 2.252e-07 20
3 128 256 11 2.153e-07 24
3 256 512 15 2.138e-07 28
3 512 1024 18 2.950e-07 32
3 1024 2048 35 8.961e-07 36
3 2048 4096 50 3.821e-06 44

4 Behavior is similar to the matrix-equation solver,

� We could play around with different settings and options of the AMEn solver.
O Studying the right combination of parameters, representation, setups is still an open

problem for the BVM all-at-once approaches.

45 / 46

í Concluding with an AMEn
Using AMEn (Dolgov and Savostyanov 2014) as

tx = amen_solve2(tMat,ttb,1e-6);

k m n IT Residual max(tt-rank(A))

3 64 128 8 2.252e-07 20
3 128 256 11 2.153e-07 24
3 256 512 15 2.138e-07 28
3 512 1024 18 2.950e-07 32
3 1024 2048 35 8.961e-07 36
3 2048 4096 50 3.821e-06 44

4 Behavior is similar to the matrix-equation solver,
� We could play around with different settings and options of the AMEn solver.

O Studying the right combination of parameters, representation, setups is still an open
problem for the BVM all-at-once approaches.

45 / 46

í Concluding with an AMEn
Using AMEn (Dolgov and Savostyanov 2014) as

tx = amen_solve2(tMat,ttb,1e-6);

k m n IT Residual max(tt-rank(A))

3 64 128 8 2.252e-07 20
3 128 256 11 2.153e-07 24
3 256 512 15 2.138e-07 28
3 512 1024 18 2.950e-07 32
3 1024 2048 35 8.961e-07 36
3 2048 4096 50 3.821e-06 44

4 Behavior is similar to the matrix-equation solver,
� We could play around with different settings and options of the AMEn solver.
O Studying the right combination of parameters, representation, setups is still an open

problem for the BVM all-at-once approaches.
45 / 46

Conclusion and summary

¥ We have seen how to work with linear multistep methods in boundary value form,

¥ We have discussed some structured preconditioning strategy for the resulting linear
systems,

¥ We have introduced the machinery for working with tensor equations in the Tensor
Train format.

O There are many open problems and possibilities to do better here.

Next up

Á Fractional Laplacians,

Á Rational approximations and matrix functions,

Á A couple of applications to complex network theory.

46 / 46

Bibliography I

Bertaccini, D. (2000). “A circulant preconditioner for the systems of LMF-based ODE codes”.
In: SIAM J. Sci. Comput. 22.3, pp. 767–786. issn: 1064-8275. doi:
10.1137/S1064827599353476. url: https://doi.org/10.1137/S1064827599353476.

— (2001). “Reliable preconditioned iterative linear solvers for some numerical integrators”. In:
Numer. Linear Algebra Appl. 8.2, pp. 111–125. issn: 1070-5325. doi:
10.1002/1099-1506(200103)8:2<111::AID-NLA234>3.0.CO;2-Q. url: https:
//doi.org/10.1002/1099-1506(200103)8:2%3C111::AID-NLA234%3E3.0.CO;2-Q.

Bertaccini, D. and F. Durastante (2019). “Block structured preconditioners in tensor form for
the all-at-once solution of a finite volume fractional diffusion equation”. In: Appl. Math. Lett.
95, pp. 92–97. issn: 0893-9659. doi: 10.1016/j.aml.2019.03.028. url:
https://doi.org/10.1016/j.aml.2019.03.028.

Bertaccini, D. and F. Durastante (2018). “Limited memory block preconditioners for fast
solution of fractional partial differential equations”. In: J. Sci. Comput. 77.2, pp. 950–970. issn:
0885-7474. doi: 10.1007/s10915-018-0729-3. url:
https://doi.org/10.1007/s10915-018-0729-3.

https://doi.org/10.1137/S1064827599353476
https://doi.org/10.1137/S1064827599353476
https://doi.org/10.1002/1099-1506(200103)8:2<111::AID-NLA234>3.0.CO;2-Q
https://doi.org/10.1002/1099-1506(200103)8:2%3C111::AID-NLA234%3E3.0.CO;2-Q
https://doi.org/10.1002/1099-1506(200103)8:2%3C111::AID-NLA234%3E3.0.CO;2-Q
https://doi.org/10.1016/j.aml.2019.03.028
https://doi.org/10.1016/j.aml.2019.03.028
https://doi.org/10.1007/s10915-018-0729-3
https://doi.org/10.1007/s10915-018-0729-3

Bibliography II

Bertaccini, D. and M. K. Ng (2001). “The convergence rate of block preconditioned systems
arising from LMF-based ODE codes”. In: BIT 41.3, pp. 433–450. issn: 0006-3835. doi:
10.1023/A:1021906926616. url: https://doi.org/10.1023/A:1021906926616.

Brugnano, L. and D. Trigiante (1998). Solving differential problems by multistep initial and
boundary value methods. Vol. 6. Stability and Control: Theory, Methods and Applications.
Gordon and Breach Science Publishers, Amsterdam, pp. xvi+418. isbn: 90-5699-107-8.

Dolgov, S. V. (2013). “TT-GMRES: solution to a linear system in the structured tensor format”.
In: Russian J. Numer. Anal. Math. Modelling 28.2, pp. 149–172. issn: 0927-6467. doi:
10.1515/rnam-2013-0009. url: https://doi.org/10.1515/rnam-2013-0009.

Dolgov, S. V. and D. V. Savostyanov (2014). “Alternating minimal energy methods for linear
systems in higher dimensions”. In: SIAM J. Sci. Comput. 36.5, A2248–A2271. issn: 1064-8275.
doi: 10.1137/140953289. url: https://doi.org/10.1137/140953289.

Gu, X.-M. et al. (2015). “Strang-type preconditioners for solving fractional diffusion equations
by boundary value methods”. In: J. Comput. Appl. Math. 277, pp. 73–86. issn: 0377-0427. doi:
10.1016/j.cam.2014.08.011. url: https://doi.org/10.1016/j.cam.2014.08.011.

https://doi.org/10.1023/A:1021906926616
https://doi.org/10.1023/A:1021906926616
https://doi.org/10.1515/rnam-2013-0009
https://doi.org/10.1515/rnam-2013-0009
https://doi.org/10.1137/140953289
https://doi.org/10.1137/140953289
https://doi.org/10.1016/j.cam.2014.08.011
https://doi.org/10.1016/j.cam.2014.08.011

Bibliography III

Kazeev, V. A., B. N. Khoromskij, and E. E. Tyrtyshnikov (2013). “Multilevel Toeplitz matrices
generated by tensor-structured vectors and convolution with logarithmic complexity”. In: SIAM
J. Sci. Comput. 35.3, A1511–A1536. issn: 1064-8275. doi: 10.1137/110844830. url:
https://doi.org/10.1137/110844830.

Kolda, T. G. and B. W. Bader (2009). “Tensor decompositions and applications”. In: SIAM
Rev. 51.3, pp. 455–500. issn: 0036-1445. doi: 10.1137/07070111X. url:
https://doi.org/10.1137/07070111X.

Oseledets, I. V. (2011). “Tensor-train decomposition”. In: SIAM J. Sci. Comput. 33.5,
pp. 2295–2317. issn: 1064-8275. doi: 10.1137/090752286. url:
https://doi.org/10.1137/090752286.

https://doi.org/10.1137/110844830
https://doi.org/10.1137/110844830
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286

	All-at-once
	Linear Multistep Methods (LMM)
	Linear Multistep Methods in Boundary Value Form
	Additional formulas
	An example with GBDF
	Structured preconditioner
	Tensor Equations

	Conclusion and summary
	References

