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Nonlocal operators (Andreu-Vaillo et al. 2010)
Let Ω ⊂ Rn denote a bounded and open domain.
The action of a nonlocal diffusion operator L on u(x) : Ω→ R is defined as

Lu(x) = 2

∫
Rn

(u(y) − u(x))γ(x, y)dy, ∀ x ∈ Ω ⊆ Rn.

Ó the volume Ω is non-zero,

Ó the kernel γ(x, y) : Ω×Ω→ R is nonnegative and symmetric.

The first interesting equation is the nonlocal steady-state{
−Lu = f , on Ω,

u = 0, on ΩI ,

4 the equality constraint should be defined in general on an interaction volume ΩI that
is disjoint from Ω; typically ΩI = Rn \Ω ≡ Ωc .
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Fractional Laplacian

We are interested in a particular nonlocal operator L called the Fractional Laplacian.

Fractional Laplacian

The fractional Laplacian is the pseudo-differential operator with Fourier symbol F satisfying

(−∆)αu(ξ) = |ξ|2αû(ξ), 0 < α ≤ 1,

where û denotes the Fourier transform of u.

Fractional Laplacian: integral formulation

An equivalent characterization of the fractional Laplacian is given by

� We can play around with the definitions. . .
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(−∆)αu(ξ) = |ξ|2αû(ξ), 0 < α ≤ 1,

where û denotes the Fourier transform of u.

Fractional Laplacian: integral formulation

An equivalent characterization of the fractional Laplacian is given by

(−∆)αu = cn,α

∫
Rn

u(x) − u(y)

|y − x|n+2α
dy, 0 < α < 1, cn,α = α22α

Γ((n+2)/2)

Γ(1/2)Γ(1− α)
.
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Fractional Laplacian (10 equivalent definitions)
[We denote by Lp (p ∈ [1,∞)) the Lebesgue spaces, C0 the space of continuous functions
vanishing at infinity, and with Cbu the space of bounded uniformly continuous functions.

Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(a) Fourier definition:
F(Lf )(ξ) = −|ξ|βFf (ξ)

(if X = Lp, p ∈ [1, 2]);

(b) distributional definition:∫
Rd

Lf (y)φ(y)dy =

∫
Rd

f (x)Lφ(x)dx

for all Schwartz functions φ, with Lφ defined, for example, as in (a);
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[We denote by Lp (p ∈ [1,∞)) the Lebesgue spaces, C0 the space of continuous functions
vanishing at infinity, and with Cbu the space of bounded uniformly continuous functions.

Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(c) Bochner’s1definition:

Lf =
1

|Γ(−β
2 )|

∫∞
0
(et∆f − f )t−1−β/2dt,

with the Bochner’s integral of an X-valued function;

1Bochner’s integral extends the definition of Lebesgue integral to functions that take values in a Banach
space, as the limit of integrals of simple functions.
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sin βπ

2

π

∫∞
0
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(e) singular integral definition:

Lf = lim
r→0+

2βΓ(d+β2 )
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∫
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Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(h) semigroup definition:
Lf = lim

t→0+

Pt f − f

t
,

where Pt f = f ∗ pt and Fpt(ξ) = e−t |ξ|β ;

(i) definition as the inverse of the Riesz potential:

Γ(d−β2 )

2βπd/2Γ(β2 )

∫
Rd

Lf (·+ z)

|z |d−β
dz = −f (·)

(if β < d and X = Lp, p ∈ [1, dβ)); 3 / 47
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vanishing at infinity, and with Cbu the space of bounded uniformly continuous functions.

Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(j) definition through harmonic extensions:
∆xu(x , y) + β

2c
2/β
β y2−2/β∂2yu(x , y) = 0 for y > 0,

u(x , 0) = f (x),

∂yu(x , 0) = Lf (x),

where cβ = 2−β|Γ(−β
2 )|/Γ(

β
2 ) and where u(·, y) is a function of class X which

depends continuously on y ∈ [0,∞) and ∥u(·, y)∥X is bounded in y ∈ [0,∞).
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[We denote by Lp (p ∈ [1,∞)) the Lebesgue spaces, C0 the space of continuous functions
vanishing at infinity, and with Cbu the space of bounded uniformly continuous functions.

Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent.
In addition, in (c), (e), (f), (h) and (j), convergence in the uniform norm can be relaxed to
pointwise convergence to a function in X when X = C0 or X = Cbu. Finally, for X = Lp

with p ∈ [1,∞), norm convergence in (e), (f), (h) or (j) implies pointwise convergence for
almost all x .

Ó Convergence properties described here are for the full-space definitions of the
fractional Laplace operator L.

� We can invent numerical methods starting from each of these definitions.
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Fractional Laplacian: equations on bounded domains
If Ω is bounded we can modify our first definition as follows.

å Take u : Ω→ R and extend it to zero outside of Ω:

(−∆)αũ = f in Ω, ũ = 0 in Ωc = Rn \Ω.

where

(−∆)αũ = cn,α

∫
Rn

ũ(x) − ũ(y)

|x− y|n+2s
dy

and thus ũ is the extension by zero to Rn of a function u : Ω→ R in L2(Ω).

Ó Stochastic interpretation.

As we have seen when discussing the other derivatives, we can interpret also the Fractional
Laplacian in a stochastic way. Indeed, one can prove that it is the infinitesimal generator of
a 2α-stable Lévy process. The boundary conditions means that the particles are killed
upon reaching Ωc .
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Fractional Laplacian: equations on bounded domains
The second definition relies instead on spectral theory.

Ó Recall that −∆ : D(−∆) ⊂ L2(Ω)→ L2(Ω) is an unbounded, positive and closed
operator with dense domain D(−∆) = H1

0(Ω) ∩H2(Ω) with a compact inverse.

[ There is a countable collection of eigenpairs {λk , φk }k∈N ⊂ R+ ×H1
0(Ω) such that

{φk }k∈N is an orthonormal basis of L2(Ω) (and of H1
0(Ω)).

å The fractional power of the Dirichlet Laplacian can thus be defined ∀ u ∈ C∞
0 as

(−∆)αu =

+∞∑
k=1

λαkukφk , uk = ⟨w , φk⟩L2(Ω) =

∫
Ω

wφk dx , k ∈ N

Extension

This definition of (−∆)α can be extended by density to

Hα(Ω) =

{
w =

+∞∑
k=1

wkφk :

+∞∑
k=1

λskw
2
k < +∞} .
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Ó definitions on bounded domains aren’t equivalent!
The integral definition of the Fractional Laplacian in

(−∆)αũ = f in Ω, ũ = 0 in Ωc = Rn \Ω,

and the spectral definition

(−∆)αu =

+∞∑
k=1

λαkukφk , uk = ⟨w , φk⟩L2(Ω) =

∫
Ω

wφk dx , k ∈ N,

are NOT EQUIVALENT!

Differences

Their difference is positive and positivity preserving (Musina and Nazarov 2014, Theorems 1 and
2). Furthermore, if we call d(x , ∂Ω) the distance for x ∈ Ω to the boundary ∂Ω we find

(integral) u(x) ≈ d(x , ∂Ω)α + v(x), (spectral) u(x) ≈

{
d(x , ∂Ω)2α + v(x), α ∈ (0, 1/2),

d(x , ∂Ω) + v(x), α ∈ (1/2, 1),

for a smooth v(x).
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[Equations of interest

Selecting the right definition for the problem the setting one has in mind (finite domain,
infinite domain, . . .) we can formulate several PDE with this new operator.

Diffusion-reaction ∂tu + (−∆)αu + c(t, x)u = 0, Domain (0,+∞)× Rn,

Quasi-geostrophic ∂tθ+ u · ∇θ+ κ(−∆)αθ = f , Domain [0,T ]× R2,

Cahn-Hilliard ∂tu + (−∆)α(−ε2∆u + f (u)) = 0, Domain (O,T ]× (0, 2π)2,

Porous medium ∂tu + (−∆)α(|u|m−1 sign(u)) = 0, Domain (0,+∞)× Rn,

Schrödinger iℏ∂tψ = Dα(−ℏ2∆)αψ+ V (r , t)ψ, Domain (r , t) ∈ R3 × (0,+∞),

Ultrasound c−2
0 ∂2tp = ∇2p − {τ∂t(−∆)

α + η(−∆)α+1/2}p, Domain (−∞,+∞)× Rn.

4 See the review (Lischke et al. 2020) for an updated list of references.
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The Spectral Fractional Laplacian
Let us focus on problem using the spectral Fractional Laplacian

(−∆)αu =

+∞∑
k=1

λαkukφk , uk = ⟨w , φk⟩L2(Ω) =

∫
Ω

wφk dx , k ∈ N.

® How can we obtain reliable numerical methods?

� The Matrix-Transfer Technique

The idea from (Ilic et al. 2005, 2006) goes as follows, suppose that we have a discretization
scheme for −∆ on Ω. That is, we can build An = −∆h ≈ −∆ on a discrete Ωh (h→ 0 for
n→ +∞), then:

(−∆)α ≈ (−∆h)
α = Aαn ,

i.e., we have to compute a matrix function of (sparse) matrix discretizing the ordinary
Laplacian on the domain of interest.
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The Finite Difference Example

The simplest example we can think of is using finite differences on Ω = [0, 1] to solve for{
(−∆)αu = f (x), x ∈ (0, 1),

u(0) = u(1) = 0.

This can be rewritten as

An =
1

h2
Tn−2(2− 2 cos(θ)), h =

1

n − 1
,

on the grid {xj = jh}nj=0, and solved on the
inner nodes

un(2 : n − 1) = A−α
n f(2 : n − 1),

via diagonalization.
9 / 47
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1

n − 1
,

on the grid {xj = jh}nj=0, and solved on the
inner nodes

un(2 : n − 1) = A−α
n f(2 : n − 1),

via diagonalization.

n = 100; h = 1/(n-1);

x = linspace(0,1,n).';

e = ones(n-2,1);

An = spdiags([-e,2*e,-e]/h^2,-1:1,

n-2,n-2);↪→
f = sin(pi*x);

u = [0;An\f(2:n-1);0];

[U,L,V] = eig(full(An));

ualpha = @(alpha)

[0;V'\(L.^alpha\(U\f(2:n-1)));0];↪→
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The Finite Difference Example
The simplest example we can think of is using finite differences on Ω = [0, 1] to solve for{

(−∆)αu = f (x), x ∈ (0, 1),

u(0) = u(1) = 0.

This can be rewritten as

An =
1

h2
Tn−2(2− 2 cos(θ)), h =

1

n − 1
,

on the grid {xj = jh}nj=0, and solved on the
inner nodes

un(2 : n − 1) = A−α
n f(2 : n − 1),

via diagonalization. 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
f (x) Laplacian α = 0.1
α = 0.5 α = 0.9
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The general case

� Somebody usually gets angry if we start diagonalizing stuff. . .

so the right way to do is
going for a matrix function times vector computation.

Ó We need to compute g(z) = z−α for α ∈ (0, 1),

Ó on a matrix An that is either symmetric and positive definite, or of a matrix that is
similar to an SPD matrix,

Ó An has also a condition number that grows (at least quadratically) with its size, i.e., is
ill-conditioned.

® What method do we select?

å An is sparse and, if we deal with a regular uniform grid maybe also Toeplitz, a Lanczos
polynomial Krylov with fast convergence would be perfect if it reaches convergence
with a number of iteration independent of the size n.

® Is this the case?
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The Polynomial Krylov Method
If we use a polynomial Krylov subspace

Kℓ(An, v) = Span{v,Anv, . . . ,A
ℓ−1
n v}

to solve the problem, then the behavior is controlled by the approximation property

∥x− xℓ∥ ≤ C · min
p(z)∈Pℓ−1

max
z∈Λ(An)

|p(z) − z−α|

for Pℓ−1 the set of polynomial of degree ≤ ℓ, and C a constant independent of A and ℓ.

ytrue = mpower(full(An),-alpha)*b;

[Q,H] = arnoldi(An,b,l);

for j=1:l

y = Q(:,1:j)*(mpower(H(1:j,1:j),

-alpha)*(Q(:,1:j)'*b));↪→
err(j) = norm(y-ytrue)./norm(ytrue);

end
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Rational Krylov Method
We need better functions for our approximation problem, i.e., rational functions!

A general framework

Given a set of scalars {σ1, . . . , σk−1} ⊂ C (the extended complex plane), that are not
eigenvalues of A, let

qk−1(z) =
∏k−1

j=1
(σj − z).

The rational Krylov subspace of order k associated with A, v and qk−1 is defined by

Qk(A, v) = [qk−1(A)]
−1Kk(A, v), Kk(A, v) = Span{v,Av, . . . ,Ak−1v}.

A matrix expression

Given {µ1, . . . , µk−1} ⊂ C such that σj ̸= µ−2
j , we define the matrices

Cj = (µjσjA− I ) (σj I − A)−1, and Qk(A, v) = Span{v,C1v, . . . ,Ck−1 · · ·C2C1v}.
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Rational Krylov Method

A matrix expression

Given {µ1, . . . , µk−1} ⊂ C such that σj ̸= µ−2
j , we define the matrices

Cj = (µjσjA− I ) (σj I − A)−1, and Qk(A, v) = Span{v,C1v, . . . ,Ck−1 · · ·C2C1v}.

Polynomial Krylov Wk(A, v) = Kk(A, v) set µj = 1 and σj =∞ for each j ,

Extended Krylov W2k−1(A, v) = Span{v,A−1v,Av, . . . ,A−(k−1)v,Ak−1v}, set

(µj , σj) =

{
(1,∞), for j even,
(0, 0), for j odd.

Shift-And-Invert Wk(A, v) = Span{v, (σI − A)−1v, . . . , (σI − A)−(k−1)v}, take µj = 0 and
σj = σ for each j ,

� We are left our usual problem: how do we select the poles?
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Pole Selection Strategies

� Given a function g(z) we find an
explicit (minimal) rational approximation:

g(z) =
Pℓ(z)

Qq(z)
, Pℓ ∈ Pℓ[x ], Qq ∈ Pq[x ],

and use its poles for the RK-Method.

¥ Reasonably easy to get worst case
scenario bounds;

q If we want an approximation of the same
class with more poles we usually need to
redo everything from scratch;

� There exist brute force algorithm to get
such approximations.

X Direct rational approximations

Sometimes it may be worth our while to use
directly g(An)v = Qq(An)

−1Pℓ(An)v.
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Best Uniform Rational Approximation (BURA)

We try to find the poles by solving the min-max problem

max
t∈[0,1]

|tα − rα,k(t)| = min
rk (t)∈Rk,k

max
t∈[0,1]

|tα − rk(t)|, α ∈ (0, 1),

for rk(t) a (k , k)-rational function.

Theorem (Stahl 2003, Theorem 1)

Eα,k = max
t∈[0,1]

|tα − rα,k(t)| = 4α+1| sin(απ)|e−2π
√
αk .

å The matrix is approximated as A−α ≈ λ−α1,hrα,k(λ1,hA
−1).

® But how do we compute rα,k(t) in practice?

� There is no explicit solution, thus we need to use a numerical method.
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Best Uniform Rational Approximation (BURA)
The workhorse for computing BURA is the Remez algorithm (Braess 1986, § 6.B)

� Determine the points at which
the error of the BURA
equioscillates.

� Starting with a suitable initial
guess, it iteratively determines a
rational approximation passing
through these points while
shifting one or more toward a
nearby local maximum.

# Implementation is delicate
matter, observe we want both
stability and possibly quadratic
convergence.

Chose P(0)/Q(0) ∈ Rm,n and l points {x1i }
l
i=1;

k ← 1;
while not satisfied do

Determine P(k)/Q(k) ∈ Rm,n and ηk ∈ R such
that for i = 1, 2, . . . , l

f (xki ) − P(k)(xki )/Q
(k)(xki ) = (−1)iηk

Determine xk+1
1 < xk+1

2 < · · · < xk+1
l such

that for i = 1, 2, . . . , l

s(−1)i (f − P(k)/Q(k))(xk+1
i ) ≥ |ηk |,

and that for one i ∈ {1, 2, . . . , l} the left-hand
side equals ∥f − P(k)/Q(k)∥, s = ±1;

k ← k + 1;

end
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Best Uniform Rational Approximation (BURA)

A recent and available implementation is given in the 3 Python baryrat package,
see (Hofreither 2021).

import numpy as np

import baryrat

alpha = 0.5

def f(x): return x**alpha

r = baryrat.brasil(f, [0,1], 5)

That gives us the r.poles(0):

σ = {−3.21294874e + 00,−1.62633499e − 01,

−1.27958136e − 02,−6.62129541e − 04,

−1.22326563e − 05}.

0.0 0.2 0.4 0.6 0.8 1.0
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0.0001

0.0000
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0.0002

k = 5, α = 1/2
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Best Uniform Rational Approximation (BURA)

A recent and available implementation is given in the 3 Python baryrat package,
see (Hofreither 2021).
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Best Uniform Rational Approximation (BURA)
One can couple the error analysis with the one coming from the discretization of the
Laplacian to get overall results (Harizanov et al. 2020).

Theorem (Harizanov et al. 2020, Theorem 4.2).

Let Ω ⊂ R2 and suppose that the solution is in H2(Ω) ∪H1
0(Ω) and satisfies

∥(−∆)−αf ∥H2(Ω) ≤ c∥f ∥. Then for f ∈ H1+γ(Ω), γ > 0, the solution uh given by

uh = λ−α1,h(λ1,hA
−1)αIhf , A = M−1

n An, Ih Interpolation,

satisfies
∥(−∆)−αf − uh∥ ≤ C (h2α + h1+γ)∥f ∥H1+γ(Ω).

� Using lumped FEM, it is possible to have the error of the fully discrete scheme
(Harizanov et al. 2020, Corollary 4.3), and then balance the discretization and the BURA
error.
å The intend usage of these scheme is outside of a Krylov method.
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Quadrature-based approaches

Another viable approach is to use a rational approximation based on a quadrature formula.

[ There is more than a connection between quadrature formulas
and rational approximations.

@ Padé approximants can be viewed as formal Gaussian
quadrature methods (Brezinski 1980, Page 34).

Î This connection was already know to Gauß
C. F. Gauss, Methodus nova integralium valores per ap-
proximationem inveniendi, Comment. Soc. Reg. Scient.
Gotting. Recent., 1814

C.F.Gauß
(1777-1855)

� The idea is always the same 1. Find an integral representation of the function of interest.
2. Find a change of variables that makes a Gauss-type weight appears. 3. Rational
approximation is obtained by the Gauss quadrature formula. 4. The error analysis relies on
the analysis for the formula.
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The Gauss-Jacobi approach

This is an idea from (Aceto, Bertaccini, et al. 2019; Aceto and Novati 2018).

We do step 1 by looking through a book:

Proposition (Bhatia 1997, example V.1.10, 21, section 5.5.5)

Let A ∈ Rn×n be such that Λ(A) ⊂ C \ (−∞, 0]. For α ∈ (0, 1) the following
representation holds

Aα =
sin(απ)

απ
A

∫∞
0

(
ρ

1/αI + A
)−1

dρ.

Now do step 2, i.e., a change of variables:

ρ
1/α = τ

1− t

1+ t
, τ > 0.
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The Gauss-Jacobi approach
By plugging the change of variables in the integral, we find

Aα =
2 sin(απ)τα

π
A

∫1
−1
(1− t)α−1(1+ t)−α (τ(1− t)I + (1+ t)A)−1 dt.

We made the weights of the Gauss-Jacobi quadrature appear, thus(
1

τ
A

)ℵ

≈ 1

τ
A

k∑
j=1

2 sin(απ)

π

ωj

1+ θj

(
1− θj
1+ θj

+
1

τ
A

)−1

,

Ó ωj and θj are, respectively, the weights and nodes of the Gauss–Jacobi quadrature
formula with weight function (1− t)α−1(1+ t)−α,

� we should use error analysis to fix the τ parameter.

@ From (Frommer, Güttel, and Schweitzer 2014, Lemma 4.4) we know that the k-point
Gauss-Jacobi quadrature corresponds to the (k − 1, k)-Padé approximant of (z/τ)α−1

centered at 1.
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The Gauss-Jacobi approach
As we have seen from the BURA example, we may be interested in g(z) = z−α, α ∈ (0, 1),
but it is easy to rewrite the approximation as

z−α/2 ≈
k∑

j=1

2 sin(απ)τ1−α/2

π

ωj

1+ θj

(
τ(1− θj)

1+ θj
+ z

)−1

≜ Rk−1,k (z) , τ > 0

Ó ωj and θj are the weights and nodes of the Gauss–Jacobi quadrature formula with
weight (1− x)−α(1+ x)α−1.

� If we rearrange the expression we then find

Rk−1,k(z) =
pk−1(z)

qk(z)
=
χ
∏k−1

r=1 (z + ϵr )∏k
j=1(z + ηj)

, χ =
ηk
τα

(k+α/2−1
k−1

)(k−α
k

) k−1∏
j=1

ηj

ϵj
.

for

ϵr = τ
1− ζr
1+ ζr

, r = 1, 2, . . . , k − 1, ηj =
τ(1− θj)

1+ θj
, j = 1, 2, . . . , k .

22 / 47



The Gauss-Jacobi approach
To fix the τ > 0 parameter we need the error analysis from (Aceto and Novati 2019) to
bound the truncation error:

Ek−1,k(λ/τ) ≜ (λ/τ)−α − Rk−1,k(λ/τ).

X When working with these expression, usually one can manipulate and express them in
terms of Gauss-Hypergeometric functions, then use their asymptotic to produce the
bound, e.g., in this case

z = 1−
λ

t
, (1− z)−α = 2F 1

(
1, α
1

; z

)
, | arg(1− z)| < π.

Proposition (Aceto and Novati 2019, Proposition 2)

For large values of k, the following representation for the truncation error holds

Ek−1,k(λ/τ) = 2 sin(απ)(λ/τ)−α

[√
λ−

√
τ√

λ+
√
τ

]2k
(1+ O(1/k)) .
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The Gauss-Jacobi approach

Theorem (Aceto and Novati 2019, Theorem 2)

If L is a self-adjoint positive operator on a separable Hilbert space H with spectrum
Λ(L) ⊂ [c ,+∞), c > 0 having a compact inverse, then∥∥∥∥L−α − τ−αk Rk−1,k

(
1

τk
L
)∥∥∥∥

H→H
≤2 sin(απ)c−α

(
2k

√
e

α

)−4α

[
2 ln

(
2k

α

)
+ 1

]2α (
1+ O(k−2)

)
,

for

τk = c
( α
2ke

)2
exp

(
2W

(
4k2e

α2

))
,

where W denotes the Lambert W -function.

4 It becomes increasingly difficult if the spectrum is close to the branch point of z−α.
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The Gauss-Jacobi approach (bounded operators)

If LN is a bounded operator, i.e., Λ(LN) ∈ [c , λN ] then the min-max problem for
|Ek−1,k(λ/τ)| have two different solutions for small and large values of k .
We call λ = τ

α2 (k +
√
k2 + 1)2

λ < λN (k smalll) The previous estimate is still good, i.e.,

τk = c
( α
2ke

)2
exp

(
2W

(
4k2e

α2

))
,

λ > λN (k large) then

τ̂k =

−
α
√
(λN)

8k
ln

(
λN
c

)
+

√(
α
√
λN

8k
ln

(
λN
c

))2

+
√
cλN

2

.
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The Gauss-Jacobi approach (bounded operators)

Theorem (Aceto and Novati 2019, Theorem 3)

Let k be such that for each k ≥ k we have λ = λ(k) > λN . Then for each k ≥ k , taking
τ = τ̂k , the following bound holds∥∥∥∥L−α

N − τ̂−αk Rk−1,k

(
1

τ̂k
LN

)∥∥∥∥
2

≤ 2 sin(απ)(cλN)
−α/2 exp

(
−4k

(
c

λN

)1/4
)
(1+O(k−1)).

4 The bound gets worse when we refine the discretization of the differential operator!

� The choice of τ is better than the asymptotically selected value τ∞ =
√
cΛN .

The choice is made as

τk,N =

{
τk , k < k,

τ̂k , k ≥ k ,
for k =

⌈
α

2
√
2

√
ln

(
λN
c
e2
)(

λN
c

) 1
4

⌉
.
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A Gauss-Laguerre approach (Aceto and Novati 2022)

We start again from an integral representation (Bonito and Pasciak 2015)

L−α =
2 sin(απ)

π

∫+∞
0

t2α−1(I + t2L)−1dt, α ∈ (0, 1).

Then, we go for the change of variables y = ln t we obtain

L−α =
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L−α =
2 sin(απ)

π

∫+∞
0

t2α−1(I + t2L)−1dt, α ∈ (0, 1).

Then, we go for the change of variables y = ln t we obtain

L−α =
2 sin(απ)

π

∫+∞
−∞ e2αy (I + e2yL)−1dy , α ∈ (0, 1).

=

∫0
−∞ e2αy (I + e2yL)−1dy +

∫+∞
0

e2αy (I + e2yL)−1dy

2αy = −x
2(1− α)y = x

→=
1

2α

∫+∞
0

e−x(I + e−x/αL)−1dx +
1

2(1− α)

∫+∞
0

e−x(e−x/(1−α)I + L)−1dx .
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I (1)(L) + sin(απ)
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I (2)(L),
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L−α =
2 sin(απ)

π

∫+∞
0

t2α−1(I + t2L)−1dt, α ∈ (0, 1).

Then, we go for the change of variables y = ln t we obtain

L−α =

for

I (1)(λ) =

∫+∞
0

e−x(1+ e−x/αλ)−1dx , I (2)(λ) =

∫+∞
0

e−x(e−x/(1−α) + λ)−1dx .

The weight ω(x) = e−x , is the weight of Gauss-Laguerre formulas.
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A Gauss-Laguerre approach (Aceto and Novati 2022)

If we call the weights w
(n)
j and nodes ϑ

(n)
j (in ascending order) of the Gauss-Laguerre

formula, then we obtain the following (2n − 1, 2n) rational approximation:

L−α ≈ sin(απ)

απ
R
(1)
n−1,n(L) +

sin(απ)

(1− α)π
R
(2)
n−1,n(L) ≜ R2n−1,2n(L),

where

R
(1)
n−1,n(λ) =

n∑
j=1

w
(n)
j

(
1+ e−ϑ

(n)
j /αλ

)−1

,

R
(2)
n−1,n(λ) =

n∑
j=1

w
(n)
j

(
e−ϑ

(n)
j /(1−α) + λ

)−1

.

� Third step is using error estimate for Gauss-Laguerre formulas to get the bound.

28 / 47



A Gauss-Laguerre approach (Aceto and Novati 2022)

If we call the weights w
(n)
j and nodes ϑ

(n)
j (in ascending order) of the Gauss-Laguerre

formula, then we obtain the following (2n − 1, 2n) rational approximation:

L−α ≈ sin(απ)

απ
R
(1)
n−1,n(L) +

sin(απ)

(1− α)π
R
(2)
n−1,n(L) ≜ R2n−1,2n(L),

where

R
(1)
n−1,n(λ) =

n∑
j=1

w
(n)
j

(
1+ e−ϑ

(n)
j /αλ

)−1

,

R
(2)
n−1,n(λ) =

n∑
j=1

w
(n)
j

(
e−ϑ

(n)
j /(1−α) + λ

)−1

.

� Third step is using error estimate for Gauss-Laguerre formulas to get the bound.

28 / 47



A Gauss-Laguerre approach (Aceto and Novati 2022)

The analysis treats separately the two integrals and requires expressing the error as a
contour integral:

En(f ) =
1

2πi

∫
Γ

qn(z)

Ln(z)
f (z)dz ,

here Ln(z) is the Laguerre polynomial, qn(z) is the so-called associated function defined by

qn(z) =

∫+∞
0

e−xLn(x)

z − x
dx , z /∈ [0,+∞),

and Γ is a contour containing [0,+∞) with the additional property that no singularity of
f (z) lies on or within this contour; see (Davis and Rabinowitz 1984, §4.6).
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A Gauss-Laguerre approach (Aceto and Novati 2022)

C
1

C
2

Γ
R

Denote with C1 and C2 two arbitrary small
circles surrounding the two poles and define

Γ = ΓR ∪ C1 ∪ C2.

The error can be written as

En(f ) =
1

2πi

{∫
ΓR

−

∫
C1

−

∫
C2

}
qn(z)

Ln(z)
f (z)dz .
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circles surrounding the two poles and define
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The error can be written as

En(f ) =
1

2πi

{∫
ΓR

−

∫
C1

−

∫
C2

}
qn(z)

Ln(z)
f (z)dz .

Then using:

qn(z)

Ln(z)
=2πe−z

[
exp

(√
−z
)]−2

√
n̄ ×

×
(
1+ O

(
1

n

))
, z /∈ [0,+∞),
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En(f ) =
1

2πi

{∫
ΓR

−

∫
C1

−

∫
C2

}
qn(z)

Ln(z)
f (z)dz .

One arrives at

|En(f )| ≤4π
∣∣Res (f (z), z0) e−z0

∣∣×
×
[
exp

(
Re
(√

−z0
))]−2

√
n̄ ×

×
(
1+ O

(
1

n

))
.
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One arrives at

|En(f )| ≤4π
∣∣Res (f (z), z0) e−z0

∣∣×
×
[
exp

(
Re
(√

−z0
))]−2

√
n̄ ×

×
(
1+ O

(
1

n

))
.

Ô Procedure

Apply the idea at f (z) = (1+ e−z/αλ)−1, and
f (z) = (e−z/(1−α) + λ)−1. For the two integrals.
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A Gauss-Laguerre approach (Aceto and Novati 2022)

Theorem (Aceto and Novati 2022, Proposition 5.3)

Let R2n−1,2n(L) be the Gauss-Laguerre rational approximation. Then, with respect to the
operator norm in H we have for n large enough∥∥L−α − R2n−1,2n(L)

∥∥ ≤ 4 sin(απ) exp
(
−3
(
nα2π2

)1/3)(
1+ O

(
n−1/3

))
.

⌣ The convergence is now independent of the spectral information of the matrix,
we just need to scale A to have spectrum in [1,+∞).

� Truncation and balancing strategies can be applied to the quadratures observing that
nodes and weights decay exponentially, i.e., apply

L−α ≈ sin(απ)

απ
R
(1)
kn1−1,kn1

(L) + sin(απ)

(1− α)π
R
(2)
kn2−1,kn2

(L).
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Laplace-Stieltjes and Cauchy-Stieltjes functions
Functions expressed as Stieltjes integrals admit a representation of the form:

f (z) =

∫∞
0

g(t, z)µ(t) dt,

where
• µ(t)dt is a (non-negative) on [0,∞], measure,
• g(t, z) is integrable with respect to that measure.

Cauchy-Stieltjes

Let f (z) be a function defined on C \ R−.
Then, f (z) is a Cauchy-Stieltjes function if
there is a positive measure µ(t)dt on R+

such that

f (z) =

∫∞
0

µ(t)

t + z
dt.
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Let f (z) be a function defined on C \ R−.
Then, f (z) is a Cauchy-Stieltjes function if
there is a positive measure µ(t)dt on R+

such that

f (z) =

∫∞
0

µ(t)

t + z
dt.

The function we are interested in is of this
class for α ∈ (0, 1):

f (z) = z−α =
sin(απ)

π

∫∞
0

t−α

t + z
dt.

In (Massei and Robol 2021) is given a general
bound for the whole class of functions.
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3Back to Zolotarev
To obtain the poles we consider the approach of minimizing the expression of the error
within the Krylov space for the entire class of functions: we return to Zolotarev.

å Let us write compactly: W = K(A, v, Ψ) for the rational Krylov subspace with poles Ψ.
Then we can write the approximation error as:

∥xW − x∥2 ≤ 2 · ∥v∥2 · min
r(z)∈ Pℓ

Ψ

max
z∈[a,b]

|f (z) − r(z)|.

where xW = Uf (UHAU)UHv for U an orthonormal basis of W, and x = f (A)v.
4 Now comes the clever observation, the function we want to approximate is of the form

f (A)v =

∫∞
0

g(t,A)µ(t) dt, g(t,A) ∈ {e−tA, (tI + A)−1}

⇒ Since the projection is linear we need poles to approximate uniformly well (in t) the
matrix exponentials and resolvents.
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Cauchy-Stieltjes functions
For Cauchy-Stieltjes function, we just need the result for the resolvent function.

Theorem (Massei and Robol 2021, Theorem 1)

Let A be Hermitian positive definite with spectrum contained in [a, b] and U be an
orthonormal basis of UR = Kℓ(A, v , Ψ). Then, ∀t ∈ [0,∞), we have the following
inequality:

∥(tI + A)−1v − U(tI + Aℓ)
−1vℓ∥2 ≤

2

t + a
∥v∥2 min

r(z)∈Pℓ
Ψ

maxz∈[a,b] |r(z)|

minz∈(−∞,0] |r(z)|
where Aℓ = UHAU and vℓ = UHv .

# We got back to our favorite 4th problem of Zolotarev! Than we do not know how to
solve in close form in general. . .

- this is not the general case, this is the case of two intervals [a, b] and (−∞, 0] ⌣
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� Solving this particular Zolotarev instance

The Zolotarev constant

Let Ψ = {ψ1, . . . , ψℓ} ⊂ C be a finite set, and I1, I2 closed subsets of C. Then, we define

θℓ(I1, I2, Ψ) = min
r(z)∈Pℓ

Ψ

maxI1 |r(z)|

minI2 |r(z)|
.

. This solution is for I1 = [a, b] and I2 = [−b,−a]: we had [a, b] and (−∞, 0]!
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� Solving this particular Zolotarev instance

Theorem (Zolotarev)

Let I = [a, b], with 0 < a < b. Then

min
Ψ⊂C, |Ψ|=ℓ

θℓ(I ,−I , Ψ) ≤ 4ρℓ[a,b], ρ[a,b] = exp

(
−

π2

log (4κ)

)
, κ =

b

a
.

In addition, the optimal rational function r
[a,b]
ℓ (z) that realizes the minimum has the form

r
[a,b]
ℓ (z) =

p
[a,b]
ℓ (z)

p
[a,b]
ℓ (−z)

, p
[a,b]
ℓ (z) =

ℓ∏
j=1

(z +ψ
[a,b]
j ,ℓ ), ψ

[a,b]
j ,ℓ ∈ −I .

We denote by Ψ
[a,b]
ℓ = {ψ

[a,b]
1,ℓ , . . . , ψ

[a,b]
ℓ,ℓ } the set of poles of r

[a,b]
ℓ (z).
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Let Ψ = {ψ1, . . . , ψℓ} ⊂ C be a finite set, and I1, I2 closed subsets of C. Then, we define

θℓ(I1, I2, Ψ) = min
r(z)∈Pℓ

Ψ

maxI1 |r(z)|

minI2 |r(z)|
.

For any I1, I2 be subsets of the complex plane, and Ψ ⊂ C we have

shift invariance For any t ∈ C, it holds θℓ(I1 + t, I2 + t, Ψ+ t) = θ(I1, I2, Ψ).
monotonicity θℓ(I1, I2, Ψ) is monotonic with respect to the inclusion on the parameters I1

and I2: I1 ⊆ I ′1 , I2 ⊆ I ′2 =⇒ θℓ(I1, I2, Ψ) ≤ θℓ(I ′1 , I ′2 , Ψ).
Möbius invariance If M(z) is a Möbius transform, that is a rational function

M(z) = (αz + β)/(γz + δ) with αδ ̸= βγ, then
θℓ(I1, I2, Ψ) = θℓ(M(I1),M(I2),M(Ψ)).

. This solution is for I1 = [a, b] and I2 = [−b,−a]: we had [a, b] and (−∞, 0]!
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� Solving this particular Zolotarev instance
We just need to build the right Möbius transform to map

(−∞, 0] ∪ [a, b] 7→ −I ∪ I , I = [a ′, b ′], 0 < a ′ < b ′.

Lemma (Massei and Robol 2021, Lemma 4)

The Möbius transformation

TC (z) =
∆+ z − b

∆− z + b
, ∆ =

√
b2 − ab,

maps [−∞, 0] ∪ [a, b] into [−1,−â] ∪ [â, 1], with â = ∆+a−b
∆−a+b = b−∆

∆+b . The inverse map

TC (z)
−1 is given by:

T−1
C (z) =

(b + ∆)z + b − ∆

1+ z
.

Moreover, for any 0 < a < b it holds â−1 ≤ 4b
a , and therefore ρ[â,1] ≤ ρ[a,4b].
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Cauchy-Stieltjes functions

Ó We map the interval [a, b] to [â, 1],

å solve explicitly the Zolotarev problem there,

` read the poles for our problem.

Proposition (Massei and Robol 2021, Corollary 4)

Let f (z) be a Cauchy-Stieltjes function, A be Hermitian positive definite with spectrum

contained in [a, b], U be an orthonormal basis of Kℓ(A, v , Ψ
[a,b]
C ,ℓ ) with Ψ

[a,b]
C ,ℓ given by

Ψ
[a,b]
C ,ℓ = T−1

C (Ψ
[â,1]
ℓ )

and xℓ = Uf (Aℓ)vℓ with Aℓ = UHAU and vℓ = UHv. Then

∥f (A)v − xℓ∥2 ≤ 8f (a)∥v∥2ρℓ[a,4b] = 8f (a) exp

(
−ℓ

π2

log (16b/a)

)
.
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Nesting the poles
The poles built this way are still not nested. In (Massei and Robol 2021) a technique
called method of equidistributed sequences (EDS) is proposed to generate them:

1. Select ζ ∈ R+ \Q and generate the sequence
{sj }j∈N = {0, ζ− ⌊ζ⌋, 2ζ− ⌊2ζ⌋, 3ζ− ⌊3ζ⌋, . . . }, where ⌊·⌋ indicates the greatest
integer less than or equal to the argument; this sequence has as asymptotic
distribution (in the sense of EDS) the Lebesgue measure on [0, 1].

2. Compute the sequence {tj }j∈N such that g(tj) = sj where

g(t) =
1

2M

∫ t
a2

dy√
(y − a2)y(1− y)

, M =

∫1
0

dy√
(1− y2)(1− (1− a2)y2)

,

3. Define σ̃j =
√
tj .

�The EDS associated with Ψ
[a,b]
ℓ , Ψ

[a,b]
C ,ℓ are obtained by applying either a scaling or the

Möbius transformation to the EDS for Ψ
[a,1]
ℓ .
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XBrute force approaches

It is also possible to try and solve numerically rational approximation problems.

RKFIT (Berljafa and Güttel 2017) Is an iterative method for solving rational
Least-Square problems, {A,F } ∈ Cn×n and b ∈ Cn find a ration function r
such that

∥Fb− r(A)b∥22 → min .

AAA (Nakatsukasa, Sète, and Trefethen 2018) Find a representation of the rational
approximant in barycentric form with interpolation at certain support points
while performing a greedy selection of them to avoid exponential instabilities.

If we have an idea of where the approximation should work, these approaches deliver
reasonably good results.
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An Application to Complex Networks
The spectral definition makes the procedure ideal also in more exotic cases.

Ó A weighted directed graph (digraph) is a
pair G = (V ,E ,W ), where
V = {v1, . . . , vn} is a set of nodes (or
vertices), and E ⊆ V × V is a set of
ordered pairs of nodes called edges,
and W ∈ Rn×n such that (W )i ,j ̸= 0 iff
(vi , vj) ∈ E .

Ó We call in–degrees and out–degrees

d
(in)
i = degin(vi ) =

∑
j : (vj ,vi )∈E

wj ,i ,

d
(out)
i = degout(vi ) =

∑
j : (vi ,vj )∈E

wi ,j ,

In matrix language

å If all the weights are equal to one, the
adjacency matrix A ∈ Rn×n is

(A)i ,j = ai ,j =

{
1, if (vi , vj) ∈ E ,
0, otherwise.

otherwise, A ≡ W .

å Degree diagonal matrices

Din =diag(degin(v1), . . . ,degin(vn))

= diag(d
(in)
1 , . . . , d

(in)
n ),

Dout = diag(degout(v1), . . . ,degout(vn))

= diag(d
(out)
1 , . . . , d

(out)
n ).

40 / 47



An Application to Complex Networks
The spectral definition makes the procedure ideal also in more exotic cases.

Ó A weighted directed graph (digraph) is a
pair G = (V ,E ,W ), where
V = {v1, . . . , vn} is a set of nodes (or
vertices), and E ⊆ V × V is a set of
ordered pairs of nodes called edges,
and W ∈ Rn×n such that (W )i ,j ̸= 0 iff
(vi , vj) ∈ E .

Ó We call in–degrees and out–degrees

d
(in)
i = degin(vi ) =

∑
j : (vj ,vi )∈E

wj ,i ,

d
(out)
i = degout(vi ) =

∑
j : (vi ,vj )∈E

wi ,j ,

In matrix language

å If all the weights are equal to one, the
adjacency matrix A ∈ Rn×n is

(A)i ,j = ai ,j =

{
1, if (vi , vj) ∈ E ,
0, otherwise.

otherwise, A ≡ W .

å Degree diagonal matrices

Din =diag(degin(v1), . . . ,degin(vn))

= diag(d
(in)
1 , . . . , d

(in)
n ),

Dout = diag(degout(v1), . . . ,degout(vn))

= diag(d
(out)
1 , . . . , d

(out)
n ).

40 / 47



An Application to Complex Networks
The spectral definition makes the procedure ideal also in more exotic cases.

Ó A weighted directed graph (digraph) is a
pair G = (V ,E ,W ), where
V = {v1, . . . , vn} is a set of nodes (or
vertices), and E ⊆ V × V is a set of
ordered pairs of nodes called edges,
and W ∈ Rn×n such that (W )i ,j ̸= 0 iff
(vi , vj) ∈ E .

Ó We call in–degrees and out–degrees

d
(in)
i = degin(vi ) =

∑
j : (vj ,vi )∈E

wj ,i ,

d
(out)
i = degout(vi ) =

∑
j : (vi ,vj )∈E

wi ,j ,

In matrix language

å If all the weights are equal to one, the
adjacency matrix A ∈ Rn×n is

(A)i ,j = ai ,j =

{
1, if (vi , vj) ∈ E ,
0, otherwise.

otherwise, A ≡ W .

å Degree diagonal matrices

Din =diag(degin(v1), . . . ,degin(vn))

= diag(d
(in)
1 , . . . , d

(in)
n ),

Dout = diag(degout(v1), . . . ,degout(vn))

= diag(d
(out)
1 , . . . , d

(out)
n ).

40 / 47



An Application to Complex Networks
The spectral definition makes the procedure ideal also in more exotic cases.

Ó A weighted directed graph (digraph) is a
pair G = (V ,E ,W ), where
V = {v1, . . . , vn} is a set of nodes (or
vertices), and E ⊆ V × V is a set of
ordered pairs of nodes called edges,
and W ∈ Rn×n such that (W )i ,j ̸= 0 iff
(vi , vj) ∈ E .

Ó We call in–degrees and out–degrees

d
(in)
i = degin(vi ) =

∑
j : (vj ,vi )∈E

wj ,i ,

d
(out)
i = degout(vi ) =

∑
j : (vi ,vj )∈E

wi ,j ,

In matrix language

å If all the weights are equal to one, the
adjacency matrix A ∈ Rn×n is

(A)i ,j = ai ,j =

{
1, if (vi , vj) ∈ E ,
0, otherwise.

otherwise, A ≡ W .

å Degree diagonal matrices

Din =diag(degin(v1), . . . ,degin(vn))

= diag(d
(in)
1 , . . . , d

(in)
n ),

Dout = diag(degout(v1), . . . ,degout(vn))

= diag(d
(out)
1 , . . . , d

(out)
n ).

40 / 47



Laplacians on Graphs

Undirected case

Let G = (V ,E ) be a weighted undirected graph with weight matrix W , weighted degree
matrix D and weighted incidence matrix B. Then the graph Laplacian L of G is

L = D −W .

The normalized random walk version of the graph Laplacian is

D−1L = I − D−1W ,

where I is the identity matrix. Observe that D−1W is a row–stochastic matrix, i.e. it is
nonnegative with row sums equal to 1. The normalized symmetric version is

D− 1
2LD− 1

2 = I − D− 1
2WD− 1

2 .

If G is unweighted then W = A in the above definitions. Here we assume that every vertex
has nonzero degree.
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Laplacians on Graphs

Directed case

Let G = (V ,E ,W ) be a weighted directed graph, with degree matrices Dout and Din The
nonnormalized directed graph Laplacian Lout and Lin of G are

Lout = Dout −W , Lin = Din −W .

. To define the normalized versions, we need to invert either the Din or the Dout

matrices, but the absence of isolated vertices is no longer sufficient to ensure this!

It is interesting to look at diffusion on graphs:

find u : [0,T ] −→ Rn

s.t.

{
d

dt
u(t) = −κL·/in/outu(t), t ∈ (0,T ],

u(0) = u0, prescribed,

⇒ it could be interesting to look at fractional diffusion on graphs.
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Let G = (V ,E ,W ) be a weighted directed graph, with degree matrices Dout and Din The
nonnormalized directed graph Laplacian Lout and Lin of G are

Lout = Dout −W , Lin = Din −W .

. To define the normalized versions, we need to invert either the Din or the Dout

matrices, but the absence of isolated vertices is no longer sufficient to ensure this!

It is interesting to look at diffusion on graphs:

find u : [0,T ] −→ Rn

s.t.

{
d

dt
u(t) = −κLα·/in/outu(t), t ∈ (0,T ],

u(0) = u0, prescribed,
α ∈ (0, 1],

⇒ it could be interesting to look at fractional diffusion on graphs.
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Laplacians on Graphs

If G is undirected, i.e., L = LT , everything follows by diagonalization, see, e.g., (Riascos
and Mateos 2014).

If L is either Lout or Lin this needs more care.

ÿ Lout is a singular M-matrix,

ÿ Lout1 = 0,

ÿ 0 is a semisimple eigenvalue of Lout.

8 We need to prove that Lαout can be defined and respect all the properties.

O We could also investigate the the decay of the entries of the fractional power, but
leave the subject aside and refer to (Benzi, Bertaccini, et al. 2020).
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ÿ Lout is a singular M-matrix,

ÿ Lout1 = 0,

ÿ 0 is a semisimple eigenvalue of Lout.

8 We need to prove that Lαout can be defined and respect all the properties.

Proposition (Benzi, Bertaccini, et al. 2020)

Given a weighted graph G = (V ,E ,W ) and its Laplacian with respect to the out degree
Lout, the function f (x) = xα is defined on the spectrum of Lout and induces a matrix
function for all α ∈ (0, 1].

O We could also investigate the the decay of the entries of the fractional power, but
leave the subject aside and refer to (Benzi, Bertaccini, et al. 2020).
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Laplacian on Graphs: computation

. For the computation of the products Lαoutv it is necessary to modify the strategies we
have seen: all the bounds and constructions required that 0 was not in the spectrum.

� In (Benzi and Simunec 2022) different strategies for accommodating this feature of Lout
are investigated:

� Use a rank-one shift, since the right and left eigenvectors 1 and z⃗ of Lout can be
easily computed, we compute

f (LT )b = f (LT + θz1T )b+ [f (0) − f (θ)]z, for any θ > 0
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have seen: all the bounds and constructions required that 0 was not in the spectrum.
� In (Benzi and Simunec 2022) different strategies for accommodating this feature of Lout
are investigated:

� Use a rank-one shift, since the right and left eigenvectors 1 and z⃗ of Lout can be
easily computed, we compute

f (LT )b = f (LT + θz1T )b+ [f (0) − f (θ)]z, for any θ > 0,

and in the rational Krylov subspace we solve the linear system at the same cost at
which we solve the ones for LT via Sherman-Morrison:

(LT + θz1T − ξI )−1 = (LT − ξI )−1 +
θ

ξ(θ− ξ)
z1T .
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Laplacian on Graphs: computation
. For the computation of the products Lαoutv it is necessary to modify the strategies we
have seen: all the bounds and constructions required that 0 was not in the spectrum.
� In (Benzi and Simunec 2022) different strategies for accommodating this feature of Lout
are investigated:

� Use a rank-one shift, since the right and left eigenvectors 1 and z⃗ of Lout can be
easily computed, we compute

f (LT )b = f (LT + θz1T )b+ [f (0) − f (θ)]z, for any θ > 0,

and in the rational Krylov subspace we solve the linear system at the same cost at
which we solve the ones for LT by doing

(LT + θz1T − ξI )−1w = ψ+
1Tw

θ− ξ
z and (LT − ξI )ψ = w − (1Tw)z,

to avoid cancellation for ξ ≈ 0.
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Laplacian on Graphs: computation
. For the computation of the products Lαoutv it is necessary to modify the strategies we
have seen: all the bounds and constructions required that 0 was not in the spectrum.
� In (Benzi and Simunec 2022) different strategies for accommodating this feature of Lout
are investigated:

� Use a rank-one shift, since the right and left eigenvectors 1 and z⃗ of Lout can be
easily computed, we compute

f (LT )b = f (LT + θz1T )b+ [f (0) − f (θ)]z, for any θ > 0.

� Project L on the n− 1 dimensional subspace S = Span{1}⊥ = Range(Q̃) and compute

f (LT )b = f (LT )v + βf (LT )z ←0 ̸= β = 1Tb and b = v + βz for v ⊥ 1

= Qf (QTLTQ)QTv + βf (0)z ←QQT = I − 11T/n, Q = [Q̃, 1/
√
n].

- Q can be built so that {Q,QT }v costs O(n).
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O A gallery of open problems

“When sorrows come, they come
not single spies, but in battalions”

Hamlet, Act IV, Scene V.

O Of the many problems we have discussed along the way, one that came back many
times was the selection of optimal poles for the different matrix-equation/Rational
Krylov based solvers (e.g., all-at-once, multi-dimensional approaches);

O Inventing reduced memory methods for the integration of fractional partial
differential equations in time and space, i.e.,

CADαt u = L(u; t), L non linear, and fractional;

O Error analysis entangling convergence of the Rational Krylov method and Finite
Element (Isogeometric) Discretizations for FPDEs;

O Solving FPDEs on unlimited spatial domains.
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Fractional Schrödinger equation

As we have discussed at the beginning of the lecture, there are several formulations of the
Fractional Laplacian that should be naturally considered on the whole space.

An example is the Schrödinger equation

iℏβ CADβψ = −Dα(−ℏ2∆)α/2ψ+ V (x, t)ψ,

that is naturally defined on the whole space.

To treat it numerically, the usual procedure is to couple it with artificial boundary
conditions of absorbing type. It might be of interest to have numerical methods that
can work with infinite or semi-infinite matrices that do not need this artificial correction.

46 / 47



Conclusions

Ó We focused on few discretization, there
are many other viable approaches
(collocation, finite elements, IgA,. . . ).
Most of the reasoning we did can be
adapted to these other cases.

� There are other classical problems that
admits a fractional extension, e.g.,
optimal control, model order reduction,
eigenvalue problems,. . .

“The universe (which others call the Library)
is composed of an indefinite and perhaps

infinite number of hexagonal galleries, with
vast air shafts between, surrounded by very
low railings. From any of the hexagons one
can see, interminably, the upper and lower
floors. The distribution of the galleries is

invariable.”

Jorge Luis Borges, The Library of Babel.
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isbn: 3-7643-1100-2.

https://doi.org/10.1007/978-1-4612-0653-8
https://doi.org/10.1007/978-1-4612-0653-8
https://doi.org/10.1090/S0025-5718-2015-02937-8
https://doi.org/10.1090/S0025-5718-2015-02937-8
https://doi.org/10.1007/978-3-642-61609-9
https://doi.org/10.1007/978-3-642-61609-9


Bibliography IV

Davis, P. J. and P. Rabinowitz (1984). Methods of numerical integration. Second. Computer
Science and Applied Mathematics. Academic Press, Inc., Orlando, FL, pp. xiv+612. isbn:
0-12-206360-0.
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Nakatsukasa, Y., O. Sète, and L. N. Trefethen (2018). “The AAA algorithm for rational
approximation”. In: SIAM J. Sci. Comput. 40.3, A1494–A1522. issn: 1064-8275. doi:
10.1137/16M1106122. url: https://doi.org/10.1137/16M1106122.

Riascos, A. and J. Mateos (2014). “Fractional dynamics on networks: Emergence of anomalous
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