
An introduction to fractional calculus
Fundamental ideas and numerics

Fabio Durastante
Università di Pisa

Envelope fabio.durastante@unipi.it
FIREFOX fdurastante.github.io

May, 2022

mailto:fabio.durastante@unipi.it
https://fdurastante.github.io


RL Fractional Integrals and Derivatives

Riemann–Liouville Fractional Integral
Let <α > 0, and let f ∈ L1([a, b]). Then for t ∈ [a, b] we define

Iα[a,t]f (t) = aD−α
t f (t) = 1

Γ(α)

∫ t

a
(t − τ)α−1f (τ)dτ,

Iα[t,b]f (t) = aD−α
t f (t) = 1

Γ(α)

∫ b

t
(τ − t)α−1f (τ)dτ.

Riemann–Liouville Fractional Derivative
Let <α > 0, m = dαe, and f ∈ Am([a, b]), Then for t ∈ [a, b] we define

RLDα
[a,t]f (t) =

1
Γ(m − α)

dm

dtm

∫ t

a
(t − τ)m−α−1f (τ) dτ,

RLDα
[t,b]f (t) =

(−1)m

Γ(m − α)

dm

dtm

∫ b

t
(τ − t)m−α−1f (τ)dτ.
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RL Derivatives Properties

RL integrals have a semigroup property, d/dt has it, so what about RL Derivatives?

Theorem
Assume that α1, α2 ≥ 0. Moreover let φ ∈ L1([a, b]), and f = Iα1+α2

[a,b] φ. Then,

RLDα1
[a,t]RLDα2

[a,t]f = RLDα1+α2
[a,t] .

Proof. We use the definition and the assumption on f ,

RLDα1
[a,t]RLDα2

[a,t]f =RLDα1
[a,t]RLDα2

[a,t]I
α1+α2
[a,b] φ =

ddα1e

dtdα1e
Idα1e−α1
[a,b]

ddα2e

dtdα2e
Idα2e−α2
[a,b] Iα1+α2

[a,b] φ
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Assume that α1, α2 ≥ 0. Moreover let φ ∈ L1([a, b]), and f = Iα1+α2

[a,b] φ. Then,

RLDα1
[a,t]RLDα2

[a,t]f = RLDα1+α2
[a,t] .

Proof. We use the definition and the assumption on f , then we use the semigroup property
for integrals, and since orders of the integral and differential operators involved are in N.
This way we proved that: RLDα1

[a,t]RLDα2
[a,t]f = φ. Now we work on the other part, that is

analogous:

RLDα1+α2
[a,t] f =

ddα1+α2e

dtdα1+α2e
Idα1+α2e−α1−α2
[a,b] f =
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dtdα1+α2e
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RL Derivatives Properties
Theorem
Assume that α1, α2 ≥ 0. Moreover let φ ∈ L1([a, b]), and f = Iα1+α2

[a,b] φ. Then,

RLDα1
[a,t]RLDα2

[a,t]f = RLDα1+α2
[a,t] .

An observation on the hypothesis
The crucial hypothesis for the proof has been having f = Iα1+α2

[a,b] φ. This is not technical,
consider f (t) =

√
t, and α1 = α2 = 1/2, then we have computed in the last lecture

RLD1/2
[0,t]

√
t = 0, ⇒ RLD1/2

[0,t]RLD1/2
[0,t]

√
t = 0,

but RLD1
[0,t] =

d
dt
√

t = 1/2
√

t 6= 0. The condition on f implies both the needed regularity,
and regulates how f (t) → 0 as t → a. Other example. Consider the same function with
α1 = 1/2, α2 = 3/2.
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RL Derivatives Properties - II

Theorem
Let α ≥ 0. Then, for every f ∈ L1([a, b])

RLDα
[a,t]I

α
[a,t]f = f a.e.

Proof. The case α = 0 descend from the definitions, both operators are the identity. For
α > 0, let m = dαe, then we use the definition of RLDα

[a,t] and the semigroup property of
fractional integration

RLDα
[a,t]I

α
[a,t]f =

dm

dtm Im−α
[a,t] Iα[a,t]f =

dm

dtm Im
[a,t]f = f (t).
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Theorem
Let α ≥ 0. Then, for every f ∈ L1([a, b])

RLDα
[a,t]I

α
[a,t]f = f a.e.

Thus we have proved that the RL derivative is a left inverse of the RL integral,
unfortunately we cannot claim that it is the right inverse.

Theorem
Let α > 0. If there exists some φ ∈ L1([a, b]) such that f = Iα[a,t]φ then

Iα[a,t]RLDα
[a,t]f = f .

Proof. This is an immediate consequence of the left-inverse property, since
Iα[a,t]RLDα

[a,t]f = Iα[a,t]RLDα
[a,t]I

α
[a,t]φ = Iα[a,t]φ = f .
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RL Derivatives Properties - II

Theorem
Let α ≥ 0. Then, for every f ∈ L1([a, b])

RLDα
[a,t]I

α
[a,t]f = f a.e.

Thus we have proved that the RL derivative is a left inverse of the RL integral,
unfortunately we cannot claim that it is the right inverse.

Theorem
Let α > 0. If there exists some φ ∈ L1([a, b]) such that f = Iα[a,t]φ then

Iα[a,t]RLDα
[a,t]f = f .

What happens in the general case?
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RL Derivatives Properties - III
Theorem
Let α > 0, and m = bαc+ 1. Assume that f is such that Im−α

[a,t] f ∈ Am([a, b]). Then,

Iα[a,t]RLDα
[a,t]f = f (t) −

m−1∑
k=0

(t − a)α−k−1

Γ(α− k) lim
z→a+

dm−k−1

dz Im−α
[a,z] f (z).

That reduces to

Iα[a,t]RLDα
[a,t]f = f (t) − (t − a)α−1

Γ(α)
lim

z→a+
I1−α
[a,z] f (z), for 0 < α < 1.

• As for the semigroup property this is an issue of regularity and of going rapidly enough
to zero at the beginning of the interval,

• The analogous property can be written also for the other-sided RL derivatives.
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RL - Combinations, products and compositions
Linear combination descend easily from the definition.

Theorem
Let f1, f2 : [a, b] → R such that RLDα

[a,t]f1, and RLDα
[a,t]f1 exist almost everywhere. Then,

for c1, c2 ∈ R we have RLDα
[a,t](c1f1 + c2f2) exists almost everywhere, and

RLDα
[a,t](c1f1 + c2f2) = c1RLDα

[a,t]f1 + c2RLDα
[a,t]f2.

Leibniz’ formula for Riemann–Liouville operators, doesn’t come so easily

Theorem (Leibniz’ formula for Riemann–Liouville operators)
Let α > 0, and assume f and g analytic on (a − h, a + h) for some h > 0. Then,

RLDα
[a,t][fg ](t) =

bαc∑
k=0

(
α

k

)
RLDk

[a,t]f (t)RLDα−k
[a,t] g(t) +

+∞∑
k=bαc+1

(
α

k

)
RLDk

[a,t]f (t)I
k−α
[a,t] g(t),

for t ∈ (a, a + h/2).
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RL - Combinations, products and compositions - II
For compositions we need to recall first a result for integer-order derivatives

Francesco da Paola Virginio Secondo Maria Faà di
Bruno’s Lemma
If g and f are functions with a sufficient number of
derivatives and n ∈ N, then

dn

dtn [g(f (·))](t) =
∑(

dk

dtk g
)
(f (t))

n∏
µ=1

(
dµ

dtµ f (t)
)bµ

,

where the sum is over all partitions of {1, 2, . . . , n}, and for
each partition k is its number of blocks and bj is the
number of blocks with exactly j elements.

For a proof (and the history) see (Johnson 2002).
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RL - Combinations, products and compositions - II
For compositions we need to recall first a result for integer-order derivatives, then we can
look at its extension
Faà di Bruno’s formula for RL operators
If f and g are regular enough we have

RLDα
[a,t][fg ](t) =

+∞∑
k=1

(
α

k

)
k!(t − a)k−α

Γ(k − α+ 1)

k∑
`=1

(
RLD`

[a,t]f
)
(g(t))

∑
(a1,··· ,ak)∈Ak,`

k∏
r=1

1
ar !

(
d r

dtr g(t)
r

)ar

+
(t − a)−α

Γ(1 − α)
f (g(t)),

where (a1, . . . , ak) ∈ Ak,` means that

a1, . . . , ak ∈ N0,
k∑

r=1
rar = k and

k∑
r=1

ar = `.
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What now?
We have put together all the analogues of the instruments of classical calculus, but
what do we do with them now?

What we would like to solve is:

RLDα
[0,t]y(t) = f (t, y(t)), y : [0,T ] → Rd , f : [0,T ]× Rd → Rd .

Nevertheless, we have a problem! What we would like to solve is a Cauchy problem, so we
need to put initial conditions, but last time we observed that

RLDα
[0,t]c 6= 0, c ∈ Rd .

Therefore, we should equip the system with the following initial conditions instead
RLDα−k

[0,t] y(0) = bk , k = 1, 2, . . . , dαe− 1, lim
z→0+

Idαe−α

[0,t] y(z) = bdαe.

We could develop a theory for this, but these conditions are physically difficult to use,
we don’t get this type of initial data from the applications.
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Caputo fractional derivatives

Caputo fractional derivative (Caputo 2008)
Let α ≥ 0, and m = dαe. Then, we define the operator

CDα
[a,t]f = Im−α

[a,t]
dm

dtm f ,

whenever dm

dtm f ∈ L1([a, b]).
(R. Gorenflo, M. Caputo,

Bologna 2000, source:
fracalmo.org)

LIGHTBULB We have exchanged the order of the derivative and fractional integral operators.

“Chi cerca trova, chi ricerca ritrova.” - E. De Giorgi
The concept occurred a certain number of times: (Džrbašjan and Nersesjan 1968;
Gerasimov 1948; Gross 1947; Liouville 1832; Rabotnov et al. 1969).
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So, what is the difference?

First of all, we have the result we wanted on constants c ∈ R:

CDα
[a,t]c = Im−α

[a,t]
dm

dtm c = Im−α
[a,t] 0 = 0.

We can put in relation the two operators with the following result

Theorem
Let α > 0 and m = dαe. Moreover, assume that f ∈ Am([a, b]). Then,

CDα
[a,t]f = RLDα

[a,t] [f − Tm−1[f ; a]] a.e. on [a, b],

for Tm−1[f ; a] the Taylor polynomial of degree m − 1 for the function f centered at a, with
T−1[f ; a] = 0.
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So, what is the difference?

Proof. In the case α ∈ N the result follows easily, since both quantities reduces to the
integer order αth derivative.
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Proof. In the case α ∈ N the result follows easily, since both quantities reduces to the
integer order αth derivative. Therefore, we consider the case α /∈ N and m = dαe > α

RLDα
[a,t] [f − Tm−1[f ; a]] =

dm

dtm Im−α
[a,t] [f − Tm−1[f ; a]]

=
dm

dtm

∫ t

a

(t − τ)m−α−1

Γ(m − α)
(f (τ) − Tm−1[f ; a](τ)) dτ,
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=
dm

dtm

∫ t

a

(t − τ)m−α−1

Γ(m − α)
(f (τ) − Tm−1[f ; a](τ)) dτ,

We apply a partial integration

∗ = −
1

Γ(m − α+ 1)
[
(f (τ) − Tm−1[f , a](τ))(t − τ)m−α

]∣∣∣∣τ=t

τ=a

+
1

Γ(m − α+ 1)

∫ t

a
(f ′(τ) − (Tm−1[f , a](τ)) ′)(t − τ)m−α dτ.
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The terms in red are zero, and only the integral terms remain.
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[a,t] [f − Tm−1[f ; a]] = I2m−α

[a,t]
dm

dtm [f − Tm−1[f ; a]] = Im
[a,t]I

m−α
[a,t]

dm

dtm [f − Tm−1[f ; a]] ,

the mth derivative of the Taylor polynomial is zero (degree m − 1).
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We apply a partial integration m times since f ∈ Am([a, b]) and obtain the expression

Im−α
[a,t] [f − Tm−1[f ; a]] = Im

[a,t]I
m−α
[a,t]

dm

dtm f .

We reapply the mth derivative to the simplified expression:

RLDα
[a,t] [f − Tm−1[f ; a]] =

dm

dtm Im
[a,t]I

m−α
[a,t]

dm

dtm f = Im−α
[a,t]

dm

dtm f = CDα
[a,t]f .
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An example of computation

Let f (t) = (t − a)β for some β ≥ 0, then

CADα
[a,t]f (t) =


0, β ∈ {0, 1, 2, . . . , dαe− 1},
Γ(β+1)

Γ(β+1−α)(t − a)β−α, (β ∈ N ∧ β ≥ dαe)
∨ (β /∈ N∧ β > dαe− 1).

Let us compare it with the Riemann-Liouville case:

RLDα
[0,1]f (t) =

{
0, α− β ∈ N,
Γ(β+1)

Γ(β+1−α)(t − a)β−α, α− β /∈ N.

Exclamation The two operators have different kernels and domain.
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Caputo fractional derivatives - Properties
We can rewrite all the properties we have seen for RL derivatives for the Caputo version.

Theorem. (Caputo Derivatives Properties)
Let α ≥ 0 and m = dαe
(i) CDα

[a,t]f = RLDα
[a,t]f −

∑m−1
k=0 f (k)(a)/Γ(k−α+1)(t − a)k−α,

(ii) CDα
[a,t]f = RLDα

[a,t]f iff f has a zero of order m at a,
(iii) If f is continuous, CDα

[a,t]I
α
[a,t]f = f ,

(iv) If f ∈ Am([a, b]) then Iα[a,t]CDα
[a,t] = f (t) −

∑m−1
k=0 f (k)(a)/k!(x − a)k ,

(v) If f ∈ Ck([a, b]), α,β > 0 s.t. ∃` ∈ N ` ≤ k and α,α+ β ∈ [`− 1, `] then
CDα

[a,t]CDβ
[a,t]f = CDα+β

[a,t] f .

(vi) f ∈ Cµ([a, b]), α ∈ [0, µ], then RLDµ−α
[a,t] CDα

[a,t]f = f (µ).
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Caputo fractional derivatives - Properties
Theorem. (Caputo Derivatives Properties)
(vii) For f1, f2 : [a, b] → R, c1, c2 ∈ R then

CDα
[a,t](c1f1 + c2f2) = c1CDα

[a,t]f1 + c2CDα
[a,t]f2 a.e. on [a, b],

if CDα
[a,t]f1, CDα

[a,t]f2 exist a.e. on [a, b],
(viii) (Leibniz) let α ∈ (0, 1), f , g analytic on (a − h, a + h), then

CDα
[a,t][fg ](t) =

(t − a)−α

Γ(1 − α)
g(a)(f (t) − f (a)) +

(
CDα

[a,t](g(t)
)

f (t)

+

∞∑
k=1

(
α

k

)(
Ik−α
[a,t] g(t)

)
CDk

[a,t]f (t).

They can all be proved by mimicking the proofs for the RL derivative.
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Fractional ODEs with Caputo Derivatives

Let’s restart with the differential equation, but now written in terms of Caputo Derivatives

α > 0, m = dαe,


CDα

[0,t]y(t) = f (t, y(t)), t ∈ [0,T ],

dky(0)
dtk = y(k)

0 , k = 0, 1, . . . ,m − 1.
(FODE)

And we are now faced with the usual questions
Question-Circle Is there any solution?
Question-Circle If there is at least one, then how many there are?
Question-Circle When it is all said and proved, how can we approximate it?
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dky(0)
dtk = y(k)

0 , k = 0, 1, . . . ,m − 1.
(FODE)

And we are now faced with the usual questions
Question-Circle Is there any solution? → This lecture
Question-Circle If there is at least one, then how many there are?→ This lecture
Question-Circle When it is all said and proved, how can we approximate it? The next one
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A Peano existence theorem for first order equations
Theorem (Diethelm and Ford 2002, Theorem 2.1, 2.2)

Let 0 < α and m = dαe. Moreover let {y (k)
0 ∈ R}m−1

k=0 , K > 0, and h∗ > 0. We define

G =

{
(t, y) : t ∈ [0, h∗] :

∣∣∣∣∣y −

m−1∑
k=0

tky(k)
0 /k!

∣∣∣∣∣ ≤ K
}
,

and let the function f : G → R be continuous. Furthermore, define

M = sup
(t,z)∈G

|f (t, z)|, h =

{
h∗, if M = 0,
min{h∗, (K Γ(α+1)/M)1/n}, else.

Then, there exists a function y ∈ C([0, h]) solving (FODE).

To prove it we need a Lemma…and a bit of work.
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A Peano existence theorem for first order equations

Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.
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0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.(⇒) First of all we have y(t) being a
continuous solution of the nonlinear Volterra equation. We apply on both side the Caputo
derivative of order α

CDα
[0,t]y(t) = CDα

[0,t]

[m−1∑
k=0

tk

k!y
(k)
0

]
︸ ︷︷ ︸

=0 dαe>m−1

+CDα
[0,t]

[∫ t

0
(t − τ)α−1f (τ, y(τ))dτ

]
,
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Proof. We need to prove both the implications.(⇒) First of all we have y(t) being a
continuous solution of the nonlinear Volterra equation. We apply on both side the Caputo
derivative of order α

CDα
[0,t]y(t) = CDα

[0,t]I
α
[0,t]f (t, y(t)) = f (t, y(t)), f is continuous.
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Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
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tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

z(t) = f (t, y(t)) = CDα
[0,t]y(t) = RLDα

[0,t](y−Tm−1[y ; 0](t)) =
dm

dtm Im−α
0 (y−Tm−1[y ; 0])(t),

17 / 40



A Peano existence theorem for first order equations

Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:
we have an equality between continuous function, so we can apply Im

[0,t] to both sides!
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A Peano existence theorem for first order equations
Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
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Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

Im
[0,t]z(t) = Im

[0,t]
dm

dtm Im−α
0 (y − Tm−1[y ; 0])(t) = Im−α

0 (y − Tm−1[y ; 0])(t) + q(t),

for a polynomial q(t) ∈ P≤m−1[t].
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Im
[0,t]z(t) =
Im−α
0 (y − Tm−1[y ; 0])(t) + q(t)

• Im
[0,t]z(t) = 0 (at least) mtimes for t = 0,

• y − Tm−1[y ; 0] = 0 (at least) mtimes for t = 0,⇒ Im−α
0 (y − Tm−1[y ; 0])(t) = 0 (at least) mtimes for
t = 0, 17 / 40
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a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

Im
[0,t]z(t) =
Im−α
0 (y − Tm−1[y ; 0])(t) + q(t)

Therefore q(t) = 0 (at least) mtimes for t = 0, but
deg(q) ≤ m − 1 ⇒ q ≡ 0.
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Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

(y − Tm−1[y ; 0])(t) =RLDm−α
[0,t] Im

[0,t]z(t) =
d
dt I1+α−m

[0,t] Im
[0,t]z(t) =

d
dt I1+α

[0,t] z(t) = Iα0 z(t).
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A Peano existence theorem for first order equations
Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
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Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ.

by recalling the definitions of Tm−1[y , 0] and the RL-integral.
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A Peano existence theorem for first order equations
The other two results we will need (and that we are not going to prove) are

Theorem (Ascoli-Arzelà)
Lef F ⊂ C([a, b]) for some a < b, and assume the sets to be equipped with the supremum
norm. Then F is relatively compact1 in C([a, b]) if F is
• uniformly bounded, ∃C > 0 s.t. ‖f ‖∞ ≤ C ∀ f ∈ F ,
• equicontinuous ∀ ε > 0 ∃ δ > 0 such that ∀ f ∈ F and all x , x∗ ∈ [a, b] with
|x − x∗| < δ we have |f (x) − f (x∗)| < ε.

Schauder’s Fixed Point Theorem
Lef (E , d) be a complete metric space, let U be a closed convex subset of E , and let
A : U → U be a mapping such that the set {Au : u ∈ U} is relatively compact1 in E . Then
A has at least one fixed point.

1A subset whose closure is compact.
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A Peano existence theorem for first order equations
Let us look again at the statement of the Theorem.

Theorem (Diethelm and Ford 2002, Theorem 2.1, 2.2)

Let 0 < α and m = dαe. Moreover let {y (k)
0 ∈ R}m−1

k=0 , K > 0, and h∗ > 0. We define

G =

{
(t, y) : t ∈ [0, h∗] :

∣∣∣∣∣y −

m−1∑
k=0

tky(k)
0 /k!

∣∣∣∣∣ ≤ K
}
,

and let the function f : G → R be continuous. Furthermore, define

M = sup
(t,z)∈G

|f (t, z)|, h =

{
h∗, if M = 0,
min{h∗, (K Γ(α+1)/M1/n}, else.

Then, there exists a function y ∈ C([0, h]) solving (FODE).
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A Peano existence theorem for first order equations

Proof. If M = 0, then f (x , y) = 0 for all (x , y) ∈ G, then we can explicitly write the
solution as

y : [0, h] → R y(t) =
m−1∑
k=0

tk

k!y
(k)
0 ,

therefore a solution exists.
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A Peano existence theorem for first order equations

Proof. If M > 0, let us apply the Lemma and rewrite our problem as a Volterra equation:

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe,

and introduce the polynomial T satisfying the boundary condition and the space U

T (t) =
m−1∑
k=0

xk

k! y (k)
0 , U = {y ∈ C([0, h]) : ‖y − T‖∞ ≤ K }.
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and introduce the polynomial T satisfying the boundary condition and the space U

T (t) =
m−1∑
k=0

xk

k! y (k)
0 , U = {y ∈ C([0, h]) : ‖y − T‖∞ ≤ K }.

• U is closed and convex,
• U ⊂ C([0, h]),⇒ U is a non empty Banach space (at least T ∈ U).
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A Peano existence theorem for first order equations
Proof. If M > 0, let us apply the Lemma and rewrite our problem as a Volterra equation:

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe,

and introduce the polynomial T satisfying the boundary condition and the space U

T (t) =
m−1∑
k=0

xk

k! y (k)
0 , U = {y ∈ C([0, h]) : ‖y − T‖∞ ≤ K }.

Let us define the operator:

(Ay)(t) = T (t) + 1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ.
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A Peano existence theorem for first order equations

Proof. If M > 0, let us apply the Lemma and rewrite our problem as a Volterra equation:

y = Ay , (Ay)(t) = T (t) + 1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ.

LIGHTBULB we have to prove that A has a fixed point by the following steps:
1. proving that Ay ∈ U,
2. showing that A(U) = {Au : u ∈ U} is relatively compact (Ascoli-Arzelà),
3. apply Schauder’s Fixed Point Theorem for the victory Hand-peace.
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A Peano existence theorem for first order equations

Proof. Step 1. Let us take 0 ≤ t1 ≤ t2 ≤ h

|(Ay)(t1) − (Ay)(t2)| =
1

Γ(α)

∣∣∣∣∫ t1

0
(t1 − τ)α−1f (τ, y(τ))dτ−

∫ t2

0
(t2 − τ)α−1f (τ, y(τ))dτ

∣∣∣∣
=

1
Γ(α)

∣∣∣∣∫ t1

0

[
(t1 − τ)α−1 − (t2 − τ)α−1] f (τ, y(τ))dτ

−

∫ t2

t1

(t2 − τ)α−1f (τ, y(τ))dτ
∣∣∣∣

≤ M
Γ(α)

(∫ t1

0

∣∣(t1 − τ)α−1 − (t2 − τ)α−1∣∣ dτ+
∫ t2

t1

(t2 − τ)α−1 dτ
)
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A Peano existence theorem for first order equations
Proof. Step 1. Let us take 0 ≤ t1 ≤ t2 ≤ h

|(Ay)(t1) − (Ay)(t2)| ≤
M

Γ(α)

(∫ t1

0

∣∣(t1 − τ)α−1 − (t2 − τ)α−1∣∣ dτ+ (t2 − t1)
α

α

)
.

If α = 1 the first integral vanishes.
If α < 1, α− 1 < 0, and hence (t1 − τ)α−1 ≥ (t2 − τ)α−1, thus we remove the | · | and∫ t1

0

∣∣(t1 − τ)α−1 − (t2 − τ)α−1∣∣ = 1
α
(tα1 − tα2 + (t2 − t1)

α) ≤ 1
α
(t2 − t1)

α.

If α > 1 we have (t1 − τ)α−1 ≤ (t2 − τ)α−1∫ t1

0

∣∣(t1 − τ)α−1 − (t2 − τ)α−1∣∣ = 1
α
(tα2 − tα1 − (t2 − t1)

α) ≤ 1
α
(tα2 − tα1 ).
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A Peano existence theorem for first order equations

Proof. Step 1. Let us take 0 ≤ t1 ≤ t2 ≤ h

|(Ay)(t1) − (Ay)(t2)| ≤

{
2M/Γ(α+1)(t2 − t1)

α, α ≤ 1,
M/Γ(α+1)((t2 − t1)

α + tα2 − tα1 ), α > 1.

Therefore,

• Ay is continuous since |(Ay)(t1) − (Ay)(t2)| → 0 for t2 → t1,
• for y ∈ U and t ∈ [0, h] we find⇒ Ay ∈ U if y ∈ U.
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{
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α, α ≤ 1,
M/Γ(α+1)((t2 − t1)

α + tα2 − tα1 ), α > 1.

Therefore,
• Ay is continuous since |(Ay)(t1) − (Ay)(t2)| → 0 for t2 → t1,
• for y ∈ U and t ∈ [0, h] we find

⇒ Ay ∈ U if y ∈ U.

|(Ay)(t) − T (t)| = 1
Γ(α)

∣∣∣∣∫ t

0
(t − τ)α−1f (τ, y(τ))

∣∣∣∣ ≤ 1
Γ(α+ 1)Mtα ≤ 1

Γ(α+ 1)Mhα

(
Hp: h < K Γ(α + 1)

M

1/n
)
≤ 1
Γ(α+ 1)M KΓ(α+ 1)

M = K .
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A Peano existence theorem for first order equations

Proof. Our plan:
Check proving that Ay ∈ U,
2. showing that A(U) = {Au : u ∈ U} is relatively compact (Ascoli-Arzelà),
3. apply Schauder’s Fixed Point Theorem for the victory Hand-peace.

Step 2. First we prove that the set is bounded, let z ∈ A(U) and t ∈ [0, h]

|z(t)| = |(Ay)(t)| ≤‖T‖∞ +
1

Γ(α)

∫ t

0
(t − τ)α−1|f (τ, y(τ))|d τ

≤‖T‖∞ +
1

Γ(α+ 1)Mhα ≤ ‖T‖∞ + K .
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|(Ay)(t1) − (Ay)(t2)| ≤
2M
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Γ(α+ 1)δ
α, if |t2 − t1| < δ.

the expression on the right is independent of y ,t1, and t2.
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M
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Proof. Our plan:
Check proving that Ay ∈ U,
Check showing that A(U) = {Au : u ∈ U} is relatively compact (Ascoli-Arzelà),
3. apply Schauder’s Fixed Point Theorem for the victory Hand-peace.

Finally we have all the ingredients:
• E = C([0, h]), U = {y ∈ C([0, h]) : ‖y − T‖∞ ≤ K } is a closed, convex subset of E .
• We have proved that the operator A is such that {Au : u ∈ U} is relatively compact

in E .⇒ By Schauder’s Fixed Point Theorem we have the existence of at least a solution.

20 / 40



A Peano existence theorem for first order equations
Proof. Our plan:
Check proving that Ay ∈ U,
Check showing that A(U) = {Au : u ∈ U} is relatively compact (Ascoli-Arzelà),
Check apply Schauder’s Fixed Point Theorem for the victory Hand-peace.
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• E = C([0, h]), U = {y ∈ C([0, h]) : ‖y − T‖∞ ≤ K } is a closed, convex subset of E .
• We have proved that the operator A is such that {Au : u ∈ U} is relatively compact

in E .⇒ By Schauder’s Fixed Point Theorem we have the existence of at least a solution.

At last…
We have proved existence: what about uniqueness?

CODEA programming idea
We could use the fixed-point iteration as an algorithm for obtaining a solution.
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Uniqueness of the solution à-la-Picard-Lindelöf
As for the classical calculus case, to prove uniqueness we need Lipschitzianity of the system
dynamics w.r.t. to the second component.

Weissinger’s Fixed Point Theorem
Assume (U, d) to be a nonempty complete metric space, and let βj ≥ 0 for every j ∈ N0
and such that

∑∞
j=0 βj converges. Furthermore, let the mapping A : U → U satisfy the

inequality
d(Aju,Ajv) ≤ βjd(u, v), ∀j ∈ N, ∀ u, v ∈ U.

Then A has a uniquely determined fixed point u∗. Moreover, for any u0 ∈ U, the sequence
(Aju0)

∞
j=1 converge to this fixed point.

The plan
RECYCLE Reuse the same set U, and map A from the existence proof,
LESS-THAN-EQUAL Prove the inequality and give an expression of the αj in term of the Lipschitz constant.
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Uniqueness of the solution à-la-Picard-Lindelöf
Theorem
Let 0 < α and m = dαe. Moreover, let y(0)

0 , . . . , y(m−1)
0 ∈ R, K > 0, and h∗ > 0. We define the

same set G:
G =

{
(t, y) : t ∈ [0, h∗] :

∣∣∣∣∣y −

m−1∑
k=0

tk y(k)
0 /k!

∣∣∣∣∣ ≤ K
}
,

and let the function f : G → R be continuous and Lipschitz w.r.t. the second entry

|f (t, y1) − f (t, y2)| ≤ L|y1 − y2|,

for some L > 0 independently of t, y1, and y2. Then, for h such that

M = sup
(t,z)∈G

|f (t, z)|, h =

{
h∗, if M = 0,
min{h∗, (KΓ(α+1)/M

1/n}, else.

there exist a uniquely defined y ∈ C[0, h] solving (FODE).
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Uniqueness of the solution à-la-Picard-Lindelöf

Proof. We are under the same hypotheses of the Existence Theorem, thus (FODE) has a
solution.
We prove by induction on j that

‖Ajy − Aj ỹ‖∞ ≤ (Ltα)j

Γ(1 + αj)‖y − ỹ‖∞.
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solution.
We prove by induction on j that

‖Ajy − Aj ỹ‖∞ ≤ (Ltα)j

Γ(1 + αj)‖y − ỹ‖∞.

Base case: j = 0 follows by the definition.
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solution.
We prove by induction on j that

‖Ajy − Aj ỹ‖∞ ≤ (Ltα)j

Γ(1 + αj)‖y − ỹ‖∞.

Inductive hypothesis: we assume it true for j − 1 and prove it for j.
Inductive step:

‖Ajy − Aj ỹ‖∞ =‖A(Aj − 1y) − A(Aj−1ỹ)‖∞
=

1
Γ(α)

sup
0≤w≤t

∣∣∣∣∫w

0
(w − τ)α−1 [f (τ,Aj−1y(τ)) − f (τ,Aj−1ỹ(τ))

]
dτ
∣∣∣∣

(Lipschitz) ≤ L
Γ(α)

sup
0≤w≤t

∫w

0
(w − τ)α−1 ∣∣Aj−1y(τ) − Aj−1ỹ(τ)

∣∣ dτ
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‖Ajy − Aj ỹ‖∞ ≤ (Ltα)j

Γ(1 + αj)‖y − ỹ‖∞.
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Uniqueness of the solution à-la-Picard-Lindelöf
Proof. We are under the same hypotheses of the Existence Theorem, thus (FODE) has a
solution.
We proved by induction on j that

‖Ajy − Aj ỹ‖∞ ≤ (Ltα)j

Γ(1 + αj)‖y − ỹ‖∞ = αj‖y − ỹ‖∞, αj =
(Lh)α

Γ(1 + αj) .

To apply Weissinger’s Fixed Point Theorem we need to prove that the series
+∞∑
j=0

αj =
+∞∑
j=0

(Lh)α
Γ(1 + αj) converges.

Mittag-Leffler

Eα(z) =
+∞∑
k=0

zα
Γ(αk + 1) , α > 0 is an entire function.
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State of the art
We have proved that the Cauchy problem

α > 0, m = dαe,


CDα

[0,t]y(t) = f (t, y(t)), t ∈ [0,T ],

dky(0)
dtk = y(k)

0 , k = 0, 1, . . . ,m − 1.

admits
• for f continuous a local solution in C([0, h]), h < h∗,
• for f continuous and Lipschitz in the second entry a local and unique solution in
C([0, h]), h < h∗.

For classical ODEs this is the point in which one starts proving extension results for the
solutions. They exist also for the Fractional case. We are going to state them without
proof.

24 / 40



State of the art
We have proved that the Cauchy problem

α > 0, m = dαe,


CDα

[0,t]y(t) = f (t, y(t)), t ∈ [0,T ],

dky(0)
dtk = y(k)

0 , k = 0, 1, . . . ,m − 1.

admits
• for f continuous a local solution in C([0, h]), h < h∗,
• for f continuous and Lipschitz in the second entry a local and unique solution in
C([0, h]), h < h∗.

For classical ODEs this is the point in which one starts proving extension results for the
solutions. They exist also for the Fractional case. We are going to state them without
proof.

24 / 40



Extension results
Corollary
Assume the hypotheses of the existence Theorem, but substitute G with the domain of
definition of f , i.e., G = [0, h∗]× R. Moreover, assume that f is continuous and that there
exist constants c1 ≥ 0,c2 ≥ 0, 0 ≤ µ < 1 such that

f (t, y) ≤ c1 + c2|y |µ, ∀ (t, y) ∈ G.

Then, there exists a function y ∈ C([0, h∗]) solving (FODE).

• Since G is no longer compact we need to demand a suitable bound explicitly,
Weierstrasse Theorem no longer applies,

• A sufficient condition on f to imply the decay we need is for f to be continuous and
bounded on G,

Exclamation-Triangle Our condition is violated already by linear equations!
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Extension results

Theorem
Let 0 < α and m = dαe. Moreover, let y (0)

0 , . . . , y (m−1)
0 ∈ R and h∗ > 0. We define the set

G = [0, h∗]× R and let f : G → R be continuous and fulfill a Lipschitz condition with
respect to the second variable with a Lipischitz constant L that is independent of t, y1, and
y2. Then there exist a uniquely defined function y ∈ C([0, h∗]) solving the (FODE).

BOOK For a proof see the proof of Theorem 6.8 from (Diethelm 2010, pp 96-102) that is
inspired by the proof for Volterra integral equations in (Linz 1985, Theorem 4.8).

SMILE We can now solve linear equations

CADα
[0,t]y(t) = f (t)y(t) + g(t), f , g ∈ C([0, h∗]), L = ‖f ‖∞ < ∞.

Question-Circle Do we know hot to solve by hand any simple FODE?
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Simple cases and representation formulas
The simplest ODE we know ho to solve is the relaxation equation

R 3 λ < 0,
{

y ′(t) = λy(t), t ∈ [0,T ],

y(0) = y0,
y(t) = y0 exp(λt).

Relaxation FODE
Let α > 0, m = dαe and λ ∈ R. The solution of the Cauchy problem

CAD[0,t]y(t) = λy(t), y(0) = y0, y (k)(0) = 0, k = 1, 2, . . . ,m − 1,

is given by
y(t) = y0Eα(λtα), t ≥ 0.

• The previous existence result tells us that the problem has indeed a unique solution.
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Solution of the relaxation FODE

Two parameters Mittag-Leffler

Eα,β(z) =
+∞∑
k=0

zα
Γ(αk + β)

, α, β > 0 is an entire function.

To see that this is the case we can use Stirling formula and root test
Stirling: Γ(x + 1) = (x/e)x √2πx(1 + o(1)) for x → +∞,

Root test:
∑+∞

n=1 an converge absolutely if C = lim supn→+∞ n
√
|an| < 1.

We write

a1/j
j =

(
e

jα+ β

)α+β/j

(2π(αj + β))−
1/2j(1 + o(1)) → 0 for j → ∞.

Thus the radius of convergence is infinite.
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Solution of the relaxation FODE

α > 0, m = dαe, CAD[0,t]y(t) = λy(t), y(0) = y0, y (k)(0) = 0, k = 1, 2, . . . ,m − 1,

1. y(0) = y0Eα(0) = y0 since

Eα(z) = 1 +
z

Γ(α+ 1) +
z2

Γ(2α+ 1) + . . . ,

2. If α > 1, m ≥ 2, y (k)(0) = 0, k = 1, 2, . . . ,m − 1

y(t) = 1 +
λtα

Γ(α+ 1) +
λ2t2α

Γ(2α+ 1) + . . . ,

imposing the condition on the derivatives implies

y (k)(t) = λtα−k

Γ(α+ 1 − k) +
λ2t2α−k

Γ(2α+ 1 − k) + . . . , k = 1, 2, . . . ,m − 1.
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Γ(α+ 1 − k) +
λ2t2α−k

Γ(2α+ 1 − k) + . . . , k = 1, 2, . . . ,m − 1.
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Why only continuous solutions?
The existence theorems we have seen give us a solution y(t) ∈ C([0, h]), can we have more?

Regularity for ODEs

k ∈ N, f ∈ Ck−1([y0 − K , y0 + k]× R),

{
y ′(t) = f (t, y(t)),
y(0) = y0

⇒ y(t) ∈ Ck .

We can reuse our example computation:

f (t) = (t − a)β, Γ(β+ 1)
Γ(β+ 1 − α)

(t − a)β−α, β /∈ N∧ β > dαe− 1

If we select a = 0, α = 1/2, β = 1/2, then{
CAD[0,t]y(t) = Γ(3/2),

y(0) = 0,
⇒ y(t) =

√
x .

From an analytic right-hand side we got a non differentiable solution.
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Why only continuous solutions?

Luggage-Cart Take-home message
Regularity of the right-hand side of the (FODE) is not sufficient to ensure regularity of the
solution.

FILE Some more restrictive conditions under which regularity can be ensured can be found
in (Diethelm 2007), to give an idea, one have to further ensure conditions for the
zeros of z(t) = f (t, y(t)).

• Furthermore, if the solution of (FODE) is analytic, but not a polynomial of degree
dαe− 1, then f is not analytic.

• This will be important when we try do design numerical methods, since many results
on convergence order usually rely on the regularity of the solution. Going high-order in
the fractional settings is not in general an easy task!
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The Mittag-Leffler Function
The Eα,β(z) takes the role of the exponential function when moving from ODEs to FODEs.

Eα,β(z) =
+∞∑
k=0

zα
Γ(αk + β)

, α, β > 0.

Question-Circle How can we compute it?

Door-closed Using the series representation,
Door-closed A quadrature formula applied to an integral representation,

Inversion of the Laplace transform.

Laplace Transform
For a real- or complex-valued function f (t) of the real variable t defined on R the
(two-sided) Laplace transform is defined as

F (s) = L{f }(s) =
∫+∞
−∞ e−st f (t)dt.
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Inverting the Laplace Transform

If we want fo compute f (t) and have access to F (s) = L{f }(s) we can perform a numerical
inversion, that is

f (t) = 1
2πi

∫σ+∞
σ−i∞ estF (s)ds.

where
• (σ− i∞, σ+ i∞) is called the Bromwich line,
• σ is such that all the singularities of F (s) lies to

the left <(s) = σ.

Exclamation-Triangle Branch lines
If F (s) is a multivalued function we need to add a
branch-cut to make the integrand single-valued.

σ <(z)

=(z)
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Inverting the Laplace Transform
To numerically approximate the integral

f (t) = 1
2πi

∫σ+i∞
σ−i∞ estF (s)ds.

we always need a change of variable, the exponential term oscillates wildly and decays
slowly along the Bromwich line.
We have to change the countour of integration to something more suitable, i.e., we change

s = s(u) 7→ f (t) = 1
2πi

∫+∞
−∞ es(u)tF (s(u))s ′(u)du,

and then approximate the integral with the trapezoidal rule with spacing h

fh,N(t) =
h

2πi

N∑
k=−N

es(uk)tF (s(uk))s ′(uk), uk = kh.
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Inverting the Laplace Transform
Question-Circle What is the best contour?

• Parabolic contour:

s = µ(iu + 1)2, −∞ < u < ∞
• Hyperbolic contour:

s = µ(1 + sin(iu − α)), −∞ < u < ∞
• Talbot contour:

s = −σ+ µθ cot(αθ) + iθν, −π ≤ θ ≤ π

Selecting contour and parameters depends on the error analysis.
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Inverting the Laplace Transform
Brain All the contours exploit the fact that est decays rapidly as <(s) → −∞,
• Trapezoidal rule for integral on the real line for which the integrand decay sufficiently

rapidly is exponential:

Theorem (Trefethen and Weideman 2014, Theorem 5.1)
Suppose that w is analytic in the strip |=(x)| < a for some a > 0. Suppose further that w(x) → 0
uniformly as |x | → +∞ in the strip, and that for some M it satisfies∫+∞

−∞ |w(x + ib)|dx ≤ M, ∀b ∈ (−a, a),

then for any h > 0, the trapezoidal rule wh,N with step-size h exists and satisfies

|wh −

∫+∞
−∞ w(x)dx | ≤ 2M

exp(2πa/h) − 1 ,

and the quantity 2M on the numerator is as small as possible.
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Inverting the Laplace Transform

Brain All the contours exploit the fact that est decays rapidly as <(s) → −∞,
• Trapezoidal rule for integral on the real line for which the integrand decay sufficiently

rapidly is exponential:

Steepest descent contours
For some functions it is possible to use a technique called “saddle point technique” from
complex analysis to estimate the asymptotic of complex integrals. This determines the
optimal steepest descent contour.

References for the general problem are:
Talbot: Dingfelder and Weideman 2015; Trefethen, Weideman, and Schmelzer 2006;

Weideman 2006,
Parabolic & Hyperbolic: Weideman and Trefethen 2007.
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Our case: we’ve got poles and a branch cut
In our case the function for which we can compute the Laplace transform is

eα,β(t ; λ) = tβ−1Eα,β(tαλ), t ∈ R+, λ ∈ C.

That is given by

Eα,β(t ; λ) =
sα−β

sα − λ
, <(s) > 0, |λs−α| < 1.

• There are non-integer powers ⇒ Eα,β is a multivalued function and a branch-cut on
the real negative semi-axis is needed,

• We have also the poles for θ = arg(λ)

s∗j = λ
1/α = |λ|

1/αe i θ+2πj
α ,

{
j ∈ Z

∣∣∣∣−α

2 −
θ

2π < j ≤ α

2 −
θ

2π

}
,

Exclamation-TriangleThere could be lots of poles! Finding suitable contours is difficult.
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Cauchy’s residue theorem to the rescue

We can use Cauchy’s residue theorem if we have too many poles

eα,β(t ; λ) =
∑

s∗∈S∗
C

Res(estEα,β(s ; λ), s∗) +
1

2πi

∫
C

estEα,β(s ; λ)ds.

• S∗
C is the set of all singularities lying on the

rightmost part of the complex plane delimited
by C,

• We can compute the residual in close form:

Res(estEα,β(s ; λ), s∗) =
1
α
(s∗)1−βes∗t .

σ<(z)

=(z)
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The full algorithm (Garrappa 2015)

To build the full algorithm few technical steps are needed:
1. Finding an ordering of the poles,

φ(s) = <(s) + |s |
2 , 0 = φ(s∗0 ) < φ(s∗1 ) < · · · < φ(s∗J ),

2. Consider J + 1 parabolas s = φ(s∗j )(u + 1)2 and the relevant J + 1 plane regions Rj ,
3. The regions Rj are the analyticity regions to use in the Trefethen and Weideman result,
4. Obtain bounds on the discretization error and use it to determine optimal µj , step-size

hj and number of quadrature nodes Nk ,
5. Select the best region Rj w.r.t. the lowest computation and reduction of round-off

errors.
CODE it.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function
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4. Obtain bounds on the discretization error and use it to determine optimal µj , step-size
hj and number of quadrature nodes Nk ,

5. Select the best region Rj w.r.t. the lowest computation and reduction of round-off
errors.
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Summary and anticipations

We did
Check-Circle Uncovered properties of Riemann-Liouville Derivatives,
Check-Circle Introduced the Caputo Derivative,
Check-Circle Formulation, existence and uniqueness results for FODEs,
Check-Circle The Mittag-Leffler function and its computation.

Next up
CLIPBOARD-LIST Numerical methods for the integration of FODEs.

40 / 40
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