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The Numerical Integration of FODEs
We want to find a numerical solution of the differential equation written in terms of
Caputo Derivatives

α > 0, m = dαe,


CDα

[0,t]y(t) = f (t, y(t)), t ∈ [0,T ],

dky(0)
dtk = y(k)

0 , k = 0, 1, . . . ,m − 1.
(FODE)

Caputo fractional derivative (Caputo 2008)
Let α ≥ 0, and m = dαe. Then, we define the operator

CDα
[a,t]y = Im−α

[a,t]
dm

dtm y ,

whenever dm

dtm y ∈ L1([a, b]).
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The Numerical Integration of ODEs
What methods do we know for ODEs?

Given a grid {tj = jτ}Nj=1 and τ = T/N, approximating y(tj) ≈ y (j).
Explicit methods: Compute y (j) using only values y (k) for k < j

• One Step Methods: Explicit Runge-Kutta Methods (ERK)
• Linear Multistep Methods: Adams–Bashforth, Predictor-Corrector

Implicit methods: Compute y (j) using only values y (k) for k ≤ j

• One Step Methods: Implicit Runge-Kutta Methods (IRK,DIRK,SDIRK)
• Linear Multistep Methods: Adams–Moulton, Backward Differentiation

Formulas (BDFs), Numerical Differentiation Formulas (NDFs),…

Exponential integrators: Compute directly y (N) without any y (j) for j < N.
For both implicit and explicit methods we have also all-at-once formulations, and a
middle-ground represented by Implicit-Explicit (IMEX) methods.
Our objective is to transport what we can for the solution of (FODE).
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Product Integration Rules
Product Integration rules were introduced in the work (Young 1954) for Integral Equations.

From the existence results we know that a solution to (FODE) is a solution to the Integral
Equation

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

• Adams-Bashforth-Moulton methods are obtained by applying a quadrature formula to
the integral,

• We can use, e.g.,
• the fractional rectangular formula with nodes {tj = jτ}n−1

j=1 ,
• or the product trapezoidal quadrature formula with nodes {tj = jτ}nj=1.

To obtain a predictor-corrector method.
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Product Integral Rules

The main idea behind PI rules is to approximate the integral∫ t

0
(t − τ)α−1f (s, y(s))ds

by approximating the vector field f with suitable polynomials..
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by approximating the vector field f with suitable polynomials. We build an Adams-type
method. If we consider a grid {t0, t1, . . . , tN} on the whole [t0,T ] we can decompose the
integral as

y(t) = Tm−1(t) +
1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

(t − s)α−1f (τ, y(τ))dτ, t ≥ tn.

• Replace f in each sub-interval by the first–degree polynomial interpolant
• These produce the usual fractional integral that we now how to solve
• We plug everything in our expression using that:

wn = I(0)n,0 −
I(1)n,0
τ0

+
I(1)n,1
τ0

, bnj =
I(1)n,j−1 − I(1)n,j

τj−1
−

I(1)n,j − I(1)n,j+1
τj

, j ≤ n− 1, bn,n =
I(1)n,n−1
τn−1

.
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Product Integral Rules - Convergence

To discuss convergence properties we can piggyback on the theory of Abel’s and
Volterra’s fractional integral equations.
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Product Integral Rules - Convergence
To discuss convergence properties we can piggyback on the theory of Abel’s and
Volterra’s fractional integral equations.∫ t

0
(t − s)−αy(s)ds = f (t), 0 < α < 1 (Abel’s Integral Eq.)

If we discretize everything as before we get

[BN � KN ]y = g, BN = τ1−α[bi ,j ], KN = [k(ti , tj)], � Hadamard product.

where y = (y0, . . . , yN)
T and g contains the initial conditions and the evaluations of f .

Convergence analysis for (Cameron and McKee 1985)
“[Consistency of order p] demands that f (t) ∈ C1−α[0,T ] which is necessary in any case for
y(t) to be a smooth function . . . |y(ti) − yi | ≤ Cτp , i = 0, 1, . . . ,m − 1.”
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Product Integral Rules - Convergence
The requirements from the standard theory are far too strong for what we can reasonably
expect from the analysis on the solution regularity we did in the last lecture.

Theorem (Dixon 1985)
Let f be Lipschitz continuous with respect to the second variable and yn be the numerical
approximation obtained by applying the PI trapezoidal rule on the interval [t0,T ]. There
exist a constant C = C1(T − t0), which does not depend on h, such that

‖y(tn) − yn‖ ≤ C(tα−1
n τ1+α + τ2), τ = max

j=0,...,n−1
τj .

• The same drop in the convergence order occurs also when higher degree polynomials
are employed,

• When α > 1 convergence order 2 is obtained.
Brain It doesn’t make much sense to use higher-degree PI rules if 0 < α < 1.
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The Fractional Rectangular Formula
Let us reduce to the case with α ∈ (0, 1), m = 1, and a uniform mesh.
To build it we need to approximate the integral with the rectangule rule∫ t

0
(t − τ)α−1f (τ, y(τ))dτ

on the grid {tj = t0 + jτ}Nj=1 with uniform grid spacing τ, we denote

f (j) = f (tj , y (j)) for y (j) ≈ y(tj),

and write it as

y (n) = y0 +
τα

Γ(α)

n−1∑
j=0

bn−j−1f (j), bn = [(n + 1)α − nα]/α, n = 1, . . . ,N.

• This is an explicit method,
• By construction, this is a 1-step method…

but in reality we need all the previous steps!
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Some observations
CODE To build the solution we have to keep in memory either the previous solutions or the

function evaluations,

CODE Using a uniform mesh the evaluation of the weights just involve the computation of
real powers of integer numbers,

CODE We have to compute:
n−2∑
j=0

bn−j−1f (j),

this is a quadratic cost with N, but there is a convolution structure, so we can
expect that some FFT-based trick could come to the rescue.

CODE The 1-step name is related to the number of initial values to start the computation.

LIGHTBULBPredictor-Corrector algorithms
Now that we have two schemes we can think of using them together to build a
predictor-corrector algorithm.
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Some observations
CODE To build the solution we have to keep in memory either the previous solutions or the

function evaluations,
CODE Using a uniform mesh the evaluation of the weights just involve the computation of

real powers of integer numbers, we can simplify also the fractional trapezoidal formula

y (n) =Tm−1(tn) +
τα

Γ(α+ 2)

wnf (0) +
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j=1
bn−j f (j)
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CODE We have to compute:
n−2∑
j=0

bn−j−1f (j),

this is a quadratic cost with N, but there is a convolution structure, so we can
expect that some FFT-based trick could come to the rescue.
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Fractional Predictor-Corrector Scheme (Diethelm 1997)
We are going to write it again for 0 < α < 1 on a uniform mesh

1. In the prediction step we use the fractional rectangular formula

y (n+1)
P = y (0) +

τα

Γ(α)

n∑
j=0

bj,n+1f (tj , y (j)), bj,n+1 =
(n + 1 − j)α − (n − j)α

α

2. In the correction step we use the fractional trapezoidal formula

y (n+1) = y (0) +
τα

Γ(α)

 n∑
j=0

aj,n+1f (tj , y (j)) + an+1,n+1f (tn+1, y (n+1)
P )


where

aj,n+1 =


(nα+1−(n−α)(n+1)α/α(α+1), j = 0,
(n−j+2)α+1−2(n−j+1)α+1+(n−j)α+1/α(α+1), j = 1, 2, . . . , n,
1/α(α+1), j = n + 1.
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A Fractional Predictor-Corrector Scheme
• Predictor-Corrector schemes are of interest because they represent a good

compromise between accuracy and ease of implementation.

• To investigate the convergence we need to look deeper into the convergence results of
the two PI integral rules (Diethelm, Ford, and Freed 2004).

Theorem (Diethelm, Ford, and Freed 2004, Theorem 2.4)

(a) Let z ∈ C1([0,T ]). Then∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k∑
j=0

bj,k+1z(tj)

∣∣∣∣∣∣ ≤ 1
α
‖z ′‖∞tαk+1τ.

(b) Let z(t) = tp for some p ∈ (0, 1). Then,∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k∑
j=0

bj,k+1z(tj)

∣∣∣∣∣∣ ≤ CRe
α,ptα+p−1

k+1 τ.
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A Fractional Predictor-Corrector Scheme
And analogously for the product trapezoidal formula.

Theorem (Diethelm, Ford, and Freed 2004, Theorem 2.5).
(a) If z ∈ C2([0,T ]), then there exist a constant CTr

α depending only on α such that∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣∣ ≤ CTr
α ‖z ′′‖∞tαk+1τ

2.

(b) Let z ∈ C1([0,T ]) and assume that z ′ fulfills a Lipschitz condition of order µ ∈ (0, 1).
Then, there exists positive constants BTr

α,µ and Mz,µ such that∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣∣ ≤ BTr
α,µMz,µtαk+1τ

1+µ.
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(c) Let z(t) = tp for some p ∈ (0, 2) and ρ = min(2, p + 1). Then∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣∣ ≤ CTr
α,ptα+p−ρ

k+1 τρ.
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A Fractional Predictor-Corrector Scheme
Observe that for the fractional rectangular case (b) the bound contains

tα+p−1
k+1 ,

if α+ p < 1 then we get that the overall integration error becomes larger if the size of the
interval of integration becomes smaller!
Similarly for the case (c) for the fractional trapezoidal rule

α < 1, p < 1, ρ = p + 1, tα+p−ρ
k+1 ,

has the same explosive behavior.

Smaller intervals for harder integrals
By making tk+1 smaller we have two effects

1. We reduce the length of the integration interval,
2. We change the weight function in a way that makes the integral more difficult.
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A Fractional Predictor-Corrector Scheme
Lemma (Diethelm, Ford, and Freed 2004, Lemma 3.1)
Assume that the solution y of the initial value problem is such that∣∣∣∣∣∣

∫ tk+1

0
(tk+1 − t)α−1

CADα
[0,t]y(t)dt −

k∑
j=0

bj,k+1CADα
[0,t]y(t)

∣∣∣∣∣∣ ≤ C1tγ1
k+1τ

δ1 ,

and ∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1

CADα
[0,t]y(t)dt −

k+1∑
j=0

aj,k+1CADα
[0,t]y(t)

∣∣∣∣∣∣ ≤ C2tγ2
k+1τ

δ2 ,

with some γ1, γ2 ≥ 0 and δ1, δ2 > 0. Then, for some suitably chosen T > 0, we have

max
0≤j≤N

|y(tj) − y (j)| = O(τq), q = min{δ1 + α, δ2}, N = dT/τe.
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Error bounds

Theorem (Diethelm, Ford, and Freed 2004, Theorem 3.2)
Let 0 < α and assume CADα

[0,t]y(t) ∈ C2([O,T ]) for some suitable T . Then,

max
0≤j≤N

|y(tj) − y (j)| =

{
O(τ2), if α ≥ 1,
O(τ1+α), if α < 1.

Proof. In view of the two bounds for the Fractional Rectangular and Trapezoidal forms we
can apply the previous Lemma with γ1 = γ2 = α > 0, δ1 = 1, δ2 = 2. Therefore we find a
bound of order O(τq) where

q = min{1 + α, 2} =
{

2, if α ≥ 1,
1 + α, if α < 1.
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{
O(τ2), if α ≥ 1,
O(τ1+α), if α < 1.

• Order of convergence is a non-decreasing function of α,
• Hypotheses are stated in terms of the αth Caputo derivative of the solution,
• Can we replace them by similar assumptions on y itself?

Theorem Diethelm, Ford, and Freed 2004, Theorem 3.3
Let α > 1 and assume y ∈ C1+dαe([0,T ]) for some suitable T , then

max
0≤j≤N

|y(tj) − y (j)| = O(τ1+dαe−α).
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Let α > 1 and assume y ∈ C1+dαe([0,T ]) for some suitable T , then

max
0≤j≤N

|y(tj) − y (j)| = O(τ1+dαe−α).

Proof. We need to use the characterization of Caputo’s derivative

CADα
[0,t]y(t) =

m−dαe−1∑
`=0

y (l+dαe)(0)
Γ(dαe− α+ `+ 1) tdαe−α+` + g(t), g ∈ Cm−dαe([O,T ]),

g (m−dαe) ∈ Lip(dαe− α).
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Error bounds
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Let α > 1 and assume y ∈ C1+dαe([0,T ]) for some suitable T , then

max
0≤j≤N

|y(tj) − y (j)| = O(τ1+dαe−α).

Proof. Then for α > 1, we can apply the Lemma with γ1 = 0, γ2 = α− 1 > 0, δ1 = 1,
δ2 = 1 + dαe− α and thus δ1 + α = 1 + α > 2 > δ2, min{δ1 + α, δ2} = δ2. The overall
order is then O(τδ2) = O(τ1+dαe−α).
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An example
Example{

CADα
[0,t]y(t) =

40320
Γ(9−α) t

8−α − 3 Γ(5+α/2)
Γ(5−α/2) t

4−α/2 + 9
4Γ(α+ 1) +

(
3tα/2/2 − t4)3

− y(t)3/2,

y(0) = 0.

Solution: y(t) = t8 − 3t4+α/2 + 9
4 tα.

tauval = 2.^(-(1:6));
for i=1:length(hval)
tau = tauval(i);
t0 = 0; T = 1;
alpha = 0.25;
[T, Y] = fde_pi1_ex(alpha, f_fun, t0,

T, y0, tau);↪→
err(i) = norm(Y - ye(T),'inf');

end
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hval = 2.^(-(1:6));
for i=1:length(hval)
h = hval(i);
t0 = 0; T = 1;
[T, Y] = fde_pi12_pc(alpha, f_fun,

t0, T, y0, h, [], 1);↪→
err(i) = norm(Y - ye(T),'inf');

end
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An example

Example{
CADα
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0.25 5.00e-01 2.75e+00
2.50e-01 1.80e+00 0.61
1.25e-01 8.37e-01 1.10
6.25e-02 2.45e-01 1.77
3.12e-02 6.57e-02 1.90
1.56e-02 2.02e-02 1.70
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6.10e-05 9.00e-06 1.31
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More than one correction step
One can think of improving convergence by performing more than one correction step in
the algorithm (Diethelm, Ford, and Freed 2002).
Let us call µ ∈ N the number of correction steps:

y (n+1)
[0] = y (0) + τα

Γ(α)

∑n
j=0 bj,n+1f (tj , y (j)), Prediction step,

y (n+1)
[`] = y (0) + τα

Γ(α)

(∑n
j=0 aj,n+1f (tj , y (j)) + an+1,n+1f (tn+1, y (n+1)

[`−1] )
)
, Correction steps

` = 1, . . . , µ.
y (n+1) ≡ y (n+1)

[µ] .

Brain Each iteration is expected to increase the order of convergence of a fraction α from
order 1 (µ = 0) representing the fractional rectangular rule,

Brain The standard predictor corrector method is obtained for µ = 1.

16 / 34



More than one correction step
One can think of improving convergence by performing more than one correction step in
the algorithm (Diethelm, Ford, and Freed 2002).
Let us call µ ∈ N the number of correction steps:

y (n+1)
[0] = y (0) + τα

Γ(α)

∑n
j=0 bj,n+1f (tj , y (j)), Prediction step,

y (n+1)
[`] = y (0) + τα

Γ(α)

(∑n
j=0 aj,n+1f (tj , y (j)) + an+1,n+1f (tn+1, y (n+1)

[`−1] )
)
, Correction steps

` = 1, . . . , µ.
y (n+1) ≡ y (n+1)

[µ] .

Brain Each iteration is expected to increase the order of convergence of a fraction α from
order 1 (µ = 0) representing the fractional rectangular rule,

Brain The standard predictor corrector method is obtained for µ = 1.

16 / 34



More than one correction step
One can think of improving convergence by performing more than one correction step in
the algorithm (Diethelm, Ford, and Freed 2002).
Let us call µ ∈ N the number of correction steps:

y (n+1)
[0] = y (0) + τα

Γ(α)

∑n
j=0 bj,n+1f (tj , y (j)), Prediction step,

y (n+1)
[`] = y (0) + τα

Γ(α)

(∑n
j=0 aj,n+1f (tj , y (j)) + an+1,n+1f (tn+1, y (n+1)

[`−1] )
)
, Correction steps

` = 1, . . . , µ.
y (n+1) ≡ y (n+1)

[µ] .

Brain Each iteration is expected to increase the order of convergence of a fraction α from
order 1 (µ = 0) representing the fractional rectangular rule,

Brain The standard predictor corrector method is obtained for µ = 1.

16 / 34



Convergence behavior
The convergence behavior can be described by using repeatedly the result from (Diethelm,
Ford, and Freed 2004, Lemma 3.1) that we have used to obtain the other convergence
bounds.
Corollary

max
0≤n≤N

|y(tn) − y (n)| =


O(τmin(1+µα,2)), if CADα

[t0,t]y(t) ∈ C2([0,T ]),

O(τmin(1+µα,2−α)), if y(t) ∈ C2([0,T ]),

O(τ1+α), if f (t, y) ∈ C2([O,T ]× D).

• The maximum order of convergence for CADα
[t0,t]y(t) ∈ C2([0,T ]) is obtained for

µ = d1/αe,
• The maximum order of convergence for y(t) ∈ C2([0,T ]) is obtained for µ = d1−α/αe,
• In the third case with a single corrector step, and no improvement is possible.
LIGHTBULB In general we could fix a maximum number of steps µ and halt the procedure when

the error is under a certain tolerance.
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bounds.
Corollary

max
0≤n≤N

|y(tn) − y (n)| =


O(τmin(1+µα,2)), if CADα

[t0,t]y(t) ∈ C2([0,T ]),

O(τmin(1+µα,2−α)), if y(t) ∈ C2([0,T ]),

O(τ1+α), if f (t, y) ∈ C2([O,T ]× D).

• The maximum order of convergence for CADα
[t0,t]y(t) ∈ C2([0,T ]) is obtained for

µ = d1/αe,
• The maximum order of convergence for y(t) ∈ C2([0,T ]) is obtained for µ = d1−α/αe,

• In the third case with a single corrector step, and no improvement is possible.
LIGHTBULB In general we could fix a maximum number of steps µ and halt the procedure when

the error is under a certain tolerance.
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Absolute stability

Let us focus on the test problem

CADα
[t0,t]y(t) = λy(t), y(0) = y0, λ ∈ C, 0 < α < 1.

In the last lecture we have seen that the solution of this problem can be expressed as

y(t) = Eα(λ(t − t0)
α)y0.

Asymptotic behavior
The solution y(t) asymptotically vanishes as t → +∞ for

λ ∈ S∗ = {z ∈ C : | arg(z) − π| < (1 − α/2)π.}
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In the last lecture we have seen that the solution of this problem can be expressed as
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α)y0.

Asymptotic behavior
The solution y(t) asymptotically vanishes as t → +∞ for

λ ∈ S∗ = {z ∈ C : | arg(z) − π| < (1 − α/2)π.}

The application of PI rule leads to a non-homogeneous
difference equation

y (n) = g (n) +
n∑

j=k
cn−jy (j), n ≥ k,
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Absolute stability

Informally
The stability region of the various PI formulas can be described as the set of all z = ταλ for
which the numerical solution {y (n)}n behaves as the true solution and tends to 0 as
n → +∞.
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Absolute stability
Informally
The stability region of the various PI formulas can be described as the set of all z = ταλ for
which the numerical solution {y (n)}n behaves as the true solution and tends to 0 as
n → +∞.

As for the other theoretical result we are going to leverage information on the associated
Volterra integral equation (Lubich 1986a).

• First we rewrite our non-homogeneous difference equation (in which we simplify the
notation assuming to work with scalars) as{

yn = fn + τα
∑n

j=0 ωn−jg(yj), n ≥ 0
fn = f (tn) + τα

∑−1
j=−m wn,jg(yj), tn = t0 + nτ, t0 = mh.

• Then we assume that hαwn,jg(yj) = O((nτ)α−1τg(yj)), i.e., wn,j = O(nα−1) as
n → +∞, j = −M, . . . ,−1.

19 / 34



Absolute stability
A connection to the classical theory
In the classical case α = 1, if we can express the term

+∞∑
n=0

ωnζ
n =

σ(ζ−1)

ρ(ζ−1)

as a rational function, then we have found a standard Linear Multistep Method.

A-stable method
A convolution quadrature {ω}n for the Abel equation

y(t) = f (t) + 1
Γ(α)

∫ t

0
(t − s)α−1g [y(s)]ds, t ≥ 0, 0 < α ≤ 1,

is called A-stable if the solution {yn}n given by the convolution quadrature satisfies
yn → 0 as n → +∞ whenever {fn}n has a finite limit ∀τ > 0, ∀ λ ∈ S∗.
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Stability region
In general we cannot expect to have stability for every λ ∈ S∗, consider, e.g.

CADα
[t0,t]y(t) = −5y(t), y(0) = 1, T = 1.

integrated with the explicit fractional rectangular rule
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Stability region
Stability region
The stability region S of a convolution quadrature {ωm} is the set of all complex z = ταλ

for which the numerical solution {yn}n satisfies

yn → 0 as n → +∞ whenever {fn}n has a finite limit.

The method is called strongly stable, if for any λ ∈ S∗ there exists τ0(λ) > 0 such that
ταλ ∈ S for all 0 < τ < τ0(λ). The method is called A(θ)-stable if S contains the sector
| arg(z) − π| < θ.

To obtain the characterization we need, we consider weights
ωn = (−1)n

(
−α

n

)
+ vn, n ≥ 0, {vn}n ∈ `1, (H1)

to which corresponds
ω(ζ) = (1 − ζ)−α + v(ζ) continuous in {ζ ∈ C : |ζ| ≤ 1, ζ 6= 1}, lim

ζ→1−
w(ζ) = +∞.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .
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Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. Let z = ταλ. Since 0 is neither contained in S∗ nor in S, we can assume z 6= 0. We
can rewrite our difference equation as

y(ζ) = f (ζ) + zω(ζ)y(ζ) ⇔ y(ζ) = f (ζ)
1 − zω(ζ)

=
(1 − ζ)αf (ζ)

(1 − ζ)α[1 − zω(ζ)]
.

We first prove that S ⊆ S∗.

• The coefficient sequence (1 − ζ)α[1 − zω(ζ)] is in `1,
• If z ∈ S then 1 − zω(ζ) 6= 0 for |ζ| ≤ 1 with ζ 6= 1.

(H1) (1 − ζ)α[1 − zω(ζ)] = (1 − ζ)α[1 − zv(ζ)] − z and thus
(1 − ζ)α[1 − zω(ζ)] 6= 0 for |ζ| ≤ 1
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(1 − ζ)α[1 − zω(ζ)]
.

We first prove that S ⊆ S∗.
• The coefficient sequence (1− ζ)α[1− zω(ζ)] is in `1, indeed v(ζ) and (1− ζ)α are in
`1 by using (H1) (for the first one with −α instead of α), hence also
1 + (1 − ζ)αv(ζ) = (1 − ζ)αω(ζ), since for any two sequences in `1 we have∑

n |
∑

i an−ibi | ≤
∑

|ai ||bi |.

• If z ∈ S then 1 − zω(ζ) 6= 0 for |ζ| ≤ 1 with ζ 6= 1.
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Stability region
Wiener inversion Theorem
f (ζ) =

∑+∞
n=0 anζ

n with ‖f ‖1 < +∞, ζ = e inθ, then 1/f (θ) ∈ `1 iff f (θ) 6= 0 for all θ.

Proof. Let z = ταλ. Since 0 is neither contained in S∗ nor in S, we can assume z 6= 0. We
can rewrite our difference equation as

y(ζ) = f (ζ) + zω(ζ)y(ζ) ⇔ y(ζ) = f (ζ)
1 − zω(ζ)

=
(1 − ζ)αf (ζ)

(1 − ζ)α[1 − zω(ζ)]
.

We first prove that S ⊆ S∗.
• The coefficient sequence (1 − ζ)α[1 − zω(ζ)] is in `1,
• If z ∈ S then 1 − zω(ζ) 6= 0 for |ζ| ≤ 1 with ζ 6= 1.

(H1) (1 − ζ)α[1 − zω(ζ)] = (1 − ζ)α[1 − zv(ζ)] − z and thus

(1 − ζ)α[1 − zω(ζ)] 6= 0 for |ζ| ≤ 1

23 / 34
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Theorem (Lubich 1986a, Theorem 2.1)
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(H1) (1 − ζ)α[1 − zω(ζ)] = (1 − ζ)α[1 − zv(ζ)] − z and thus
(1 − ζ)α[1 − zω(ζ)] 6= 0 for |ζ| ≤ 1 ⇒ 1/(1−ζ)α[1−zω(ζ)] ∈ `1.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. We first prove that S ⊆ S∗. Let f̃n = fn − f∞n→+∞
0 so that we can write

f (ζ) = f∞
1 − ζ

+ f̃ (ζ) ⇒ (1−ζ)αf (ζ) = (1−ζ)α−1f∞+(1−ζ)αf̃ (ζ) has coefficients → 0.
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By (H1) the coefficient sequence of (1 − ζ)α−1 → 0.
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+ f̃ (ζ) ⇒ (1−ζ)αf (ζ) = (1−ζ)α−1f∞+(1−ζ)αf̃ (ζ) has coefficients → 0.

By (H1) the coefficient sequence of (1 − ζ)α−1 → 0. The coefficient sequence of
(1 − ζ)αf̃ (ζ) → 0 since (1 − ζ)α ∈ `1 and `1 ∗ c0 ⊂ c0 for ∗ the convolution operator, and
c0 the space of zero sequences
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. We first prove that S ⊆ S∗. Let f̃n = fn − f∞n→+∞
0 so that we can write

f (ζ) = f∞
1 − ζ

+ f̃ (ζ) ⇒ (1−ζ)αf (ζ) = (1−ζ)α−1f∞+(1−ζ)αf̃ (ζ) has coefficients → 0.

By (H1) the coefficient sequence of (1 − ζ)α−1 → 0. The coefficient sequence of
(1 − ζ)αf̃ (ζ) → 0 since (1 − ζ)α ∈ `1 and `1 ∗ c0 ⊂ c0 for ∗ the convolution operator, and
c0 the space of zero sequences ⇒ the sequence {yn}n of y(ζ) is in c0. Hence we have
proved that if z ∈ S then z ∈ S∗.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. To conclude we need to prove that S∗ is exhausted by S, we assume that

1 − zω(ζ0) = 0 for some |ζ0| ≤ 1 and by (H1) ζ0 6= 1,

and show that then z /∈ S∗.
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Proof. To conclude we need to prove that S∗ is exhausted by S, we assume that

1 − zω(ζ0) = 0 for some |ζ0| ≤ 1 and by (H1) ζ0 6= 1,

and show that then z /∈ S∗.We select

y(ζ) = (1 − ζ)α

ζ− ζ0
=

(1 − ζ)α − (1 − ζ0)
α

ζ− ζ0
+ (1 − ζ0)

α 1
ζ− ζ0

.
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Stability region
Lemma (Lubich 1986a, Lemma 2.1)
Assume that the coefficient sequence of a(ζ) is in `1. Let |ζ0| ≤ 1. Then the coefficient
sequence of

a(ζ) − a(ζ0)

ζ− ζ0
converges to zero.

Proof. To conclude we need to prove that S∗ is exhausted by S, we assume that

1 − zω(ζ0) = 0 for some |ζ0| ≤ 1 and by (H1) ζ0 6= 1,

and show that then z /∈ S∗.We select

y(ζ) = (1 − ζ)α

ζ− ζ0
=

(1 − ζ)α − (1 − ζ0)
α

ζ− ζ0︸ ︷︷ ︸
=0

+(1 − ζ0)
α 1
ζ− ζ0

.
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Stability region
Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. To conclude we need to prove that S∗ is exhausted by S, we assume that

1 − zω(ζ0) = 0 for some |ζ0| ≤ 1 and by (H1) ζ0 6= 1,

and show that then z /∈ S∗.We select

y(ζ) = (1 − ζ)α

ζ− ζ0
= +(1 − ζ0)

α 1
ζ− ζ0

.

On the other hand, 1/ζ−ζ0 = −
∑+∞

n=0 ζ
−n−1
0 ζn diverges! Hence also the sequence

associated to y(ζ) diverges.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. We can now collect the various parts together

f (ζ) = [1 − zω(ζ)]y(ζ) =(1 − ζ)α[1 − zω(ζ)](1 − ζ)−αy(ζ)

=
(1 − ζ)α(1 − zω(ζ)) − (1 − ζ0)(1 − zω(ζ0))

ζ− ζ0

using again the lemma we get that {fn}n goes to zero, but, {yn}n does not, hence z /∈ S∗.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Corollary
If a convolution quadrature satisfying (H1) is applied to the Volterra equation and if
ταλ ∈ S, then {yn}n is bounded whenever {fn}n is bounded. Conversely, if {yn}n is bounded
whenever {fn}n is bounded then ταλ ∈ S.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Corollary
The stability region of an explicit convolution quadrature (ω0 = 0) satisfying (H1) is
bounded.

Proof. By the open mapping theorem ω(ζ) maps neighborhood of 0 into neighborhood of
0. Hence S∗ is a neighborhood of ∞, and the result follows from the Theorem.

23 / 34



Stability region
Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Corollary
The stability region of an explicit convolution quadrature (ω0 = 0) satisfying (H1) is
bounded.

Corollary
Every convolution quadrature satisfying (H1) is strongly stable.

COGS Using these results we can recover the stability regions for the different methods,
Exclamation-Triangle Often PI rules do not possess analytical representation of ω(ζ) we can just use

numerical approximations.
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Stability region: predictor corrector method

For the Predictor-Corrector method we havey (n+1)
P = y (0) + τα

Γ(α)

∑n
j=0 bj,n+1f (tj , y (j)),

y (n+1) = y (0) + τα

Γ(α)

(∑n
j=0 aj,n+1f (tj , y (j)) + an+1,n+1f (tn+1, y (n+1)

P )
)

where

bj,n+1 =
(n + 1 − j)α − (n − j)α

α

aj,n+1 =


(nα+1−(n−α)(n+1)α/α(α+1), j = 0,
(n−j+2)α+1−2(n−j+1)α+1+(n−j)α+1/α(α+1), j = 1, 2, . . . , n,
1/α(α+1), j = n + 1.
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Stability region: predictor corrector method

For the Predictor-Corrector method we have{
y (n+1)

P = y (0) + τα
∑n

j=0 bn−j−1f (tj , y (j)),

y (n+1) = y (0) + ταan,0f (0) + τα
∑n

j=1 an−j f (tn, y (n+1)
P )

where

bn =
(n + 1)α − nα

Γ(α+ 1)
an,0 =(n−1)α+1−nα(n−α−1)/Γ(α+2),

an =

{
1/Γ(α+2), n = 0,
(n−1)α+1−2nα+1+(n+1)α+1/Γ(α+2), n ≥ 1.
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Stability region: predictor corrector method

For the Predictor-Corrector method we have

y (n) = g (n) +
n∑

j=k
cn−jy (j), n ≥ k,

where {
g (n) = (1 + zan,0 + za0 + z2a0bn−1)y (0),

c0 = 0, cn = zan + z2a0bn−1, n ≥ 1.
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The stability region of the Predictor-Corrector method is

S = {z ∈ C | 1 − z(α(ζ) − a0) − z2a0ζb(ζ) 6= 0 : |ζ| ≤ 1}.
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Stability region: predictor corrector method
Proposition
The stability region of the Predictor-Corrector method is

S = {z ∈ C | 1 − z(α(ζ) − a0) − z2a0ζb(ζ) 6= 0 : |ζ| ≤ 1}.

Proof. To apply the Theorem we need to prove (H1), we use the binomial series to write

(n − 1)p = np − pnp−1 +
p(p − 1)

2 np−2 +
p(p − 1)(p − 2)

6 np−3 + O(np−4),

and similarly for (n + 1)p , from which we obtain

bn =
1

Γ(α)
nα−1 + O(nα−2), an,0 =

1
2Γ(α)nα−1 + O(nα−2), αn =

1
Γ(α)

nα−1 + O(nα−3),

and the expression we need for c(ζ) as

c(ζ) = z(α(ζ) − α0) + z2α0ζb(ζ).
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Proposition
The stability region of the Predictor-Corrector method is
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Proof. To apply the Theorem we need to prove (H1), we use the binomial series to write

(n − 1)p = np − pnp−1 +
p(p − 1)
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and similarly for (n + 1)p , from which we obtain
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Γ(α)
nα−1 + O(nα−2), an,0 =

1
2Γ(α)nα−1 + O(nα−2), αn =

1
Γ(α)

nα−1 + O(nα−3),

and the expression we need for c(ζ) as
c(ζ) = z(α(ζ) − α0) + z2α0ζb(ζ).

COG The expression can be evaluated only numerically. 25 / 34



BINOCULARS A research idea?

We have written a predictor-method in an explicit form, we can write and analyze in a
similar way also a predictor-corrector made of two implicit methods.
• We have now to solve a (possibly) non-linear problem at each step, thus things don’t

seem to good…
• But we can expect better stability and convergence properties.

LIGHTBULB What if we decide to solve the nonlinear problem in reduced precision?
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Multiprecision algorithms on specialized hardware can give both an acceleration and
maintain the overall accuracy. This idea has already been partially explored for the ODE
case, but not yet for FODEs:
File-Alt B. Burnett et al. (2021). “Performance Evaluation of Mixed-Precision Runge-Kutta Methods”.

In: 2021 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, pp. 1–6

Further analyses
One can investigate also stability regions, effects of multiple correction steps, tolerances
and step-size selections…
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Fractional Linear Multistep Method
To obtain methods that can be analyzed we can move to Linear Multistep Methods.

• For an ODE a FLMM with k step is a method of the form:
k∑

j=0
ajyn+j = τ

k∑
j=0

bj fn+j , n = 0, . . . , s. (1)

for tj = t0 + jτ, for j = 0, . . . ,N, τ = (T − t0)/N,
• They are associated with the polynomials ρ(z) =

∑k
j=0 ajz j , σ(z) =

∑k
j=0 bjz j ,

• The fractional version has been introduced in the pioneering work (Lubich 1986b)

Theorem (Lubich 1986b, Theorem 2.6)
Let (ρ, σ) denote an implicit linear multistep method which is stable and consistent of
order p. Assume that the zeros of σ(ζ) have absolute values less than 1. Let
w(ζ) = σ(ζ−1)/ρ(ζ−1) denote the generating power series of the corresponding convolution
quadrature ω. We define ωα = {ω

(α)
n }+∞

n=0 by ωα(ζ) = ω(ζ)α, then the convolution
quadrature ωα is convergent of order p.
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Fractional Linear Multistep Method

An example is represented by Backward Differentiation Formulas, for which we have
p ωα(ζ)

1 (1 − ζ)−α

2 (3/2 − 2ζ+ 1/2ζ2)−α

3 (11/6 − 3ζ+ 3/2ζ2 − 1/3ζ3)−α

4 (25/12 − 4ζ+ 4ζ2 − 4/3ζ3 + 1/4ζ4)−α

5 (137/60 − 5ζ+ 5ζ2 − 10/3ζ3 + 5/4ζ4 − 1/5ζ5)−α

6 (147/60 − 6ζ+ 15/2ζ2 − 20/3ζ3 + 15/4ζ4 − 6/5ζ5 + 1/6ζ6)−α
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2

α = 1
For p = 1 we can consider the stability region S = C \ {1/ω(ζ) : |ζ| ≤ 1} and plot the part
of the C-plane we have to remove.
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Fractional Linear Multistep Method

An example is represented by Backward Differentiation Formulas, for which we have
p ωα(ζ)

1 (1 − ζ)−α
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6 (147/60 − 6ζ+ 15/2ζ2 − 20/3ζ3 + 15/4ζ4 − 6/5ζ5 + 1/6ζ6)−α

Question-Circle How do we obtain the
coefficients?
How can we obtain the
coefficient describing the
method?
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Computing the FLMM coefficients
We have now the converse of the previous problem, we have a closed expression for ω(ζ),
and now we need the coefficients to write

Iατ g(tn) = τα
n∑

j=0
ωn−jg(tj) + τβ

s∑
j=0

wn,jg(tj),

• {ωj }
n
j=0 convolution coefficients from ω(ζ),

• {wn,j }
k
j=0 starting quadrature weights.

• For the convolution coefficients we can use:

Door-closed Fast Fourier Transform (FFT) techniques for formal power series,
Door-closed A recursion technique for complex binomial series.

• Solving a small k × k Vandermonde system.
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The Newton Method for Power Series (Henrici 1979)

Let us suppose that α = 1/2 and that we have a power series of the form

ω(ζ) =

+∞∑
j=0

ωjζ
j ,

for which we want to compute for a generic pth degree BDF

ω(ζ)−2 = q(ζ) with q(ζ) =
p∑

k=1

1
k (1 − ζ)k ,

30 / 34



The Newton Method for Power Series (Henrici 1979)

Let us suppose that α = 1/2 and that we have a power series of the form

ω(ζ) =
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for which we want to compute for a generic pth degree BDF

F (ω(ζ)) = 0 with F (w) = w−2 − q(ζ).
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The Newton Method for Power Series (Henrici 1979)
Let us suppose that α = 1/2 and that we have a power series of the form

ω(ζ) =

+∞∑
j=0

ωjζ
j ,

for which we want to compute for a generic pth degree BDF
To which we can apply the Newton’s method for power series{

ω(0)(ζ) = ω0,

ω(m+1)(ζ) =
[
ω(m)(ζ) − F ′(ω(m)(ζ))−1F (ω(m)(ζ))

]
2m+1 ,

for [·]k the truncation operator for a power series, i.e.,
[∑+∞

j=0 ajζ
j
]

k
=

∑k
j=0 ajζ

j , and ω0

the solution of [F (ω0)]1 = 0.
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The Newton Method for Power Series (Henrici 1979)
Let us suppose that α = 1/2 and that we have a power series of the form

ω(ζ) =

+∞∑
j=0

ωjζ
j ,

for which we want to compute for a generic pth degree BDF
To which we can apply the Newton’s method for power seriesω(0)(ζ) = ω0 = q(0)−1/2,

ω(m+1)(ζ) =
[

3/2ω(m)(ζ) − 1/2
(
ω(m)(ζ)

)3 q(ζ)
]

2m+1
,

for [·]k the truncation operator for a power series, i.e.,
[∑+∞

j=0 ajζ
j
]

k
=

∑k
j=0 ajζ

j .
After m step we have that

ω(m)(ζ) = [ω(ζ)]2m =

2m−1∑
j=0

ωjζ
j ∀m ≥ 0 and cost O(2m log(2m)).
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Recurrence relation
Theorem Henrici 1974, Theorem 1.6c, p. 42
Let φ(ζ) = 1 +

∑+∞
n=1 anζ

n be a formal power series. Then for any α ∈ C, we have

(φ(ζ))α =

+∞∑
n=0

v (α)
n ζn,

where coefficients v (α)
n can be evaluated recursively as

v (α)
0 = 1, v (α)

n =

n∑
j=1

(
(α+ 1)j

n − 1
)

ajv (α)
n−j

MONEY-BILL-WAVE This approach costs an O(N2) in general, but can be simplified, e.g., when a1 = ±1,
and ai > 0 for i > 1 it involves only 2N multiplications and N additions.
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Computing the starting weights
The starting weights wn,j in

Iατ g(tn) = τα
n∑

j=0
ωn−jg(tj) + τβ

s∑
j=0

wn,jg(tj),

are introduced to deal with the singular behavior of the solution close to the left endpoint
of the integration interval.

Starting weight selection
We fix them by imposing that Iατ tν is exact for ν ∈ A = Ap−1 ∪ {p − 1} with p the order of
convergence of the FLMM, and Ap−1 = {ν ∈ R | ν = i + jα, i , j ∈ N, ν < p − 1}.

τα
s∑

j=0
wn,j(jh)ν =

1
Γ(α)

∫nτ

0
(nτ− ξ)α−1χν dχ− τα

n∑
j=0

ωn−j(jh)ν, ν ∈ A.
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Solving the Vandermonde system
The resulting linear system is of “real” Vandermonde type, i.e.,

(A)s
j,νi=1 = (jh)νi , νi ∈ A, s = |A|.

• The condition number depends on α!

• If α = 1/M for some integer M then we can rewrite the system in the “integer”
Vandermonde form, thus mildly ill-conditioned,

• If α = 1/M − ε and p ≥ 2, then A will contain 1 and Mα = 1 − Mε, hence the matrix
will have two almost identical columns, thus a bad ill-conditioning.

• The right-hand side

1
Γ(α)

∫nτ

0
(nτ− ξ)α−1χν dχ− τα

n∑
j=0

ωn−j(jh)ν

can suffer from cancellation of digits!

33 / 34



Solving the Vandermonde system
The resulting linear system is of “real” Vandermonde type, i.e.,

(A)s
j,νi=1 = (jh)νi , νi ∈ A, s = |A|.

• The condition number depends on α!
• If α = 1/M for some integer M then we can rewrite the system in the “integer”

Vandermonde form, thus mildly ill-conditioned,

• If α = 1/M − ε and p ≥ 2, then A will contain 1 and Mα = 1 − Mε, hence the matrix
will have two almost identical columns, thus a bad ill-conditioning.

• The right-hand side

1
Γ(α)

∫nτ

0
(nτ− ξ)α−1χν dχ− τα

n∑
j=0

ωn−j(jh)ν

can suffer from cancellation of digits!

33 / 34



Solving the Vandermonde system
The resulting linear system is of “real” Vandermonde type, i.e.,

(A)s
j,νi=1 = (jh)νi , νi ∈ A, s = |A|.

• The condition number depends on α!
• If α = 1/M for some integer M then we can rewrite the system in the “integer”

Vandermonde form, thus mildly ill-conditioned,
• If α = 1/M − ε and p ≥ 2, then A will contain 1 and Mα = 1 − Mε, hence the matrix

will have two almost identical columns, thus a bad ill-conditioning.

• The right-hand side

1
Γ(α)

∫nτ

0
(nτ− ξ)α−1χν dχ− τα

n∑
j=0

ωn−j(jh)ν

can suffer from cancellation of digits!

33 / 34



Solving the Vandermonde system
The resulting linear system is of “real” Vandermonde type, i.e.,

(A)s
j,νi=1 = (jh)νi , νi ∈ A, s = |A|.

• The condition number depends on α!
• If α = 1/M for some integer M then we can rewrite the system in the “integer”

Vandermonde form, thus mildly ill-conditioned,
• If α = 1/M − ε and p ≥ 2, then A will contain 1 and Mα = 1 − Mε, hence the matrix

will have two almost identical columns, thus a bad ill-conditioning.
• The right-hand side

1
Γ(α)

∫nτ

0
(nτ− ξ)α−1χν dχ− τα

n∑
j=0

ωn−j(jh)ν

can suffer from cancellation of digits!
33 / 34



☼Where are we?

We know a general way to obtain FLMM methods of the form

y (n) = Tm−1(tn) + τβ
s∑

j=0
wn,j f (tj , y (j)) + τα

n∑
j=0

ωn−j f (tj , y (j)),

Check-Circle starting from the polynomials (ρ, σ) of an implicit order p method,

Check-Circle we have seen how to compute the convolution coefficients ωn,
Check-Circle we have seen how to compute the starting nodes wn,j ,
CLIPBOARD-LIST we need to discuss how we compute the starting values for a multi-step method,
CLIPBOARD-LIST we still need to discuss how we can efficiently treat the memory term.
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