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☼Where are we?

We know a general way to obtain FLMM methods of the form

y (n) = Tm−1(tn) + τ
β

s∑
j=0

wn,j f (tj , y (j)) + τα
n∑

j=0
ωn−j f (tj , y (j)),

Check-Circle starting from the polynomials (ρ, σ) of an implicit order p method,

Check-Circle we have seen how to compute the convolution coefficients ωn,
Check-Circle we have seen how to compute the starting nodes wn,j ,
CLIPBOARD-LIST we need to discuss how we compute the starting values for a multi-step method,
CLIPBOARD-LIST we still need to discuss how we can efficiently treat the memory term.
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Computing the starting values

To initialize the computation we need the values y(0), . . . , y(s), s + 1, s = |A| = Ap−1 ∪ {p − 1}
with p the order of convergence of the FLMM, and
Ap−1 = {ν ∈ R | ν = i + jα, i , j ∈ N, ν < p − 1}.

• We know y(0) from the initial condition, thus we have to solve for the remaining ones.
• To avoid mixing methods we evaluate all the approximations at the same time by solving

y(1)

y(2)

...
y(s)

 =


Tm−1(t1)
Tm−1(t2)

...
Tm−1(ts)

+ τα


(ω1 + w1,0)f0
(ω2 + w2,0)f0

...
(ωs + ws,0)f0

+ τα (Ω⊗ I + W ⊗ I)


f (t1, y(1))

f (t2, y(2))
...

f (ts , y(s))


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f (t2, y(2))
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f (ts , y(s))


where

Ω =


ω0
ω1 ω0
...

...
. . .

ωs−1 ωs−2 · · · ω0

 , W =


w1,1 w1,2 · · · w1,s
w2,1 w2,2 · · · w2,s

...
...

. . .
...

ws,1 ws,2 · · · ws,s


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f (ts , y(s))


• This will be in general an s × dim(y(j)) nonlinear system that we need to solve before starting

the iteration.

• If the value of α is not very small, viz s is moderate, and the system of ODEs is moderate this
is manageable.

2 / 34



Computing the starting values
To initialize the computation we need the values y(0), . . . , y(s), s + 1, s = |A| = Ap−1 ∪ {p − 1}
with p the order of convergence of the FLMM, and
Ap−1 = {ν ∈ R | ν = i + jα, i , j ∈ N, ν < p − 1}.

• We know y(0) from the initial condition, thus we have to solve for the remaining ones.
• To avoid mixing methods we evaluate all the approximations at the same time by solving

y(1)

y(2)

...
y(s)

 =


Tm−1(t1)
Tm−1(t2)

...
Tm−1(ts)

+ τα


(ω1 + w1,0)f0
(ω2 + w2,0)f0

...
(ωs + ws,0)f0

+ τα (Ω⊗ I + W ⊗ I)


f (t1, y(1))

f (t2, y(2))
...

f (ts , y(s))


• This will be in general an s × dim(y(j)) nonlinear system that we need to solve before starting

the iteration.
• If the value of α is not very small, viz s is moderate, and the system of ODEs is moderate this

is manageable.
2 / 34



Treating the memory term

If we compute the sum on the coefficients ωj naively for

y (n) = Tm−1(tn) + τ
β

s∑
j=0

wn,j f (tj , y (j)) + τα
n−1∑
j=0
ωn−j f (tj , y (j)) + ταω0f (tn, y (n)),

we end up having a O(N2) cost! If we do not perform this task efficiently the numerical
solution degenerates in an unworkable task as we either refine our grid or enlarge our
computational domain.

Door-closed We can try to “forget” part of the lag-term,
Door-closed We can consider using a stretched grid towards t0 to reduce N,
Door-closed We can try an approach with nested meshes to reduce the load,
Door-closed We can exploit the fact that this is a convolution and adopt some FFT tricks.
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The FFT trick (Hairer, Lubich, and Schlichte 1985)
The treatment remains the same indifferently for both PI and FLMM method, let us focus
here on the generic formulation

y (n) = φn +

n∑
j=0

cn−j fj .

• Let r be a moderate number of step, e.g., r = 2k for a small k, we compute the first
steps directly

y (n) = φn +

n∑
j=0

cn−j fj , n = 0, 1, . . . , r − 1.

• If we now want to compute the next r approximations we can separate the lag term as

y (n) = φn +

r−1∑
j=0

cn−j fj +
n∑

j=r
cn−j fj , n ∈ {r , r + 1, . . . , 2r − 1}.
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The FFT trick (Hairer, Lubich, and Schlichte 1985)

0 r 2r 4r 8r
Sr

S2r

S4r

Sr

Sr

S2r

Sr

Tr

Tr

Tr

Tr

Tr

Tr

Tr

Tr

• We can iterate the process for the 4r
approximations in the interval
n ∈ {4r , . . . , 8r − 1}, together with the partial
sums S4r (n, 0, 4r − 1), S2r (n, 4r , 6r − 1),
Sr (n, 6r , 7r − 1) that can be evaluated in
O(8r log2(8r)), O(4r log2(4r)) and
O(2r log2(2r)) respectively,

• At each level we have to complete the
recursion by computing

Tr (p, n) =
n∑

j=p
cn−j fj , p = `r ,

n ∈{`r , `r + 1, . . . , (`+ 1)r − 1},
` =0, 1, 2, . . . .
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0 r 2r 4r 8r
Sr

S2r

S4r

Sr

Sr

S2r

Sr

Tr

Tr

Tr

Tr

Tr

Tr

Tr

Tr

To determine the whole cost we just have to sum
the various components

• Assume that N = 2nt

• O(N log2 N) for S4r ,
+ O(N/2 log2 N/2) for 2 S2r

+ O(N/4 log2 N/4) for 4 Sr

+ r(r+1)/2 for the N/r convolutions Tr
• In general:
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The FFT trick (Hairer, Lubich, and Schlichte 1985)
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Short-memory principle (Ford and Simpson 2001)

We can try to use a “fixed memory length” to reduce the computational (and memory) load.

y(tn+1) = y(tn) +
1
Γ(α)

∫ tn+1

tn

(tn+1 − τ)
α−1f (τ, x(τ))dτ

+
1
Γ(α)

∫ tn

0
((tn+1 − τ)

α−1 − (tn − τ)α−1)f (τ, y(τ))dτ, α ∈ (0, 1).
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Short-memory principle (Ford and Simpson 2001)

SMILE In case α ∈ (0, 1) the short memory method with fixed length can be effective and the
length T is independent of the full interval of integration.

SAD-TEAR Similar bounds can be written for the case α > 1, that is

E < M
Γ(α)

(tαn+1 − Tα−1
M )τ, α > 1.

But now to preserve the order of accuracy, we must choose

Tα−1
M > tα−1

n+1 −
EglobalΓ(α)

M , α > 1,

that we will make us lose all the computational gain.
The idea can be refined by using nested meshes.
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Nested meshes
Zeroing out the memory term is too drastic, we may want to relax this.

Scaling properties

LIGHTBULB We can use the weight on the mesh

Ωατ f (nτ) ≈ Iα[0,t]f (nτ), step length τ

to compute
Ωαwpτf (nwpτ) ≈ Iα[0,t]f (nwpτ), step length wpτ

• In summary for any p ∈ N we get

Ωατ f (nτ) =
n∑

j=0
ωn−j f (jτ) ⇔ Ωαwpτf (nwpτ) = wpα

n∑
j=0
ωn−j f (jwpτ).
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Nested meshes (Ford and Simpson 2001)
Nested mesh
Given τ ∈ R+, the mesh Mτ = {τn, n ∈ N}. Selected w , r , p ∈ N, w > 0, r > p, we have
Mwpτ ⊃ Mw rτ and we decompose the interval as

[0, t] = [0, t − wmT ] ∪ [t − wmT , t − wm−1T ] ∪ · · · ∪ [t − wT , t − T ] ∪ [t − T , t]

for m ∈ N the smallest integer such that t < wm+1T .

LIGHTBULB This links the scaling property with the singularity of the type 1/(t − τ)1−α

suggesting that we should distribute the computational effort logarithmically, and not
uniformly.

• We rewrite our integral as
Iα[0,t]f (t) =
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Nested meshes (Ford and Simpson 2001)
In the discrete approximation of

Iα[0,t]f (t) = Iα[t−T ,t]f (t) +
m−1∑
i=0

w iαIα[t−wT ,t−T ]f (w
it) + wmαIα[0,t−T ]f (w

mt).

we approximate
Ωατ,[t−w i+1T ,t−w i T ]f (t) ≈ Ω

α
w iτ,[t−w i+1T ,t−w i T ]f (t)

and substitute
w iαΩατ,[t−wT ,t−T ]f (t) = Ω

α
w iτ,[t−w i+1T ,t−w i T ]f (t).

Theorem (Ford and Simpson 2001, Theorem 1)
The nested mesh scheme preserves the order of the underlying quadrature rule on which it
is based.
Proof. For integration over a fixed interval [0, t] the choice of T fixes (independent of h) the
number of subranges over which the integral is evaluated, on each of them we have en error O(hp).
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Nested meshes (Ford and Simpson 2001)

• The first benefit is that we evaluate a fixed number of quadrature coefficients and
then re-use them on all successive intervals,

MONEY-BILL-WAVE This approach cost O(wm) with respect to O(w2m) of the full method,
COG We could use linear extrapolation techniques to improve the results.
COG Selecting the various parameter may need a bit of tuning.
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CODE Available codes
With respect to the ordinary case for which there exists many reliable and high-performance
codes, the choices for computing the solution of fractional differential equation is much
more sparse.
• From (Garrappa 2018)

CODE FDE_PI1_Ex.m - Explicit Product-Integration of rectanguar type
CODE FDE_PI1_Im.m - Implicit Product-Integration of rectanguar type
CODE FDE_PI2_Im.m - Implicit Product-Integration of trapezoidal type
CODE FDE_PI12_PC.m - Product-Integration with predictor-corrector

• From (Garrappa 2015)
CODE FLMM2 Matlab code - Three implicit second order Fractional Linear Multistep Methods.

BINOCULARSA remark
All these methods use direct-solver for the Newton method inside them, there is space to
make improvement on the solution strategies. Furthermore, a challenge that yet remains:
can we find a strategy that combines the convolution features and savings on the memory?
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https://www.dm.uniba.it/members/garrappa/software_folder/fde_pi1_ex.m
https://www.dm.uniba.it/members/garrappa/software_folder/fde_pi1_im.m
https://www.dm.uniba.it/members/garrappa/software_folder/fde_pi2_im.m
https://www.dm.uniba.it/members/garrappa/software_folder/fde_pi12_pc.m
http://www.mathworks.com/matlabcentral/fileexchange/47081-flmm2


What do we have now

We know a general way to obtain FLMM methods of the form

y (n) = Tm−1(tn) + τ
β

s∑
j=0

wn,j f (tj , y (j)) + τα
n∑

j=0
ωn−j f (tj , y (j)),

Check-Circle starting from the polynomials (ρ, σ) of an implicit order p method,
Check-Circle we have seen how to compute the convolution coefficients ωn,
Check-Circle we have seen how to compute the starting nodes wn,j ,
Check-Circle we know how we can compute the starting values for a multi-step method by solving a

nonlinear system with Newton,
Check-Circle we have some hints on how we can efficiently treat the memory term.

14 / 34



A worked out example
Let us write everything for a case, let us start from the 2nd order BDF formula for ODEs

y (n+2) −
4
3y (n+1) +

1
3y (n) =

2
3τfn+2,

• First of all we write down the (ρ, σ) polynomials
defining the scheme:

ρ(ζ) = ζ2 −
4
3ζ+

1
3 , σ(ζ) =

2
3ζ

2.

• Then we compute the generating function ω(ζ)

ω(ζ) =
ρ(1/ζ)

σ(1/ζ)
=

2
3
(
1 − 4ζ/3 + ζ2/3

) .
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ρ(ζ) = ζ2 −
4
3ζ+

1
3 , σ(ζ) =

2
3ζ

2.

• Then we compute the generating function ω(ζ)

ω(ζ) =
ρ(1/ζ)

σ(1/ζ)
=

2
3
(
1 − 4ζ/3 + ζ2/3

) .

α = 0.5

0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

{1/ω(ζ)α : |ζ| ≤ 1}
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A worked out example

Now we need to expand the convolution coefficients of

ωα(ζ) = (ω(ζ))α =
2α
3α (1 − 4ζ/3 + ζ2/3)−α.
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Now we need to expand the convolution coefficients of

ωα(ζ) = (ω(ζ))α =
2α
3α (1 − 4ζ/3 + ζ2/3)−α.

Theorem (Henrici 1974, Theorem 1.6c, p. 42)
Let φ(ζ) = 1 +

∑+∞
n=1 anζ

n be a formal power series. Then for any α ∈ C, we have

(φ(ζ))α =

+∞∑
n=0

v(α)
n ζn,

where coefficients v(α)
n can be evaluated recursively as

v(α)
0 = 1, v(α)

n =

n∑
j=1

(
(α+ 1)j

n − 1
)

ajv(α)
n−j
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ωα(ζ) = (ω(ζ))α =
2α
3α (1 − 4ζ/3 + ζ2/3)−α.

• ωn = 2α/3αω̃n,

• a1 = −4/3, a2 = 1/3, aj = 0 if j ≥ 3, thus using

ω̃
(α)
0 = 1, ω̃

(α)
n =

n∑
j=1

(
(α+ 1)j

n − 1
)

ajv (α)
n−j

• we get ω̃0 = 1, ω̃1 = 4/3αω̃0 = 4α/3,

ω̃n =
4
3

(
1 +

α− 1
n

)
ω̃n−1 +

4
3

(
2(1 − α)

n − 1
)
ω̃n−2.
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A worked out example

100 200

0.2

0.4

0.6

0.8

α = 0.5.

• Since the aj are a finite small number, we can
compute the coefficients in an O(N) operations,

omega = zeros(1,N+1) ;
onethird = 1/3 ; fourthird = 4/3;
twothird_oneminusalpha = 2/3*(1-alpha);
fourthird_oneminusalpha = 4/3*(1-alpha);
omega(1) = 1 ; omega(2) = fourthird*alpha*omega(1);
for n = 2 : N
omega(n+1) = (fourthird -

fourthird_oneminusalpha/n)*omega(n) + ...↪→
(twothird_oneminusalpha/n - onethird)*omega(n-1);

end
omega = omega*((2/3)^(alpha));

• We can solve CAD0.5
[0,2]y(t) = −2y(t), y(0) = 1
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A worked out example

100 200

0.2

0.4

0.6

0.8

α = 0.5.

• Since the aj are a finite small number, we can
compute the coefficients in an O(N) operations,

• We can solve CAD0.5
[0,2]y(t) = −2y(t), y(0) = 1

τ |y (n) − y(2)| order

2−6 1.44e-04 1.61
2−7 4.42e-05 1.71
2−8 1.28e-05 1.79
2−9 3.57e-06 1.84
2−10 9.68e-07 1.88
2−11 2.85e-07 1.76
2−12 8.17e-08 1.80
2−13 2.29e-08 1.84
2−14 6.27e-09 1.87
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A worked out example

100 200

0.2

0.4

0.6

0.8

α = 0.5.

• Since the aj are a finite small number, we can
compute the coefficients in an O(N) operations,

• We can solve CAD0.5
[0,2]y(t) = −2y(t), y(0) = 1

• For the starting weights we have to solve a 3 × 3
Vandermonde system: 1 1 1

0 1
√

2
0 1 2

wn,0
wn,1
wn,2

 =

b1
b2
b3


number of time-step times.

Reuse
Since we have a fixed time-grid we can reuse the same
factorization for the Vandermonde system and compute all
the weights in a single sweep.
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Fractional Brusselator

The Brusselator is a model of the autocatalytic chemical reaction, it is described by{
ẋ1 = a − (µ+ 1)x1 + x2

1 x2,

ẋ2 = µx1 − x2
1 x2,

a, µ > 0.

• If µ > a2 + 1 then a single Brusselator has a
unique limit cycle,

• If (a − 1)2 < µ ≤ a2 + 1 all the orbits tend to the
steady state.
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Fractional Brusselator
The Brusselator is a model of the autocatalytic chemical reaction, it is described by{

ẋ1 = a − (µ+ 1)x1 + x2
1 x2,

ẋ2 = µx1 − x2
1 x2,

a, µ > 0.

a = 1 ; mu = 4 ;
param = [ a , mu ] ;
f_fun = @(t,y,par) [ ...
par(1) - (par(2)+1)*y(1) + y(1)^2*y(2) ; ...
par(2)*y(1) - y(1)^2*y(2) ] ;
t0 = 0 ; T = 100 ;
y0 = [ 1 ; 1] ;
[T,Y] = ode45(@(t,y)

f_fun(t,y,param),[t0,T],y0);↪→
figure(1)
plot(Y(:,1),Y(:,2),'k-',y(1,1),y(2,1),'ro') 0 2 4 6

0

2

4

6

8
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Fractional Brusselator
The Brusselator is a model of the autocatalytic chemical reaction, it is described by{

CADα1x(t) = a − (µ+ 1)x1 + x2
1 x2,

CADα2x(t) = µx1 − x2
1 x2,

a, µ > 0.

alpha = [0.8,0.7] ;
h = 1e-2;
[t, y] =

fde_pi1_ex(alpha,f_fun,t0,T,y0,h,param) ;↪→
The cycle of the single fractional Brusselator is
contained in the region{

(x1, x2) :
a

µ+ 1 < x1 <
2a
µ
, 0 < x2 <

µ(1 + µ)

a

}
0 2 4 6

0

2

4

6

8
Fractional Brusselator
Ordinary Brusselator
y0

18 / 34



Fractional Brusselator
The Brusselator is a model of the autocatalytic chemical reaction, it is described by{

CADα1x(t) = a − (µ+ 1)x1 + x2
1 x2,

CADα2x(t) = µx1 − x2
1 x2,

a, µ > 0.

alpha = [0.8,0.7] ;
h = 1e-2;
[t, y] =

fde_pi1_ex(alpha,f_fun,t0,T,y0,h,param) ;↪→
The cycle of the single fractional Brusselator is
contained in the region{

(x1, x2) :
a

µ+ 1 < x1 <
2a
µ
, 0 < x2 <

µ(1 + µ)

a

}

Question-CircleOf interest (Wang and Li
2007)
Finding the smallest values α1, α2
for which a limit cycle exist is of
interest.
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Bagley-Torvik Model (Bagley and Torvik 1986)

Stoke’s Second Problem
Can we determine the behavior of a
half-space of Newtonian, viscous
fluid undergoing the motion induced
by the prescribed uniform sinusoidal
motion of a plate on the surface?
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Bagley-Torvik Model (Bagley and Torvik 1986)

Stoke’s Second Problem
Can we determine the behavior of a
half-space of Newtonian, viscous
fluid undergoing the motion induced
by the prescribed uniform sinusoidal
motion of a plate on the surface?

If we write down the equation of motion we find

ρ
∂v
∂t = µ

∂2v
∂z2

• ρ is the fluid density, µ is the viscosity, v is the
profile of the transverse fluid velocity.

• We apply Laplace transform to the equation
ṽ = Lv(s),

• We solve and impose the boundary condition
given by the ṽp = LVp(s),

• Since the shear stress is given by
σ(t, z) = µvz(t, z) we can write its Laplace
transform.

• Finally we invert it.
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dz2 ,

• ρ is the fluid density, µ is the viscosity, v is the
profile of the transverse fluid velocity.

• We apply Laplace transform to the equation
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If we write down the equation of motion we find

ṽ(s, z) = ṽp(s) exp
(√

ρs
µ

z
)
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σ̃(s, z) = √
µρ

√
sṽ(s, z) = √

µρ
1√
s

sṽ(s, z)
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µρL

{
1
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}
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0
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half-space of Newtonian, viscous
fluid undergoing the motion induced
by the prescribed uniform sinusoidal
motion of a plate on the surface?

If we write down the equation of motion we find

σ(t, z) = √
µρCAD1/2

[0,t]v(t, z).

• ρ is the fluid density, µ is the viscosity, v is the
profile of the transverse fluid velocity.

• We apply Laplace transform to the equation
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Bagley-Torvik Model (Bagley and Torvik 1986)

K

m

X

Immersed Plate

Assumptions:
• The spring is massless and its oscillations do not disturb

the fluid,
• The area A of the plate is sufficiently large as to produce in

the fluid adjacent to the plate the velocity field and
stresses we just derived,

Deriving the equation:

mẌ = FX = −KX − 2Aσ(t, 0)

Using the expression for the strain and Vp(t, 0) = Ẋ(t) we find

mẌ + 2A√µρCAD3/2
[0,t]X + KX = 0.
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Linear Multi-Term FDEs

The Bagley-Torvik model is an example of a Linear Multi-Term FDE, that is, something of
the form

λQCADαQ y(t) + λQ−1CADαQ−1y(t) + · · ·+ λ2CADα2y(t) + λ1CADα1y(t) = f (t, y(t)),

with
• λi ∈ R ∀ i = 1, . . . ,Q,
• 0 < α1 < α2 < . . . < αQ−1 < αQ and αQ 6= 0.

For this problem we have mQ = max mi , mi = dαie, i = 1, . . . ,Q initial conditions:

y(t0) = y0, y ′(t0) = y (1)
0 , . . . , y (mQ−1)(t0) = y (mQ−1)

0 .

Question-Circle How can we solve them?
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Linear Multi-Term FDEs

We need to recall one of the properties we have seen of the Caputo derivatives
(P1) Iα[t0,T ]CADα

[t0,T ]y(t) = y(t) − Tm−1[y , t0](t),

(P2) Iβ[t0,T ]CADα
[t0,T ]y(t) = Iβ[t0,T ]RLDα

[t0,T ] [y(t) − Tm−1[y ; t0](t)] =
Iβ−α[t0,T ] [y(t) − Tm−1[y ; t0](t)], β > α.

We start from the multi-term equation

• we multiply both sides by IαQ
[t0,T ],

• we use P1 on the left-hand side, P2 on the right-hand side,
• and re-arrange to get an expression for the solution.
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We start from the multi-term equation

y(t) = TmQ−1[y , t0](t) −
Q−1∑
i=1

λi
λQ

IαQ−αi
[t0,t] [y(t) − Tmi−1[y ; t0](t)] +

1
λQ

IαQ
[t0,T ]f (t, y(t))

• we multiply both sides by IαQ
[t0,T ],

• we use P1 on the left-hand side, P2 on the right-hand side,
• and re-arrange to get an expression for the solution.
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Linear Multi-Term FDEs: generalizing PI rules
First we do a bit of rewriting of

y(t) = TmQ−1[y , t0](t) −
Q−1∑
i=1

λi
λQ

IαQ−αi
[t0,t] [y(t) − Tmi−1[y ; t0](t)] +

1
λQ

IαQ
[t0,T ]f (t, y(t))

• we employ the usual fractional integral for polynomials:

Iα[t0,t]Tm−1[y ; t0](t) =
m−1∑
k=0

(t − t0)
k+α

Γ(k + α)
y (k)(t0),

α ∈ {α1, . . . , αQ−1},
m ∈ {m1, . . . ,mQ−1}.

• We use it to simplify the expression

T̃ (t) = TmQ−1[y ; t0](t) +
Q−1∑
i=1

λi
λQ

mi−1∑
k=0

(t − t0)
k+αQ−αi

Γ(k + αQ − αi + 1)y (k)(t0).
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Linear Multi-Term FDEs: generalizing PI rules
Now we have an expression that we can treat by adapting one of the Product Integral rules

y(t) = T̃ (t) −
Q−1∑
i=1

λi
λQ

IαQ−αi
[t0,t] y(t) + 1

λQ
IαQ
[t0,T ]f (t, y(t)).

We can start from the rectangular product integral rule on a uniform grid

y (n) = T̃ (tn) −
Q−1∑
i=1

λi
λQ
ταQ−αi

n∑
j=0

b(αQ−αi )
n−j−1 y (j) +

1
λQ

n∑
j=0

b(αQ )
n−j−1f (tj , y (j)).

with
b(α)

n = [(n + 1)α − nα]/α, n = 1, . . . ,N.

We can do it similarly for the Implicit Trapezoidal Rule and then for the
Predictor-Corrector method (Diethelm 2003).
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Linear Multi-Term FDEs: generalizing PI rules

Question-Circle Can we do something similar for FLMMs?

COG We don’t know how to determine the starting values wn,j for the quadrature. Thus this
approach is not viable.
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Linear Multi-Term FDEs: generalizing PI rules

Question-Circle Can we do something similar for FLMMs?
COG We don’t know how to determine the starting values wn,j for the quadrature. Thus this
approach is not viable.
Available codes (Garrappa 2018):

CODE MT_FDE_PI1_Ex.m - Explicit Product-Integration of rectanguar type

CODE MT_FDE_PI1_Im.m - Implicit Product-Integration of rectanguar type

CODE MT_FDE_PI2_Im.m - Implicit Product-Integration of trapezoidal type

CODE MT_FDE_PI12_PC.m- Product-Integration with predictor-corrector

25 / 34

https://www.dm.uniba.it/members/garrappa/software_folder/mt_fde_pi1_ex.m
https://www.dm.uniba.it/members/garrappa/software_folder/mt_fde_pi1_im.m
https://www.dm.uniba.it/members/garrappa/software_folder/mt_fde_pi2_im.m
https://www.dm.uniba.it/members/garrappa/software_folder/mt_fde_pi12_pc.m


Linear Multi-Term FDEs: back to Bagley-Torvik
We reached the equation

mẌ + 2A√µρCAD3/2
[0,t]X + KX = 0.

m = 10; A = 6; K = 3;
mu = 2; rho = 2;
alpha = [2 3/2] ;
lambda = [m 2*A*sqrt(mu*rho)] ;
f_fun = @(t,X) -K*X;
J_fun = @(t,X) -K;
t0 = 0 ; T = 100 ;
X0 = [0 , 2 ];
h = 1e-2;
[t, X] = mt_fde_pi1_ex(alpha, lambda, f_fun,

t0, T, X0, h);↪→ 0 20 40 60 80 100
0

2

4

6

8

But does it fit the reality?
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Linear Multi-Term FDEs: back to Bagley-Torvik
The model we have derived is a
model of the form

σ(t) = G0ε(t) + G1ε̇(t),
ε(t) = x(t)

δ

f (t) = mẍ(t) + fp(t),
fp(t) = 2A

δ
(G0 + G1CADαx(t)).

One can do parameter tuning to
find the fractional order from
experimental data and compare
the results with the integer-order
model. The results on the left by
Bagley and Torvik 1986 show that
the fractional model obtain a
better fit with the measured data.
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Equivalent formulations of the Multi-Term FDEs
In the integer-order case we know how to rewrite the equation

y (n)(t) = f (t, y (n−1)(t), . . . , y (1)(t), y(t)), y (j)(0) = y (j)
0 , j = 0, 1, . . . , n − 1,

as a system of first-order equations.

Question-Circle Can we do something similar in the fractional case?
(A1) Let us assume that our multi-term equation is of the form

CADαk y(t) = f (t, CADαk−1y(t), . . . , CADα1(t), y(t)), y (j)(0) = y (j)
0 ,

j = 0, 1, . . . , n − 1,

for αk > αk−1 > · · · > α1 > 0, αj − αj−1 ≤ 1 ∀ j = 1, 2, . . . , k, 0 < α1 ≤ 1.
(A2) Assume also that αj ∈ Q ∀ j = 1, 2, . . . , k, and that M is the least common multiple

of α1, α2, . . . , αk .
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Equivalent formulations of the Multi-Term FDEs

Theorem (Diethelm 2010, Theorem 8.1)
Under the assumptions (A1) and (A2), set γ = 1/M, and N = Mαk , then the IVP is
equivalent to

CADγy0(t) = y1(t),
CADγy1(t) = y2(t),
...
CADγyN−2(t) = yN−1(t),
CADγyN−1(t) = f (t, y0(t), yαk−1/M(t), . . . , yα1/M(t), y(t))

yi(0) =
{

y (j/m)
0 , if j

M ∈ N0,

0, otherwise.

⇒ whenever y = (y0, . . . , yN−1)
T with y0 ∈ Cdαke[0, b], for some b > 0, is a solution of

the N-dimensional system, then y ≡ y0 is a solution of the multi-term FDE.
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Theorem (Diethelm 2010, Theorem 8.1)
Under the assumptions (A1) and (A2), set γ = 1/M, and N = Mαk , then the IVP is
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yi(0) =
{

y (j/m)
0 , if j

M ∈ N0,

0, otherwise.

⇐ whenever y ∈ Cdαke([0, b]) is a solution of the multi-term FDE, then the vector
function y = (y , CADγy , CAD2γy , . . . , CAD(N−1)γy)T solves the N-dimensional system.
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Equivalent formulations of the Multi-Term FDEs
We can relax (A2) from the rationality requirement to a requirement on being
commensurable2.

(A2)’ Let 1 ≥ αk > αk−1 > . . . > α1 > 0 and assume the equation to be commensurate,
then we define α̃j = αj/α1 for j = 1, . . . , k, let M̃ be the least common multiple of the
denominators of the values α̃1, . . . , α̃k .

Theorem (Diethelm 2010, Theorem 8.2)
Under the assumption (A1) and (A2)’, set γ = α1/M̃ and N = M̃αk/α1, then the equivalence
relation of the N-dimensional system and of the multi-term FDE holds as in the previous
result.

LIGHTBULB Existence and uniqueness results can be obtained for the single term reformulation,
COG See (Ford and Connolly 2009) for other reformulations and comparisons.

2Two non-zero real numbers α and β are said to be commensurable if their ratio α/β ∈ Q.
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The Method of Lines
Consider a partial differential equations of the form

Find u(x, t) s.t. ut = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+,

where L is a differential operator, either linear or nonlinear, coupled with the opportune
boundary conditions, and given suitable initial conditions.

A classical way of approaching this task is using a Method Of Lines (MOL) approach,
that is

1. we discretize w.r.t. the space variables with some method (e.g., Finite
Elements/Differences/Volumes, meshfree/meshless methods, spectral methods…)

Mut = F (t, u), M ∈ Rnd×nd , F : R× Rnd → Rnd , u : R → Rnd .

2. now we have a (possibly nonlinear, non-autonomous) system of ODEs to which we can
apply an integrator.
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PDEs with fractional derivatives with respect to time

We can think of using the methods we have seen until now for solving PDEs in which the
derivative with respect to time has been substituted by the fractional derivative in the
Caputo sense

Find u(x, t) s.t. CADαu = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+.
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derivative with respect to time has been substituted by the fractional derivative in the
Caputo sense

Find u(x, t) s.t. CADαu = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+.

Examples:
DICE-ONE Time-fractional diffusion equation

CADα
t u = div(p(x) grad u) − q(x)u + F (x , t), 0 < α ≤ 1.

DICE-TWO Time-fractional advection-dispersion equation

CADα
t u = div(p(x) grad u) − ν grad(u), 0 < α ≤ 1.

DICE-THREE Time-fractional Schrödinger equation

(iTρ)αCADα
t ψ = −

L2
ρ

2Nm
∇2ψ+ Nνψ, 0 < α ≤ 1.
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PDEs with fractional derivatives with respect to time
We can think of using the methods we have seen until now for solving PDEs in which the
derivative with respect to time has been substituted by the fractional derivative in the
Caputo sense

Find u(x, t) s.t. CADαu = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+.

Examples:
DICE-FIVE Time-fractional Burgers equation equation

CADα
t u = uxx + Aupux , 0 < α ≤ 1, p > 0.

DICE-SIX Time-fractional Korteweg–de Vries equation

CADα
t u = uxxx + Aupux , 0 < α ≤ 1, p > 0.

DICE-D20 Time-fractional (incompressible) Navier–Stokes equation{
CADα

t (u · ∇)u = ν∇2u − 1
ρ∇p + f ,

∇ · u = 0.
0 < α ≤ 1.

32 / 34



PDEs with fractional derivatives with respect to time
We can think of using the methods we have seen until now for solving PDEs in which the
derivative with respect to time has been substituted by the fractional derivative in the
Caputo sense

Find u(x, t) s.t. CADαu = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+.

Examples:
DICE-FIVE Time-fractional Burgers equation equation

CADα
t u = uxx + Aupux , 0 < α ≤ 1, p > 0.

DICE-SIX Time-fractional Korteweg–de Vries equation

CADα
t u = uxxx + Aupux , 0 < α ≤ 1, p > 0.

DICE-D20 Time-fractional (incompressible) Navier–Stokes equation{
CADα

t (u · ∇)u = ν∇2u − 1
ρ∇p + f ,

∇ · u = 0.
0 < α ≤ 1.

32 / 34



PDEs with fractional derivatives with respect to time
We can think of using the methods we have seen until now for solving PDEs in which the
derivative with respect to time has been substituted by the fractional derivative in the
Caputo sense

Find u(x, t) s.t. CADαu = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+.

Examples:
DICE-FIVE Time-fractional Burgers equation equation

CADα
t u = uxx + Aupux , 0 < α ≤ 1, p > 0.

DICE-SIX Time-fractional Korteweg–de Vries equation

CADα
t u = uxxx + Aupux , 0 < α ≤ 1, p > 0.

DICE-D20 Time-fractional (incompressible) Navier–Stokes equation{
CADα

t (u · ∇)u = ν∇2u − 1
ρ∇p + f ,

∇ · u = 0.
0 < α ≤ 1.

32 / 34



An example with diffusion
Let us consider the case of

CADα
t u = 0.05∇2u, α = 0.3, 1.

and integrate it with the FBDF2 with τ = 10−2.

How
can you describe the observed behavior?
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Conclusions and next steps

Check-Circle We have completed the construction of several schemes for the integration of FODEs,

Check-Circle We have discussed the case of FODEs with multiple terms and different orders,
Check-Circle We started looking into some time-fractional PDEs using the Method of Lines together

with our FODEs algorithms.
CLIPBOARD-LIST Can we better describe this “subdiffusive” behavior we have observed in

time-fractional diffusion equation?
CLIPBOARD-LIST For linear problems can we investigate the “exponential” fractional integrators?
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