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Subdiffusion equations
At the end of the last lecture we had observed the following behavior:

for the solution of:
CADα

t u = 0.05∇2u, α = 0.3, 1.

The visual effect seemed to be a slowing down of the diffusion.
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Brownian motion (Metzler and Klafter 2000)

• Consider a 1D lattice with cell size ∆x ,
• In discrete time steps of span ∆t a test particle jumps to one of its neighbour sites,

• The process can be modelled by the master equation

Wj(t + ∆t) = 1
2Wj−1(t) +

1
2Wj+1(t)
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• Consider a 1D lattice with cell size ∆x ,
• In discrete time steps of span ∆t a test particle jumps to one of its neighbour sites,
• The process can be modelled by the master equation

Wj(t + ∆t) = 1
2Wj−1(t) +

1
2Wj+1(t)

• The master equation defines the pdf to be at position j at time t + ∆t depending on
the population of the two adjacent sites j ± 1 at time t.

• The prefactor 1/2 tells us that the process is isotropic with respect to the left/right
direction.

• If we let ∆t → 0, ∆x → 0 and do a Taylor expansion in both ∆ and ∆x we get

Wj(t + ∆t) =Wj(t) + ∆t ∂Wj
∂t + O([∆t]2), for ∆t → 0,

Wj±1(t) =W (x , t)± ∆x ∂W
∂x +

(∆x)2

2
∂2W
∂x2 + O([∆x ]3), for ∆x → 0,
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Brownian motion (Metzler and Klafter 2000)
We now substitute the expansions

Wj(t + ∆t) =Wj(t) + ∆t ∂Wj
∂t + O([∆t]2), for ∆t → 0,

Wj±1(t) =W (x , t)± ∆x ∂W
∂x +

(∆x)2

2
∂2W
∂x2 + O([∆x ]3), for ∆x → 0,

in
Wj(t + ∆t) = 1

2Wj−1(t) +
1
2Wj+1(t)

obtaining

W (x , t) + ∆t∂W
∂t + O

(
∆t2) = W (x , t) + 1

2∆x2∂
2W
∂x2 + O

(
∆x3)
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Brownian motion (Metzler and Klafter 2000)

We now substitute the expansions

Wj(t + ∆t) =Wj(t) + ∆t ∂Wj
∂t + O([∆t]2), for ∆t → 0,

Wj±1(t) =W (x , t)± ∆x ∂W
∂x +

(∆x)2

2
∂2W
∂x2 + O([∆x ]3), for ∆x → 0,

in
Wj(t + ∆t) = 1

2Wj−1(t) +
1
2Wj+1(t)

obtaining
∂W
∂t = K1

∂2W
∂x2 , K1 = lim

∆x→0
∆t→0

∆x2

2∆t <∞.
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Brownian motion

∂W
∂t = K1

∂2W
∂x2

Let us call X the random variable measuring the distance covered in two consecutive jumps
• Assume that the pdf of X (appropriately normalised) has existing moments

X =
∑

i
Xi , X2,

and mean time-span ∆t between any two individual jump events.

• Then the central limit theorem assures that exists

V =
X
∆t (Mean velocity) K =

X2 − X2

2∆t (Diffusion coefficient)

and that
W (x , t) = 1

2
√
πK1t

exp
(
−x2/4K1t

)
.
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Brownian motion: the Fourier domain

We can rewrite
W (x , t) = 1

2
√
πK1t

exp
(
−x2/4K1t

)
.

in the Fourier domain as

W (k, t) = exp(−K1k2t), W0(x) = lim
t→0+

W (x , t) = δ(x),

that solve the Fourier transformed diffusion equation

∂W
∂t = −K1k2W (k, t),

that is a relaxation equation, for a fixed wavenumber k.
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From the discrete to the continuous

The Continuous Time Random Walk model (CTRW):
LIGHTBULB Both the length of a given jump, and the waiting time elapsing between two

successive jumps are drawn from a pdf ψ(x , t)

Walking The jump length pdf

λ(x) =
∫+∞

0
ψ(x , y)dt,

CLOCK The waiting time pdf

w(t) =
∫+∞
−∞ ψ(x , t)dx
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The Continuous Time Random Walk model (CTRW):
LIGHTBULB Both the length of a given jump, and the waiting time elapsing between two

successive jumps are drawn from a pdf ψ(x , t)
Walking The jump length pdf

λ(x) =
∫+∞

0
ψ(x , y)dt,

CLOCK The waiting time pdf

w(t) =
∫+∞
−∞ ψ(x , t)dx

• If the jump length and waiting time are independent random variables then:

ψ(x , t) = w(t)λ(x)
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Characterization of CTRW
To categorise different CTRW one can look at the quantities

T =

∫+∞
0

tw(t)dt, (Characteristic waiting time),

and
Σ2 =

∫+∞
−∞ x2λ(x)dx (Jump length variance),

specifically, are they finite? Do they diverge?

The master (Langevin) equation for this process is then given by

η(x , t) =
∫+∞
−∞ dx ′

∫+∞
0

dt ′ η(x ′, t ′)ψ(x − x ′, t − t ′) + δ(x)δ(t),
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Pdf of having arrived at position x at time t – η(x , t) – having just arrived at x ′ at time t ′
– η(x ′, t ′) – with initial condition δ(x).
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Characterization of CTRW
Then if we use

η(x , t) =
∫+∞
−∞ dx ′

∫+∞
0

dt ′ η(x ′, t ′)ψ(x − x ′, t − t ′) + δ(x)δ(t),

we can write the pdf of being in x at time t as

W (x , t) =
∫ t

0
η(x , t ′)Ψ(t − t ′),dt, Ψ(t) = 1 −

∫ t

0
w(t ′)dt ′,

where the latter is the cumulative probability assigned to the probability of no jump event
during the time interval t − t ′.

Fact
If both T and Σ2 are finite the long-time limit corresponds to Brownian motion, e.g.,
w(t) = τ−1exp(−t/τ), T = τ, λ(x) = (4πσ2)−1/2 exp(−x2/4σ2), Σ2 = 2σ2, we recover the
standard diffusion equation.
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The CTRW in the Fourier-Laplace domain
We take

W (x , t) =
∫ t

0
η(x , t ′)Ψ(t − t ′),dt, Ψ(t) = 1 −

∫ t

0
w(t ′)dt ′,

and rewrite it again in the Fourier-Laplace domain (Fourier for the space variable,
Laplace for the time one) as

W (k, u) = 1 − w(u)
u

W0(k)
1 −ψ(k, u) , W0(k) =

∫+∞
−∞ W0(x)e−i2πkx dx .

In the Brownian case

w(u) ∼ 1 − uτ+ O(τ2), λ(k) ∼ 1 − σ2k2 + O(k4), W0(x) = δ(x)

then
W (k, u) = 1

u + K1k2 , K1 = σ2/τ.
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The case of long rests
Bed Long rests
The characteristic waiting time T =

∫+∞
0 tw(t)dt diverges, but the jump length

variance Σ2 =
∫+∞
−∞ x2λ(x)dx is finite.

• To realize this we can select
w(t) ∼ Aα (τ/t)1+α , 0 < α < 1,

• For the jump pdf we use again the Gaussian jump length
λ(x) = (4πσ2)−

1/2 exp(−x2/4σ2).

• To get the form of the equation we first go to the Laplace domain:
w(u) ∼ 1 − (uτ)α,

• and then obtain the expression for W (k, u) in the Fourier-Laplace space
W (k, u) = W0(k)/u/

(
1+Kαu−αk2).
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The case of long rests

To get an expression of the equation we use the Laplace transform for fractional integrals:

L
{

I−α[0,t]W (x , t)
}
= u−αW (x , u), α ≥ 0,

and together with
W (k, u) =

W0(k)/u

(1 + Kαu−αk2)
.

we infer the fractional integral equation

W (x , t) − W0(x) = I[0,t]Kα
∂2

∂x2 W (x , t).
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we infer the fractional integral equation, and apply derivative w.r.t. to time

∂

∂t (W (x , t) − W0(x)) =
∂
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we infer the fractional integral equation

∂W
∂t = RLDα

[0,t]Kα
∂2

∂x2 W (x , t).

We can compute also the mean squared displacement

〈x2(t)〉 = L−1
{

lim
k→0

−
d2

dk2 W (k, u)
}

=
2Kα

Γ(1 + α)
tα.
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The case of long rests

We have obtained a Fractional Differential Equation:

∂W
∂t = RLDα

[0,t]Kα
∂2

∂x2 W (x , t), 0 < α < 1

but this is not the model we started looking at, that was

CADα
[0,t]W = Kα

∂2

∂x2 W (x , t), 0 < α < 1

Question-Circle Are they related?

It turns out that this is indeed the case (Sokolov and Klafter 2005),
the proof involves doing some work in inverting Fourier-Laplace transform.

We now have an interpretation of what a Fractional Derivative with respect to time is. We
will come back to this when we will speak about fractional derivative with respect to space.
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Question-Circle Are they related? It turns out that this is indeed the case (Sokolov and Klafter 2005),
the proof involves doing some work in inverting Fourier-Laplace transform.

We now have an interpretation of what a Fractional Derivative with respect to time is. We
will come back to this when we will speak about fractional derivative with respect to space.
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“Exponential” Fractional Integrators
We start from the FDE{

CADα
[t0,t]u(t) + λy(t) = f (t),

u(0) = u0,
α ∈ R>0, λ ∈ R, u(t) : [t0,T ] → R.

Then we rewrite the solution as

u(t) = eα,1(t − t0; λ)u0 +

∫ t

t0

eα,α(t − s ; λ)f (s)ds, eα,β = tβ−1Eα,β(−λtα),

for Eα,β(z) the Mittag-Leffler (ML) function with two parameters.

LIGHTBULB We can use this formulation to build different PI rules,
LIGHTBULB We can use it to address the problem

CADα
[t0,t]U(t) + Ay(t) = F (U(t)), U(0) = U0.
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Evaluation of the ML function
For both the approaches we need reliable ways for computing the ML function on both
the real line and with matrix argument.

Scalar case Inversion of the Laplace transform via the Optimal Parabola Contour
selection algorithm (Garrappa 2015),

Matrix argument To apply algorithm for matrix-function evaluation we may need also the
value of the derivative of the ML function, e.g., Schur-Parlett type
algorithm (Garrappa and Popolizio 2018; Higham and Liu 2021).

In general, we expect to mostly need matrix function–times–vector operations:

y = Eα,β(A)v, A ∈ Rn×n, y, v ∈ Rn.

We postpone it to after we have discussed the actual necessities we have.
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PI - “Exponential” Fractional Integrators
We start from the formula

u(t) = eα,1(t − t0; λ)u0 +

∫ t

t0

eα,α(t − s ; λ)f (s)ds, eα,β = tβ−1Eα,β(−λtα),

and select a grid {ti }
N
i=0, then

u(tn) = eα,1(tn − t0; λ)u0 +
n−1∑
j=0

∫ tj+1

tj

eα,α(tn − s ; λ)f (s)ds.

• In general we have
eα,β(t ; λ) = τβ−1eα,β(t/τ; ταλ)

• For s ∈ [tj , tj+1] let us consider the change of variables s = tj + rτ, r ∈ [0, 1]
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PI - “Exponential” Fractional Integrators
Then a PI rule for

u(tn) = eα,1(tn − t0; λ)u0 + τ
α

n−1∑
j=0

∫1

0
eα,α((t−tj )/τ− r ; ταλ)f (tj + rτ)dr .

is obtained by selecting q + 1 distinct nodes 0 ≤ c0 < c1 < · · · < cq ≤ 1 and replacing
f (tj + rτ) with

p[q]
j (tj+rτ) =

q∑
`=0

L[q]
` (r)f (tj+c`τ), r ∈ [0, 1], L[q]

` Lagrange basis element of degree q.

And selecting the weights

ω
[q;α]
` (n, z) =

∫1

0
eα,α(n − j − r ; z)L[q]

` (r)dr .
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Then the PI rule is

u(n) = eα,1(tn − t0; λ)y0 + τ
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PI - “Exponential” Fractional Integrators
Theorem (Garrappa and Popolizio 2011, Theorem 4.2)
Let α > 0 and f (t) ∈ Cq+2([t0,T ]). The error of a q-step exponential PI rule is given by

u(tn) − u(n) = τq+1 C [q]
0

(q + 1)!

∫ tn

t0

eα,α(tn − s ; λ)f (q+1)(s)ds + O(τq+1+α),

where the constant C [q]
0 depends only on the nodes c`.

• For q = 2, c0 = 0, c1 = 1/2 c2 = 1, one finds C [2]
0 = 0, thus an interpolatory formula

of order O(τq+1+α).
LIGHTBULB The general idea is to select nodes c` in such way that

C [q]
ν =

∫1

0
ωq(r)ξ(1 − ν, 1 − r)dr , ν ∈ R,

for ξ the Hurwitz zeta function, are zeroed out in the error expansion for the method.
17 / 45



The MOL/Matrix case
Let us go back to the case that sparked our interest in going “exponential”, that was the
MOL problem {

CADα
[0,t]u(t) + Au(t) = g(t), t > 0,

u(0) = u0.

By the variation of constant formula, we have seen that we can express the solution as

u(t) = Eα,1(−tαA)u0 +

∫ t

0
(t − s)α−1Eα,α(−A(t − s)α)g(s)ds.

• In the general case we then have to apply one of the PI rules to compute the integral
term,

• If g(s) =
∑q

k=0 skvk for some vectors, we can compute the integral on the right-hand
side in closed form and obtain

u(t) = Eα,1(−tαA)y0 +

q∑
k=0

Γ(k + 1)tα+kEα,α+k+1(−tαA)vk , t > 0.
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Matrix functions: the normal case

If A is a normal matrix, and f is a function existing on the spectrum of A, then

f (A) = Uf (Λ)UH , UHU = I, Λ = diag(λ1, . . . , λn), Aui = λiui , U = [u1, . . . , un].

This is, e.g., sufficient for the cases in which
• A is the discretization of a self-adjoint operator,
• A is symmetric.

Eα,β(z) is an analytic function, and therefore we can compute it for every possible
eigenvalue λ in the spectrum of A.

What about the non-normal and nond-diagonalizable case? For diagonalizable matrices, we
can use the eigendecomposition at the same way.
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Matrix functions: the Jordan Canonical Form
Jordan Canonical Form
We recall that any matrix A ∈ Cn×n can be expressed in Jordan canonical form as

Z−1AZ = J = diag(J1, . . . , Jp), for Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk ,

where Z is nonsingular and m1 + m2 + . . .+ mp = n. If each block in which the eigenvalue
λk appears is of size 1 then λk is said to be a semisimple eigenvalue.

• This is a theoretical object, it is useful to prove and define things, not to implement
things.

• Now that we have a decomposition of the matrix, we need to introduce a suitable
definition of being defined on the spectrum.
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Matrix functions: the general case

Let us denote by λ1, . . . , λs the distinct eigenvalues of A, and by ni the order of the largest
Jordan block in which the λi appears, i.e., the index of the eigenvalue λi .

Defined on the spectrum
The function f is defined on the spectrum of A if the values

f (j)(λi), j = 0, 1, . . . , ni − 1, i = 1, . . . s,

exist, where f (j) denotes the jth derivative of f , with f (0) = f .

Exclamation-Triangle Again for the ML function and α > 0 we have no problem with this.
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Matrix functions: the general case
Matrix function
Lef f be defined on the spectrum of A ∈ Cn×n, which is represented in Jordan canonical
form as Z−1AZ = J ,

f (A) = Zf (J)Z−1 = Z diag(f (J1), . . . , f (Jp))Z−1,

where

f (Jk) =


f (λk) f ′(λk) . . .

f (mk−1)(λk)
(mk−1)!

f (λk)
. . . ...
. . . f ′(λk)

f (λk)

 .
Moreover, let f be a multivalued function and suppose some eigenvalues occur in more
than one Jordan block. If the same choice of branch of f is made in each block, then we
say that f (A) is a primary matrix function.
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Matrix functions: computing f (A) and f (A)v

To march our scheme for

u(t) = Eα,1(−tαA)u0 +

∫ t

0
(t − s)α−1Eα,α(−A(t − s)α)g(s)ds.

we need to compute operations of the form f (A)v, nevertheless, we will have to compute
f (·) at least on some small matrix.

Schur decomposition and matrix functions
Given a matrix A there exist always a matrix Q such that Q∗Q = I, and a upper triangular
matrix T such that A = QTQ∗. Then, if f is defined on the spectrum of A we can
compute f (A) as f (A) = Qf (T )Q∗.

But how do we compute the matrix function of an upper triangular matrix?
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Matrix functions: the upper triangular case

Assumption we assume that T is such that each block Ti ,j has clustered eigenvalues, and
distinct diagonal blocks have far enough eigenvalues.

Exclamation-circle If the assumption doesn’t hold we look for a block permutation.
(T1,1)1,1 (T1,1)1,2

0 (T1,1)2,2
T1,2

0 (T2,2)1,1 (T2,2)1,2
0 (T2,2)2,2


Exclamation-Triangle Close eigenvalues may lead to severe
accuracy loss, even far apert eigenvalues can
produce more inaccurate answers than
expected, see (Davies and Higham 2003).
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Exclamation-Triangle Close eigenvalues may lead to severe
accuracy loss, even far apert eigenvalues can
produce more inaccurate answers than
expected, see (Davies and Higham 2003).

• To evaluate f (Tii) we use the Taylor
series in σ

f (Ti ,i) =
+∞∑
k=0

f (k)
k! Mk ,

for σ = trace(Ti,i )/m, m = dim(Ti ,i), and
M = Ti ,i − σI.
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

Exclamation-Triangle Close eigenvalues may lead to severe
accuracy loss, even far apert eigenvalues can
produce more inaccurate answers than
expected, see (Davies and Higham 2003).

For the off-diagonal blocks we apply the
block-Parlett recurrence
Fi ,i = f (Ti ,i), i = 1, . . . , n;
for j = 2, . . . , n do

for i = j − 1, j − 2, . . . , 1 do
Solve Sylvester equation for Fi ,j :
Ti ,iFj,j −Fi ,jTj,j = Fi ,iTi ,j −Ti ,jFj,j
+
∑j−1

k=0(Fi ,k − Tk,j − Ti ,kFk,j).
end

end
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Assumption we assume that T is such that each block Ti ,j has clustered eigenvalues, and
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Exclamation-circle If the assumption doesn’t hold we look for a block permutation.
(T1,1)1,1 (T1,1)1,2

0 (T1,1)2,2
T1,2

0 (T2,2)1,1 (T2,2)1,2
0 (T2,2)2,2



Exclamation-Triangle Close eigenvalues may lead to severe
accuracy loss, even far apert eigenvalues can
produce more inaccurate answers than
expected, see (Davies and Higham 2003).

What we need
To use the algorithm we have sketched out,
we need to be able to compute the derivatives
of the ML function sufficiently accurately.
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Derivatives of the ML function
The key observation for this task is

dk

dzk Eα,β(z) =
+∞∑
j=0

(j + k)kz j

Γ(αj + αk + β)
=

k!
Γ(k + 1)

+∞∑
j=0

Γ(j + k + 1)z j

j!Γ(αj + αk + β)
= k!Ek+1

α,αk+β(z),

where

Eγα,β(z) =
1
Γ(γ)

+∞∑
j=0

Γ(1 + γ)z j

j!Γ(αj + β) ,

is called the Prabhakar function.

Its efficient computation can be obtained, similarly to the ML function, by means of a
Laplace transform inversion

L
{

tβ−1Eγα,β(t
αz)

}
(s) = sαγ−β

(sα − tαz)γ , <(s) > 0, |tαzs−α| < 1.
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Laplace transform inversion

L
{

tβ−1Eγα,β(t
αz)

}
(s) = sαγ−β

(sα − tαz)γ , <(s) > 0, |tαzs−α| < 1.
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Computing the Prabhakar function (Garrappa 2015)
We select t = 1 in

L
{

tβ−1Eγα,β(t
αz)

}
(s) = sαγ−β

(sα − tαz)γ , <(s) > 0, |tαzs−α| < 1.

• Since

dk

dzk Eα,β(z) = k!Ek+1
α,αk+β(z) =

k!
2πi

∫
C

esHk(s ; z)ds ≡ Ik(z),

• we use the Optimal Parabolic Contour we have already
discussed in Lecture 2 to determine the deformation of
the Bromwich line to evaluate

I [N]
k =

k!h
2πi

N∑
j=−N

eσ(uj )Hk(σ(uj); z)σ ′(uj).
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Hammer An alternative option (Higham and Liu 2021)
We needed the ML derivatives to apply Schur-Parlett to non-diagonalizable matrices.

Diagonalization by perturbation
Let A be nonnormal

Ã = A + E

for E a suitable perturbation is likely to be diagonalizable. Diagonalizable matrices are
dense in Cn×n, for a given A and machine precision ε then the best approximate
diagonalization can be measured in terms of

σ(A, ε) = inf
E ,V

σ(A,V ,E , ε) = inf
E ,V

{κ2(V )ε+ ‖E‖2} .

We can expect to measure on f (A) by estimating
‖f (A + E) − f (A)‖ . ‖Lf (A,E)‖ ≤ ‖Lf (A)‖‖E‖,

for Lf (A,E) the Fréchet derivative of f at A in direction E , ‖Lf (A)‖ = max
‖E‖=1

{‖Lf (A,E)‖}.
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Ã = A + E

for E a suitable perturbation is likely to be diagonalizable. Diagonalizable matrices are
dense in Cn×n, for a given A and machine precision ε then the best approximate
diagonalization can be measured in terms of

σ(A, ε) = inf
E ,V

σ(A,V ,E , ε) = inf
E ,V

{κ2(V )ε+ ‖E‖2} .

We can expect to measure on f (A) by estimating
‖f (A + E) − f (A)‖ . ‖Lf (A,E)‖ ≤ ‖Lf (A)‖‖E‖,

for Lf (A,E) the Fréchet derivative of f at A in direction E , ‖Lf (A)‖ = max
‖E‖=1

{‖Lf (A,E)‖}.

27 / 45



Hammer An alternative option (Higham and Liu 2021)
We needed the ML derivatives to apply Schur-Parlett to non-diagonalizable matrices.

Diagonalization by perturbation
Let A be nonnormal
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Hammer An alternative option (Higham and Liu 2021)

Fréchet derivative
The Fréchet derivative of a matrix function f : Cn×n → Cn×n at a point X ∈ Cn×n is a
linear mapping L : Cn×n → Cn×n E 7→ Lf (X ,E) such that for all E ∈ Cn×n we find

f (X + E) − f (X) − L(X ,E) = o(‖E‖).

Thus, in our estimate we have

‖f (A + E) − f (A)‖ . ‖Lf (A,E)‖ ≤ ‖Lf (A)‖‖E‖,

and therefore the change in f induced by E grows as ‖Lf (A)‖2‖E‖2 and there are many
cases in which ‖Lf (A)‖2 � 1.
LIGHTBULB The idea from (Higham and Liu 2021) is to use a structured perturbation:

“take E to be upper triangular standard Gaussian matrix.”
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Hammer An alternative option (Higham and Liu 2021)
The idea in few steps

1. Compute the Schur decomposition A = QTQ∗,

2. Consider the perturbed matrices T̃ = T + E

• T̃ is still upper triangular,
• Eigenvectors can be compute by back-substitution: (T̃ − t̃i,i I)vi = 0, i = 1, . . . ,m,

3. Compute in precision uh the diagonalization
T̃ = VDV−1, D = diag(λi),

with distinct λi ,
4. Form f (T̃ ) = Vf (D)V−1 in precision uh

What precision do we need?
To have κ1(V )uh . u we select for cmu ≈ mini | diag(t̃1,1I − T̃2,2)|

uh .
cmu2

maxi<j |̃ti ,j | (maxi<j |̃ti,j |/cmu + 1)k−2 , k = “size of the Jordan block” ≥ 2.
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From small to large matrices
We now know how to compute Eα,β(A) for a small matrix A, either with
Door-closed Classical Schur-Parlett algorithm with Laplace inversion technique for the needed

derivative of the ML function (Garrappa and Popolizio 2018),
CODE https://it.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-

matrix-arguments
Door-closed Multiprecision derivative-free Schur-Parlett algorithm (Higham and Liu 2021),

CODE https://github.com/Xiaobo-Liu/mp-spalg

What about large matrices?

LIGHTBULB Projection methods for matrix functions
We can exploit the subspace projection idea, take V ∈ Rn×k spanning a given subspace Wk

f (A)v ≈ Vf (V T AV )V T v V T AV ∈ Rk×k , k � n.
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Krylov Projection Methods
Different methods are obtained for different choices of the projection spaces Wk(A, v).

A general framework
Given a set of scalars {σ1, . . . , σk−1} ⊂ C (the extended complex plane), that are not
eigenvalues of A, let

qk−1(z) =
∏k−1

j=1
(σj − z).

The rational Krylov subspace of order k associated with A, v and qk−1 is defined by

Qk(A, v) = [qk−1(A)]−1 Kk(A, v), Kk(A, v) = Span{v,Av, . . . ,Ak−1v}.

A matrix expression
Given {µ1, . . . , µk−1} ⊂ C such that σj 6= µ−2

j , we define the matrices

Cj = (µjσjA − I) (σj I − A)−1, and Qk(A, v) = Span{v,C1v, . . . ,Ck−1 · · ·C2C1v}.
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Krylov Projection Methods: special cases

A matrix expression
Given {µ1, . . . , µk−1} ⊂ C such that σj 6= µ−2

j , we define the matrices

Cj = (µjσjA − I) (σj I − A)−1, and Qk(A, v) = Span{v,C1v, . . . ,Ck−1 · · ·C2C1v}.

Polynomial Krylov Wk(A, v) = Kk(A, v) set µj = 1 and σj = ∞ for each j,

Extended Krylov W2k−1(A, v) = Span{v,A−1v,Av, . . . ,A−(k−1)v,Ak−1v}, set

(µj , σj) =

{
(1,∞), for j even,
(0, 0), for j odd.

Shift-And-Invert Wk(A, v) = Span{v, (σI − A)−1v, . . . , (σI − A)−(k−1)v}, take µj = 0 and
σj = σ for each j,
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The ML function (Moret and Novati 2011)
To estimate the convergence behavior of general projection methods in the non-normal we
need the concept of field of values (or numerical range.)

Field of Values/Numerical Range

Given A ∈ CN×N we denote its field of values as

W (A) =
{
〈x,Ax〉
〈x, x〉 , 0 6= x ∈ CN

}
,

where 〈·, ·〉 represents the Euclidean inner product.
−2 0 2 4

−2

0

2

It has many properties, e.g., W (A) ⊆ D(0, ‖A‖) (disk centered on 0 with radius ‖A‖), is
compact, sub-additive W (A + B) ⊆ W (A) + W (B), unitarily invariant
W (UAUH) = UW (A)UH , etc. see (Benzi 2021)

.
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The ML function (Moret and Novati 2011)
Assumptions:

(A1) We assume that ∃a > 0, θ ∈ [0, π/2) such that

W (A) ⊂ Σθ,a = {λ ∈ C : | arg(λ) − a| ≤ θ}.

(A2) β > 0, α ∈ (0, 2) be such that απ/2 < π− θ, ε > 0 and
απ

2 < µ ≤ min{π, απ}, µ < π− θ.

Method of choice: we use polynomial Krylov method Km(A, v):

AVm = VmHm +hm+1,mvm+1eT
m, Span Vm = Span{vi }

m
i=1 = Km(A, v), Hm = V H

m AVm.

We want to bound:

Rm = Eα,β(−A)v − VmEα,β(−Hm)e1, m ≥ 1.
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The ML function (Moret and Novati 2011)
We first express the error in integral form, starting from (Podlubny 1999, Theorem 1.1)

Eα,β(z) =
1

2απi

∫
C(ε,µ)

exp(λ1/α)λ1−β/α

λ− z dλ, z ∈ G−(ε, µ),

where

• ∀ ε > 0, 0 < µ < π

C(ε, µ) =
⋃ {

C1(ε, µ) = {λ : λ = ε exp(iϕ), −µ ≤ ϕ ≤ µ},
C2(ε, µ) = {λ : λ = r exp(±iµ), r ≥ ε}.

• The contour C(ε, µ) divides the complex plane into two
domains, G−(ε, µ) and G+(ε, µ) lying respectively on the
left and on the right of C(ε, µ).
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An Expression for the Error
From the previous we find

Eα,β(−A) = 1
2απi

∫
C(ε,µ)

exp(λ1/α)λ
1−β/α(λI + A)−1 dλ, σ(−A) ∈ G−(ε, µ),

and together with

Rm = Eα,β(−A)v − VmEα,β(−Hm)e1, m ≥ 1,

we write
Rm =

1
2απi

∫
C(ε,µ)

exp(λ1/α)λ
1−β/αδm(λ),dλ,

for

δm(λ) = (λI + A)−1v − Vm(λI + Hm)
−1e1

= (λI + A)−1v − Vm(λI + Hm)
−1V H

m v.
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An Expression for the Error
Observe now that

δm(λ) = (λI + A)−1v − Vm(λI + Hm)
−1V H

m v = ∆mv,

By using the Arnoldi relation, since vm+1 ⊥ Vm:

V H
m (λI + A)Vm = λI + Hm,

Therefore we have
∆m(λI + A)Vm = 0.

For an arbitrary y ∈ Cm we have then

(λI + A)−1v − Vm(λI + Hm)
−1V H

m v = ∆m(v − (λI + A)Vmy) = ∆mpm(A)v,

where pm(z) is a polynomial of degree ≤ m with pm(−λ) = 1.
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An Expression for the Error
We have therefore proved that
‖δm(A)‖ ≤ ‖(λI +A)−1 −Vm(λI +Hm)

−1V H
m ‖‖pm(A)v‖, ∀pm ∈ P≤m[z] with pm(−λ) = 1.

By using (Diele, Moret, and Ragni 2008/09, Lemma 2) we also have the following
expression

‖δm(λ)‖ =

∏m
j=1 hj+1,j

|det(λI + Hm)|
‖(λI + A)−1vm+1‖.

To obtain the first bound we call then
D(λ) = dist(λ,W (−A)) ∀ λ ∈ C(ε, µ).

Representation function
Using (A1) and (A2) we can find a function ν(ϕ) such that

∀ λ = |λ| exp(±iϕ) ∈ C(ε, µ) D(λ) ≥ ν(ϕ)|λ|, ν(ϕ) ≥ ν > 0.
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A First Error Bound

Theorem (Moret and Novati 2011, Theorem 3.2)
Let assumptions (A1) and (A2) hold, then for m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(| cos(µ/α)|+ 1))
mα− 1 + β

)
.

Proof. We use ‖(λI +A)−1‖ ≤ D(λ)−1 and W (Hm) ⊆ W (A) in the error expression Rm
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2απi

∫
C(ε,µ)

exp(λ1/α)λ
1−β/αδm(λ),dλ

∥∥∥∥∥
≤
∏m

j=1 hj+1,j

2πα

∫
C(ε,µ)

∣∣exp(λ1/α)λ1−β/α
∣∣

D(λ)m+1 |dλ|.
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‖Rm‖ ≤
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j=1 hj+1,j

2πα (I1 + I2),

with

I1 =

∫
C1(ε,µ)

∣∣exp(λ1/α)λ1−β/α
∣∣

D(λ)m+1 |dλ| ≤ 2ε
1−β
α

−m
∫µ

0

exp(ε1/α cos(ϕ/α))
ν(ϕ)m+1 dϕ,
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‖Rm‖ ≤
∏m

j=1 hj+1,j

2πα

(
2ε

1−β
α

−m
∫µ

0

exp(ε1/α cos(ϕ/α))
ν(ϕ)m+1 dϕ+ I2

)
,

with

I2 =

∫
C2(ε,µ)

∣∣exp(λ1/α)λ1−β/α
∣∣

D(λ)m+1 |dλ| ≤ 2
νm+1

∫+∞
ε

r
1−β
α exp(−r 1

α | cos(µ/α)|)
rm+1 dr

=
2

νm+1

∫+∞
ε1/α

exp(−s | cos(µ/α)|)
smα+β ds ≤ 2α exp(−ε1/α| cos(µ/α)|)

(mα+ β− 1)νm+1ε
mα+β−1

α

.
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α
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The result follows then by setting ε = Mα and simplifying the expression.

39 / 45



A First Error Bound

Theorem (Moret and Novati 2011, Theorem 3.2)
Let assumptions (A1) and (A2) hold, then for m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(| cos(µ/α)|+ 1))
mα− 1 + β

)
.

Proof. We use ‖(λI + A)−1‖ ≤ D(λ)−1 and W (Hm) ⊆ W (A) in the error expression Rm

‖Rm‖ ≤
∏m

j=1 hj+1,j

2πα

(
2ε

1−β
α

−m
∫µ

0

exp(ε1/α cos(ϕ/α))
ν(ϕ)m+1 dϕ+

2α exp(−ε1/α| cos(µ/α)|)
(mα+ β− 1)νm+1ε

mα+β−1
α

)

The result follows then by setting ε = Mα and simplifying the expression.

Exclamation-Triangle With the same proof another bound for the case of small α can be obtained.
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A First Error Bound: small αs

Theorem (Moret and Novati 2011, Theorem 3.2)
Let assumptions (A1) and (A2) hold, then for m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(| cos(µ/α)|+ 1))
mα− 1 + β

)
.

Corollary (Moret and Novati 2011, Corollary 3.3)
Let assumptions (A1) and (A2) hold. Let m ≥ 1 be such that mα+ β > 0, then for every
M > 0, we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

4νm+1Mmα
4M1−β

π

(
µ

α
+

exp(−M(1 + | cos(µ/α)|))
M | cos(µ/α)|

)
.
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A First Error Bound: some observations
COG The ML function is entire for α > 0 ⇒ superlinear convergence for large enough m:

M = mα+ β− 1 ⇒ ‖Rm‖ ∝
(

exp(1)
M

)M
ν−(m+1)

m∏
j=1

hj+1,j .

COG To better understand this, we use that for every monic polynomial of degree m we find
m∏

j=1
hj+1,j ≤,

Therefore, if we take qm as the monic Faber polynomial associated to a closed
convex subset Ω ⊃ W (−A) we get the bound in terms of the logarithmic capacity γ
of Ω.⇒ we have discovered:

‖Rm‖ ∝
(

exp(1)
mα

)mα (γ
ν

)m
.
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Specialized bounds
The bound can be refined under stricter hypotheses.

Theorem (Moret and Novati 2011, Theorem 3.5)
Assume that A is Hermitian with σ(A) ⊆ [a, b] ⊂ [0,+∞). Assume that 0 < α < 1, β ≥ α.
Let µ ≤ π/2, απ/2 < µ < απ. Then for every index m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤ 4M1−β

π

(
µ

α
+

exp(−M(1 + | cos(µ/α)|))
M | cos(µ/α)|

)
exp(M)Φ(u(Mα exp(iµ)))−m.

for Φ(u) = u +
√

u2 − 1, u(z) = (|b+z |+|a+z |)/b−a.

Limiting relation
If α→ 0, β = 1, we have E0,1(−z) = (1 + z)−1, |z | < 1. Then setting µ = απ and letting
M = 1, we find

‖Rm‖ ≤ 4(π exp(1) − exp(−1))
πΦ(u(1))m
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The Shift-and-Invert Method (Moret and Novati 2011)
We remain under the assumptions (A1) and (A2) and consider the matrix

Z = (I + hA)−1, h > 0,
together with the space Km(Z , v).

We can write the analogous Arnoldi relation for Um = [u1, . . . , um] spanning Km(Z , v):
ZUm = UmSm + sm+1,mum+1eT

m, Sm = UH
mZUm.

The approximation is then given by
y = f (A)v ≈ ym = Vmf (Bm)e1 where (I + hBm)Sm = I.

We can repeat the general error analysis using

Rm = Eα,β(−A)v − UmEα,β(−Bm)e1 =
1

2παi

∫
C(ε,µ)

exp(λ1/α)λ
(1−β)/αbm(λ)dλ,

for bm(λ) = (λI + A)−1v − Um(λI + Bm)
−1e1.
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Error bound (Moret and Novati 2011)
Theorem (Moret and Novati 2011, Theorem 4.3)
For every matrix A satisfying (A1) and (A2), assume 0 < α < 1 and β ≥ α. Then, there
exists a function g(h), continuous in any bounded interval 0 < h1 ≤ h ≤ h2, such that for
m ≥ 2,

‖Rm‖ ≤ g(h)
m − 1 .

Theorem (Moret and Novati 2011, Theorem 4.5)
Assume that A is Hermitian with σ(A) ⊆ [a,+∞), a ≥ 0. Assume 0 < α ≤ 2/3 and β ≥ α.
Then, for every m ≥ 1 we have

‖Rm‖ ≤ K1Qmh
β−1
α

(1 +
√

2)m−1
+

K2hβ/α

(m − 1)2 exp
(
−

h−1/α

√
2

)
,

where Qm = max0≤|ϕ|≤3απ/4 exp
(
h−1/α cosϕ/α

)
(1 − cosϕ)

m−1
2 , with K1, K2 constants.
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ML function, what have we found?
COG The polynomial method suffers both for small α values and for large field of values.

COG For the shift-and-invert method the convergence doesn’t deteriorate with the size of
W (A), its uniform with respect to the h parameter.

WRENCH To obtain a complete method one still has to find a way to repeatedly compute the
matrix functions in

u(t) = Eα,1(−tαA)u0 +

∫ t

0
(t − s)α−1Eα,α(−A(t − s)α)g(s)ds.

BINOCULARS Research ideas: finding better rational approximations/poles/expansions together
with error analysis for the ML function.

Other extensions
A variant with restart is discussed in (Moret and Popolizio 2014), the combination with
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