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Questions in Complex Networks

A complex network is a graph with
non-trivial topological features, neither a
structured graph (lattices, Cayley graphs,

etc.) nor a completely random graph.

We are interested in tasks in exploratory
data analysis, that is analyzing the data to
summarize their main characteristics:
Object-ungroup Divide the nodes into groups that are in

the same community (clustering),
STAR Find the “most relevant” nodes in the

network (centrality),
ARROWS-ALT-H Find the “most relevant” edge in the

network (edge centrality)
Balance-Scale Individuation of motifs, computation of

fluxes, maximum cuts, etc.
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BOOK-DEAD Notation

Network
A network G = (V ,E) is defined as a pair of sets: a set V = {1, 2, . . . , n} of nodes and a
set E ⊂ V × V of edges between them.

Adjacency Matrix
We represent a Network via its adjacency
matrix A = (aij) ∈ Rn×n, entrywise defined as

aij =

{
wij if (i , j) ∈ E
0 otherwise

where wij > 0 is the weight of edge (i , j).
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set E ⊂ V × V of edges between them.

Directed/Undirected
If ∀ (i , j) ∈ E then (j, i) ∈ E the network is
said to be undirected is directed otherwise.

Directed Undirected Loop
An edge from a node to itself is called a loop.
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STAR Centrality Measures: the limiting cases

• Degree centrality:

di =
n∑

j=1
aij = (A1)i

• Eigenvector centrality: ρ(A) > 0 the
spectral radius of the irreducible A ≥ 0

xi =
1
ρ(A)

n∑
j=1

aijxj Degree centrality is oblivious to the whole
topology of the network.
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STAR Centrality Measures: the limiting cases

• Degree centrality:

di =
n∑

j=1
aij = (A1)i

• Eigenvector centrality: ρ(A) > 0 the
spectral radius of the irreducible A ≥ 0

xi =
1
ρ(A)

n∑
j=1

aijxj
Eigenvector centrality considers both the
number of neighbors and their importance

when assigning scores to nodes.
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Walking Walk based centralities and Matrix Functions

Consider the analytic function f in
{z ∈ C : |z | < Rf }:

f (z) =
∞∑

r=0
crzr , cr ≥ 0

then under suitable hypothesis on the
spectrum of A we can write:

f (A) =
∞∑

r=0
crAr .

Walking (Ar )i1,ir+1 is the number of walks from i1 to
ir+1.

AB

A walk of length r is a sequence of r + 1
nodes i1, i2, . . . , ir+1 such that (i`, i`+1) ∈ E

for all ` = 1, . . . , r .
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Consider the analytic function f in
{z ∈ C : |z | < Rf }:

f (z) =
∞∑

r=0
crzr , cr ≥ 0

then under suitable hypothesis on the
spectrum of A we can write:

f (A) =
∞∑

r=0
crAr .

Walking (Ar )i1,ir+1 is the number of walks from i1 to
ir+1.

• (f (A))ij is a weighted sum of the
number of all walks of any length that
start from node i and end at node j,

• cr → 0 as r increases thus walks of
longer lengths are considered to be less
important,

• The most popular functions used in
networks science are f (z) = ez and
f (z) = (1 + z)−1.
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Walking Walk based centralities

• Subgraph centrality:

si(f ) = eT
i f (A)ei =

∞∑
r=0

cr (Ar )ii .

• Total (node) communicability:

ti(f ) =
n∑

j=1
(f (A))ij =

n∑
j=1

∞∑
r=0

cr (Ar )ij
Subgraph centrality accounts for the

returnability of information from a node to
itself: it is a weighted count of all the

subgraphs node i is involved in.
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Walking Walk based centralities

• Subgraph centrality:

si(f ) = eT
i f (A)ei =

∞∑
r=0

cr (Ar )ii .

• Total (node) communicability:

ti(f ) =
n∑

j=1
(f (A))ij =

n∑
j=1

∞∑
r=0

cr (Ar )ij
For the total comunicability the importance

of a node depends on how well it
communicates with the whole network, itself

included
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The Mittag-Leffler Function
The Mittag–Leffler (ML) function is an analytic functions given, ∀α,β > 0, by

Eα,β(z) =
∞∑

r=0
cr (α,β)zr =

∞∑
r=0

zr

Γ(αr + β) ,

where
• cr (α,β) = Γ(αr + β)−1,
• Γ(z) is the Euler Gamma function:

Γ(z) =
∫∞

0
tz−1e−tdt.

For particular choices of α,β > 0, the ML
function Eα,β(z) has a nice closed form
descriptions.

α β Function

0 1 (1 − z)−1

Resolvent
1 1 exp(z)

Exponential
1
2 1 exp(z2) erfc(−z)

Error Function1

2 1 cosh(
√

z)
Hyperbolic Cosine

2 2 sinh(
√

z)/
√

z
Hyperbolic Sine

4 1 1
2 [cos(z1/4) + cosh(z1/4)]

1 k ≥ 2 z1−k(ez −
∑k−2

r=0
zr

r! )

ϕk−1(z) =
∑∞

r=0
zr

(r+k−1)!
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The Mittag-Leffler Function: other occurrences
Another use of it is in the case E1,2(z) = ψ1(z) for computing the non-backtracking
exponential generating function for simple graphs (Arrigo et al. 2018) is:

∞∑
r=0

pr (A)
r ! =

[
I 0

]
ψ1(Y )

[
A

A2 − D

]
+ I,

where pr (A) is a matrix whose entries represent the number of non-backtracking walks of
length r between any two given nodes

Backtracking walk
A walk is backtracking if it contains at least one pair
of successive edeges of the form i 7→ j, j 7→ i . We say
that is non-backtracking otherwise.
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The Mittag-Leffler Function: other occurrences

Another use of it is in the case E1,2(z) = ψ1(z) for computing the non-backtracking
exponential generating function for simple graphs (Arrigo et al. 2018) is:

∞∑
r=0

pr (A)
r ! =

[
I 0

]
ψ1(Y )

[
A

A2 − D

]
+ I,

where pr (A) is a matrix whose entries represent the number of non-backtracking walks of
length r between any two given nodes D = diag(A), and Y is the first companion
linearization of the matrix polynomial (D − I) − Aλ+ Iλ2:

Y =

[
0 I

I − D A

]
.
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The Mittag-Leffler Function: other occurrences
To compute centrality and communicability indices for directed networks, if A is the
adjacency matrix of a directed graph, then

A =

[
O A
AT O

] ⇒ exp(A) =

[
cosh(

√
AAT ) A(

√
AT A)† sinh(

√
AT A)

sinh(
√

AT A)(
√

AT A)†AT cosh(
√

AT A))

]

Centrality and communicability
indices for directed networks defined
by exploiting the representation of
such networks as bipartite graphs;
details in (Benzi, Estrada, and
Klymko 2013).
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LIGHTBULB Defining Mittag-Leffler based centralities

For each choice of α,β > 0 we want to
define Walking centralities based on

Eα,β(z) =
∞∑

r=0
cr (α,β)zr

=

∞∑
r=0

zr

Γ(αr + β) ,

The idea of a Walking centrality relies on the fact
that walks of longer lengths are less

important, but c(r) := Γ(αr + 1) is not
monotonic for certain values of α ∈ (0, 1)! 0 1 2 3
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Hammer Enforcing monotonicity

Lemma (Arrigo, D.)
Suppose that α ∈ (0, 1). The coefficients c̃r (α, γ) = γ

rcr (α) defining the power series for
the entire function Ẽα(z) = Eα(γz) are monotonically decreasing as a function of
r = 0, 1, 2, . . . for all 0 < γ < Γ(α+ 1).

Proof. For each α ∈ (0, 1) we want to determine conditions on γ = γ(α) that imply that

c̃r (α, γ) ≥ c̃r+1(α, γ) for all r ∈ N

From the definition of c̃r (α, γ) we have that the above inequality is equivalent to verifying

γ ≤ Γ(αr + α+ 1)
Γ(αr + 1) , for all r ≥ 0

since γ > 0 and Γ(x) > 0 for all x ≥ 0.
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Suppose that α ∈ (0, 1). The coefficients c̃r (α, γ) = γ

rcr (α) defining the power series for
the entire function Ẽα(z) = Eα(γz) are monotonically decreasing as a function of
r = 0, 1, 2, . . . for all 0 < γ < Γ(α+ 1).

Proof. Since Hx , the Harmonic number for x ∈ R, is an increasing function of x , α > 0
by hypothesis, and Γ(x) > 0 for all x ≥ 0, it follows that

d
dx

(
Γ(αx + α+ 1)
Γ(αx + 1)

)
=
α
(
Hα(x+1) − Hαx

)
Γ(αx + α+ 1)

Γ(αx + 1) ≥ 0,

and thus the minimum of Γ(αx+α+1)
Γ(αx+1) is achieved at x = 0.
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Hammer Enforcing monotonicity
Lemma (Arrigo, D.)
Suppose that α ∈ (0, 1). The coefficients c̃r (α, γ) = γ

rcr (α) defining the power series for
the entire function Ẽα(z) = Eα(γz) are monotonically decreasing as a function of
r = 0, 1, 2, . . . for all 0 < γ < Γ(α+ 1).

Proof. Since Hx , the Harmonic number for x ∈ R, is an increasing function of x , α > 0
by hypothesis, and Γ(x) > 0 for all x ≥ 0, it follows that

d
dx

(
Γ(αx + α+ 1)
Γ(αx + 1)

)
=
α
(
Hα(x+1) − Hαx

)
Γ(αx + α+ 1)

Γ(αx + 1) ≥ 0,

and thus the minimum of Γ(αx+α+1)
Γ(αx+1) is achieved at x = 0.

Luggage-Cart Take-home message
Mittag–Leffler functions with α ∈ (0, 1) can be employed since they have a power series expansion
that can be interpreted in terms of walks; however, care should be taken since to enforce monotonic
behavior of the coefficients. 10 / 37



EYE A matter of magnitude

Adjacency matrices of simple graphs have positive and negative eigenvalues (tr(A) = 0)!

Newmann/Dolphins

0 20 40 60
−4

0

5

8

i

λ
i

E0.4,1(ρ(A)) = E0.4,1(7.1936 . . .) ≈ 1060
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EYE A matter of magnitude
We know asymptotic expansions for the ML function for θ ∈ (πα2 ,min(π, απ)) and any
p ∈ N:

Proposition (Gorenflo et al. 2014, Proposition 3.6)
Let 0 < α < 2 and θ ∈ (πα2 ,min(π, απ)). Then we have the following asymptotics for the
Mittag–Leffler function for any p ∈ N

Eα(z) =
1
α

ez
1
α −

p∑
k=1

z−k

Γ(1 − αk) + O(|z|−1−p), |z| → +∞, |arg(z)| ≤ θ,

Eα(z) = −

p∑
k=1

z−k

Γ(1 − αk) + O(|z|−1−p), |z| → +∞, θ ≤ |arg(z)| ≤ π.

We need to set the γ to scale the largest modulus eigenvalue in the computable range!
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Hammer A matter of magnitude
Lemma (Arrigo, D.)
Suppose that α ∈ (0, 1], and A ∈ Rn×n is symmetric. Then for all

γ ≤ 1
λmax(A)

(
K̄ log(10) + log(α)

)α
it holds that maxi ,j(|Eα(γA)|)i ,j ≤ N̄ where N̄ ≈ 10K̄ for a given K̄ ∈ N is the largest
representable number on a given machine.

Proof. We have λmax(γA) = γλmax(A) ∈ R, since A is symmetric; then empolying the
asymptotic expansion, and using the fact that arg(z) = 0 for z ∈ R, for p = 0 we find

1
α

e(γλmax(A))
1
α ≤ N̄ ≈ 10K̄ ,

which immediately yields the conclusion.
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Well-posedness and machine representability

Subgraph and total communicability
centralities
Let A be the adjacency matrix of a simple
graph G = (V ,E). Let α ∈ [0, 1] and let
0 < γ ≤ µ(α). Then, for all nodes
i ∈ V = {1, 2, . . . , n} we define:

• ML-subgraph centrality:

si(Ẽα) = Eα(γA)ii

• ML-total communicability:

ti(Ẽα) = (Eα(γA)1)i

Proposition (Arrigo, D.)
Let A be the adjacency matrix of an undirected
network with at least one edge and let ρ(A) > 0
be its spectral radius. Moreover, let N̄ ≈ 10K̄ be
the largest representable number on a given
machine. Then the Mittag–Leffler function
Ẽα(z) = Eα(γz) is representable in the machine,
and admits a series expansion with decreasing
coefficients when α ∈ (0, 1) and 0 < γ ≤ µ(α)

µ(α) := min


Γ(α+ 1),(

K̄ log(10) + log(α)
)α

ρ(A)
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LIGHTBULB The main idea behind ML centralities
Theorem (Benzi and Klymko 2015)
Let G = (V ,E) be a connected, undirected, unweighted
network with primitive A, and f an analytic function with
strictly positive series expansion defined on the spectrum
of A.

• For γ→ 0+, the rankings produced by both s(γ) and
t(γ) converge to those produced by the vector of
degree centralities,

• If in addition f is analytic on the whole real axis or is
such that,∞∑

r=0
cr R r

f = lim
γ→1−

∞∑
r=0

cr tr R t
f = +∞,

then, for t → Rf /ρ(A), the rankings produced by both
s(γ) and t(γ) converge to those produced by the
eigenvector centrality.

LIGHTBULB We build measures that “interpolate
asymptotically” between four other

“central” centralities measures: Degree,
Eigenvector, Exponential and Resolvent

walk centralities.
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Calculator ML matrix-function vector products
The tasks of computing ML-subgraph centrality and ML-total communicability relies on the
task of computing the ML function “with matrix argument”, which is a delicate task
File We can use, e.g., the techniques and the code developed in (Garrappa and Popolizio

2018),
Hand-point-right then for “large networks” we adopt a polynomial Krylov subspace projection technique

(Moret and Novati 2011) to handle the computations
• For V a basis of Km(A, 1) = span{v,Av, . . . ,Am−1v}

t(γ) ≈ VEα(γV T AV )V T 1,

• For V a basis of Km(A, ei) = span{ei ,Aei , . . . ,Am−1ei },

si(γ) ≈ eT
i VEα(γV T AV )V T ei .
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task of computing the ML function “with matrix argument”, which is a delicate task
File We can use, e.g., the techniques and the code developed in (Garrappa and Popolizio

2018),
Hand-point-right then for “large networks” we adopt a polynomial Krylov subspace projection technique

(Moret and Novati 2011) to handle the computations
• For V a basis of Km(A, ei) = span{ei ,Aei , . . . ,Am−1ei },

si(γ) ≈ eT
i VEα(γV T AV )V T ei .

Subgraph centrality is computationally quite expensive to derive for all nodes but
approximation techniques for few top ranked nodes are available (Fenu et al. 2013).
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Numerical Examples

We compare subgraph centrality with eigenvector centrality and degree centrality as we
let α and γ vary on a real-world network
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Kendall correlation coefficient between the ranking induced by total communicability vectors s(Ẽα)
and by (a) degree centrality or (b) eigenvector centrality, the red line displays the value of µ.
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Numerical Examples

We compare total comunicability with eigenvector centrality and degree centrality as we
let α and γ vary on a real-world network
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and by (a) degree centrality or (b) eigenvector centrality, the red line displays the value of µ.
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Numerical Examples

We compare with eigenvector centrality and degree centrality as we let α and γ vary
on a real-world network
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Numerical Examples

We compare with eigenvector centrality and degree centrality as we let α and γ vary
on a real-world network
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Time-fractional dynamical models on networks

There are several generalizations of ODE-based models on networks:
File Time (and space) generalized diffusion equation on networks (Diaz-Diaz and Estrada

2022)
CADα

[0,t]f (t) = −Lf (t), f (0) = f0,

for L the graph Laplacian, i.e., L = diag(A1) −A, A adjacency matrix of an undirected
graph,

File Decision-making models (West, Turalska, and Grigolini 2015),
File Epidemics modeling with fractional derivative in time on newtorks, e.g., (Huo and

Zhao 2016).

There are many more models that involve using fractional derivatives with respect to
the “space variables”, we postpone that discussion after having treated the issue in
general for the continuous case.
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Other types of fractional derivatives w.r.t. time
Another type of FDE w.r.t. that is gaining traction and interest, they are called fractional
derivatives of distributed order, i.e.,∫m

0
a(r)CADr

[0,t]u(t)dr = f (t), m > 0,

and more generally ∫m

0
a(r)F

(
CADr

[0,t]u(t)
)

dr = f (t, u(t)), m > 0.

Applications are, e.g.,
File Dielectric induction and diffusion (Caputo 2001),
File Kinetic models (Sokolov, Chechkin, and Klafter 2004),
File Distributed-order oscillators (Atanackovic, Budincevic, and Pilipovic 2005).
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Distributed order FDEs

We can connect them with something we have already seen, consider the multi-term
differential equation:

k∑
i=1
γi CADri

[0,t]u(t) = f (t, u(t)), 0 < r1 < r2 < . . . < rk

u(`)(0) = ϕ`, ` = 0, . . . ,m − 1, m =

⌈
max

i=1,...,k
ri

⌉
.

LIGHTBULB One way of thinking about the distributed-order equation is therefore as the limiting
case of with a very large number of terms and where the coefficients γi take the
values from the function a.

Question-Circle What can we say about the solutions?
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Distributed order FDEs

For the linear case ∫m

0
a(r)CADr

[0,t]u(t)dr = f (t), m > 0, (LDFODE)

we can prove existence under some assumptions:
(A1) m ∈ N,
(A2) a is absolutely integrable on [0,m] with

∫m
0 a(r)sr dr 6= 0 for <(s) > 0,

(A3) f ∈ L1([0,∞)],
(A4) u is such that CADr

[0,∞)u(t) for t ∈ [0,+∞) for r ∈ [0,m].
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(A4) u is such that CADr

[0,∞)u(t) for t ∈ [0,+∞) for r ∈ [0,m].
We apply Laplace transform, then use (A4) and exchange the transform and the integral.
After rearranging and inverting using (A1)–(A3)

u(t) = u(0)+
(

f ∗ L−1

{
1∫m

0 a(z)(s)z dz

})
(t)+

m−1∑
j=1

u(j)(0)L−1

{∫m
j a(r)sr−j−1 dr∫m

0 sra(r)dr

}
(t).
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Distributed order FDEs

For the linear case ∫m

0
a(r)CADr

[0,t]u(t)dr = f (t), m > 0, (LDFODE)

we can prove existence under some assumptions:
(A1) m ∈ N,
(A2) a is absolutely integrable on [0,m] with

∫m
0 a(r)sr dr 6= 0 for <(s) > 0,

(A3) f ∈ L1([0,∞)],
(A4) u is such that CADr

[0,∞)u(t) for t ∈ [0,+∞) for r ∈ [0,m].

Theorem (Diethelm and Ford 2009, Theorem 3.1)
Under assumptions (A1)–(A4) on a, f and u, (LDFODE) has a unique solution.
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Properties of the (LDFODE) solution
Proposition (Diethelm and Ford 2009)

1. Under assumptions (A1)–(A4) and for fixed T > 0 the solution to (LDFODE) satisfies
u(m)(t) is bounded and measurable in [0,T ].

2. Let u ∈ Cp([O,T ]) with some p ∈ N and T > 0. For every fixed t ∈ [0,T ], consider
CADr

[0,t]u(t) = z(r) as a function of r . Then,
• At the integer argument j = 1, 2, . . . , p − 1 the function z has a jump

discontinuity that can be described as

lim
r→j+

z(r) − lim
r→j−

z(r) = −u(j)(0).

• There exist a continuous transition iff u(j)(0) = 0.

Question-Circle How can we discretize and solve this type of equations?
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Discretization strategies
1. We discretize the integral term in the distributed-order equation

COG Fix φ(z) = a(z)CADz
[0,t]u(t) and use a quadrature formula

∫m

0
φ(z)dz ≈

n∑
j=0

wjφ(zj)

Exclamation-Triangle Every integer value in the interval [0,m] is a zj , in general every zj ∈ Q.

2. We solve the multi-term equation

COG With the choice we have made we now have a multiterm equation of the form
n∑

j=0
wja(zj)CADzj

[0,t]u(t) = f (t), z1 < z2 < . . . < zn,

COG We apply the reformulation as a system of equations of order q being the greatest
common divisor of the derivative orders.

22 / 37



Discretization strategies
1. We discretize the integral term in the distributed-order equation

COG Fix φ(z) = a(z)CADz
[0,t]u(t) and use a quadrature formula

∫m

0
φ(z)dz ≈

n∑
j=0

wjφ(zj)

Exclamation-Triangle Every integer value in the interval [0,m] is a zj , in general every zj ∈ Q.
2. We solve the multi-term equation

COG With the choice we have made we now have a multiterm equation of the form
n∑

j=0
wja(zj)CADzj

[0,t]u(t) = f (t), z1 < z2 < . . . < zn,

COG We apply the reformulation as a system of equations of order q being the greatest
common divisor of the derivative orders.

22 / 37



Discretization strategies
1. We discretize the integral term in the distributed-order equation

COG Fix φ(z) = a(z)CADz
[0,t]u(t) and use a quadrature formula

∫m

0
φ(z)dz ≈

n∑
j=0

wjφ(zj)

Exclamation-Triangle Every integer value in the interval [0,m] is a zj , in general every zj ∈ Q.
2. We solve the multi-term equation

COG With the choice we have made we now have a multiterm equation of the form
n∑

j=0
wja(zj)CADzj

[0,t]u(t) = f (t), z1 < z2 < . . . < zn,

COG We apply the reformulation as a system of equations of order q being the greatest
common divisor of the derivative orders.

22 / 37



Discretization strategies
1. We discretize the integral term in the distributed-order equation

COG Fix φ(z) = a(z)CADz
[0,t]u(t) and use a quadrature formula

∫m

0
φ(z)dz ≈

n∑
j=0

wjφ(zj)

Exclamation-Triangle Every integer value in the interval [0,m] is a zj , in general every zj ∈ Q.
2. We solve the multi-term equation

COG With the choice we have made we now have a multiterm equation of the form
n∑

j=0
wja(zj)CADzj

[0,t]u(t) = f (t), z1 < z2 < . . . < zn,

COG We apply the reformulation as a system of equations of order q being the greatest
common divisor of the derivative orders.

22 / 37



Error analysis
To select the quadrature formula we have to take into account the jumps in the
integrand∫m

0
a(r)CADr

[0,t]u(t)dr =

m−1∑
i=0

∫ i+1

i
a(r)CADr

[0,t]u(t)dr =

m−1∑
i=0

ni∑
j=0

wija(zij)CADzij
[0,t]u(t)

with
COG zi0 = i , zi ,ni = i + 1, ∀i ,

COG j = 0, j = ni the expressions CADzij
[0,t]u(t) must be interpreted as

lim
s→z+i0

CADs
[0,t]u(t) = lim

s→i+
CADs

[0,t]u(t),

lim
s→z−ini

CADs
[0,t]u(t) = lim

s→(i+1)−
CADs

[0,t]u(t).

COG The sequence {zj } = {z0 = z00, z1 = z01, . . . , zn0 = z0n0 = z10 = 1, . . .}.
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Error analysis
To proceed further we also need to require further regularity on the a function.
We assume

(Q1) We use a convergent quadrature rule of order p > 0,
(Q2) For all i , the weights of the quadrature rule are bounded by

C1n−1
i ≤ min

j=0,1,...,ni
|wij | ≤ max

j=0,1,...,ni
|wij | ≤ C2n−1

i ,

with some constants C1 and C2.
(Q3) The function a is p-times continuously differentiable on [0,m].

Proposition (Diethelm and Ford 2009)
If ũ is the solution of (LDFODE) obtained using a quadrature formula satistying
(Q1)–(Q4), then

u(t) = ũ(t) + O(max
i

{n−p
i }), for ni → +∞ ∀ i .
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Error analysis

Thus, if we assume that we apply a numerical method for the multi-term equation which
has order of convergence O(τq) we have then

Theorem (Diethelm and Ford 2009, Theorem 4.1)
Under the conditions (A1)–(A4), (Q1)–(Q3), the overall error of the proposed algorithm
for (LDFODE) satisfies for jτ ∈ [0,T ]:

max{|uj −u(jτ)| : j ≥ 0, jτ ≤ T } = O(τq)+O(max
i

{n−p
i }) for ni → +∞ ∀ i , τ→ 0.

WRENCH To reduce the number of terms and the regularity requirements on a one could use a
Gauss-type quadrature built explicitely for the given function a(z) (that now needs to
be only continuous) (Durastante 2019).
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Variable order FDEs
Consider a function α : [0,T ] ⊂ R+ → (0, 1) we can think of generalizing the
Riemann-Liouville integral as

Iα(t)[0,t] =
1

Γ(α(t))

∫ t

0
(t − τ)α(t)−1f (τ)dτ,

possibly coupled with the Riemann-Liouville variable-order derivative

RLDα(t)
[0,t] =

1
Γ(1 − α(t))

d
dt

∫ t

0
(t − τ)−α(t)f (τ)dτ,

Exclamation-Triangle The characterization of fractional calculus based on these operators is rather
problematic since RLDα(t)

[0,t] is not a left-inverse of Iα(t)[0,t] ; see (Samko 1995).
Some of this generalizations have found use in physical modeling, but they are problematic
from a rigorous point of view.
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Variable order FDEs a Laplace domain version

Among the first ideas in developing a time-variable time-fractional calculus there are three
seminal works by Giambattista Scarpi
File G. Scarpi, Sopra il moto laminare di liquidi a viscosist variabile nel tempo. Atti

Accademia delle Scienze, Isitituto di Bologna, Rendiconti (Ser XII), 9 (1972), pp.
54-68,

File G. Scarpi, Sulla possibilità di un modello reologico intermedio di tipo evolutivo. Atti
Accad Naz Lincei Rend Cl Sci Fis Mat Nat (8), 52 (1972), pp. 912-917;

File G. Scarpi, Sui modelli reologici intermedi per liquidi viscoelastici. Atti Accad Sci
Torino: Cl Sci Fis Mat Natur, 107 (1973), pp. 239-243.

Recently, this approach has been taken again into account to overcome the limitation given
by the naive replacement of the α(t) function in the kernel of Fractional Integrals and
Derivatives; (Garrappa, Giusti, and Mainardi 2021).
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Scarpi’s Derivative (Garrappa, Giusti, and Mainardi 2021)
To introduce this new version we need to use again the Laplace transform of the Caputo
derivative and Riemann-Liouville integrals

L{CADα
[0,t]f (t)}(s) = sαF (s) − sα−1f (0), L{Iα[0,t]f (t)}(s) =

1
sαF (s),

and consider a locally integrable function α(t) : [0,T ] → (0, 1) .

LIGHTBULB Scarpi’s idea
If α(t) ≡ α, t > 0, Lα(s) = A(s) = α/s, then

L
{

t−α
Γ(1 − α)

}
(s) = ssA(s)−1 = sα−1 L

{
tα−1

Γ(α)

}
(s) = s−sA(s) =

1
sα .

LIGHTBULB Apply the same relation to any α(t) with A(s) = L{α(t), s} =
∫+∞

0 e−stα(t)dt.
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Scarpi’s Derivative (Garrappa, Giusti, and Mainardi 2021)
Scarpi Fractional Derivative
Let α(t) : [0,T ] → (0, 1) be a locally integrable function with Laplace transform A(s), and
let f ∈ L1([0,T ]). We define the Scarpi fractional derivative SDα(t)

[0,t] of variable order α(t)
as

SDα(t)
[0,t] f (t) =

d
dt

∫ t

0
φα(t − τ)f (τ)dτ− φα(t)f (0), t ∈ (0,T ],

where the kernel function φa(t) is the inverse Laplace transform

φa(t) = L−1 {Φα(s)} (t), Φα(s) = ssA(s)−1.

Proposition (Garrappa, Giusti, and Mainardi 2021, Proposition 2.1)
Let α(t) : [0,T ] → (0, 1) be a locally integrable function with Laplace transform A(s), let
φα(t) be the inverse Laplace transform of Φα(s) = ssA(s)−1, if f ∈ A([0,T ]) then

SDα(t)
[0,t] f (t) =

∫ t

0
φα(t − τ)f ′(τ)dτ, t ∈ [0,T ].
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Scarpi’s Integral (Garrappa, Giusti, and Mainardi 2021)
To “fix” the behavior of the naive definition we need also the related formulation of the
fractional integral, that is having an operator for which

SDα(t)
[0,t] S Iα(t)[0,t] f (t) = f (t) Iα(t)[0,t] SDα(t)

[0,t] f (t) = f (t) − f (0),

Going there-and-back the Laplace domain can be rewritten as the Sonine condition∫ t

0
φα(t − τ)ψα(τ) = 1, t > 0.

Scarpi Fractional Integral
Let α : [0,T ] → (0, 1) be a locally integrable function with Laplace transform A(s), let
f ∈ L1([0,T ]) we define the Scarpi fractional integral as

S Iα(t)[0,t] f (t) =
∫ t

0
ψα(t − τ)f (τ)dτ,

with ψα(t) = L−1 {Ψα(s)} (t) for Ψα(s) = s−sA(s).
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Finding good α(t) (Garrappa, Giusti, and Mainardi 2021)
In principle not all transition functions α(t) will allow for a suitable definition of a pair of
Scarpi’s operators.

Necessary condition A necessary requirement to ensure that φ(t) and ψ(t) form a Sonine
pair is for them to have an integrable singularity at the origin. two functions

Reality we also want our Kernels to be real, but this follows from having a real α(t)
and hence A(s) = A(s),

Kernels are LT a necessary conditions to have Φα(s) and Ψα(s) Laplace transform of two
functions φα(t) and ψα(t) is to require

lim
t→0+

α(t) = α ∈ (0, 1)

and then the initial value Theorem for the Laplace transform ensures
that {Φα, Ψα} → 0 for s → +∞, and thus they are the LT transform of two
functions.⇒ Any function α(t) with LT A(s) is suitable provided tha Φα(s) and Ψα(s) are
LTs of some functions.
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Solving FDEs with Scarpi’s Derivative
Consider the case {

SDα(t)
[0,t] y(t) = −λy(t),

y(0) = y0
R 3 λ > 0

1. We apply Laplace transform on both sides
ssA(s)Y (s) − ssA(s)−1y0 = −λY (s)

where Y (s) = L{y(t)}(s)
2. Solve for Y (s)

Y (s) = y0
s(1 + λΨα(s))

,

3. Numerically invert the Laplace transform with one of the algorithms we have seen
when discussing the computation of the Mittag-Leffler function, e.g., parabolic contour
and Trapezoidal quadrature

y(t) = L−1{Y (s)}(t).
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An example
Consider the function

α(t) = α2 + (α1 − α2)e−ct

together with its Laplace transform

A(s) =
∫∞

0
e−stα(t)dt =

α2c + α1s
s(c + s)

alpha1 = 0.6;
alpha2 = 0.8;
c = 2.0;
a = @(t) alpha2 + (alpha1-alpha2).*exp(-c*t);
A = @(s) (alpha2*c + alpha1*s)./(s.*(c+s));
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together with its Laplace transform

A(s) =
∫∞

0
e−stα(t)dt =

α2c + α1s
s(c + s)

We can easily visualize also the Ψα(s) and Φα(s)
kernels.

plot(t,t.^(t.*A(t)-1),'-',t,t.^(-t.*A(t)),'-
','LineWidth',2)↪→

legend('\Phi_\alpha(s)','\Psi_\alpha(s)')
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An example: inverting the Laplace transform

We can then solve{
SDα(t)

[0,t] y(t) = −0.5y(t),
y(0) = 1

by first setting the various quantities:

y0 = 1;
lambda = 0.5;
Psi = @(s) s.^(-s.*A(s));
F = @(s) y0./(s.*(1 + lambda*Psi(s)));
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An example: inverting the Laplace transform
We can then solve{

SDα(t)
[0,t] y(t) = −0.5y(t),

y(0) = 1

Then inverting the Laplace transform on a parabolic
contour

L = -log(eps); N = ceil(4*L/3/pi);
h = 2*pi/L + L/2/pi/N^2; p = L^3/4/pi^2/N^2;
u = (0:N)*h; f = zeros(size(t));
for n = 1:length(t)
mu = p/t(n);
z = mu*(u*1i + 1).^2; z1 = 2*mu*(1i-u);
G = exp(z.*t(n)).*F(z).*z1;
f(n) = (imag(G(1))/2+sum(imag(G(2:N+1))))*h/pi;

end
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An example: inverting the Laplace transform
We can then solve{

SDα(t)
[0,t] y(t) = −0.5y(t),

y(0) = 1

And we can comapre the solution with the one obtained
for the two fixed orders, observing that indeed we transition
from one behavior to the other:

f_fun = @(t,y) -lambda*y;
J_fun = @(t,y) -lambda;
t0 = 0; T = 4; h = 1e-2;
alpha = alpha1;
[t1, y1] = fde_pi2_im(alpha,f_fun,J_fun,t0,T,y0,h);
alpha = alpha2;
[t2, y2] = fde_pi2_im(alpha,f_fun,J_fun,t0,T,y0,h);
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BINOCULARS Possible research directions

BINOCULARS Scarpi FDEs with more difficult dynamics, e.g., the vector case with a
non-diagonalizable matrix, non-linear FDEs, etc.

BINOCULARS Algorithms for the automatic selection of contours and parameters given the FDE.
BINOCULARS In the complex-network case Diaz-Diaz and Estrada 2022 explored the case of

standard time-fractional evolutions, what about distributed or variable order? Are they
reasonable from a modeling point of view? Can we efficiently use them?

BINOCULARS All-at-once formulations for the other FDEs?
BINOCULARS General poles for Rational Krylov methods for the computation of Mittag-Leffler

matrix-function times vector algorithms?
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Conclusions
In this first part of the course we have dealt with
COG Defining and analyzing properties of Riemann-Liouville integral and derivatives,
COG Defining and analyzing properties of Caputo integral and derivatives,
COG Existence, uniqueness and regularity of FDEs with Caputo derivatives,
COG Explored the connection between time-fractional derivatives and CTRW,
COG FDEs with mulitple, distributed and variable orders.

For what concerns numerical methods we have seen
WRENCH Product Integral Rules and Fractional Linear Multistep Methods for integrating FDEs,
WRENCH An overview of some inversion techniques for the Laplace Transform,
WRENCH Computation of the Mittag-Leffler function and its derivative on scalar and matrix

arguments,
WRENCH Krylov methods for the computation of matrix functions.
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Programs for the (near) future
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