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LIX \We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,
@ Given a particle we can act either on the & jump length or on the @ waiting time.
The Continuous Time Random Walk model (CTRW):
@ Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf P (x, t)

+00
R A(x) :J WV(x,y)dt, jump length,

|

Jump length
A(x)dx produces the probability for a jump length in the interval (x, x + dx).

1/36



Fractional Diffusion Equation

Starting from the past...
IIX \We have seen in Lecture 5 that there is a connection between diffusion equations

and random walks,
@ Given a particle we can act either on the & jump length or on the @ waiting time.
The Continuous Time Random Walk model (CTRW):
@ Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ¥ (x, t)

+00
R Ax) :J WV(x,y)dt, jump length,
0

+00
O vt =J P(x, t) dx, waiting time,

—00

Waiting time

w(t)dt produces the probability for a waiting time in the interval (t,t + dt).
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Fractional Diffusion Equation

Starting from the past...
EOX \We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,
@ Given a particle we can act either on the ® jump length or on the @ waiting time.
The Continuous Time Random Walk model (CTRW):

@ Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ¥ (x, t)

+00

2 Ax) :J P(x,y)dt, jump length,
0
+00

O vt :J P(x, t) dx, waiting time,

® |f the jump length and waiting time are independent random variables then:

Y(x, 1) = w(t)A(x).
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Characterization of CTRW

To categorise different CTRW one can look at the quantities

+00
T = J tw(t) dt, (Characteristic waiting time),
0
and
+00
32 :J x2A(x) dx (Jump length variance),

specifically, are they finite? Do they diverge?
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Characterization of CTRW

To categorise different CTRW one can look at the quantities

+0o0
T= J tw(t) dt, (Characteristic waiting time),
0

and
+00
y?2 :J x*A(x) dx (Jump length variance),
—o0
specifically, are they finite? Do they diverge?
The master (Langevin) equation for this process is then given by

+00 +00
nix,t) = J dx'J'0 dt'n(x’, t"hp(x —x', t —t') + 8(x)8(¢),

—00

Pdf of having arrived at position x at time t — 1(x, t) — having just arrived at x’ at time t’

—-1n(x’, t’) — with initial condition §(x).
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Characterization of CTRW

Then if we use

+o00 +o00

nlx g = | de | e e X £ — 1) + 55,
—00 0

we can write the pdf of being in x at time t as

t t
W (x, t) :J nix, t"HW(t —t'),dt, Y(t)=1 —J w(t')dt’,
0 0
where the latter is the cumulative probability assigned to the probability of no jump event
during the time interval t — t’.

Fact | - Ordinary Diffusion

If both T and Z2 are finite the long-time limit corresponds to Brownian motion, e.g.,
w(t) =t lexp(—t/x), T =, A(x) = (47162) 72 exp(—x*/402), £2 = 202, we recover the
standard diffusion equation.
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Characterization of CTRW

Then if we use

nx,t) = roo dx/jm dt'n(x's 1 (x — x', £ — ') + 5(x)5(8),

—00 0
we can write the pdf of being in x at time t as

W(x,t) = Ltn(x, tY(t—t'),dt, Y(t)=1— E w(t')dt’,

where the latter is the cumulative probability assigned to the probability of no jump event
during the time interval t — t’.

Fact Il - Subdifussion

The characteristic waiting time T = faroo tw(t) dt diverges, but the jump length

variance L2 = r_r:z x?A(x) dx is finite, we obtain a subdiffusive process. Particles make
long rests.
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Long jumps: Lévy Flights

What if we take a finite waiting time and a diverging jump length?
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R Lévy distribution for the jump length

A(k) = exp(—a"k[") ~ 1 — o*[kl",

Asymptotic
For x| > 0, 1 < p< 2 = A(x) ~ AyoHx|717H.

® In the Fourier-Laplace space we get

1

Wl = i
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Long jumps: Lévy Flights

What if we take a finite waiting time and a diverging jump length?
© Poissonian waiting time, Rmk: T is finite and so the process is Markovian!
R Lévy distribution for the jump length

A(k) = exp(—a"k[") ~ 1 — o*[k[",

Asymptotic
For [x| >0, 1<p<2= A(x) ~ AuU_H|X|_1_H-

® |n the Fourier-Laplace space we get

1
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o) = i
e then after a (double) inversion
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Long jumps: Lévy Flights

What if we take a finite waiting time and a diverging jump length?
© Poissonian waiting time, Rmk: T is finite and so the process is Markovian!
R Lévy distribution for the jump length

A(k) = exp(—a"k[") ~ 1 — o*[k[",

Asymptotic
For [x| >0, 1<p<2= A(x) ~ AuU_H|X|_1_H-

® |n the Fourier-Laplace space we get

1
W(k,u) =
o) = i
e then after a (double) inversion
oW L ot
H :KH D(FL_OO’X)W(X) t)) K:?
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Brownian jumps vs Lévy Flights
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A% Brownian motion

N = 7000;
x = cumsum(randn(N,1));
y = cumsum(randn(N,1));
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4% Levy distribution
N = 7000;

pd_levy = makedist('Stable','alpha',1.5,

—

'beta',0,'gam',1,

'delta',0);

x1 = cumsum(random(pd_levy,N,1));
yl = cumsum(random(pd_levy,N,1));

100
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The (Space) Fractional Diffusion Equations

We want to solve our problem in a domain of finite size, therefore we have to move the
lower and upper bounds of the Riemann-Liouville integral to a finite domain size and select
some boundary conditions.
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The (Space) Fractional Diffusion Equations

We want to solve our problem in a domain of finite size, therefore we have to move the
lower and upper bounds of the Riemann-Liouville integral to a finite domain size and select
some boundary conditions.

Absorbing boundary conditions (Dirichlet)

A common choice is given by: W(x;,t) = W(x,, T)=0

They can be justified in various way
B Variational formulation from a generalized Fickian law (Jin et al. 2015),
Bi Lyapunov inequality (Ferreira 2013).
o = GRLD“ W (x, 1)+ (1— G)RLD[“ yWix, t), 0 € [0,1],
W(o,t) = W( ,t) =0, (FDE;)
W(x,t) = Wy(x).
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Finite Difference Approaches to Riemann—Liouville

The first approach we want to discuss is finite differences, thus how can we discretize
the Riemann-Liouville operators?
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Finite Difference Approaches to Riemann—Liouville

The first approach we want to discuss is finite differences, thus how can we discretize
the Riemann-Liouville operators?

Back to the basics
1. First derivative
df f(x)—f(x—h)

= )

dx h—0 h

2. nth derivative

n n a0 .
P i 27 ang = S (M) (21 F(x—jh).
dxn h—0 h 0 J

j=

@ Let's use again our favourite trick and replace n € N with & € R!
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The Grunwald-Letnikov Fractional Derivative

The Griinwald—Letnikov Fractional Derivative (Griinwald : Letnikov

Given R > o > 0 define the Griinwald—Letnikov fractional derivative of a function f(x) as

Xf(x +o00 )
o4 0= (arm. (§) sy

Jj=0
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The Griinwald—Letnikov Fractional Derivative (Griinwald : Letnikov

Given R > o > 0 define the Griinwald—Letnikov fractional derivative of a function f(x) as

Lpor o A S (XN e o\  T(a+1)
D%f = lim 210, Af(x)—;)(j)( e, () = e

© For what functions f does it make sense?

© How is it related to the Riemann-Liouville (and henceforth to the Caputo) fractional
derivative?

@ If we can find an easy relation with the Riemann-Liouville derivative we can use it to
discretize by truncating A* to a given N.
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The Grunwald—Letnikov Fractional Derivative

Let us collect the ingredients we need.

+00
(1+2)*= Z <o.(>zj,

Jj=0

&a The binomial series

converges for any z € C with |z] <1 and any « > 0,

& The series
converges, since (1 + (—1))"‘ =0.

= If we take f to be bounded then ¢LD*f exists.

+00

< 400,
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The Grunwald—Letnikov Fractional Derivative

Let us take the Fourier transform of A%f(x)

+00
J e Thx Z <°‘> (—1)f(x — jh)dx =

=0 M

<°.°> (—1)/ J e ™ f(x — jh) dx
J

IMe LM

B We are using the uniform convergence of the series A*f(x),

© furthermore we are requiring that each term is integrable.
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The Grunwald—Letnikov Fractional Derivative

Let us take the Fourier transform of A%f(x)

+oo
Je—ikx Z <O(> (71)1)"()( —Jh) dx :(]_ — e—ikh)“f\(k)-

=0 M

B We are using the uniform convergence of the series A*f(x),
© furthermore we are requiring that each term is integrable.
If k £ 0 then the Fourier transform of the GL derivative operator is given by

_eikhy R
h%(ikh)® <1I:h> (k) = (ik)*F(k), for h — 0.

The same holds by direct computation for k = 0.
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The Grunwald—Letnikov Fractional Derivative

Let us take the Fourier transform of A%f(x)

+oo
Je—ikx Z <O(> (71)1)"()( —Jh) dx :(]_ — e—ikh)“f\(k)-

=0 M

B We are using the uniform convergence of the series A*f(x),
© furthermore we are requiring that each term is integrable.
If k £ 0 then the Fourier transform of the GL derivative operator is given by
1-— eiikh A A
i

The same holds by direct computation for k = 0.

= The Fourier transform converges pointwise to the same Fourier transform of the
Riemann-Liouville derivative (we are also using the continuity Theorem of Fourier

transform.)
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The Grunwald—Letnikov Fractional Derivative

What is the connection then?
1. Let us look better into the weights

@ 1% (“1T(x+1)
g = 1)j< )‘FU+1)F(oc—j+1)

J
(e —1) - (e —j+1)
N rG+1)
T - [ S R A
Distribute (=1 — = r(j n 1)
—al'(j — o)

TGN — )
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The Grunwald—Letnikov Fractional Derivative

What is the connection then?
1. Let us look better into the weights

(@ a il *) —al'(j — o)

o2 (5) =T ira e

2. Using T'(x+ 1) =xI(x) and T'(x + 1) ~ v2mxx*e™™ for x — 400
() —x  2r(j—oa—1)(j — a— 1Yo lem Ul

& M1 —«) V2mjjied

— jma—=1(j—a—1\" e ,
:F(l—oc) ; ; J ey J — +oo.

[

—1 —e—(at1)

11/36



The Grunwald—Letnikov Fractional Derivative

What is the connection then?
1. Let us look better into the weights

(@ & qyif*) _ —ol'(j —«)
o 2 (7)o

2. Using T'(x + 1) = xT'(x) and T'(x + 1) ~ v2mtxx*e * for x — 400

(o) X a1 :
A ~ — .
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(@ & qyif*) _ —ol'(j —«)
o 2 (7)o

2. Using T'(x + 1) = xT'(x) and T'(x + 1) ~ v2mtxx*e * for x — 400

(o) X a1 :
A ~ — .
& IN1-— oc)J J oo

3. Since gé“) = 1 we write the quotient

S0 s E e
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The Grunwald-Letnikov Fractional Derivative

What is the connection then?

3. Since g(g“) = 1 we write the quotient

« <
AAi(aX) = (M) [ F(x) + Y g™ F(x—jAx)
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The Grunwald—Letnikov Fractional Derivative

What is the connection then?
()

3. Since g; * = 1 we write the quotient
A%f(x) _ = .
o = (Ax)™ [ f(x) + Zgj((x)f(x — JAX)
j=1
4.y %5 w;=0. Then g™ <0 for all j > 1 and thus 3% g/ = —1. We define

bj(,"‘) — —WJ-(CX) for j > 1, so that

bj ~

o +o00
o—1 . Z .
m_] o for_j — +OO, < bJ = 1.
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The Grunwald—Letnikov Fractional Derivative

Then we take 0 < ax < 1

oc +o00
A =(Ax)“zl[f(x) — flx— jAx)lby
=
NZ ) —f(x— jAX)]r(l )UAX) “1Ax
+o00 o1
“L F3) = Flx = Yy Ly
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The Grunwald—Letnikov Fractional Derivative

Then we take 0 < ax < 1

x iy
A*f(x) =(Ax)"* Y [F(x) — f(x — jAx)]b;

Ax* =
NZ —f(x— JAX)]LUAX)%‘&AX
N1l—o)
~r°°[f( )~ Flx—y)) Sy lg
~], X X—y F1 o‘)y y
® Integrate by parts with v = f(x) — f(x — y)
1 +oo 1 +00 d
_— flix—y)ly *dy = —f(x—y)y *d
Fl— o) L (x—yly ®dy F1— o) L L=yl tdy
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The Grunwald—Letnikov Fractional Derivative

Then we take 0 < ax < 1

Ao‘f +oo .
AX(Z) =(Ax) _Zl[f(x) — flx—jAx)]b;
j=
o A
NZ ) —f(x— JAX)]mUAX) Ax
~ +Oo[f() Flx =y oy
NJO X)Xy F(l—oc)y Y
® Integrate by parts with u = f(x) — f(x — y)
D | Flx) = roo Flx—ylydy = — J*""df(x_y)y—«dy
(0,+00] r1l—a) Jo Yy Y Nl—«o) Jg dx
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The Grunwald—Letnikov Fractional Derivative

Then we take 0 < ax < 1

AYF +oo '
Axf) =(Ax)"* j;[f(x) — f(x — jAX)]b;
(04 e
~ Z — f X JAX)]mUAX) lAX

~+°°[f() Flx—y X yaig
NL ey lpg gy T

® [ntegrate by parts with v = f(x) — f(x — y)... and when you swap the integral and

the derivative

+o00
D§ )= | flx—y)y *dy.
0,000 = T~ o0) dx L (x—yly™%dy
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The Grunwald-Letnikov Fractional Derivative

Let us move everything to a fixed interval [a, b].

Grunwald-Letnikov revisited

Let « >0, f € C[*I([a, b)), a < x < b, then

A% f(x T
GLD[a,x}f(X) = lim hy ( ) — lim Z(_l)k<;’:) f(X—khN),

o o
N—-+oco hN N—+o0o hN o

with hy = (x —a)/N.
@ In the definition we have implicitly extended f (with an abuse of notation) in such a
way that
f if b
f:(—o0,bl = R, X b, I x € [a, bl,
0, if x € (—o0, a).
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Computing the coefficients

We can compute N + 1 gj(“)

coefficients in 3N + 1 flops by using the recurrence relation

a+1
g = (1) g e

O
v

o a=1.1

. o = = =bound
In a line of code a=15
104+ o - = =bound| |
v o v a=1.8
o - = =bound
v o

function [g] = gl(n,alpha)
/#GL Produces the N+1 Grunwald-Letntikov
— coefficients for a given alpha

g = cumprod([1, 1 - ((alpha+l) ./ 100
— (111))]),
end
108k
10
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A finite difference discretization

Before going to the two-sided case in (FDE;), let us start with the simpler case

ow ow

3= —v(x) 5 + d(X)RLD[%X]W-i- f(x,t), 1< a<2 vix),d(x)>0.
X ¥
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A finite difference discretization

Before going to the two-sided case in (FDE;), let us start with the simpler case

w0
or — x

1. Substitute the Riemann-Liouville derivative with the Griinwald—Letnikov one,

ow ow GL
EZ—V(X)&‘FO'(X) D["S’X]W—i-f(x,t),

+ d(x)RLD[%,X]W"‘ f(x,t), 1< a<2 vix),d(x)>0.
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A finite difference discretization

Before going to the two-sided case in (FDE;), let us start with the simpler case

0 0
a—V: = —v(x)a—‘;v + d(x)RLD[%’X}W + f(x, t), 1< a<2 vix),d(x)>0.

1. Substitute the Riemann-Liouville derivative with the Griinwald—Letnikov one,

ow ow GL
E:—V(X)&‘i‘d(X) D["S’X]W—i-f(x,t),

2. Choose N € N at which to truncate the series expansions

aW,' Wi — W1 d,' ! k[ &
=—Vi—/— + — —1 ik + fi
ot " hy +h%;)( ) <k>W k+ T
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A finite difference discretization

Before going to the two-sided case in (FDE;), let us start with the simpler case

0 0
a—V: = —v(x)a—‘;v + d(x)RLD[%’X}W + f(x, t), 1< a<2 vix),d(x)>0.

1. Substitute the Riemann-Liouville derivative with the Griinwald—Letnikov one,

ow ow GL
E:—V(X)&‘i‘d(X) D["S’X]W—i-f(x,t),

2. Choose N € N at which to truncate the series expansions

aW,' Wi — W1 d,' ! k[ &
=—Vi—/— + — —1 ik + fi
ot " hy +h%;)( ) <k>W k+ T

3. Now we need to select a scheme for discretizing it in time: explicit? implicit?
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A finite difference discretization: explicit Euler

Let us select explicit Euler

w —wp w!—w', d i o f o
i — . — M -1
At T )1 <k>
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A finite difference discretization: explicit Euler

Let us select explicit Euler

n+1 n n
W —w; w; —W_1 d; n n
i ! = —vV; 7 E kWi_k+f;. y
hiy k=

® For convenience we call g, = (_1)k(z)’
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A finite difference discretization: explicit Euler

Let us select explicit Euler

n n /

w! w d;
Win+1 =w— At Vi’hill +Ath7‘:‘ E ng,-"_k + £,
N N x—o

® For convenience we call g, = (—l)k(k),
® Rearrange everything to compute w;’
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A finite difference discretization: explicit Euler

Let us select explicit Euler

At At v 104
1
Win+ :<1th,-+h?\(Id,-> W,-”+<hl'v had)Atw

® For convenience we call g, = (_1)1((?)’

® Rearrange everything to compute W,-"H, and using that gp =1, g = —

ng k+f At
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A finite difference discretization: explicit Euler

Let us select explicit Euler

At At v, [od
1
wt :<1h,\,vi+h,°\‘,di> W,-"+<hllv had)AtW

® For convenience we call g, = (—l)k(‘,’(‘),
® Rearrange everything to compute W,-"H, and using that gp =1, g = —
® |s this stable? Do we have to put a restriction on the choice of hy and At?

ngwl Kkt 1
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A finite difference discretization: explicit Euler

Let us select explicit Euler

At At v, [od
1
wt :<1th,'+h?\(Id,-> W,-"+<hllv had)AtW

For convenience we call g = (—l)k(‘,’(‘),

: n+1 : _ _
Rearrange everything to compute w;""", and using that go =1, g1 = —
Is this stable? Do we have to put a restriction on the choice of hy and At?
Suppose that w? is affected by an error, i.e., W? = w? + €9, we can then look at the

propagation of the error,

ngwl Kkt 1

17/36



A finite difference discretization: explicit Euler

Let us select explicit Euler

At At o« dAt &
Wi = <1 it h?\‘/di> W + <V' - Nd;> Atwfy+ == ) gewfy + AL,

h
N y=2

For convenience we call g = (—l)k(‘,’(‘),
: n+1 : _ _
Rearrange everything to compute w;""", and using that go =1, g1 = —«
Is this stable? Do we have to put a restriction on the choice of hy and At?
Suppose that w? is affected by an error, i.e., W? = w? + €9, we can then look at the
propagation of the error,

We call u; =1 —At/nyv; + Af/hﬁd,’
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A finite difference discretization: explicit Euler

Let us select explicit Euler

Vi o4 d;At i
Wil = FLiV/Di0 + <’ - di) AtW,'n_l + ;)LX ngW,'n_k + f’."At’
N N N =2

For convenience we call g = (—l)k(‘,’(‘),
: n+1 : _ _
Rearrange everything to compute w;""", and using that go =1, g1 = —«
Is this stable? Do we have to put a restriction on the choice of hy and At?
Suppose that w? is affected by an error, i.e., W? = w? + €9, we can then look at the
propagation of the error,

We call u; =1 —At/nyv; + Af/hﬁd,’
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A finite difference discretization: explicit Euler

Let us select eXpIiCit Euler
1 0 1
Wi = K€} + Ciy

® For convenience we call gx = (—1)/((7:),

Rearrange everything to compute W,-"H, and using that go =1, g1 = —«

Is this stable? Do we have to put a restriction on the choice of hy and At?

Suppose that w? is affected by an error, i.e., W2 = w? + €9, we can then look at the
propagation of the error,

We call pj =1 — At/nyv; + At/ned; and get the expression for the new error.
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A finite difference discretization: explicit Euler

Let us select eXpIiCit Euler
1 0 1
Wi = K€} + Ciy

® For convenience we call gx = (—1)/((7:),

Rearrange everything to compute W,-"H, and using that go =1, g1 = —«

Is this stable? Do we have to put a restriction on the choice of hy and At?

Suppose that w? is affected by an error, i.e., W2 = w? + €9, we can then look at the
propagation of the error,

® We call uj =1 —At/nyv; 4 At/hxd; and get the expression for the new error.
® By iterating the argument we found that the error at step n is amplified by the factor
u;, that is
ef = pfef.
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A finite difference discretization: explicit Euler

Let us select eXpIiCit Euler
1 0 1
Wi = K€} + Ciy

® For convenience we call g, = (—l)k(‘,’(‘),
® Rearrange everything to compute W,-"H, and using that gp =1, g1 = —«

® |s this stable? Do we have to put a restriction on the choice of hy and At?

® Suppose that w? is affected by an error, i.e., W° = w? + €7, we can then look at the
propagation of the error,

® We call uj =1 —At/nyv; 4 At/hxd; and get the expression for the new error.

® By iterating the argument we found that the error at step n is amplified by the factor
u;, that is

0

n__ .n
€ = Hi €.

® To have stability we need to require that exist hy such that ;| < 1 for all h < hy.
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A finite difference discretization: explicit Euler

At di\ Vo
= Al o1 e h
=l Vit gedi <l @ N><v,)

A The method is not stable as h is refined!
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A finite difference discretization: explicit Euler

At di\ Vo
i=1— Al o1 e h
K st e "’>(V,)

A The method is not stable as h is refined!

Theorem (Meerschaert and Tadjeran )

The explicit Euler solution method based on the Griinwald—Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.
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A finite difference discretization: implicit Euler

At di\ 7ot
i=1— Al o1 e h
v h h“ <1l & N>(VI)

A The method is not stable as h is refined!

Theorem (Meerschaert and Tadjeran )

The explicit Euler solution method based on the Griinwald—Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.

Theorem (Meerschaert and Tadjeran )

The implicit Euler solution method based on the Griinwald—Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.
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A finite difference discretization: ex/implicit Euler

At At di\ /e
i=1——vy 1 h
u ™ h“d< = N>(Vl)

A The method is not stable as h is refined!

Theorem (Meerschaert and Tadjeran )

The explicit Euler solution method based on the Griinwald—Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.

Theorem (Meerschaert and Tadjeran )
The implicit Euler solution method based on the Griinwald—Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.

B And now what? How do we fix it?
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The Shifted Griunwald—Letnikov Fractional Derivative

Shifted Griinwald—Letnikov Fractional Derivative

Let x>0, f € CI*I([a, b)), a< x < b, N> p >0 then

Ah ’(X) 1 N 0.4

GL 3 N . k

D, f = lim = lim — E —1 f — k—p h
[a,x] (X) N 1 ’?\C[ N 1 '% ( ) (Z) (X ( ) N))

with hy = (x — a)/N.
If we repeat the argument with the Fourier transform, we discover
F{C Digyaf )} (K) = (—ik)w(—ikh) F(k),

with

z

w(z) _ (1—e‘z)°‘ezp —1_ (p_ %) z+ O(|Z|2)
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The Shifted Griunwald—Letnikov Fractional Derivative

Shifted Griinwald—Letnikov Fractional Derivative

Let x>0, f € CI*I([a, b)), a< x < b, N> p >0 then

Ah L (X) 1 N 0.8

GL 3 N . k

D f = 1 = — — f — —

[a,x] (X) N m o th 3 E ( 1) ( ) (x (k p)hN),

with hy = (x —a)/N.
If we repeat the argument with the Fourier transform, we discover
S Diapa f(X)H(K) = (—ik)*F (k) + (ik)*(w (—ikh) — 1)F (k)
with
1—e2\* | x ) _
w(z) = e”zl—(p—§>z+ 0(1z2) = |w(—ix) — 1| < CxVx € R.

z
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The Shifted Griunwald—Letnikov Fractional Derivative

Shifted Griinwald—Letnikov Fractional Derivative

Let x>0, f € CI*I([a, b)), a< x < b, N> p >0 then

Ah L (X) 1 N 0.8

GL 3 N . k

D f = 1 = — — f — —

[a,x] (X) N m o th 3 E ( 1) ( ) (x (k p)hN),

with hy = (x —a)/N.
If we repeat the argument with the Fourier transform, we discover
SO Do F ()M K) = FLREDE oo g F3(K) + (K, )
with
1—e2\* | x ) _
w(z) = e”zl—(p—§>z+ 0(1z2) = |w(—ix) — 1| < CxVx € R.

z
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The Shifted Griunwald—Letnikov Fractional Derivative

Shifted Griinwald—Letnikov Fractional Derivative

Let x>0, f € CI*([a, b)), a< x < b, N> p >0 then

A ](X) 1 N 0.8
GL . hy 0 k
D, f = lim = lim — —1 f — (k — h
[a,x] (X) N 1 ’i.\(’ N 1 '% k§ 0( ) (Z) (X ( P) N))

with hy = (x — a)/N.
If we repeat the argument with the Fourier transform, we discover
SO Do F ()M K) = FIREDE oo g F3(K) + (K, h)

with
+00
b (ky )| < [kI¥CIRKIIF(K)| = | (hyx)| < ICh, | =J (1+ kD> YF (k)| dk < +oo.

—00
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The Shifted Griunwald—Letnikov Fractional Derivative

Shifted Griinwald—Letnikov Fractional Derivative
Let & > 0, fECM([a,b]), a<x<b N>p>0then

X f(x N
D) = im B = i LS 14 (F) o = piow),
N

N—+o00 - N—>I}rloo % P
with hy = (x — a)/N.

® They give the same operator uniformly in x as h — 0, therefore we can use the shifted
version with any shift to approximate the Riemann-Liouville derivative,
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Shifted Griinwald—Letnikov Fractional Derivative
Let & > 0, fECM([a,b]), a<x<b N>p>0then

A% f(X) 1 i o
GLp i hy o § k
[a’x]f(x) N—>ll +oo  hY, N—>h +oo hfy (=1) (k) Foc=(k=plhn),

with hy = (x — a)/N.

® They give the same operator uniformly in x as h — 0, therefore we can use the shifted
version with any shift to approximate the Riemann-Liouville derivative,

® To get the best constant C we can minimize the |p — %/2| term in w(z), that is, we
select p = 1.
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The Shifted Griunwald—Letnikov Fractional Derivative

Shifted Grunwald—Letnikov Fractional Derivative

Let & > 0, fECM([a,b]), a<x<b N>p>0then

o4 X N
LD, f(x) = lim A0 _ [ Z(—1)k(‘/’(‘>f(x—(k—p)h,\,),

N—+o00 h%‘l - N—+o00 h%

with hy = (x — a)/N.

® They give the same operator uniformly in x as h — 0, therefore we can use the shifted
version with any shift to approximate the Riemann-Liouville derivative,

® To get the best constant C we can minimize the |p — %/2| term in w(z), that is, we
select p = 1.

© Let us see if using the shifted version with p = 1 solves our stability problem.
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Back to finite differences: implicit Euler

We use the shifted Griinwald—Letnikov and the implicit Euler method

1
Wp-i—l —wh WnJrl _ Wn+ i+

1
— +1 +1
ITt’__V’ +7ngwn 1+fn
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Back to finite differences: implicit Euler

We use the shifted Griinwald—Letnikov and the implicit Euler method

i+1

W'n"rl - WI‘I — _E/( . n+1 + B ng I'H—l " 4 Atfn+1'

e Set E = V,‘At/hN'
B; = d,-At/hﬁ,
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Back to finite differences: implicit Euler

We use the shifted Griinwald—Letnikov and the implicit Euler method

i+1
—goBiwt + (14 Ei — giBj)w™' — (E; + g@2B)w™ ! — B; ngw,"ﬂ L=+ AL

e Set E = V,‘Al’/hN'
B; = d,-At/hﬁ,

e reorder the system of
equations,
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Back to finite differences: implicit Euler

We use the shifted Griinwald—Letnikov and the implicit Euler method

i+1

—goBiwt + (14 Ei — giBj)w™' — (E; + g@2B)w™ ! — B; ngw,"ﬁl =c' + At

e Set E = V,‘Al’/hN'
B; = d,-At/hﬁ,

e reorder the system of
equations,

® and obtain

Ayw™ = w4+ AL
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Back to finite differences: implicit Euler

We use the shifted Griinwald—Letnikov and the implicit Euler method

i+1
—goBiwt + (14 Ei — giBj)w™' — (E; + g@2B)w™ ! — B; ngw,"ﬂ L=+ AL

® Set E; = ViAt/hN.

Bj = diAt/pe, M 1 0 0 0
o reorde.r the systemof | £ 0B 14 E —gB; — 208

equations,

. —83B> —E—gB 1+E—-—gB —gb
® and obtain , . ] ]
ANWn+1 — Wn+Atfn+1. _gNBNfl —gOBN—l
0 1
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Back to finite differences: implicit Euler

We use the shifted Griinwald—Letnikov and the implicit Euler method

i+1
gOB Wrz:il + (1 + E ngl) (E —|—ng _ B ngw,n+1 L= Cin + At f—,'n+1-
® Set E; = viAt/p, . . . ]
e e n_rf,n .n T
e reorder the system of w *[W0>W1»---»WN} )

equations, £ =AL0, £, ..., f§_1, 01T

® and obtain

Ayw™ = w4+ AL
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Back to finite differences: implicit Euler

We use the shifted Griinwald—Letnikov and the implicit Euler method

—goBiw + (1+ E — giBi)w,

e Set E = V,‘Al’/hN'
B; = d,-At/hﬁ,

e reorder the system of
equations,

® and obtain

Ayw™ = w4+ AL

i+1
n+1 n n+1
— (Ei+ g&Bi)w —B E gkw i =¢ HALET
1 1 1 1T
Wn+ :[W67+ )Wanr Wll\jl+] ,
T
w' :[Wé’,wl”,...,w,\,} ,

£ =AL0, ..., 71,007,
/ To prove stability we need to have p(ANl) <1:

1_ p-1.0
e =Aye.
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Back to finite differences: implicit Euler

Let (A,x) be an eigencouple of Ay, i.e., Ayx = Ax, x # 0.
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Back to finite differences: implicit Euler

Let (A,x) be an eigencouple of Ay, i.e., Ayx = Ax, x # 0.
1. Choose i such that |x;| = max{|xj| : j=0,..., N},
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Back to finite differences: implicit Euler

Let (A,x) be an eigencouple of Ay, i.e., Ayx = Ax, x # 0.
1. Choose i such that |x;| = max{|xj| : j=0,..., N},

N
2. Then Z(AN),'JXJ' = x;, and thus
j=0
N o
A=A+ Z(AN)iJ;Ji>
j=0
J#
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Back to finite differences: implicit Euler

Let (A,x) be an eigencouple of Ay, i.e., Ayx = Ax, x #£ 0.
1. Choose i such that |x;| = max{|xj| : j=0,..., N},

N
2. Then Z(AN),'JXJ' = x;, and thus
j=0
N o
A=A+ .Z(AN)"’];J,')
j=0
JF

3. If i=0o0ri= N then A =1, otherwise

1 1

i—2
X; Xi— Xj
A=1+E —gB — goBi—"(Ei + g2B) == —BiE hi—ji1>
X = X;

iz
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Back to finite differences: implicit Euler

Let (A,x) be an eigencouple of Ay, i.e., Ayx = Ax, x #£ 0.
1. Choose i such that |x;| = max{|x;| : j =0,..., N},

N
2. Then Z(AN),'JXJ' = x;, and thus
j=0
N »
A=A+ Z(AN),'J;JI_>
j=0
J#i
3. If i=0o0ri= N then A =1, otherwise
i+1 »
A=1+E(l1—%2/q)—Bj |g1+ 'Zgifj+1;Ji
j=0
J#i
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Back to finite differences: implicit Euler

4. We have }_,~o8« =0, o € (1,2] and thus g1 = —oc and gx > 0 for k # 1, thus

J
—g1> ) g Vj=0,1,2,...

k=0
k#1
furthermore |%/x| < 1, and thus
i+1 o i+1
L. A - _

'Zglfﬂrl X; < 'Zglf_/Jrl < 81.
j=0 j=0
J#i J#i
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Back to finite differences: implicit Euler

4. We have }_,~o8« =0, o € (1,2] and thus g1 = —oc and gx > 0 for k # 1, thus

J
—g1 > Zilgk vj ::0)1323"

k=0
k#1
furthermore |%/x| < 1, and thus
i+1 i+1
Zz;g}j+1 <:ZE;g}J+1<< —81.
j=0
J#l J#i

3. Ifi=0o0ri=N then A =1, otherwise

i+1
X
Al >1 +\E,;_/(1 — Xi-1/x;) +\Bii/ g1+ .ZgifjJrl = L.
>0 <1 >0

J.: .
J#i
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Back to finite differences: implicit Euler

Theorem (Meerschaert and Tadjeran )

The implicit Euler method solution to

G} 0

a_VtV _ _v(x)a—:(v +d)RDE qw+ F(x,t),  1<a<2, v(x),d(x)>0.
with boundary conditions w(0,t) =0, w(1,t) =0 for all t > 0, based on the shifted
Griinwald—Letnikov approximation with hy = 1/N, is consistent of order O(h + At) and
unconditionally stable.

@ We have only a left-sided fractional derivative, we could put a non-homogeneous
condition on the right-hand side,

#. We can now start looking into the matrices to devise solution strategies for the
sequence of linear systems

Ayw™ = w4+ AL
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Grunwald-Letnikov matrices

To look at the matrices we go back to the first form of the diffusion equation (FDE;)

G =0RDY  W(x,t)+ (1—0)REDE | W(x, t), 0 € [0,1],
Ww(o,t) = W(1,t) =0,

Wi(x,t) = Wy(x).
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Grunwald-Letnikov matrices

To look at the matrices we go back to the first form of the diffusion equation (FDE;)

O =0°DY (W(x,t) + (1—0)°Dg W (x, t), 0 € [0,1],
W(o,t) = W(l1,t) =0,
W (x, t) = Wp(x).

1. Substitute the Riemann-Liouville derivative with the Griinwald—Letnikov one,
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Grunwald-Letnikov matrices

To look at the matrices we go back to the first form of the diffusion equation (FDE;)

B —0CDy Wix,t)+(1—-0)°D% W(x,t), 8 €0,1],
W(0,t) = W(1,t) =0,
W (x,t) = Wp(x).

1. Substitute the Riemann-Liouville derivative with the Griinwald—Letnikov one,

2. Choose N € N at which to truncate the shifted series expansions

AW i+l N N—i+2 o
hy atl :OZ(—l)k<k> Wiki1+(1—0) Z (—1)’<<k> Wiik_1, i =0,...

k=0

24/36



Grunwald-Letnikov matrices

To look at the matrices we go back to the first form of the diffusion equation (FDE;)

W —9CLDY W(x,t)+(1—0)°LDE | W(x, 1),  0¢€l01],
W(0,t) = W(1,t) =0,

W (x,t) = Wp(x).

1. Substitute the Riemann-Liouville derivative with the Griinwald—Letnikov one,
2. Choose N € N at which to truncate the shifted series expansions

3. Apply, e.g., backward Euler to discretize the derivative w.r.t. time

o i—k+1 x N+i—2 N i—0 N
IN oty — _1\k J _ _1\k J = Uy ey Yy
AWl =o kzo( 1) <k>W’k+1+(1 0) kZO( 1) (k)vmkl, i—o. M1,
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The matrix formulation

We call again w/, w/*1 the vectors containing the solution on inner grid points, then we
can rewrite the set of linear equations as

At
<IN_h‘x |:9GN+(1—6)GI;,/—:|)W’H—1_W”
N
where
-~ ~ function G = glmatrix(N,alpha)
1 o - - 0 Z%GLMATRIX produces the GL discretization of
82 81 8o /4 the Riemann-Liouville derivative
' . . . g = gl(N,alpha);
Gy = : ’ ) ) c = zeros(N,1); r = zeros(1,N);
: : : 20 r(1:2) = g(2:-1:1);
v - & @ & c(1:N) = g(2:end);
0 o 0 1 G = toeplitz(c,r);
= - end
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The matrix formulation

To obtain a simple code for the complete problem

A% Discretization data
hN = 1/(N-1); x = 0:hN:1;
dt = hN; t = 0:dt:1;

%% Discretize ® Select 6 = 1/2, o« = 3/2, and
G = glmatrix(N,alpha); Gt = Wo(x) = 5x(1 —x),
— glmatrix(N,alpha).'; ® Discretize the interval [0, 1] on

I = eye(N,N);

% apply B.C.

G(1,:) = -I(1,:); G(N,:) = -I(N,:);

Gt(1,:) = -I(1,:); Gt(N,:) = -I(N,:);

/4 Left-hand side

A = I - dt/hN"alpha*(theta*G + (1-theta)*Gt);
/i Right-hand stide

w=wo(x).";

N points,

Build the / and Gp matrices,
Apply the Dirichlet b.c.s,
Assemble A and w°.
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The matrix formulation

To obtain a simple code for the complete problem

Select 6 = 1/2, & = 3/2, and
Wo(x) = 5x(1 — x),

A% Discretization data
hN = 1/(N-1); x = 0:hN:1;

dt = hN; t = 0:dt:1; ® Discretize the interval [0, 1] on
4% Discretize N points,

G = glmatrix(N,alpha); Gt =
< glmatrix(N,alpha).';

Build the I and Gy matrices,

I = eye(N,N); ® Apply the Dirichlet b.c.s,
% apply B.C. * Assemble A and w°.
G(1,:) = -I(1,:); GN,:) = -I(N,:); o
Gt(1,:) = -I(1,:); Gt(N,:) = -I(N,:): March the scheme in time:

/4 Left-hand side

A = I - dt/hN"alpha*(theta*G + (1-theta)*Gt); for i=2:N

/% Right-hand side w = A\w;

w=wo(x)."'; end
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The solution step

© How can we efficiently solve the linear systems
+1
Aw' = w',

needed for the time-stepping?
© Can we find a reliable procedure working also for multi-dimensional cases?
© Is dense linear algebra a compulsory choice?
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The solution step

© How can we efficiently solve the linear systems
Awn+1 — Wn)
needed for the time-stepping?

© Can we find a reliable procedure working also for multi-dimensional cases?
© Is dense linear algebra a compulsory choice?

These matrices have structures we can
exploit!
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Toeplitz matrices

Toeplitz matrix

A Toeplitz matrix is a matrix whose entries are constant along the diagonals

to
t1

th—2

_tnfl

t
to

tg

to—pn

t1

ti—n
tp
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Toeplitz matrices

Toeplitz matrix

A Toeplitz matrix is a matrix whose entries are constant along the diagonals

to t1 . top ti-n
t o t to_p
Tn(f) = t1 to
th—o . t_q
_tnfl th—2 t1 tO i
Generating function
+o00 ] 1 (™ '
f(x) = kZoo e o= ETLI F(0)e ™ 0de, k = 0,+1,+2, ...

the t, are the Fourier coefficients is called a generating function of the matrix T,(f).
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Circulant matrices

Circulant matrix

A Circulant matrix C, € R"*" is a Toeplitz matrix in which each row is a cyclic shift of

the row above it, i.e., (Cs)ij = C(j_i) mod n:

(&)]
Cn—1

Ch—2
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a1
<
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(&}
1

€o &

€]
Ch—2 Cp—1

Cn—1

%}

o]
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Toeplitz and Circulant matrices: some properties

Properties

1. The operator T, : L![—m, 7] — C"™*" defined by the Toeplitz matrix construction is
linear and positive, i.e., if £ > 0 then T,(f) = To(f)" Vnand x"T,(f)x >0
Vx e C".
2. Given f € LY[—m, 7 such that ms = essinf(f) and Ms = esssup(f).
If me > —oo then me < Nj(TH(f)) Vj=1,...,n;
If M¢ < oo then Mf > A;i(T,(f)) Vj=1,...,n.
If f is not identical to a real constant and both the inequalities hold,

mf<)\j(Tn(f))< Me Yj=1,...,n.

3. Circulant matrices are simultaneously diagonalized by the unitary matrix F,

1 —27i j
(Fn)j)k=%e72njk,(2={C,,E(C”X”IC,,zFDFH : D=diag(d0,d1,...,dn_1)}.
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Asymptotic distribution - |

Asymptotic eigenvalue distribution

Given a sequence of matrices {X,}, € C¥*% with d, = {dim X,}, "2 o monotonically

and a p-measurable function f: D — R, with u(D) € (0, 00), we say that the sequence
{X}, is distributed in the sense of the eigenvalues as the function f and write {X,}, ~ f if
and only if,

1
nlggodeF ) = =57 | Fiftenar, vFecao)

where A;(-) indicates the j-th eigenvalue.
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Asymptotic distribution - |l

Asymptotic singular value distribution

Given a sequence of matrices {X,}, € C¥*% with d, = {dim X,}, "2 o monotonically

and a p-measurable function f: D — R, with u(D) € (0, 00), we say that the sequence
{X}, is distributed in the sense of the singular values as the function f and write
{Xatn ~¢ f if and only if

1 dn
L e 7 | FUFCNde, VF € celD),

where 0;(-) is the j-th singular value.
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Asymptotic distribution - |11

Theorem (Asymptotic distribution of Toeplitz matrices)

Given the generating function f, T,(f) is distributed in the sense of the eigenvalues as f,
written also as T,(f) ~ f, if one of the following conditions hold:

1. (Grenander and Szeg6 2001): f is real valued and f € L°°,
2. (Tyrtyshnikov 1996): f is real valued and f € L2.

Moreover, T,(f) is distributed in the sense of the singular values as f, written also as
T,(f) ~s f, if one of the following conditions hold:

1. (Avram 1988; Parter 1986): f € L°°,
2. (Tyrtyshnikov 1996): f € 2.
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Singular value distribution of Gy

P¥- The matrix Gy is a Toeplitz and Hessenberg matrix,
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Singular value distribution of Gy

P¥- The matrix Gy is a Toeplitz and Hessenberg matrix,

© Does it have a generating function?
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Singular value distribution of Gy

P¥- The matrix Gy is a Toeplitz and Hessenberg matrix,
© Does it have a generating function?

® Yes! And we have already computed it several times! The coefficients {g,E“)}k where
given by the binomial expansion of (1 + z)%, and thus

£(8) = e (14 exp(i(0 +m)))*, 0 € [0,2m)
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Singular value distribution of Gy

P¥- The matrix Gy is a Toeplitz and Hessenberg matrix,

© Doses it have a generating function?

® Yes! And we have already computed it several times! The coefficients {g,E“)}k where
given by the binomial expansion of (1 + z)%, and thus

f(0) = e 'O (1 +exp(i(6 +m)))%,

N = 100;

alpha = 1.5;

G = glmatrix(N,alpha);

s = @(t) exp(-1ixt) .*x(1 + ...
exp(1i*(t+pi))) . alpha;

sv = svd(G);

th = linspace(0,2*pi,N);

plot(th,sv,'o',th,sort(abs(s(th)),...
'descend'),'-', 'LineWidth',2);

0 € [0,2m)




Conclusion and summary

@ We introduced partial differential equations with fractional (FPDE) derivative with
respect to the space variables,

@ we connected fractional diffusion and continuous time random walk using Lévy flights,

@ we introduced the Griinwald-Letnikov fractional derivative, highlighted the connection
with the Riemann-Liouville derivative.

@ We introduced a stable discretization of finite difference type,

@ and we started investigating the structure of the underlying matrices.
Next up

B Investigating the structure of the underlying matrices for different FPDEs.

B Looking into some preconditioners and solution strategies based on structured
matrices.
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