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Solving linear system with Toeplitz-like matrices
In the last lecture we discretized{

∂W
∂t = θ RLDα[0,x ]W (x , t) + (1− θ)RLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

Obtaining (
IN −

∆t

hαN

[
θGN + (1− θ)GT

N

])
wn+1 = wn

with

GN =



1 0 · · · · · · 0
g2 g1 g0
...

. . .
. . .

. . .
...

. . .
. . . g0

gN−1 · · · g3 g2 g1
0 · · · · · · 0 1


.
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Solving linear system with Toeplitz-like matrices

The matrix

AN = IN −
∆t

hαN

[
θGN + (1− θ)GT

N

]
,

is a Toepltiz matrix plus some rank corrections.

4 By rearranging the right-hand side or restricting to solve only for the internal nodes we
can avoid the rank corrections.

® How do we solve such systems?

� Direct methods

⇒ fast and superfast Toeplitz solvers

� Iterative methods

⇒ preconditioned Krylov methods, multigrid solvers/preconditioners
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Direct Toeplitz solvers

Direct Toeplitz solver are mostly based on the answer to the following question:

® is the inverse of a Toeplitz matrix still a Toeplitz matrix?

So the answer is no, but. . . it seems that there is still some structure there, doesn’t it?
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The Gohberg–Semencul formula
. . . starting from a displacement representation of Tn, i.e.,

t0Tn =


t0 0 · · · 0

t1 t0
. . .

...
...

...
. . . 0

tn−1 tn−2 · · · t0



t0 t−1 · · · t1−n

0 t0 · · · t2−n

0 0
...

...
... t−1

0 0 · · · t0

−


0 0 · · · 0 0
t1 0 · · · 0 0

t2 t1
. . .

...
...

...
...

. . . 0 0
tn−1 tn−2 · · · t1 0



0 t−1 t−2 · · · t1−n

0 0 t−1 · · · t2−n

...
...

...
. . .

...
0 0 0 t−1

0 0 0 · · · 0


Gohberg and Semencul 1972 obtained a displacement representation of the inverse

z1T
−1
n =


z1 0 · · · 0

z2 z1
. . .

...
...

...
. . . 0

zn−1 zn−2 · · · 0
zn zn−1 · · · z1



vn vn−1 · · · v1
0 vn · · · v2

0 0
...

...
... vn−1

0 0 · · · vn

−


0 0 · · · 0 0
v1 0 · · · 0 0

v2 v1
. . .

...
...

...
...

. . . 0 0
vn−1 vn−2 · · · v1 0



0 zn zn−1 · · · z1
0 0 zn · · · z2
...

...
...

. . .
...

0 0 0 zn
0 0 0 · · · 0


with z1 = vn.
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Direct Toeplitz solvers
By cleverly computing the vectors z and v from the {tn}n coefficients, one obtains several
“fast” and “superfast” algorithms:

Algorithm Complexity

Levinson 1946 O(n2)
Trench 1964 O(n2)
Zohar 1974 O(n2)
Bitmead and Anderson 1980 O(n log2(n))
Brent, Gustavson, and Yun 1980 O(n log2(n))
Hoog 1987 O(n log2(n))
Ammar and Gragg 1988 O(n log2(n))
T. F. Chan and Hansen 1992 O(n2)

Bini and Meini 1999 O(n logm +m log2m log n/m)

n size of the matrix, m size of the bandwidth.
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In our case

To treat our case (
IN −

∆t

hαN

[
θGN + (1− θ)GT

N

])
wn+1 = wn

we can then apply one of those algorithms (some of them use symmetry).

® What happens if we need to treat the case(
IN −

∆t

hαN

[
D

(1)
n GN + D

(2)
n GT

N

])
wn+1 = wn

with D
(·)
n diagonal matrices coming from the discretization of anisotropic

space-variant diffusion coefficients?

® What happens if we need to treat multi-dimensional cases?
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Krylov subspace methods
To overcome these challenges, we use an iterative approach based on Krylov subspaces.

Krylov subspace

A Krylov subspace K for the matrix A related to a non null vector v is defined as

Km(A, v) = Span{v,Av,A2v, . . . ,Am−1v}.

- The fundamental operation is the matrix-vector product.
� Their use is effective when these products are cheap.

L We can compute Tn(f )v in O(n log(n)) operations!

C2n

[
v
0n

]
=

[
Tn(f ) En

En Tn(f )

]
︸ ︷︷ ︸

Circulant

[
v
0n

]
=

[
Tn(f )v
Env

]
, En =


0 tn−1 . . . t2 t1

t1−n 0 tn−1 . . . t2
... t1−n 0

. . .
...

t−2 . . .
. . .

. . . tn−1

t−1 t−2 . . . t1−n 0

.
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The Conjugate Gradient Method
When A is symmetric positive definite the
method of choice is the Conjugate Gradient.

Theorem.

Let A be SPD and k2(A) = λn/λ1 be the 2–norm
condition number of A. We have:

∥r(m)∥2
∥r(0)∥2

≤
√
k2(A)

∥x∗ − x(m)∥A
∥x∗ − x(0)∥A

.

Corollary.

If A is SPD with eigenvalues 0 < λ1 ≤ . . . ≤ λn,
we have

∥x∗ − x(m)∥A
∥x∗ − x(0)∥A

≤ 2

(√
k2(A) − 1√
k2(A) + 1

)m

.

Input: A ∈ Rn×n SPD, Nmax , x(0)

Output: x̃, candidate approximation.
r(0) ← ∥b − Ax(0)∥2, r = r(0), p← r;

ρ0 ← ∥r(0)∥2;
for k = 1, . . . ,Nmax do

if k = 1 then
p← r;

end
else

β← ρ1/ρ0;
p← r + β p;

end
w← A p;
α← ρ1/pTw;
x← x + αp;
r← r − αw;

ρ1 ← ∥r∥22;
if then

Return: x̃ = x;
end

end
8 / 42



The Conjugate Gradient Method

. The bound in the corollary is descriptive of the convergence behavior.

Theorem.

Let A ∈ Rn×n be SPD. Let m an integer, 1 < m < n and c > 0 a constant such that for
the eigenvalues of A we have

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn−m+1 ≤ c < . . . ≤ λn.

Fixed ε > 0 an upper bound in exact arithmetic for the minimum number of iterations k
reducing the relative error in energy norm form the approximation x(k) generated by CG by
ε is given by

min

{⌈
1

2

√
c/λ1 log

(
2

ε

)
+m + 1

⌉
, n

}
® How can we put ourselves in the hypotheses of the Theorem?
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Clustered spectra

A proper cluster

A sequence of matrices {An}n≥0, An ∈ Cn×n, has a proper cluster of eigenvalues in p ∈ C
if, ∀ε > 0, if the number of eigenvalues of An not in D(p, ε) = {z ∈ C | |z − p| < ε} is
bounded by a constant r that does not depend on n. Eigenvalues not in the proper cluster
are called outlier eigenvalues.

® Do the matrices

AN = IN −
∆t

2hαN

[
GN + GT

N

]
have a clustered spectra?

4 We can investigate this question by looking again at the spectral distribution of the
sequence {AN }N .
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Asymptotic distribution: the symmetric case

AN = IN −
∆t

2hαN

[
GN + GT

N

]
,

the sequence {AN }N is not yet ready for the analysis, we have the coefficient ∆t/2hαN that
varies with N.

- For consistency reason it makes sense to select ∆t ≡ hN ≡ νN , then, since α ∈ (1, 2]
we have that ν1−α for ν→ 0+ goes to +∞.

⇒ We look instead at the sequence:

{να−1
N AN }N = {να−1

N IN − (GN+GT
N )/2}N ,

and is such that ∥να−1IN∥ = να−1 < C independently of N.
! {−(GN+GT

N )/2}N is now a symmetric Toeplitz sequence with known generating
function:

pα(θ) = f (θ) + f (−θ) = −e−iθ(1− e iθ)α − e iθ(1− e−iθ)α.⇒ We have just discovered that: {να−1
N AN }N ∼λ pα(θ).
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Asymptotic distribution: the symmetric case

{να−1
N AN } =

{
να−1
N IN −

1

2

[
GN + GT

N

]}
N

∼λ pα(θ) = −e−iθ(1− e iθ)α − e iθ(1− e−iθ)α,

N = 100; alpha = 1.3;

hN = 1/(N-1); dt = hN; nu = dt;

G = glmatrix(N,alpha); I = eye(N,N);

A = nu^(alpha-1)*I-0.5*(G+G');

ev = eig(A);

f = @(t)-exp(-1i*t).*(1-exp(1i*t))

.^alpha;↪→
p = @(t)nu^(alpha-1)+0.5*(f(t)

+conj(f(t)));↪→
t = linspace(-pi,pi,N);

plot(t,ev,'o',t,sort(p(t),'ascend'),'-')

. the spectrum is not clustered!
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CG with a non clustered spectra
Let us test the CG with different values of α and N.

α 1.8 1.5 1.2

N Iteration

100 49 34 16
200 87 42 17
500 155 53 18

1000 209 63 19
5000 398 92 21
10000 523 108 22

4 The number if iterations grows with N,

4 Smaller values of α seem to be easier.

/ We would like number of iterations independent
on both size and value of α. In this case this is
called having a method with a superlinear
convergence and robust with respect to the
parameters.

® Can we?

A = nu^(alpha-1)*I-0.5*(G+G'); b = nu^(alpha-1)*ones(N,1);

[x,flag,relres,iter,resvec] = pcg(A,b,1e-6,N)
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called having a method with a superlinear
convergence and robust with respect to the
parameters.

® Can we?

A = nu^(alpha-1)*I-0.5*(G+G'); b = nu^(alpha-1)*ones(N,1);

[x,flag,relres,iter,resvec] = pcg(A,b,1e-6,N)
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Preconditioned CG

å To try and achieve this result we need to
modify the spectrum of the system, i.e.,
we need to precondition.

� We modify the system

Ax = b,

into
M−1Ax = M−1b,

with M SPD and such that M−1A has a
clustered spectra.

Input: A ∈ Rn×n SPD, Nmax , x(0), M ∈ Rn×n SPD
preconditioner

r(0) ← b − Ax(0), z(0) ← M−1r(0), p(0) ← z(0);
for j = 0, . . . ,Nmax do

αj ← <r(j),z(j)>/Ap(j),p(j);

x(j+1) ← x(j) + αjp
(j);

r(j+1) ← r(j) − αjAp
(j);

if then
Return: x̃ = x(j+1);

end

z(j+1) ← M−1r(j+1);

βj ← <r(j+1),z(j+1)>/<r(j),z(j)>;

p(j+1) ← z(j+1) + βjp
(j);

end

. M−1 has to be easy to apply, possibly it has to have the same cost of multiplying by A.
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Circulant preconditioners for Toeplitz matrices

� If M is circulant than applying M−1 costs O(n log n) operations, same as applying A.

4Observe that, nevertheless, this doubles the cost per iteration, can we do better?

ω-circulant matrices

Let ω = exp(iθ) for θ ∈ [−π, π]. A matrix W
(ω)
n of size n is said to be an ω–circulant

matrix if it has the spectral decomposition

W
(ω)
n = ΩH

n F
H
n ΛnFnΩn,

where Fn is the Fourier matrix and Ωn = diag(1,ω−1/n, . . . ,ω
−(n−1)/n) and Λn is the

diagonal matrix of the eigenvalues. In particular 1–circulant matrices are circulant matrices
while {−1}–circulant matrices are the skew–circulant matrices.

� We can use them to reduce the overall cost of the preconditioning step!
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Circulant preconditioners for Toeplitz matrices

The ø key idea is observing that we can decompose any Toeplitz matrix into the sum of a
circulant and of a skew-circulant matrix

Tn = Un + Vn, Un = FH
n Λ

(1)
n Fn, Vn = ΩH

n F
H
n Λ

(2)
n FnΩn

where

eT1 Un =1/2
[
t0, t−1 + tn−1, . . . , t−(n−1)+t1

]
,

Wne1 =1/2 [t0,−(tn−1 − t−1), . . . ,−(t−1 − tn−1)]
T .

Then we can compute the product

C−1
n Tn = FH

n

[
Λ−1

n

(
Λ

(1)
n + FnΩ

H
n F

H
n Λ

(2)
n FnΩnF

H
n

)]
Fn.
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H
n Λ

(2)
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H
n

)]
Fn.

And solve C−1
n Tnx = C−1

n b as

Λ−1
n

(
Λ

(1)
n + FnΩ

H
n F

H
n Λ

(2)
n FnΩnF

H
n

)
Fnx︸︷︷︸
=x̃

= Λ−1
n Fnb︸ ︷︷ ︸
=b̃

4 FFTs per iteration!
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Circulant preconditioners for Toeplitz matrices

®This is then computationally efficient, can we find the right circulant matrix to have a
clustered spectra?

åWe need to change the problem into an equivalent one: the aim is discharging
everything on the generating functions!
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Circulant preconditioners for Toeplitz matrices

®This is then computationally efficient, can we find the right circulant matrix to have a
clustered spectra?
åWe need to change the problem into an equivalent one: the aim is discharging
everything on the generating functions!

Continuous convolution

Given two scalar functions f and g in the Schwartz space, i.e., f , g ∈ C∞(R) such that

∃C (f )
α,β,C

(g)
α ′,β ′ ∈ R with ∥xα∂βf (x)∥∞ ≤ Cαβ and ∥xα ′

∂β ′g(x)∥∞ ≤ Cα
′β ′

, α, β, α ′, β ′

scalar indices, we define the convolution operation, “∗”, as

[f ∗ g ](t) =
∫+∞
−∞ f (τ)g(t − τ)d τ =

∫+∞
−∞ g(τ)f (t − τ)d τ.
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Circulant preconditioners for Toeplitz matrices
®This is then computationally efficient, can we find the right circulant matrix to have a
clustered spectra?
åWe need to change the problem into an equivalent one: the aim is discharging
everything on the generating functions!

Discrete convolution

For two arbitrary 2π–periodic continuous functions,

f (θ) =
+∞∑

k=−∞ tke
ikθ and g =

+∞∑
k=−∞ ske

ikθ

their convolution product is given by

[f ∗ g ](θ) =
+∞∑

k=−∞ sktke
ikθ.
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Circulant preconditioners for Toeplitz matrices

®This is then computationally efficient, can we find the right circulant matrix to have a
clustered spectra?
åWe need to change the problem into an equivalent one: the aim is discharging
everything on the generating functions!

�Using a Kernel

Given a kernel Kn(θ) defined on [0, 2π] and a generating function f for a Toeplitz sequence
Tn(f ), we consider the circulant matrix Cn with eigenvalues given by

λj(Cn) = [Kn ∗ f ]
(
2πj

n

)
, 0 ≤ j < n,

� We have rewritten the problem of finding an appropriate preconditioner to the
problem of approximating the generating function of the underlying Toeplitz
matrix.
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Circulant preconditioners for Toeplitz matrices

Theorem (R. H. Chan and Yeung 1992)

Lef f be a 2π–periodic continuous positive function. Let Kn(θ) be a kernel such that

Kn ∗ f n→+∞−→ f uniformly on [−π, π]. If Cn is the sequence of circulant matrices with
eigenvalues given by

λj(Cn) = [Kn ∗ f ]
(
2πj

n

)
, 0 ≤ j < n,

then the spectra of the sequence {C−1
n Tn(f )}n is clustered around 1.

® Is this the result we need?

- It requires a continuous positive function generating function f ! Ours is:

pα(θ) = −e−iθ(1− e iθ)α − e iθ(1− e−iθ)α,

and it does seem to have a zero.
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Circulant preconditioners: cases with a zero

Order of the zero

Let f : [a, b] ⊂ R→ R be a continuous nonnegative function. We say that f has a zero
order β > 0 at θ0 ∈ [a, b] if there exist two real constants C1,C2 > 0 such that

lim inf
θ→θ0

f (θ)

|θ− θ0|β
= C1, lim sup

θ→θ0
f (θ)

|θ− θ0|β
= C2.

Proposition (Donatelli, Mazza, and Serra-Capizzano 2016)

Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof.
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Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof. We first prove that is nonnegative by direct computation

pα(θ) = −

+∞∑
k=−1

g
(α)
k+1(e

ikθ + e−ikθ)
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2g
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1 + (g

(α)
0 + g

(α)
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Circulant preconditioners: cases with a zero

Proposition (Donatelli, Mazza, and Serra-Capizzano 2016)

Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof. Then we focus on the zero. Let us rewrite

1− e iθ =
√
2− 2 cos θe iϕ, 1− e−iθ =

√
2− 2 cos θe iψ,

where

ϕ =

{
arctan

(
− sin θ
1−cos θ

)
, θ ̸= 0,

limθ→0+ arctan
(

− sin θ
1−cos θ

)
= −π

2 , θ = 0.
ψ = −ϕ.
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Proposition (Donatelli, Mazza, and Serra-Capizzano 2016)

Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof. Then we focus on the zero. Let us rewrite

1− e iθ =
√
2− 2 cos θe iϕ, 1− e−iθ =

√
2− 2 cos θe iψ,

and write

pα(θ) = − e−iθ(
√
2− 2 cos θe iϕ)α − e iθ(

√
2− 2 cos θe−iϕ)α

=−
√
(2− 2 cos θ)αe i(αϕ−θ) −

√
(2− 2 cos θ)αe−i(αϕ−θ)

=− 2
√

(2− 2 cos θ)αrα(θ), rα(θ) = cos(αϕ− θ).
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Circulant preconditioners: cases with a zero

Proposition (Donatelli, Mazza, and Serra-Capizzano 2016)

Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof. Then we focus on the zero. Let us rewrite

1− e iθ =
√
2− 2 cos θe iϕ, 1− e−iθ =

√
2− 2 cos θe iψ,

and write

pα(θ) = −2
√
(2− 2 cos θ)αrα(θ), rα(θ) = cos(αϕ− θ).

Since lim
θ→0−

rα(θ) = lim
θ→0+

rα(θ) = cos(απ/2), we find

lim
θ→0

pα(θ)

|θ|α
= −2 lim

θ→0

(2− 2 cos θ)α/2

|θ|α
rα(θ) = −2 cos(απ/2) ∈ (0, 2),

i.e., pα has a zero of order α at 0 according to the definition.
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Circulant preconditioners: cases with a zero

t = linspace(-pi,pi,100);

f = @(alpha)

-exp(-1i*t).*(1-exp(1i*t)).^alpha;↪→
p = @(alpha) f(alpha) +

conj(f(alpha));↪→
plot(t,p(1.2)./max(p(1.2)),...

t,p(1.5)./max(p(1.5)),...

t,p(1.8)./max(p(1.8)),

t,p(2)./max(p(2)),...

'LineWidth',2);

legend({'\alpha=1.2','\alpha=1.5',...

'\alpha=1.8','\alpha=2'},...

'Location','north');
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Circulant preconditioners: cases with a zero

4 p2(θ) = 2(2− 2 cos θ), i.e., 2×Laplacian
generating function,

4 pα(θ)/∥pα∥∞ approaches the order of
the zero of the Laplacian in 0, i.e., it
increases up to 2 as α tends to 2.

® What can we do for the case in this
case?

� matching the zeros of the generating
function, heuristically, if the
preconditioner have a spectrum that
behaves as a function g with zeros of
the same order, and in the same place of
f , then f /g no loner have the
problematic behavior. . .
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Generalized Jackson Kernel

Generalized Jackson Kernel

Given θ ∈ [−π, π], N ∋ r ≥ 1 and N ∋ m > 0 such that r(m − 1) < n ≤ rm, i.e.,
m = ⌈n/r⌉, the generalized Jackson kernel function is defined as,

Km,2r (θ) =
km,2r
m2r−1

(
sin(mθ/2)

sin(θ/2)

)2r

, km,2r s.t.
1

2π

∫π
−π

Km,2r (θ)dθ = 1.

We build a circulant preconditioner Jn,m,r from its eigenvalues using the Jackson kernel

λj(Jn,m,r ) = [Km,2r ∗ f ]
(
2jπ

n

)
, j = 0, . . . , n − 1.

å With some work can be generalized to the case of multiple zeros of different order,

å One can prove also that a and b are bounded away from zero.
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Generalized Jackson Kernel

Theorem (R. H. Chan, Ng, and Yip 2002)

Let f be a nonnegative 2π–periodic continuous function with a zero of order 2ν at θ0. Let
r > ν and m = ⌈n/r⌉. Then there exists numbers a, b independent from n and such that
the spectrum of J−1

n,m,rTn(f ) is clustered in [a, b] and at most 2ν+ 1 eigenvalues are not in
[a, b] for n sufficiently large.

We build a circulant preconditioner Jn,m,r from its eigenvalues using the Jackson kernel
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(
2jπ
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)
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�Time to do some tests

We consider the following circulant preconditioners,

Dirichlet kernel, a.k.a. the Strang circulant preconditioner

Dn(θ) =
sin ((n + 1/2)θ)

sin (θ/2)


tk , 0 < k ≤ ⌊n/2⌋,
tk−n, ⌊n/2⌋ < j < n,
cn+k , 0 < −k < n.

Modified Dirichlet kernel, a.k.a. the T. Chan circulant preconditioner

1/2 (Dn−1(θ) +Dn−2(θ))


t1 + 1/2t̄n−1, k = 1,
tk + tn−k , 2 ≤ k ≤ n − 2,
1/2tn−1 + t̄1, k = n − 1.

R.H. Chan Dn−1(θ) tk + t̄n−k , 0 < k ≤ n − 1.

Jackson with r = 2.
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�Time to do some tests

We consider the following circulant preconditioners,

Dirichlet kernel, a.k.a. the Strang circulant preconditioner

c = fft([t(1:n/2);0;conj(t(n/2:-1:2))].')';

Modified Dirichlet kernel, a.k.a. the T. Chan circulant preconditioner

coef = (1/n:1/n:1-1/n)';

c = fft([t(1);(1-coef).*t(2:n)+coef.*t1]);

R.H. Chan c = fft([t(1);t(2:n)+t1].')';

Jackson with r = 2.
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We consider the following circulant preconditioners,

Dirichlet kernel, a.k.a. the Strang circulant preconditioner
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c = fft([t(1);(1-coef).*t(2:n)+coef.*t1]);

R.H. Chan c = fft([t(1);t(2:n)+t1].')';

Jackson with r = 2.

We test both clustering properties and convergence behavior inside the Preconditioned
Conjugate Gradient algorithm.
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å Jackson Kernel Circulant Preconditioner

For r = 2, 3, 4 it can be built as

n = length(t);

t1 = conj(t(n:-1:2));

if r == 2 || r == 3 || r == 4

coef = convol(n,r).';

c = [t(1)*coef(1)

(coef(2:n).*t(2:n)...↪→
+coef(n:-1:2).*t1).'];

c = fft(c)';

else

error('r needs to be 2, 3 or 4');

end

c = real(c);

function [ c ] = jacksonprec( t,r )

m = floor(n/r); a = 1:-1/m:1/m; r0 = 1;

coef = [a(m:-1:2) a];

while r0 < r

M = (2*r0+3)*m; b1 = zeros(M,1);

c = zeros(M,1); c(1:m) = a;

c(M:-1:M-m+2) = a(2:m);

b1(m:m+2*r0*(m-1)) = coef;

tp = ifft(fft(b1).*fft(c));

coef = real(tp(1:2*(r0+1)*(m-1)+1));

r0 = r0+1;

end

M = r*(m-1)+1;

coef = [coef(M:-1:1)' zeros(1,n-M)]';

coef = coef';

end
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�Back to the example

We try to solve again

for θ = 1/2


∂W
∂t = θ RLDα[0,x ]W (x , t) + (1− θ)RLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0,

W (x , t) = W0(x).

Ô We have removed the rank corrections due to the boundary conditions to have a pure
Toeplitz matrix, i.e., we solve the equation only in the inner nodes.
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�Back to the example

We try to solve again for θ = 1/2

TN−2(pα(θ))w
n+1 ≡

(
hαN
∆t

IN−2 −
1

2

[
GN−2 + GT

N−2

])
wn+1 =

hαN
∆t

wn

Ô We have removed the rank corrections due to the boundary conditions to have a pure
Toeplitz matrix, i.e., we solve the equation only in the inner nodes.
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�Back to the example
We try to solve again

for θ = 1/2

TN−2(pα(θ))w
n+1 ≡

(
hαN
∆t

IN−2 −
1

2

[
GN−2 + GT

N−2

])
wn+1 =

hαN
∆t

wn

Ô We have removed the rank corrections due to the boundary conditions to have a pure
Toeplitz matrix, i.e., we solve the equation only in the inner nodes.

%% Problem data

theta = 0.5;

alpha = 1.8;

w0 = @(x) 5*x.*(1-x);

%% Discretization data

N = 10;

hN = 1/(N-1); x = 0:hN:1;

dt = hN; t = 0:dt:1;

%% Discretize

G = glmatrix(N,alpha);

Gr = G(2:N-1,2:N-1); Grt = Gr.';

I = eye(N-2,N-2);

% Left-hand side

nu = hN^alpha/dt;

A = nu*I - (theta*Gr + (1-theta)*Grt);

% Right-hand side

w = w0(x).';
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xA look at the spectrum

N = 100, α = 1.8

0 2 4 6

Original

T.Chan

Strang

R.Chan

Jackson

N = 1000, α = 1.8

®Can you guess what is happening with the Jackson Kernel preconditioner?
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xA look at the spectrum

N = 100, α = 1.5

0 1 2 3

Original

T.Chan

Strang

R.Chan

Jackson

N = 1000, α = 1.5

0 1 2 3 4 5

Original

T.Chan

Strang

R.Chan

Jackson

®Can you guess what is happening with the Jackson Kernel preconditioner?
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xA look at the spectrum

N = 100, α = 1.2

0 1 2 3

Original

T.Chan

Strang

R.Chan

Jackson

N = 1000, α = 1.2

0 0.5 1 1.5 2 2.5 3

Original

T.Chan

Strang

R.Chan

Jackson

®Can you guess what is happening with the Jackson Kernel preconditioner?
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xA look at the spectrum

N = 100, α = 1.2

0 1 2 3

Original

T.Chan

Strang

R.Chan

Jackson

N = 1000, α = 1.2

0 0.5 1 1.5 2 2.5 3

Original

T.Chan

Strang

R.Chan

Jackson

®Can you guess what is happening with the Jackson Kernel preconditioner?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

2.0

25 15 6 8 2 2
26 31 6 10 2 2
27 63 6 12 2 2
28 127 5 13 2 2
29 251 5 14 2 2
210 464 5 15 2 2
211 713 4 15 2 2

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.8

25 15 6 8 5 5
26 31 6 9 5 5
27 61 6 9 5 5
28 108 6 11 5 5
29 174 6 11 6 5
210 234 6 11 6 6
211 314 6 10 6 6

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.6

25 15 6 7 5 5
26 31 6 8 5 5
27 51 6 8 5 5
28 73 5 8 5 5
29 91 5 8 6 5
210 111 6 7 6 6
211 135 6 7 6 6

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.4

25 15 5 7 5 5
26 27 5 7 5 5
27 35 5 7 5 5
28 41 5 6 5 5
29 46 5 6 5 5
210 51 5 6 5 5
211 56 5 6 5 5

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.2

25 15 5 6 4 4
26 19 5 6 5 5
27 20 5 5 5 5
28 21 5 5 5 5
29 22 5 5 5 5
210 22 5 5 5 5
211 22 5 5 5 5

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.2

25 15 5 6 4 4
26 19 5 6 5 5
27 20 5 5 5 5
28 21 5 5 5 5
29 22 5 5 5 5
210 22 5 5 5 5
211 22 5 5 5 5

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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Non symmetric Toeplitz system

If Tn(f ) is non symmetric (or more generally, non Hermitian), then f is a complex-valued
function then

X we no longer have information on the asymptotic spectral distribution, but only on
the singular values,

X we can no longer apply fast direct Toeplitz solvers,

X we can no longer apply the CG to Tn(f )x = b.

® What to do?

� Apply the PCG to the normal equations (CGNR):

Tn(f )
HTn(f )x = Tn(f )

Hb,

� Use another Krylov method: GMRES or TFQMR

® do we know how to precondition these methods?
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The GMRES method (Saad and Schultz 1986)

The Generalized Minimum Residual (GMRES) is a Krylov projection method
approximating the solution of linear system

Ax = b

on the affine subspace

x(0) +Km(A, v1), r(0) = b− A x(0), v1 = r(0)/∥r(0)∥2

, for x(0) a starting guess for the solution.
By this choice, we enforce the Arnoldi relation:

AVm = VmHm + wme
T
m = Vm+1Hm, SpanVm = Span{v1 · · · vm} = Km(A, v1),

and Hm m ×m Hessenberg submatrix extracted from Hm by deleting the (m + 1)th line.
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The GMRES method (Saad and Schultz 1986)
Input: A ∈ Rn×n,b ∈ Rn, m, x(0)

r(0) ← b− A x(0), β← ∥r(0)∥2;
v1 ← r(0)/β;
for j = 1, . . . ,m do

wj ← A vj ;
for i = 1, . . . , j do

hi,j ←< wj , vi >;
wj ← wj − hi,j vi ;

end
hj+1,j ← ∥wj∥2;
if hj+1,j = 0 or convergence
then

m = j ;
break;

end
vj+1 = wj/∥wj∥2;

end

Compute y(m) such that ∥r(m)∥2 =
∥b− A x(m)∥2 = ∥βe1 − Hmy∥2 = miny∈Rm ;

Build candidate approximation x̃;

Minimizing the residual

At step m, the candidate solution x(m) is the vector
minimizing the 2–norm residual:

∥r(m)∥2 = ∥b− A x(m)∥2,
with

b− A x(m) = Vm+1(βe1 − Hmy).

GMRES variants

Variants obtained by different least square problem
solutions, and different orthogonalization algorithms.
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The GMRES convergence theory (or lack thereof. . .)

Theorem (Convergence, diagonalizable)

If A can be diagonalized, i.e. if we can find X ∈ Rn×n non singular and such that

A = X ΛX−1, Λ = diag(λ1, . . . , λn), K2(X ) = ∥X∥2 ∥X−1∥2,

K2(X ) = ∥X∥2 ∥X−1∥2 condition number of X , then at step m, we have

∥r∥2 ≤ K2(X )∥r(0)∥2 min
p(z)∈Pm

p(0)=1

max
i=1,...,n

|p(λi )|, (DiagGMRES)

where p(z) is the polynomial of degree less or equal to m such that p(0) = 1 and the
expression in the right hand side of (DiagGMRES) is minimum.

. The eigenvectors can be arbitrarily ill-conditioned, i.e., K2(X ) ≫ 1,

- being diagonalizable can be a strong assumption.
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The GMRES convergence theory (or lack thereof. . .)

Theorem (Almostr everything is possible) (Greenbaum, Pták, and Strakoš 1996)

Given a non-increasing positive sequence {fk }k=0,...,n−1 with fn−1 > 0 and a set of non–zero
complex numbers {λi }i=1,2,...,n ⊂ C, there exist a matrix A with eigenvalues λ1, λ2, . . . , λn
and a right-hand side b with ∥b∥ = f0 such that the residual vectors r(k) at each step of
the GMRES algorithm applied to solve Ax = b with x(0) = 0, satisfy ∥r(k)∥ = fk ,
∀ k = 1, 2, . . . , n − 1.

X “Any non-increasing convergence curve is possible for GMRES”.

® What happens if we have a clustered spectrum?

� In the clustered case we can partition σ(A) as follows

σ(A) = σc(A) ∪ σ0(A) ∪ σ1(A),
where
• σc(A) denotes the clustered set of eigenvalues of A,
• σ0(A) ∪ σ1(A) denotes the set of the outliers.
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GMRES in the clustered and diagonalizable case

σ(A) = σc(A)︸ ︷︷ ︸
clustered

∪σ0(A) ∪ σ1(A)︸ ︷︷ ︸
outliers

,

we assume that

1. the clustered set σc(A) of eigenvalues is contained in a convex set Ω,

2. and, that denoting two sets of j0 and j1 outliers as

σ0(A) = {λ̂1, λ̂2, . . . , λ̂j0} and σ1(A) = {λ̃1, λ̃2, . . . , λ̃j1}

where if λ̂j ∈ σ0(A), we have

1 < |1− z/̂λj | ≤ cj , ∀z ∈ Ω,

while, for λ̃j ∈ σ1(A),
0 < |1− z/̃λj | < 1, ∀z ∈ Ω,
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GMRES in the clustered and diagonalizable case

Theorem

The number of full GMRES iterations j needed to attain a tolerance ε on the relative
residual in the 2-norm ∥r(j)∥2/∥r(0)∥2 for the linear system Ax = b, where A is diagonalizable,
is bounded above by

min

{
j0 + j1 +

⌈
log(ε) − log(κ2(X ))

log(ρ)
−

j0∑
ℓ=1

log(cℓ)

log(ρ)

⌉
, n

}
,

where

ρk =

(
a/d +

√
(a/d)2 − 1

)k
+
(
a/d +

√
(a/d)2 − 1

)−k

(
c/d +

√
(c/d)2 − 1

)k
+
(
c/d +

√
(c/d)2 − 1

)−k
,

and the set Ω ∈ C+ is the ellipse with center c , focal distance d and major semi axis a.
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GMRES the non-diagonalizable case
In this case we have to turn to either the field of values or the ε-pseudospectra of A.
We need to bound the right-hand side of

∥rm∥2 ≤ min
p(z)∈Pm

p(0)=1

∥p(A)r0∥, m = 1, 2, . . .

or in the worst case scenario

∥rm∥2
∥r0∥

≤ max
v∈Cn

∥v∥=1

min
p(z)∈Pm

p(0)=1

∥p(A)v∥, m = 1, 2, . . .

Ó If A is real, and M = (A+AT )/2 is SPD, then (Eisenstat, Elman, and Schultz 1983)

max
v∈Rn

∥v∥=1

min
p(z)∈Pm

p(0)=1

∥p(A)v∥ ≤
(
1−

λmin(M)2

λmax(ATA)

)m/2

.
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GMRES the non-diagonalizable case

∥rm∥2 ≤ min
p(z)∈Pm

p(0)=1

∥p(A)r0∥, m = 1, 2, . . .

we recall that the field of values of A is given by

W (A) = {< Av, v > : v ∈ Cn, ∥v∥ = 1}, ν(A) = min
z∈W (A)

|z |,

with ν(A) the distance of W (A) from the origin.

Ó For a general nonsingular A (Eiermann and Ernst 2001)

max
v∈Cn

∥v∥=1

min
p(z)∈Pm

p(0)=1

∥p(A)v∥ ≤ (1− ν(A)ν(A−1))
m/2.

. This bound is useful only when 0 /∈ W (A) and 0 /∈ W (A−1).
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Some experimentation with the FOV in our case

να−1
N AN = να−1

N IN − θGN + (1− θ)GT
N ,

θ = 0.2, α = 1.2, N = 100
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Some experimentation with the FOV in our case

ÓUnfortunate truth

In general it is difficult to say something about the Field of Value of preconditioned
matrices.

® What do we do in practice?
“To speed up the CG-like methods, we can choose a matrix C such that the
singular values of the preconditioned matrix C−1A are clustered.” – (R. H. Chan
and Ng 1996, P. 439)

® How do we build a Circulant preconditioner for a our non-symmetric Toeplitz
matrix?

� We can use a suitably modified Strang preconditioner for our case (Lei and Sun 2013)
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�A Circulant preconditioner (Lei and Sun 2013)

We can build a circulant preconditioner as

P =
hαN
∆t

IN + θs(GN) + (1− θ)s(GT
N ),

where

(s(GN)):,1 = −



g
(α)
1
...

gα⌊(N+1)/2⌋
0
...
0

g
(α)
0


,

function [ev,evt] = sunprec(N,alpha)

g = gl(N,alpha);

v = zeros(N,1);

v(1:floor((N+1)/2)) =

g((1:floor((N+1)/2))+1);↪→
v(end) = g(1);

ev = fft(-v);

v = zeros(N,1);

v(1) = g(2);

v(2) = g(1);

v(end:-1:floor((N+1)/2)+2) =

g(3:floor((N+1)/2)+1);↪→
evt = fft(-v);

end
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We can build a circulant preconditioner as

P =
hαN
∆t

IN + θs(GN) + (1− θ)s(GT
N ),

Ó It uses the construction of the Strang
preconditioner using only half o the
bandwidth of the Toeplitz matrices.

Ó All the eigenvalues of s(GN) and s(GT
N )

fall inside the open disc
{z ∈ C : |z − α| < α} by Gershgorin
theorem, indeed:

rN = gα0 +
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k=2

<
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�A Circulant preconditioner (Lei and Sun 2013)

® Will it work?
We can always write:

P−1AN − IN = P−1(AN − P)

= P−1
N UN − P−1

N VN

,

now for the Strang preconditioner of a Toeplitz matrix with with generating function in the
Wiener class, it holds that for any ε > 0 exists N ′ and M ′ such that

AN − s(AN) = UN + VN , rank(UN) ≤ M ′ and ∥VN∥2 < ε ∀N > N ′.

å rank(P−1
N UN) ≤ rank(UN) ≤ M ′,
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AN − s(AN) = UN + VN , rank(UN) ≤ M ′ and ∥VN∥2 < ε ∀N > N ′.

å rank(P−1
N UN) ≤ rank(UN) ≤ M ′,

Ó ∀ k = 1, 2, . . . ,N, |λ(PN)| ≥ ℜ(Λ(PN)k,k) =
hαN/∆t + θℜ(Λ(s(GN))kk) + (1− θ)ℜ(Λ(s(GT

N ))kk) ≥ hαN/∆t > 0 and thus
∥P−1

N ∥2 ≤ ∆t/hαN
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� If we select ∆t and hN in such a way that hαN/∆t is bounded and bounded away from
zero we have the result.
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Results with GMRES

(
hαN
∆t

IN−2 −
[
θGN−2 + (1− θ)GT

N−2

])
wn+1 =

hαN
∆t
, θ = 0.2

α N GMRES P

1.2

25 28 6
26 31 6
27 33 6
28 34 6
29 35 6
210 36 6
211 36 6

α N GMRES P

1.4

25 31 6
26 46 6
27 54 6
28 62 7
29 69 7
210 78 7
211 87 7

α N GMRES P

1.6

25 32 6
26 59 6
27 82 7
28 105 7
29 128 7
210 156 7
211 189 7

α N GMRES P

1.8

25 32 6
26 64 6
27 109 6
28 162 7
29 222 7
210 287 7
211 372 7
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Results with GMRES

[ev,evt] = sunprec(N,alpha);

c = nu + theta*ev + (1-theta)*evt;

P = @(x) cprec(c,x);

[X,FLAGsun,RELRESsun,ITERsun,RESVECsun] = gmres(A,(nu*w),[],1e-9,N,P);
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Conclusion and summary

¥ We have discussed the solution of Toeplitz linear systems,

¥ Studied the usage and convergence of PCG and GMRES method,

¥ Tested the usage of Circulant preconditioners for Toeplitz linear systems.

Next up

Á We need to discuss the next problem in difficulty{
∂W
∂t = d+(x , t) RLDα[0,x ]W (x , t) + d−(x , t)RLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

Á What happens if we go to more than one spatial dimension?
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