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Variable coefficients cases
We now want to solve the slightly more complex case{

∂W
∂t = d+(x , t) RLDα

[0,x ]W (x , t) + d−(x , t)RLDα
[x ,1]W (x , t),

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

with d+(x , t), d−(x , t) ≥ 0 and not identically zero.

1. We go through all the same discretization procedure: from Riemann–Liouville to
(shifted) Grünwald–Letnikov, then series truncation, etc.

2. we obtain a matrix sequence of the form

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

where D±
N are diagonal matrices whose entries sample the functions d±

N (x , t) on
the finite difference grid.

X We no longer have Toeplitz matrices!

1 / 36



Variable coefficients cases
We now want to solve the slightly more complex case{

∂W
∂t = d+(x , t) RLDα

[0,x ]W (x , t) + d−(x , t)RLDα
[x ,1]W (x , t),

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

with d+(x , t), d−(x , t) ≥ 0 and not identically zero.

1. We go through all the same discretization procedure: from Riemann–Liouville to
(shifted) Grünwald–Letnikov, then series truncation, etc.

2. we obtain a matrix sequence of the form

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

where D±
N are diagonal matrices whose entries sample the functions d±

N (x , t) on
the finite difference grid.

X We no longer have Toeplitz matrices!

1 / 36



Variable coefficients cases
We now want to solve the slightly more complex case{

∂W
∂t = d+(x , t) RLDα

[0,x ]W (x , t) + d−(x , t)RLDα
[x ,1]W (x , t),

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

with d+(x , t), d−(x , t) ≥ 0 and not identically zero.

1. We go through all the same discretization procedure: from Riemann–Liouville to
(shifted) Grünwald–Letnikov, then series truncation, etc.

2. we obtain a matrix sequence of the form

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

where D±
N are diagonal matrices whose entries sample the functions d±

N (x , t) on
the finite difference grid.

X We no longer have Toeplitz matrices!

1 / 36



Variable coefficients cases
We now want to solve the slightly more complex case{

∂W
∂t = d+(x , t) RLDα

[0,x ]W (x , t) + d−(x , t)RLDα
[x ,1]W (x , t),

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

with d+(x , t), d−(x , t) ≥ 0 and not identically zero.

1. We go through all the same discretization procedure: from Riemann–Liouville to
(shifted) Grünwald–Letnikov, then series truncation, etc.

2. we obtain a matrix sequence of the form

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

where D±
N are diagonal matrices whose entries sample the functions d±

N (x , t) on
the finite difference grid.

X We no longer have Toeplitz matrices!
1 / 36



Not all hope is lost

9 We can still perform fast matrix-vector products:

ANx = νx− D+
N (GNx) − D−

N (G
T
N x)

still O(N logN) cost.

� Maybe we can use some trick to reuse circulant preconditioners

1. If d±
N (x , t) do not vary much maybe we can average them, i.e.,

P(t) = νI − d̂+(t)s(GN) − d̂−(t)s(GT
N ),

with d̂±(t) = 1/N
∑N

i=1 d
±(xi , t)
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The averaging trick

Does it work?

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

w0 = @(x) 5*x.*(1-x);

hN = 1/(N-1); x = 0:hN:1; dt = hN; t = 0:dt:1;

dplus = @(x,t) gamma(3-alpha).*x.^alpha;

dminus = @(x,t) gamma(3-alpha).*(2-x).^alpha;

% Discretize

G = glmatrix(N,alpha); Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x,0)); Dminus = diag(dminus(x,0));

% Left-hand side

nu = hN^alpha/dt;

A = nu*I - (Dplus*Gr + Dminus*Grt);
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The averaging trick

Does it work?

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

% Solve

[ev,evt] = sunprec(N,alpha);

c = nu + mean(dplus(x,0))*ev + mean(dminus(x,0))*evt;

P = @(x) cprec(c,x);

[X,FLAGsun,RELRESsun,ITERsun,RESVECsun] = gmres(A,(nu*w),[],1e-9,N,P);
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The averaging trick

Does it work?

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

α N GMRES P

1.2

25 31 13
26 50 14
27 64 14
28 75 15
29 84 15
210 91 14
211 96 14

α N GMRES P

1.4

25 31 13
26 59 14
27 92 15
28 127 15
29 161 15
210 196 15
211 231 15

α N GMRES P

1.6

25 32 13
26 62 13
27 112 14
28 183 14
29 262 14
210 353 14
211 456 14

α N GMRES P

1.8

25 32 12
26 64 12
27 126 13
28 225 13
29 378 13
210 559 12
211 779 12
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α N GMRES P

1.8

25 32 12
26 64 12
27 126 13
28 225 13
29 378 13
210 559 12
211 779 12

å We have doubled the number of iterations but things still seem reasonable. . .
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Can we prove anything?

What did we actually prove for the constant coefficient case?

Ó We proved that P−1AN − I =“small norm”+“small rank”, i.e., that the preconditioner
delivered a clustering of the eigenvalues.

4 We don’t have a cluster, yet eigenvalues are in a fairly small region.
| let’s investigate!
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Having a cluster: Cn − An

For two matrix sequences {Cn}n and {An}n (both of order n) we say that they are ε-close by
rank if

∀ ε > 0 An − Cn = En,ε + Rn,ε,
∥En,ε∥2 ≤ ε,

rank(Rn,ε) ≤ r(n, ε) = o(n) for n→ +∞,
(ε-close)

Ô Let γn(ε) count how many singular values σ(An − Cn) are greater than ε, i.e.,

γn(ε) = |{j : σj(An − Cn) > ε, j = 1, . . . , n}| ,

⇒ (ε-close) is telling us that γn(ε) = o(n) for n→ +∞.

� Then we know that {An − Cn}n has a singular value cluster at zero, if γn(ε) = O(1)
which holds equally with r(n, ε) = r(ε) = O(1) for any ε > 0 then we have a proper
cluster by the definition we have seen during the last lecture.
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Having a cluster: C−1
n An − In

To estimate the convergence rate we have shown that C−1
n An and In are (ε-close)

matrix sequences, one usually use the following nomenclature

[ Cn is superlinear for An if r(n, ε) = O(1),

[ Cn is sublinear for An if r(n, ε) = o(n).

å Strategy

It is usually easier to prove that Cn and An are (ε-close), rather than C−1
n An and In.

Proposition

If Cn and C−1
n are bounded uniformly in n, then An and Cn are (ε-close) by O(1) rank if

and only if C−1
n An and In are.

Proof.
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Proof.

C−1
n An−In = C−1

n En,ε+C−1
n Rn,ε, ∥C−1

n En,ε∥ ≤ ε/∥Cn∥2, rank(C−1
n Rn,ε) ≤ r(n, ε) = O(1).
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Having a cluster: C−1
n An − In

The connection between boundedness and ε-closeness can also be inverted, i.e.,

Proposition

Let Cn be non singular. If Cn is bounded uniformly in n and An and Cn are not (ε-close) by
O(1) rank, then Cn is not superlinear for An.

Proof.

- Both propositions makes assumption on Cn, can we say something without having to
impose anything on Cn, ∥Cn∥2 or ∥C−1

n ∥2?
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Having a cluster: C−1
n An − In

Proposition

Let An and Cn be non singular. If An is bounded uniformly in n and if An and Cn are not
(ε-close) by O(1) rank, then Cn is not superlinear for An.

Proof.

We prove it again by contradiction. If Cn is superlinear for An, then (ε-close) holds
for C−1

n An − In with r(n, ε) = O(1). We use Sherman-Morrison-Woodbury formula to show
that

A−1
n Cn − In = En,ε + Rn,ε, ∥En,ε < ε and Rn,ε = O(1).

Therefore,
−(An − Cn) = An(A

−1
n Cn − In)

is the sum of a term of norm bounded by O(ε) and a term o constant rank X this
contradicts An and Cn non being (ε-close) by O(1) rank.

® If we have information on the spectral distribution of the involved sequences, can we
conclude something?
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® If we have information on the spectral distribution of the involved sequences, can we
conclude something?
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Asymptotic spectral distribution for non-Toeplitz sequences

For Toeplitz matrices we discovered that the following definitions holds for suitably
chosen generating functions f .

Asymptotic eigenvalue distribution

Given a sequence of matrices {Xn}n ∈ Cdn×dn with dn = {dimXn}n
n→+∞−→ ∞ monotonically

and a µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that the sequence
{X }n is distributed in the sense of the eigenvalues as the function f and write {Xn}n ∼λ f if
and only if,

lim
n→∞ 1

dn

dn∑
j=0

F (λj(Xn)) =
1

µ(D)

∫
D
F (f (t))dt, ∀F ∈ Cc(D),

where λj(·) indicates the j-th eigenvalue.
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Asymptotic spectral distribution for non-Toeplitz sequences

For Toeplitz matrices we discovered that the following definitions holds for suitably
chosen generating functions f .

Asymptotic singular value distribution

Given a sequence of matrices {Xn}n ∈ Cdn×dn with dn = {dimXn}n
n→+∞−→ ∞ monotonically

and a µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that the sequence
{X }n is distributed in the sense of the singular values as the function f and write
{Xn}n ∼σ f if and only if

lim
n→∞ 1

dn

dn∑
j=0

F (σj(Xn)) =
1

µ(D)

∫
D
F (|f (t)|)dt, ∀F ∈ Cc(D),

where σj(·) is the j-th singular value.
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Asymptotic spectral distribution for non-Toeplitz sequences

For Toeplitz matrices we discovered that the following definitions holds for suitably
chosen generating functions f .

® Are there any other matrix sequences for which these definitions hold?

1. Sequence of matrices describing the energy on fractals, e.g., a version of the
Szegö limit theorems on the Sierpiński gasket (Okoudjou, Rogers, and Strichartz 2010);

2. Locally Toeplitz Sequences (Tilli 1998);

3. Generalized Locally Toeplitz Sequences (Garoni and Serra-Capizzano 2017, 2018).
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Asymptotic spectral distribution for non-Toeplitz sequences

For Toeplitz matrices we discovered that the following definitions holds for suitably
chosen generating functions f .

® Are there any other matrix sequences for which these definitions hold?

1. Sequence of matrices describing the energy on fractals, e.g., a version of the
Szegö limit theorems on the Sierpiński gasket (Okoudjou, Rogers, and Strichartz 2010);

2. Locally Toeplitz Sequences (Tilli 1998);

3. Generalized Locally Toeplitz Sequences (Garoni and Serra-Capizzano 2017, 2018).

GLT Sequences

They are a ∗-algebra of matrix sequences {AN }N to which we can extend some of the
techniques and results we have briefly discussed for Toeplitz sequences. They can be used
to describe asymptotic spectral properties of matrix sequences coming from the
discretization of differential equations on highly regular meshes.
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GLT Sequences (Garoni and Serra-Capizzano 2017, 2018)

ÒThe machinery and the relative notation is unfortunately cumbersome.

⌣We need just few tools to get a couple of results for the case at hand.
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GLT Sequences (without the agonizing pain)
⌣We need just few tools to get a couple of results for the case at hand.

Theorem (Axiomatic description) (Garoni and Serra-Capizzano 2017, 2018)

1. Each GLT sequence has a singular value symbol f (x , θ) for (x , θ) ∈ [0, 1]× [−π, π]. If
the sequence is Hermitian, then the distribution also holds in the eigenvalue sense. If
{AN }N has a GLT symbol f (x , θ) we will write {AN }N ∼glt f (x , θ).

2. The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combinations,
products, inversion (whenever the symbol is singular, at most, in a set of zero
Lebesgue measure), and conjugation.

3. Every Toeplitz sequence generated by an L1 function f = f (θ) is a GLT sequence and
its symbol is f . Every diagonal sampling matrix (Dn)ii = a(i/n) obtained from a
continuous a(x) is a GLT sequence and its symbol is a.

4. Every sequence which is distributed as the constant zero in the singular value sense is
a GLT sequence with symbol 0.
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GLT Sequences (without the agonizing pain)
⌣We need just few tools to get a couple of results for the case at hand.

Theorem (Axiomatic description) (Garoni and Serra-Capizzano 2017, 2018)

5. If {AN }N ∼GLT κ and the matrices AN are such that AN = XN + Yn, where
• every XN is Hermitian,
• the spectral norms of XN and YN are uniformly bounded with respect to N,
• the trace-norm of YN divided by the matrix size N converges to 0,

then the distribution holds in the eigenvalue sense.

® Okay, but what do we do with this stuff?

� We take the sequence we have {An}n from our problem, and we try to show that it can
be obtained via the ∗-algebra properties as the linear combination/product (with
maybe some inversions and some zero distributed sequences) of GLT matrices of which
we know the symbol (a.k.a., Toeplitz and diagonal matrices).

# If we are successful, then we know the spectral distribution of our sequence.
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® Okay, but what do we do with this stuff?

� We take the sequence we have {An}n from our problem, and we try to show that it can
be obtained via the ∗-algebra properties as the linear combination/product (with
maybe some inversions and some zero distributed sequences) of GLT matrices of which
we know the symbol (a.k.a., Toeplitz and diagonal matrices).
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GLT stuff for the case at hand

We want to discover the GLT symbol, a.k.a., the spectral distribution for the
discretization of:{

∂W
∂t = d+(x , t) RLDα

[0,x ]W (x , t) + d−(x , t)RLDα
[x ,1]W (x , t),

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

Theorem (Donatelli, Mazza, and Serra-Capizzano 2016)

We assume ν = O(1), and that for a fixed instant of time tm the functions
d+(x , t) ≡ d+(x) and d−(x , t) ≡ d−(x) are both Riemann integrable over [0, 1], then

{AN }N ∼GLT hα(x , θ) = d+(x)fα(θ) + d−(x)fα(−θ), (x , θ) ∈ [0, 1]× [−π, π].
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T
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GLT stuff for the case at hand
We want to discover the GLT symbol, a.k.a., the spectral distribution for:

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

Theorem (Donatelli, Mazza, and Serra-Capizzano 2016)

We assume ν = O(1), and that for a fixed instant of time tm the functions
d+(x , t) ≡ d+(x) and d−(x , t) ≡ d−(x) are both Riemann integrable over [0, 1], then

{AN }N ∼GLT hα(x , θ) = d+(x)fα(θ) + d−(x)fα(−θ), (x , θ) ∈ [0, 1]× [−π, π].

Proof. The diagonal elements of the matrices D±
N are a uniform sampling of the functions

d±(x) ∈ [0, 1], thus D±
N ∼GLT d±(x). Toeplitz matrices GN and GT

N are also
{GN }N ∼GLT fα(θ) and {GT

N }N ∼GLT fα(−θ). Finally {νIN }N ∼GLT 0 since ν = o(1) by
hypothesis. The conclusion than follows from the ∗-algebra property, i.e.,

{AN }N ∼GLT 0+ d+(x)pα(θ) + d−(x)pα(−θ) = hα(x , θ).
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

N = 100
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alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT: a negative result for circulant matrices

®And so we have the asymptotic distribution of our singular values, but what do we
do with it?

- The function

k(x , θ) = d+(x)fα(θ) + d−(x)fα(−θ) for (x , θ) ∈ [0, 1]× [−π, π],

depends on both x and θ, on the other hand any circulant preconditioner will
depend only on the θ variable!⇒ No circulant preconditioner will ever cluster the singular values of a sequence with a
“space variant” spectral distribution.

® What type of preconditioner can we use to solve this issue?
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� Structure preserving preconditioners

The GLT class of sequences is a ∗-algebra, thus we can try to proecondition the sequence
{AN }N with something from the same class. We then look for:

� A sequence {PN }N in the GLT class,

� A sequence {PN }N such that {P−1
N AN }N ∼GLT 1,

� A sequence {PN }N that is easy enough to invert.

`An old idea anew

This a modification of an old idea, if we take a Toeplitz system Tn(f ) then we can use
Tn(1/f ) as a preconditioner!

# P−1
n = Tn(1/f ) is not the inverse of Tn(f ),

# If we have Tn(1/f ), its application cost is O(n log n),

- Computing the Fourier coefficients of 1/f can be expensive.
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Preconditioning Toeplitz with Toeplitz

We have expressed the Fourier coefficients of f as

tk =
1

2π

∫2π
0

f (θ)e−ikθ dθ, k = 0,±1,±2, . . . ,

we say that f is

[ of analytic type if tk = 0 for k < 0, or

[ of coanalytic type if tk = 0 for k > 0.

Lemma

Let f be of analytic type (or respectively coanalytic type) and a0 ̸= 0. Then Tn(f ) is
invertible if and only if 1/f is bounded and of analytic type (or respectively coanalytic type).
In either case, we have Tn(1/f )Tn(f ) = Tn(f )Tn(1/f ) = In, for In is the identity matrix.
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Preconditioning Toeplitz with Toeplitz

Lemma (Chan and Ng 1993)

Let f be a positive trigonometric polynomial of degree K

f (θ) =
K∑

k=−K

tke
ikθ.

Then for n > 2K , rank(Tn(1/f )Tn(f ) − In) ≤ 2K .

Proof. Let

1

f (θ)
=

+∞∑
k=−∞ ρke

ikθ

⇒ K∑
k=−K

tkρm−k =

{
1, if m = 0,

0, otherwise.

Thus for n > 2K , the entries of Tn(1/f )Tn(f ) − In are all zeros except possibly entries in
its first and last K columns.
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Preconditioning Toeplitz with Toeplitz

Given |α| < 1 consider

f (θ) =
1+ α2 − αe iθ − αe−iθ

1− α2

Tn(f ) is tridiagonal and SPD.

function T = kacmatrix(n,alpha)

%KACMATRIX Kac-Murdock-Szego matrices

e = ones(n,1);

T = spdiags(([-alpha,1+alpha^2,-alpha]

./(1-alpha^2)).*e,-1:1,n,n);↪→
end

We can express

1

f (θ)
=

+∞∑
k=−∞ t |k |e ikθ =

1− α2

(1− αe iθ) (1− αe−iθ)
,

and Tn(1/f ) is then a dense Toeplitz matrix.
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Preconditioning Toeplitz with Toeplitz
We can compute the coefficients in an inefficient way and apply it to the CG/PCG

N CG PCG

32 20 2
64 20 2
128 20 2
256 20 2
512 20 2
1024 20 2
2048 20 2

α = 0.5

function T = invkacmatrix(n,alpha)

%INVKACMATRIX Gives back the 1/Kac-Murdock-Szego

matrices↪→
f = @(th) (1 - alpha^2)./((1-alpha*exp(1i*th))

.*(1-alpha*exp(-1i*th)));↪→
c = zeros(n,1); r = zeros(1,n);

for k=1:n

r(k) = integral(@(th) f(th).*exp(1i*th*(k-1)),0,2*pi)

/(2*pi);↪→
c(k) = integral(@(th) f(th).*exp(-1i*th*(k-1)),0,2*pi)

/(2*pi);↪→
end

T = real(toeplitz(r,c));

end
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Preconditioning Toeplitz with Toeplitz
We can compute the coefficients in an inefficient way and apply it to the CG/PCG

N CG PCG

32 20 3
64 20 2
128 20 2
256 20 2
512 20 2
1024 20 2
2048 20 2

α = 0.8

function T = invkacmatrix(n,alpha)

%INVKACMATRIX Gives back the 1/Kac-Murdock-Szego

matrices↪→
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Preconditioning Toeplitz with Toeplitz

We can compute the coefficients in an inefficient way and apply it to the CG/PCG

rank (Tn(1/f )Tn(f ) − In) = 2
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Preconditioning Toeplitz with Toeplitz

We can compute the coefficients in an inefficient way and apply it to the CG/PCG

rank


0 50 100 150 200 250

nz = 65536

0

50

100

150

200

250

0 50 100 150 200 250

nz = 766

0

50

100

150

200

250

−

0 50 100 150 200 250

nz = 256

0

50

100

150

200

250


=

10
0

10
1

10
2

10
-15

10
-10

10
-5
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Preconditioning Toeplitz with Toeplitz

We can compute the coefficients in an inefficient way and apply it to the CG/PCG

rank (Tn(1/f )Tn(f ) − In) =

10
0

10
1

10
2

10
-15

10
-10

10
-5

v An exercise to make the evaluation and construction of the involved quantities would
be using the fft to compute the Fourier coefficients of 1/f (θ).
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Preconditioning Toeplitz with Toeplitz

Lemma (Chan and Ng 1993)

Let f be a positive 2π-periodic continuous function. Then for all ε > 0, there exists
positive integers M and N such that for all n > N,

Tn(1/f )Tn(f ) = In + Ln + Un,where rank(Ln) ≤ M and ∥Un∥2 < ε.

Proof. By the Weierstrass Theorem, there exists a positive trigonometric polynomial

pK (θ) =
+K∑

k=−K

ρke
ikθ, ρ−k = ρk , such that fmin/2 ≤ pK (θ) ≤ 2fmax ∀ θ ∈ [0, 2π], and

max
θ∈[0,2π]

|f (θ) − pK (θ)| ≤
fmin

2
(−1+

√
1+ ε)min

{
fmin

2fmax
, 1

}
.
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−1
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where Vn = (Tn(1/f ) − Tn(1/pK )T
−1
n (1/pK )) and Wn = T−1

n (pk)(Tn(f ) − Tn(pK ))
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√
1+ ε)fmin

2
,

∥Tn(1/f ) − Tn(1/pK )∥2 ≤ max
θin[0,2π]

∣∣∣∣ 1

f (θ)
−

1

pK (θ)

∣∣∣∣ ≤ 2

f 2min

max
θ∈[0,2π]

|f (θ) − pK (θ)|
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Preconditioning Toeplitz with Toeplitz
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Proof. We write

Tn(1/f )Tn(f ) = (In + Vn)(In + L̃n)(In +Wn) ≡ In + Ln + Un,

where
Un = Vn +Wn + VnWn, Ln = L̃n(In +Wn) + VnL̃n(In +Wn),

and using the previous relations

rank(Ln) ≤ 4K , and ∥Un∥2 ≤ ε.
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Preconditioning Toeplitz with Toeplitz

Theorem (Chan and Ng 1993)

Let f be a positive 2π-periodic continuous function. Then for all ε > 0, there exist
positive integers M and N such that for all n > N, at most M eigenvalues of
Tn(1/f )Tn(f ) − In have absolute value greater than ε.

Proof (idea). The HPD matrix Xn = T
1/2
n (1/f )Tn(f )T

1/2
n (1/f ) ∼ Tn(1/f )Tn(f ). Use the

decomposition of the previous Theorem and the uniform boundedness of T
±1/2
n (1/f ).

X We still need positive generating functions,

Ô If f is not given explicitly or the evaluation of 1/f (θ) are costly the approach is
infeasible.

� The idea from (Chan and Ng 1993) is to reduce the cost of working with f and 1/f
by using convolution products with Kernel functions.
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Preconditioning GLT with GLT
GLT sequences are a ∗-algebra, some of the analysis is therefore greatly simplified.

Theorem (Garoni and Serra-Capizzano 2017, Section 8.4)

Let {AN }N be a sequence of Hermitian matrices such that {AN }N ∼GLT κ, and let {PN }N be
a sequence of Hermitian positive definite matrices such that {PN }N ∼GLT ξ and ξ ̸= 0 a.e.
Then

{P−1
N AN }N ∼GLT ξ−1κ, {P−1

N AN }N ∼σ, λ (ξ−1κ, Id).

⌣ We need less than positive!

å If we move to the non-symmetric case, we are left just with a relation with respect to
the singular values.

# The general idea for a GLT preconditioner is then to find a GLT sequence {PN }N
• that is easy to invert,
• and such that ξ1κ = 1 or at least a quantity bounded and bounded away from

zero.
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Preconditioning GLT with GLT
Let us finally go back to our case of interest

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

we build a preconditioner with the same structure such that

Ô we have a small bandwidth ⇒ a small computational cost,

X the symbol of a bandwidth Toeplitz matrix is a trigonometric polynomial, hence the
zero of the symbol cannot be of fractional order.

� P1,N = νI + D+
NBN + D−

NB
T
N , Bn = Tn(1− exp(−iθ)),

[ {P1,N }N ∼GLT p1(x , θ) = d+(x)(1− e−iθ) + d−(x)(1− e iθ), holds only in the singular
value sense!

� P2,N = νI + D+
NLN + D−

NL
T
N , Bn = Tn(2− 2 cos(θ))

[ {P2,N }N ∼GLT p2(x , θ) = (d+(x) + d−(x))(2− 2 cos(θ)), holds also in the eigenvalue
sense!
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Preconditioning GLT with GLT

X Since the symbol of a bandwidth Toeplitz matrix is a trigonometric polynomial, hence
the zero of the symbol cannot be of fractional order:

d±(x , t) = d > 0 : lim
θ→0

h(x , θ)

pk(x , θ)
= +∞, k ∈ {1, 2}.

Theorem (Serra 1995, Theorem 3.1)

Let f be an integrable function defined on [−π, π] having in x = x0 the unique zero of
order ρ. Then, by choosing 2k the even number which minimizes the distance from ρ and
setting g = |x − x0|

2k , the condition number of Tn(g)
−1Tn(f ) is asymptotical to n2k−ρ.

In our case

We expect the condition number of the preconditioned matrix to be O(N |α−k |), k ∈ {1, 2}.
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Preconditioning GLT with GLT

Let’s numerically test our idea.
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Preconditioning GLT with GLT
Test case is

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

α N GMRES P P1,N P2,N

1.2 25 31 13 10 13
26 50 14 11 15
27 64 14 11 16
28 75 15 11 16
29 84 15 11 16
210 91 14 10 16
211 96 14 10 16
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� To do better we need to move towards Multigrid methods.
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Circulant matrices at any cost
Despite the clear negative results concerning the impossibility of obtaining a cluster using
circulant matrices in the space-dependent case, the literature contains several attempts in
this direction.

One of the most reused idea originates from (Pan et al. 2014), and goes as follows

1. We want to solve a “diagonal times Toeplitz” linear system, i.e.,

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

2. Call d+
i = d+(xi ) and d−

i = d(xi ), i = 1, 2, . . . ,N,
3. Define the Toeplitz matrices

Ki = νIn −
(
d+
i GN + d−

i G
T
N

)
, i = 1, 2, . . . ,N.

4. Since eTi AN = eTi Ki , approximate

eTi A
−1 ≈ eTi K

−1
i .
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Circulant matrices at any cost
But how do we approximate the inversion?

� Build P1 =

N∑
i=1

eie
T
i K

−1
i

Ó it costs too much! N Toeplitz solve per iteration.

� Build P2 =

N∑
i=1

eie
T
i C

−1
i with Ci = s(Ki ) (Strang preconditioner)

Ò it still cost too much! O(N2 log(N)) per iteration.

� Build P3 =

N∑
i=1

eie
T
i

ℓ∑
j=1

ϕj(xi )C
−1
j

7 The cost is now O(ℓN logN) operations.

Ó where for ℓ ≪ N values {xij }
ℓ
j=1 ⊂ {xi }

N
i=1 ϕj(x) are the basis of the piecewise linear

interpolation of

qλ(x) =
1

ν+ λd+(x) + λd−(x)
, λ ∈ C.
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Circulant matrices at any cost

The analysis of the 7 P3 preconditioner is quite involved, furthermore

Ô the iteration number dependence on the selection of the interpolation nodes and the
value of λ is unclear,

Ô the resulting preconditioner is always a circulant matrix, thus the general theory
tells us that there is no hope of getting a cluster of any sort.

. The extension of this preconditioners to the multi-dimensional settings is even more
challenging: interpolation of surfaces, and higher dimensional objects is a tough problem!

p For these reasons we will not pursue further these results, if you are interested start
from (Pan et al. 2014), and look to the next episodes.
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Multidimensional cases

What happens if our equation becomes
∂W
∂t =

(
θ RLDα

[0,x ] ·+(1− θ)RLDα
[x ,1]·

)
W (x , y , t) + θ ∈ [0, 1],(

θ RLDα
[0,y ] ·+(1− θ)RLDα

[y ,1]·
)
W (x , y , t)

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

å If we repeat the discretization procedure we have used in the 1D case we end up with
a block-Toeplitz-with-Toeplitz-blocks matrix,

� then we could attempt solution by using a block-circulant-with-circulant-blocks
preconditioner! In the 1D case (either symmetric or not) the procedure was working,
maybe we are lucky. . .
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d+
y (x , y , t)

RLDα
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y (x , y , t)
RLDα

[y ,1]·
)
W (x , y , t)

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

å It should not be difficult to imagine, but in this case we should end up again with a
matrix sequence of GLT type,

� we can attempt the solution by doing something similar to what we have done in the
1D case: using a Toeplitz preconditioner. . .
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ÓA negative result
In the constant coefficient case we have a general negative result:

“Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear” –
Serra Capizzano and Tyrtyshnikov 1999

Theorem (Serra Capizzano and Tyrtyshnikov 1999, Theorem 4.1)

For In + An, An = An(f ) a p-level Toeplitz matrix, any preconditioner for the form In + Cn,
where pn is a p-level circulant matrix, is not superlinear.

X The number of iterations for the preconditioned system will always depend on the
size of the system!

� The dependence can still by milder than the one of the original system, thus there are
cases in which this could be worthwhile (at least for a while).

It is a difficult world

Already the case with constant coefficient is difficult to treat. Maybe we can find a way to
reduce the number of dimensions.
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ÓAnother negative result and a proposal

X The result we have obtained by means of GLT theory for the variable coefficient case
remains valid also in two dimensions: no circulant preconditioner can have a strong
cluster!

� We could attempt generalizing the P1,N and P2,N preconditioners to the new setting.

Ô The matrix of the system in 2D has now the form

AN = νIN −
(
D+
N(GNx ⊗ INy ) + D−

N(INx ⊗ GNy )
)
, N = (Nx ,Ny ).

� If the diffusion coefficients are constants, this a BTTB matrix,
� If the diffusion coefficients are space variant, we can show (following the same

road as before) that the resulting matrix sequence is a GLT sequence.

Ô P1,N = νIN −
(
D+
N(TNx (1− e−iθ1)⊗ INy ) + D−

N(INx ⊗ TNy (1− e−iθ2))
)
;

Ô P2,N = νIN −
(
D+
N(TNx (2− 2 cos(θ1))⊗ INy ) + D−

N(INx ⊗ TNy (2− 2 cos(θ2))
)
.
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The structure preserving preconditioners

- To apply both P1,N and P2,N we now need to solve an auxiliary sparse linear system
related to the discretization of a 2D problem.

� Using a sparse direct solver is not going to scale well with N = (Nx ,Ny ),

X We need to employ an iterative technique to do the preconditioner application!

å Methods of this type are usually called multi-iterative methods⇒ If we apply P1,N or P2,N using a fixed number of iterations of a fixed point
technique, then we can still use GMRES,⇒ If we apply P1,N or P2,N using a variable number of iterations of a fixed point
technique or a nonstationary solver, then we have to use the Flexible-GMRES.

® What is the right combination?

The right combination of iterative schemes to use does really depend on the machine we
have under our hands!
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Flexible-GMRES (Saad 1993)
The Flexible variant of GMRES is built from the right-preconditioned GMRES algorithm.

Input: A ∈ Rn×n, m, x(0), M ∈ Rn×n

1 r(0) ← b − Ax(0); /* Arnoldi process */

2 β← ∥r(0)∥2, v(1) ← r(0)/β;
3 for j = 1, . . . ,m do
4 z(j) ← P−1v(j);

5 w← Az(j);
6 for i = 1, . . . , j do
7 hi,j ←< w, v(i) >;

8 w← w − hi,jv
(i);

9 end
10 hj+1,j ← ∥w∥2;
11 v(j+1) ← w/hj+1,j ;

12 end

13 Vm ← [v(1), . . . , v(m)];
// Build the Krylov subspace basis

14 y(m) ← argminy ∥βe1 − Hmy∥2;
15 x(m) ← x(0) + P−1Vmy

(m);
// Conv. check, possibly a restart

16 if Stopping criteria satisfied then
17 Return: x̃ = x(m);
18 else
19 x(0) ← x(m); /* Restart */

20 goto 1;

21 end

Same preconditioner

Line 15 forms the approximate solution of the
linear system as x(0) + P−1Vmy

(m).
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7 hi,j ←< w, v(i) >;

8 w← w − hi,jv
(i);

9 end
10 hj+1,j ← ∥w∥2;
11 v(j+1) ← w/hj+1,j ;

12 end

13 Zm ← [z(1), . . . , z(m)];
// Build the Krylov subspace basis

14 y(m) ← argminy ∥βe1 − Hmy∥2;
15 x(m) ← x(0) + Zmy

(m);
// Conv. check, possibly a restart

16 if Stopping criteria satisfied then
17 Return: x̃ = x(m);
18 else
19 x(0) ← x(m); /* Restart */

20 goto 1;

21 end

Changing preconditioner

Line 15 forms the approximate solution of the
linear system as x(0) + Zmy

(m).
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Flexible-GMRES (Saad 1993)
With this variant of the GMRES we are solving

AP−1y = b, with Px = y,

with a preconditioner P whose action depends on the vector to which it is applied,

J in terms of memory we have to store two basis instead of one,

" we use the true residual instead of the preconditioned one: the results are more
reliable!

Some usual choices of multi-iterative schemes are

å Inner/Outer GMRES method: we fix a preconditioner P, solve the systems

z(j) ← P−1v(j),

by a recursive call to GMRES;

å A Multigrid algorithm in which some smoother or coarse solver is non stationary;

å Non stationary polynomial preconditioners.
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Exploiting the Kronecker structure

The multidimensional case has a new structure we can exploit: Kronecker sums!

AN = νIN −
(
D+
N(GNx ⊗ INy ) + D−

N(INx ⊗ GNy )
)
, N = (Nx ,Ny ).

Ô If we assume separable coefficients, i.e.,

d+(x , y) = d+
1 (x)d

+
2 (y), d−(x , y) = d−

1 (x)d
−
2 (y).

Ô We write the solution vector x as a matrix X such that x = vec(X ), where vec(·) is
the operation that stacks the columns of X , and the right-hand side b as B with
b = vec(B).

å We got ourselves a matrix equation involving objects of “smaller size”.
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Conclusion and summary

¥ We have characterized the spectral properties of the involved matrix sequences,

¥ We investigated several preconditioning strategies that made use of the structure of
the underlying matrices,

¥ We started investigating multi-iterative schemes and looking for ways of reducing the
dimensionality of the involved problems.

Next up

Á How and when do we solve the matrix equation formulation,

Á What do we do when we have more than two dimensions?

Á All-at-once formulations.

36 / 36
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