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The original idea

The concept of differentiation and integration to noninteger order goes as far back as the
concept we are used to work with. Leibniz mentions it in a letter to L’Hôspital in 1695:

“John Bernoulli seems to have told you of my having men-
tioned to him a marvelous analogy which makes it possible
to say in a way that successive differentials are in geometric
progression. One can ask what would be a differential
having as its exponent a fraction. You see that the re-
sult can be expressed by an infinite series. Although this
seems removed from Geometry, which does not yet know of
such fractional exponents, it appears that one day these
paradoxes will yield useful consequences, since there
is hardly a paradox without utility. Thoughts that mat-
tered little in themselves may give occasion to more beau-
tiful ones.” (Leibniz, 1646-1716)
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Who cares?

Derivatives of non integer order help
• modeling of viscoelastic phenomena, e.g., (Bagley and Torvik 1986; Müller et al. 2011)
• restate fundamental model from physics [gravity (Giusti, Garrappa, and Vachon 2020),

Schrödinger (Laskin 2002), waves (Luchko 2013), …],
• modeling of heterogeneous cardiac tissues (Cusimano et al. 2015),
• describing phenomena with memory and non locality aspects, e.g., (Benzi et al. 2020;

Riascos and Mateos 2014)
...

This is a booming topic, and many new applications frequently arise.
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Fractional integrals

Euler Γ -function
The Γ function Γ(z) is defined for complex numbers
with a positive real part via the convergent improper
integral:

Γ(z) =
∫+∞

0
xz−1e−x dx , <(z) > 0,

and then extended by analyitic continuation to a
meromorphic function that is holomorphic in the
whole complex plane except zero and the negative
integers, where the function has simple poles.
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Γ(z + 1) = z Γ(z)
Bounded in:

S = {z ∈ C : <z ∈ [1, 2)}
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A formula for repeated integration
Swapping Integrals
If G(x , t) is jointly continuous on [c, b]× [c, b]:∫ x

c
dx1

∫ x1

c
G(x1, x2)dx2 =

∫ x

c
dx2

∫ x

x2

G(x1, x2)dx1.

Fubini’s Theorem
Given (X ,SX , µx), (Y ,SY , µy ) measure spaces with σ-finite
complete measures µx , µy on the σ-algebras SX , and SY . If
the function f (x , y) is integrable on the product X × Y w.r.t.
the product measure µ = µx × µy , then the following equality
holds true ∫

X×Y
f (x , y)dµ =

∫
Y

dµy

∫
X

f (x , y)dµx .
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A formula for repeated integration

Cauchy’s formula
The indefinite integral of order n ∈ N of function f (t) is given by

In
c,t f (t) =

∫ t

c
· · ·
∫ t

c
f (t)dt · · · dt =

1
(n − 1)!

∫ t

c
(t − τ)n−1f (τ)dτ,

In
t,c f (t) =

∫ c

t
· · ·
∫ c

t
f (t)dt · · · dt =

1
(n − 1)!

∫ t

c
(τ− t)n−1f (τ)dτ.

• Can be proved by induction using Fubini’s Theorem/the previous formula,

• We have introduced the Γ function so let’s use it,
• Now we use it to move from the integer case to the real one.
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Riemann–Liouville Fractional Integrals
Riemann–Liouville Fractional Integral
Let <α > 0, and let f ∈ L1([a, b]). Then for t ∈ [a, b] we call

Iα[a,t]f (t) = aD−α
t f (t) = 1

Γ(α)

∫ t

a
(t − τ)α−1f (τ)dτ,

Iα[t,b]f (t) = aD−α
t f (t) = 1

Γ(α)

∫b

t
(τ− t)α−1f (τ)dτ.

the Riemann–Liouville fractional integrals of f of order α, we set it to be the identity
operator whenever α = 0.

LIGHTBULB the idea is that we have substituted the integer number n of repetition of the integral
with the real order α,

Question-Circle but does this makes sense?
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RL Fractional Integrals: properties - I
Theorem (Existence).
Lef f ∈ L1[a, b], and α > 0. Then, the integral Iα[a,t]f (t) exists for almost every t ∈ [a, b].
Moreover, the function Iα[a,t]f itself is also an element of L1[a, b].

Proof. It is sufficient to recognize that we can write the integral in question as a
convolution on R, indeed:∫ t

0
(t − τ)α−1f (τ)dτ =

∫+∞
−∞ Φ1(t − τ)Φ2(τ)dτ,

where

Φ1(u) =
{

uα−1, for 0 < t ≤ b − a,
0, otherwise,

and Φ2(u) =
{

f (u), for u ∈ [a, b],
0, otherwise.

By construction both the Φj , j = 1, 2, are in L1(R), and thus the integral exists and is a
member of L1 as a convolution of L1 functions (We are using again Fubini’s Theorem).
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RL Fractional Integrals: properties - II

Theorem (Semigroup property).
The RL fractional integral operators {Iαc : L1[a, b]→ L1[a, b], α ≥ 0} form a commutative
semigroup with respect to the concatenation operation, that is

Iαc (Iβc f (t)) = Iα+β
c f (t)), and Iβc (Iαc f (t)) = Iα+β

c f (t)).

The neutral element of this semigroup is the I0
c operator.

Proof. We prove it for one side, the other is analogous.
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RL Fractional Integrals: properties - II

Euler’s β-function
The Euler’s β-function is defined as:

β(x , y) ,
∫1

0
ux−1(1 − u)y−1 du =

Γ(x)Γ(y)
Γ(x + y) <x > 0,<y > 0,
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can interchange the order of integration. We now use the substitution t = τ+ s(x − τ),
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RL Fractional Integrals: properties - II
Theorem (Semigroup property).
The RL fractional integral operators {Iαc : L1[a, b]→ L1[a, b], α ≥ 0} form a commutative
semigroup with respect to the concatenation operation, that is

Iαc (Iβc f (t)) = Iα+β
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c f (t)).

The neutral element of this semigroup is the I0
c operator.
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can interchange the order of integration. We now use the substitution t = τ+ s(x − τ),
dt = (x − τ)ds. We obtain:

Iα[a,t]I
β
[a,t]f (x) =

1
Γ(α+ β)

∫ x

a
(x − τ)α+β−1f (τ)dτ = Iα+β

[a,t] f (x), a.e. on [a, b].

The same works also if we exchange α and β, while we have the 0th order operator being
the neutral element by definition. 9 / 26



RL Fractional Integrals: properties - III

A note on regularity.
Observe that in the proof we could say something more on the regularity of the resulting
functions. Indeed if f is a continuous function on [a, b], then also Iα[a,t]f is continuous.
Therefore we have that also the concatenation Iα[a,t]I

β
[a,t] and Iα+β

[a,t] are continuous. Then
what we have proved is that we have two continuous function that are almost everywhere
equal, and therefore they most coincide everywhere. Furthermore, if f ∈ L1[a, b] and
α+ β ≥ 1 we can use Semigroup property to write

Iα[a,t]I
β
[a,t]f = Iα+β

[a,t] f = Iα+β−1
[a,t] I1

[a,t]f , a.e.

Now, since I1
[a,t]f is continuos, we also get that the other two way of writing it are

continuous, and thus we can conclude the equality everywhere by the same argument as
before.
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Computing a Riemann–Liouville fractional integral.

Iα[0,t]t
µ =

1
Γ(α)

∫ t

0
(t − τ)α−1τµ dτ,

This should be the simplest possible example, and indeed it is as simple as using again the
Euler β Function:

β(x , y) ,
∫1

0
ux−1(1 − u)y−1 du =

Γ(x)Γ(y)
Γ(x + y) <x > 0,<y > 0.

To obtain it, we do the substitution for u = τ
t , then

Iα[0,t]t
µ =

tα+µ

Γ(α)

∫1

0
uµ(1 − u)α−1 du

=
tα+µ

Γ(α)

Γ(µ+ 1)Γ(α)
Γ(α+ µ+ 1) =

Γ(µ+ 1)
Γ(α+ µ+ 1) tα+µ.

11 / 26



Computing a Riemann–Liouville fractional integral.

Iα[0,t]t
µ =

1
Γ(α)

∫ t

0
(t − τ)α−1τµ dτ =

Γ(µ+ 1)
Γ(α+ µ+ 1) tα+µ,

t = linspace(0,1,100);
I = @(alpha,mu,t)

gamma(mu+1)*t.^(alpha+mu)/
gamma(alpha+mu+1);

↪→
↪→
mu = 1.5;
alpha = 1.5;
plot(t,t.^mu,'r-',t,I(alpha,mu,t),

'b-','Linewidth',2);↪→
legend('Function','Integral');

SAD-TEARThey are hard to compute!
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Quadratures for Fractional Integrals
Lightbulb Quadrature idea
Let us assume that f (t) is suitably smooth on an interval (a, b). Let

h =
b − a

N , tk = a + kh, with k = 0, 1, 2, . . . ,N, N ∈ N

then we can approximate for t = tN the fractional integral as

aD−α
b f (t)

∣∣
t=tN

=
1

Γ(α)

∫ tN

a
(tN − τ)α−1f (τ)dτ =

1
Γ(α)

N−1∑
k=0

∫ tk+1

tk

(tk − τ)α−1f (τ)dτ.

We approximate f (x) with a polynomial p(x) such that we can compute exactly the
involved integrals, this yields quadratures by the usual look

aD−α
b f (t)

∣∣
t=tN

≈
N−1∑
k=0

ωk f (tk).
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Piecewise constant approximation
We approximate f (t) on the intervals [tk , tk + 1), k = 0, . . . ,N − 1, selecting

f (t) ≈ p(t) ≡ p(tk), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1,
from which we get the formula

aD−α
b f (t)

∣∣
t=tN

≈ 1
Γ(α)

N−1∑
k=0

f (tk)

∫ tk+1

tk

(tN − τ)α−1 dτ =
1

Γ(α)

N−1∑
k=0

f (tk)

[
−

1
α
(tN − τ)α

]tk+1

tk

=

N−1∑
k=0

f (tk)
1

αΓ(α)
[(tN − tk)

α − (tN − tk+1)
α]

=

N−1∑
k=0

f (tk)
1

αΓ(α)
[(a + hn − a − kh)α − (a + hn − a − (k + 1)h)α]

=

N−1∑
k=0

f (tk)
hα

Γ(α+ 1) [(n − k)α − (N − k − 1)α] =
N−1∑
k=0

bN−k−1f (tk),
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We approximate f (t) on the intervals [tk , tk + 1), k = 0, . . . ,N − 1, selecting

f (t) ≈ p(t) ≡ p(tk), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1,

from which we get the formula

aD−α
b f (t)

∣∣
t=tN

≈
N−1∑
k=0

bN−k−1f (tk),

where we have defined

bk =
hα

Γ(α+ 1) [(k + 1)α − kα], 0 ≤ k ≤ N − 1.
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f (t) ≈ p(t) ≡ p(tk), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1,

from which we get the formula

aD−α
b f (t)
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t=tN

≈
N−1∑
k=0

bN−k−1f (tk), bk =
hα

Γ(α+ 1) [(k + 1)α − kα].

Analogously we get the case in which we select the right approximation

f (t) ≈ p(t) ≡ p(tk+1), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1,

and, more generally, for the weighted formula in which we select

f (t) ≈ p(t) ≡ λp(tk) + (1 − λ)p(tk+1), t ∈ [tk , tk + 1), k = 0, 1, . . . ,N − 1, λ ∈ [0, 1].
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Implementation
This is a simple procedure to implement

function I = constfracint(f,a,t,alpha,N,lambda)
%CONSTFRACINT computes the fractional integral with the weighted piecewise
%constant approximation of the function f between a and t, over N uniformly
%distributed intervals.
h = (t-a)/N;
tk = (a:h:t)';
b = zeros(N,1);
for k=0:N-1

b(k+1) = (k+1)^alpha - k^alpha;
end
b = h^alpha*b/gamma(alpha+1);
p = f(tk);
I = flipud(b)'*(lambda*p(1:N) + (1-lambda)*p(2:N+1));
end
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Implementation - II
And we can test the results using the fractional integral we have computed by hand

f = @(t,mu) t.^mu;
Itrue = @(alpha,mu,t) gamma(mu+1)*t.^(alpha+mu)/ gamma(alpha+mu+1);
mu = 1;
alpha = 1.5;

N = 100;
lambda = 1;
I = constfracint(@(t) f(t,mu),0,1,alpha,N,1);
fprintf('Relative error is: %e\n',abs(I-Itrue(alpha,mu,1))./abs(Itrue(alpha,mu,1)));

That returns us

Relative error is: 1.246939e-02

But what about convergence?
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Convergence

Fractional Newton-Cotes formula
Lef f (t) be approximated by a polynomial
pk,r (t) of degree r on the grid points
{tk = t(k)0 , . . . , t(k)r = tk+1}. Then the error
estimate for an f ∈ Cr+1([a, b]) on each
sub-interval [tk , tk+1] is given by

f (t) − pk,r (t) =
f (r+1)(τk)

(r + 1)!

r∏
j=0

(t − t(k)j ),

for r ∈ N, t, τk ∈ [tk , tk+1], i.e., the formula
is of order O(hr+1).

101 102 103 104 10510−12

10−8

10−4

100
Relative Error

λ = 1
λ = 0
λ = 0.5

N/λ 0 1 1/2

1e+01 1.3e-01 1.2e-01 2.9e-03
1e+02 1.3e-02 1.2e-02 3.1e-05
1e+03 1.3e-03 1.2e-03 3.1e-07
1e+04 1.3e-04 1.2e-04 3.1e-09
1e+05 1.3e-05 1.2e-05 3.1e-11
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Convergence
Proof.The interpolating polynomial can be expressed in the Lagrange basis

pk,r (t) =
r∑

i=0
lk,i(t)f (t(k)i ), lk,i(t) =

r∏
j=0
j 6=i

t − t(k)j

t(k)i − t(k)j
, 0 ≤ i ≤ r , t ∈ [tk , tk+1].

Then the fractional Newton-Coates formula si given by

aD−α
b f (t)

∣∣
t=tN

≈ aD−α
b pk,r (t)

∣∣
t=tN

=

N−1∑
k=0

r∑
i=0

C (k)
i ,N f (t(k)i ),

for
C (k)

i ,N =
1

Γ(α)

∫ tk+1

tk

(tN − τ)α−1lk,i(τ)dτ.
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∣∣
t=tN

=

N−1∑
k=0

r∑
i=0

C (k)
i ,N f (t(k)i ),

from which we obtain the error estimate as∣∣aD−α
b f (t) − aD−α

b pk,r (t)
∣∣ ≤ 1

Γ(α)

N−1∑
k=0

∫ tk+1

tk

(tN − τ)α−1 |f (τ) − pk,r (τ)| dτ

≤ max
t∈[a,tN ]

|f (r+1)(t)|
(r + 1)!Γ(α)

N−1∑
k=0

∫ tk+1

tk

(tN − τ)α−1
r∏

j=0
|τ− t(k)j |dτ

≤ max
t∈[a,tN ]

∣∣∣f (r+1)(t)
∣∣∣ hr+1

(r + 1)!Γ(α)

N−1∑
k=0

∫ tk+1

tk

(tN − τ)α−1 dτ.
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=

N−1∑
k=0
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i=0

C (k)
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from which we obtain the error estimate as

∣∣aD−α
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∣∣∣f (r+1)(t)
∣∣∣ hr+1

(r + 1)!Γ(α+ 1)(tN − t0)
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Convergence
Proof.Then the fractional Newton-Coates formula si given by

aD−α
b f (t)

∣∣
t=tN

≈ aD−α
b pk,r (t)

∣∣
t=tN

=

N−1∑
k=0

r∑
i=0

C (k)
i ,N f (t(k)i ),

from which we obtain the error estimate as∣∣aD−α
b f (t) − aD−α

b pk,r (t)
∣∣ ∈ O(hr+1).

Remark
The error estimate does not coincide completely with the classical one for Newton-Coates
formulas, this is due to the nonsymmetry of the integral kernel (t ′N − t)α−1.
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Suggested exercises, and some extensions

(i) Rewrite (and implement) the fractional weighted constant approximation for the
other-sided Riemann-Liuoville fractional integral,

(ii) Denote with tk+1/2 = tk+tk+1/2 on each sub-interval [tk , tk+1], approximate f (t) with a
piecewise quadratic polynomial, derive and implement the fractional Simpson’s formula
– Exclamation-Triangle The closed form of the coefficients for this case is cumbersome…

Extensions
By mimicking the usual procedure for deriving collocation/spectral type quadrature
formulas, we could approximate f (t) by using, e.g., Jacobi polynomials to obtain the
related quadrature formulas (when you have obtained formulas for Jacobi, then Chebyshev
and Legendre follow with relative “ease”).
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Riemann–Liouville Fractional Derivatives
Now that we’ve gotten a little bit of familiarity with Riemann–Liouville integral operators,
we can finally introduce the corresponding differential operators.

LightbulbThe key idea
Let f be a function having a continuous nth derivative on the interval [a, b], and let m ∈ N
be such that m > n, then

dn

dtn f (t) = 1
(m − n − 1)!

dm

dtm

∫ t

a
(t − τ)m−n−1f (τ)dτ =

dm

dtm Im−n
a f ,

simply by employing the Fundamental Theorem of (Classical) Calculus

f =
dm−n

dtm−n Im−n
a f ,

and applying the operator dn

dtn to both side of it.
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Riemann–Liouville Fractional Derivatives

Substitute the integer n with a real positive number α and select an m ∈ N s.t. m > α.

RL Derivative
Let α ∈ R+ and m = dαe, we define the Riemann-Liouville operator RLDα

a as

RLDα
a f (t) , dm

dtm Im−α
a f (t),

and we set RLD0
a to the identity operator.

Exclamation-Triangle The right-hand side of our definition remains valid, but now the resulting operator
depends on the choice of the point a.

Question-Circle for what functions f does this definition make sense?
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Riemann–Liouville Fractional Derivatives Existence

The An functions
We call An[a, b], or simply An when the interval is clear from the context, the space of
function with an absolutely continuous (n − 1)st derivative, i.e., the functions f for which
there exists almost everywhere a (generalized) nth derivative function g ∈ L1[a, b] for
which holds

f (n−1)(t) = f (n−1)(a) +
∫ t

a
g(τ)dτ.

Remind: For a compact interval:
continuously differentiable ⊆ Lipschitz continuous ⊆ absolutely continuous ⊆

bounded variation ⊆ differentiable almost everywhere
Example: f (t) = 3√t is absolutely continuous on any bounded interval I but not

Lipschitz continuous on any interval I such that 0 ∈ I.
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Riemann–Liouville Fractional Derivatives Existence
Theorem (Existence)
Lef f ∈ A1[a, b], and 0 < α < 1. Then RLDα

a f (t) exists almost everywhere in [a, b].
Moreover, RLDα

a f (t) ∈ Lp for 1 ≤ p < α−1 and

RLDα
a f (t) = 1

Γ(1 − α)

(
f (a)

(t − a)α +

∫ t

a
f ′(τ)(t − τ)dτ

)
.

Proof. We use directly the two definitions

RLDα
a f (t) = 1

Γ(1 − α)

d
dt

∫ t

a
f (τ)(t − τ)−α dτ

=
1

Γ(1 − α)

d
dt

∫ t

a

(
f (a) +

∫τ
a

f ′(s)ds
)
(t − τ)−α dτ
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RLDα
a f (t) = 1

Γ(1 − α)

(
f (a)

(t − a)α +

∫ t

a
f ′(τ)(t − τ)dτ

)
.

Proof. We use directly the two definitions, and apply again Fubini’s Theorem

RLDα
a f (t) = 1

Γ(1 − α)

d
dt

(
f (a)
∫ t

a

dt
(x − t)α +

∫τ
a

∫ t

a
f ′(s)(t − τ)−α ds dτ

)
=

1
Γ(1 − α)

(
f (a)

(t − a)α +
d
dt

∫τ
a

∫ t

a
f ′(s)(t − τ)−α ds dτ

)
(Fubini) =

1
Γ(1 − α)

(
f (a)

(t − a)α +
d
dt

∫ t

a
f ′(s)(t − s)1−α

1 − α
ds

)
,
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a f (t) = 1

Γ(1 − α)

(
f (a)

(t − a)α +

∫ t

a
f ′(τ)(t − τ)dτ

)
.

Proof. We use directly the two definitions, and finally Leibniz rule for the derivative of
integral functions,

RLDα
a f (t) = 1

Γ(1 − α)

(
f (a)

(t − a)α +
d
dt

∫ t

a
f ′(s)(t − s)1−α

1 − α
ds

)
,

(Leibniz) =
1

Γ(1 − α)

(
f (a)

(t − a)α +

∫ t

a
f ′(τ)(t − τ)dτ

)
.
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Computing our first RL derivatives

To keep things simple we can compute, first of all, the fractional derivative of order
α ∈ (0, 1) of the constant function f (t) = 1 in [0, t]:

We simply apply the previous representation theorem,
and thus:

RLDα
[0,1]f (t) =

1
Γ(1 − α)

(
f (0)

(t − 0)α +

∫ t

0
f ′(τ)(t − τ)dτ

)
=

=
1

Γ(1 − α)

1
(t − 0)α =

t−α

Γ(1 − α)
0 0.2 0.4 0.6 0.8 1

0

2

4

6
RLDα

[0,1]f (t)
f (t) = 1

The RL derivative of a constant is not zero!
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Computing our first RL derivatives

Let f (t) = (t − a)β for some β > −1 and compute its RL derivative of order α > 0 on an
interval [a, b].
First we compute the fractional integral part of the definition:

Iα[a,t]f (t) =
1

Γ(α)

∫ t

a
(τ− a)β(t − τ)α−1 dτ =

=
1

Γ(α)

∫ t−a

0
sβ(t − a − s)α−1 ds =← (∫ x

0
sβ−1(x − s)α−1ds =

Γ(α)Γ(β)

Γ(α+ β)
xα+β−1

)
=

Γ(β+ 1)
Γ(α+ β+ 1)(t − a)α+β,
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Computing our first RL derivatives
Let f (t) = (t − a)β for some β > −1 and compute its RL derivative of order α > 0 on an
interval [a, b].
First we compute the fractional integral part of the definition:

Iα[a,t]f (t) =
Γ(β+ 1)

Γ(α+ β+ 1)(t − a)α+β,

Then we just have to compute the derivative with the correct indexes

RLDα
[0,1]f (t) =

ddαe

dtdαe
Idαe−α

[a,t] f (t) = Γ(β+ 1)
Γ(dαe− α+ β+ 1)

ddαe

dtdαe
(·− a)dαe−α+β

∣∣∣∣∣
t

,

now, if α− β ∈ N the right-hand side vanishes (dαe-derivative of a polynomial of lower
degree), if α− β 6∈ N, we find

RLDα
[0,1]f (t) =

Γ(β+ 1)
Γ(β+ 1 − α)

(t − a)β−α.

24 / 26



Summary and anticipations

We did
Check-Circle Definition and properties of Riemann–Liouville Integrals,
Check-Circle Some examples of Fractional Newton-Cotes formulas for RL integral computations,
Check-Circle Definition and existence of Riemann–Liouville Derivatives,
Check-Circle A couple of by-hand computations of RL derivatives of simple functions.

Next up
CLIPBOARD-LIST Properties and interactions between Riemann–Liouville Integrals and Derivatives,
CLIPBOARD-LIST The Caputo fractional derivative,
CLIPBOARD-LIST An introduction to Fractional Differential Equations.
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RL Fractional Integrals and Derivatives

Riemann–Liouville Fractional Integral
Let <α > 0, and let f ∈ L1([a, b]). Then for t ∈ [a, b] we define

Iα[a,t]f (t) = aD−α
t f (t) = 1

Γ(α)

∫ t

a
(t − τ)α−1f (τ)dτ,

Iα[t,b]f (t) = aD−α
t f (t) = 1

Γ(α)

∫ b

t
(τ − t)α−1f (τ)dτ.

Riemann–Liouville Fractional Derivative
Let <α > 0, m = dαe, and f ∈ Am([a, b]), Then for t ∈ [a, b] we define

RLDα
[a,t]f (t) =

1
Γ(m − α)

dm

dtm

∫ t

a
(t − τ)m−α−1f (τ) dτ,

RLDα
[t,b]f (t) =

(−1)m

Γ(m − α)

dm

dtm

∫ b

t
(τ − t)m−α−1f (τ)dτ.

1 / 40



RL Derivatives Properties

RL integrals have a semigroup property, d/dt has it, so what about RL Derivatives?

Theorem
Assume that α1, α2 ≥ 0. Moreover let φ ∈ L1([a, b]), and f = Iα1+α2

[a,b] φ. Then,

RLDα1
[a,t]RLDα2

[a,t]f = RLDα1+α2
[a,t] .

Proof. We use the definition and the assumption on f ,

RLDα1
[a,t]RLDα2

[a,t]f =RLDα1
[a,t]RLDα2

[a,t]I
α1+α2
[a,b] φ =

ddα1e

dtdα1e
Idα1e−α1
[a,b]

ddα2e

dtdα2e
Idα2e−α2
[a,b] Iα1+α2

[a,b] φ
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RL Derivatives Properties
RL integrals have a semigroup property, d/dt has it, so what about RL Derivatives?

Theorem
Assume that α1, α2 ≥ 0. Moreover let φ ∈ L1([a, b]), and f = Iα1+α2

[a,b] φ. Then,

RLDα1
[a,t]RLDα2

[a,t]f = RLDα1+α2
[a,t] .

Proof. We use the definition and the assumption on f , then we use the semigroup property
for integrals, and since orders of the integral and differential operators involved are in N.
This way we proved that: RLDα1

[a,t]RLDα2
[a,t]f = φ. Now we work on the other part, that is

analogous:

RLDα1+α2
[a,t] f =

ddα1+α2e

dtdα1+α2e
Idα1+α2e−α1−α2
[a,b] f =

ddα1+α2e

dtdα1+α2e
Idα1+α2e
[a,b] I−α1−α2

[a,b] Iα1+α2
[a,b] φ = φ.
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RL Derivatives Properties
Theorem
Assume that α1, α2 ≥ 0. Moreover let φ ∈ L1([a, b]), and f = Iα1+α2

[a,b] φ. Then,

RLDα1
[a,t]RLDα2

[a,t]f = RLDα1+α2
[a,t] .

An observation on the hypothesis
The crucial hypothesis for the proof has been having f = Iα1+α2

[a,b] φ. This is not technical,
consider f (t) =

√
t, and α1 = α2 = 1/2, then we have computed in the last lecture

RLD1/2
[0,t]

√
t = 0, ⇒ RLD1/2

[0,t]RLD1/2
[0,t]

√
t = 0,

but RLD1
[0,t] =

d
dt
√

t = 1/2
√

t 6= 0. The condition on f implies both the needed regularity,
and regulates how f (t) → 0 as t → a. Other example. Consider the same function with
α1 = 1/2, α2 = 3/2.
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RL Derivatives Properties - II

Theorem
Let α ≥ 0. Then, for every f ∈ L1([a, b])

RLDα
[a,t]I

α
[a,t]f = f a.e.

Proof. The case α = 0 descend from the definitions, both operators are the identity. For
α > 0, let m = dαe, then we use the definition of RLDα

[a,t] and the semigroup property of
fractional integration

RLDα
[a,t]I

α
[a,t]f =

dm

dtm Im−α
[a,t] Iα[a,t]f =

dm

dtm Im
[a,t]f = f (t).
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Thus we have proved that the RL derivative is a left inverse of the RL integral,
unfortunately we cannot claim that it is the right inverse.
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Theorem
Let α ≥ 0. Then, for every f ∈ L1([a, b])

RLDα
[a,t]I

α
[a,t]f = f a.e.

Thus we have proved that the RL derivative is a left inverse of the RL integral,
unfortunately we cannot claim that it is the right inverse.

Theorem
Let α > 0. If there exists some φ ∈ L1([a, b]) such that f = Iα[a,t]φ then

Iα[a,t]RLDα
[a,t]f = f .

What happens in the general case?
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RL Derivatives Properties - III
Theorem
Let α > 0, and m = bαc+ 1. Assume that f is such that Im−α

[a,t] f ∈ Am([a, b]). Then,

Iα[a,t]RLDα
[a,t]f = f (t) −

m−1∑
k=0

(t − a)α−k−1

Γ(α− k) lim
z→a+

dm−k−1

dz Im−α
[a,z] f (z).

That reduces to

Iα[a,t]RLDα
[a,t]f = f (t) − (t − a)α−1

Γ(α)
lim

z→a+
I1−α
[a,z] f (z), for 0 < α < 1.

• As for the semigroup property this is an issue of regularity and of going rapidly enough
to zero at the beginning of the interval,

• The analogous property can be written also for the other-sided RL derivatives.
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RL - Combinations, products and compositions
Linear combination descend easily from the definition.

Theorem
Let f1, f2 : [a, b] → R such that RLDα

[a,t]f1, and RLDα
[a,t]f1 exist almost everywhere. Then,

for c1, c2 ∈ R we have RLDα
[a,t](c1f1 + c2f2) exists almost everywhere, and

RLDα
[a,t](c1f1 + c2f2) = c1RLDα

[a,t]f1 + c2RLDα
[a,t]f2.

Leibniz’ formula for Riemann–Liouville operators, doesn’t come so easily

Theorem (Leibniz’ formula for Riemann–Liouville operators)
Let α > 0, and assume f and g analytic on (a − h, a + h) for some h > 0. Then,

RLDα
[a,t][fg ](t) =

bαc∑
k=0

(
α

k

)
RLDk

[a,t]f (t)RLDα−k
[a,t] g(t) +

+∞∑
k=bαc+1

(
α

k

)
RLDk

[a,t]f (t)I
k−α
[a,t] g(t),

for t ∈ (a, a + h/2).
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RL - Combinations, products and compositions - II
For compositions we need to recall first a result for integer-order derivatives

Francesco da Paola Virginio Secondo Maria Faà di
Bruno’s Lemma
If g and f are functions with a sufficient number of
derivatives and n ∈ N, then

dn

dtn [g(f (·))](t) =
∑(

dk

dtk g
)
(f (t))

n∏
µ=1

(
dµ

dtµ f (t)
)bµ

,

where the sum is over all partitions of {1, 2, . . . , n}, and for
each partition k is its number of blocks and bj is the
number of blocks with exactly j elements.

For a proof (and the history) see (Johnson 2002).
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RL - Combinations, products and compositions - II
For compositions we need to recall first a result for integer-order derivatives, then we can
look at its extension
Faà di Bruno’s formula for RL operators
If f and g are regular enough we have

RLDα
[a,t][fg ](t) =

+∞∑
k=1

(
α

k

)
k!(t − a)k−α

Γ(k − α+ 1)

k∑
`=1

(
RLD`

[a,t]f
)
(g(t))

∑
(a1,··· ,ak)∈Ak,`

k∏
r=1

1
ar !

(
d r

dtr g(t)
r

)ar

+
(t − a)−α

Γ(1 − α)
f (g(t)),

where (a1, . . . , ak) ∈ Ak,` means that

a1, . . . , ak ∈ N0,
k∑

r=1
rar = k and

k∑
r=1

ar = `.
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What now?
We have put together all the analogues of the instruments of classical calculus, but
what do we do with them now?

What we would like to solve is:

RLDα
[0,t]y(t) = f (t, y(t)), y : [0,T ] → Rd , f : [0,T ]× Rd → Rd .

Nevertheless, we have a problem! What we would like to solve is a Cauchy problem, so we
need to put initial conditions, but last time we observed that

RLDα
[0,t]c 6= 0, c ∈ Rd .

Therefore, we should equip the system with the following initial conditions instead
RLDα−k

[0,t] y(0) = bk , k = 1, 2, . . . , dαe− 1, lim
z→0+

Idαe−α

[0,t] y(z) = bdαe.

We could develop a theory for this, but these conditions are physically difficult to use,
we don’t get this type of initial data from the applications.
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Caputo fractional derivatives

Caputo fractional derivative (Caputo 2008)
Let α ≥ 0, and m = dαe. Then, we define the operator

CDα
[a,t]f = Im−α

[a,t]
dm

dtm f ,

whenever dm

dtm f ∈ L1([a, b]).
(R. Gorenflo, M. Caputo,

Bologna 2000, source:
fracalmo.org)

LIGHTBULB We have exchanged the order of the derivative and fractional integral operators.

“Chi cerca trova, chi ricerca ritrova.” - E. De Giorgi
The concept occurred a certain number of times: (Džrbašjan and Nersesjan 1968;
Gerasimov 1948; Gross 1947; Liouville 1832; Rabotnov et al. 1969).
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So, what is the difference?

First of all, we have the result we wanted on constants c ∈ R:

CDα
[a,t]c = Im−α

[a,t]
dm

dtm c = Im−α
[a,t] 0 = 0.

We can put in relation the two operators with the following result

Theorem
Let α > 0 and m = dαe. Moreover, assume that f ∈ Am([a, b]). Then,

CDα
[a,t]f = RLDα

[a,t] [f − Tm−1[f ; a]] a.e. on [a, b],

for Tm−1[f ; a] the Taylor polynomial of degree m − 1 for the function f centered at a, with
T−1[f ; a] = 0.
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So, what is the difference?

Proof. In the case α ∈ N the result follows easily, since both quantities reduces to the
integer order αth derivative.
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Proof. In the case α ∈ N the result follows easily, since both quantities reduces to the
integer order αth derivative. Therefore, we consider the case α /∈ N and m = dαe > α

RLDα
[a,t] [f − Tm−1[f ; a]] =

dm

dtm Im−α
[a,t] [f − Tm−1[f ; a]]

=
dm

dtm

∫ t

a

(t − τ)m−α−1

Γ(m − α)
(f (τ) − Tm−1[f ; a](τ)) dτ,
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dm

dtm Im−α
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=
dm

dtm

∫ t

a

(t − τ)m−α−1

Γ(m − α)
(f (τ) − Tm−1[f ; a](τ)) dτ,

We apply a partial integration

∗ = −
1

Γ(m − α+ 1)
[
(f (τ) − Tm−1[f , a](τ))(t − τ)m−α

]∣∣∣∣τ=t

τ=a

+
1

Γ(m − α+ 1)

∫ t

a
(f ′(τ) − (Tm−1[f , a](τ)) ′)(t − τ)m−α dτ.
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+
1

Γ(m − α+ 1)

∫ t

a
(f ′(τ) − (Tm−1[f , a](τ)) ′)(t − τ)m−α dτ.

The terms in red are zero, and only the integral terms remain.
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[a,t]
dm

dtm [f − Tm−1[f ; a]] = Im
[a,t]I

m−α
[a,t]

dm

dtm [f − Tm−1[f ; a]] ,

the mth derivative of the Taylor polynomial is zero (degree m − 1).
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We apply a partial integration m times since f ∈ Am([a, b]) and obtain the expression

Im−α
[a,t] [f − Tm−1[f ; a]] = Im

[a,t]I
m−α
[a,t]

dm

dtm f .

We reapply the mth derivative to the simplified expression:

RLDα
[a,t] [f − Tm−1[f ; a]] =

dm

dtm Im
[a,t]I

m−α
[a,t]

dm

dtm f = Im−α
[a,t]

dm

dtm f = CDα
[a,t]f .
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An example of computation

Let f (t) = (t − a)β for some β ≥ 0, then

CADα
[a,t]f (t) =


0, β ∈ {0, 1, 2, . . . , dαe− 1},
Γ(β+1)

Γ(β+1−α)(t − a)β−α, (β ∈ N ∧ β ≥ dαe)
∨ (β /∈ N∧ β > dαe− 1).

Let us compare it with the Riemann-Liouville case:

RLDα
[0,1]f (t) =

{
0, α− β ∈ N,
Γ(β+1)

Γ(β+1−α)(t − a)β−α, α− β /∈ N.

Exclamation The two operators have different kernels and domain.
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Caputo fractional derivatives - Properties
We can rewrite all the properties we have seen for RL derivatives for the Caputo version.

Theorem. (Caputo Derivatives Properties)
Let α ≥ 0 and m = dαe
(i) CDα

[a,t]f = RLDα
[a,t]f −

∑m−1
k=0 f (k)(a)/Γ(k−α+1)(t − a)k−α,

(ii) CDα
[a,t]f = RLDα

[a,t]f iff f has a zero of order m at a,
(iii) If f is continuous, CDα

[a,t]I
α
[a,t]f = f ,

(iv) If f ∈ Am([a, b]) then Iα[a,t]CDα
[a,t] = f (t) −

∑m−1
k=0 f (k)(a)/k!(x − a)k ,

(v) If f ∈ Ck([a, b]), α,β > 0 s.t. ∃` ∈ N ` ≤ k and α,α+ β ∈ [`− 1, `] then
CDα

[a,t]CDβ
[a,t]f = CDα+β

[a,t] f .

(vi) f ∈ Cµ([a, b]), α ∈ [0, µ], then RLDµ−α
[a,t] CDα

[a,t]f = f (µ).
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Caputo fractional derivatives - Properties
Theorem. (Caputo Derivatives Properties)
(vii) For f1, f2 : [a, b] → R, c1, c2 ∈ R then

CDα
[a,t](c1f1 + c2f2) = c1CDα

[a,t]f1 + c2CDα
[a,t]f2 a.e. on [a, b],

if CDα
[a,t]f1, CDα

[a,t]f2 exist a.e. on [a, b],
(viii) (Leibniz) let α ∈ (0, 1), f , g analytic on (a − h, a + h), then

CDα
[a,t][fg ](t) =

(t − a)−α

Γ(1 − α)
g(a)(f (t) − f (a)) +

(
CDα

[a,t](g(t)
)

f (t)

+

∞∑
k=1

(
α

k

)(
Ik−α
[a,t] g(t)

)
CDk

[a,t]f (t).

They can all be proved by mimicking the proofs for the RL derivative.
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Fractional ODEs with Caputo Derivatives

Let’s restart with the differential equation, but now written in terms of Caputo Derivatives

α > 0, m = dαe,


CDα

[0,t]y(t) = f (t, y(t)), t ∈ [0,T ],

dky(0)
dtk = y(k)

0 , k = 0, 1, . . . ,m − 1.
(FODE)

And we are now faced with the usual questions
Question-Circle Is there any solution?
Question-Circle If there is at least one, then how many there are?
Question-Circle When it is all said and proved, how can we approximate it?
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A Peano existence theorem for first order equations
Theorem (Diethelm and Ford 2002, Theorem 2.1, 2.2)

Let 0 < α and m = dαe. Moreover let {y (k)
0 ∈ R}m−1

k=0 , K > 0, and h∗ > 0. We define

G =

{
(t, y) : t ∈ [0, h∗] :

∣∣∣∣∣y −

m−1∑
k=0

tky(k)
0 /k!

∣∣∣∣∣ ≤ K
}
,

and let the function f : G → R be continuous. Furthermore, define

M = sup
(t,z)∈G

|f (t, z)|, h =

{
h∗, if M = 0,
min{h∗, (K Γ(α+1)/M)1/n}, else.

Then, there exists a function y ∈ C([0, h]) solving (FODE).

To prove it we need a Lemma…and a bit of work.
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A Peano existence theorem for first order equations

Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.
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Proof. We need to prove both the implications.(⇒) First of all we have y(t) being a
continuous solution of the nonlinear Volterra equation. We apply on both side the Caputo
derivative of order α
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∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

z(t) = f (t, y(t)) = CDα
[0,t]y(t) = RLDα

[0,t](y−Tm−1[y ; 0](t)) =
dm

dtm Im−α
0 (y−Tm−1[y ; 0])(t),
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a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:
we have an equality between continuous function, so we can apply Im

[0,t] to both sides!
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for a polynomial q(t) ∈ P≤m−1[t].
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deg(q) ≤ m − 1 ⇒ q ≡ 0.

17 / 40



A Peano existence theorem for first order equations

Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

Im
[0,t]z(t) = Im−α

0 (y − Tm−1[y ; 0])(t)

and apply RLDm−α
[0,t] to both side of the equation.

17 / 40



A Peano existence theorem for first order equations

Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

RLDm−α
[0,t] Im−α

0 (y − Tm−1[y ; 0])(t) = RLDm−α
[0,t] Im

[0,t]z(t)

17 / 40



A Peano existence theorem for first order equations

Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
a bit more laborious. Let us define z(t) = f (t, y(t)) ∈ C[0, h], we can rewrite (FODE) as:

(y − Tm−1[y ; 0])(t) =RLDm−α
[0,t] Im

[0,t]z(t) =
d
dt I1+α−m

[0,t] Im
[0,t]z(t) =

d
dt I1+α

[0,t] z(t) = Iα0 z(t).

17 / 40



A Peano existence theorem for first order equations
Lemma
Under the same hypotheses of the previous Theorem. A function y ∈ C([0, h]) is a solution
of the initial value problem (FODE) if and only if it is a solution of the nonlinear Volterra
integral equation of the second kind

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

Proof. We need to prove both the implications.(⇒) follows by direct computation. (⇐) Is
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A Peano existence theorem for first order equations
The other two results we will need (and that we are not going to prove) are

Theorem (Ascoli-Arzelà)
Lef F ⊂ C([a, b]) for some a < b, and assume the sets to be equipped with the supremum
norm. Then F is relatively compact1 in C([a, b]) if F is
• uniformly bounded, ∃C > 0 s.t. ‖f ‖∞ ≤ C ∀ f ∈ F ,
• equicontinuous ∀ ε > 0 ∃ δ > 0 such that ∀ f ∈ F and all x , x∗ ∈ [a, b] with
|x − x∗| < δ we have |f (x) − f (x∗)| < ε.

Schauder’s Fixed Point Theorem
Lef (E , d) be a complete metric space, let U be a closed convex subset of E , and let
A : U → U be a mapping such that the set {Au : u ∈ U} is relatively compact1 in E . Then
A has at least one fixed point.

1A subset whose closure is compact.
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A Peano existence theorem for first order equations
Let us look again at the statement of the Theorem.

Theorem (Diethelm and Ford 2002, Theorem 2.1, 2.2)

Let 0 < α and m = dαe. Moreover let {y (k)
0 ∈ R}m−1

k=0 , K > 0, and h∗ > 0. We define

G =

{
(t, y) : t ∈ [0, h∗] :

∣∣∣∣∣y −

m−1∑
k=0

tky(k)
0 /k!

∣∣∣∣∣ ≤ K
}
,

and let the function f : G → R be continuous. Furthermore, define

M = sup
(t,z)∈G

|f (t, z)|, h =

{
h∗, if M = 0,
min{h∗, (K Γ(α+1)/M1/n}, else.

Then, there exists a function y ∈ C([0, h]) solving (FODE).
19 / 40



A Peano existence theorem for first order equations

Proof. If M = 0, then f (x , y) = 0 for all (x , y) ∈ G, then we can explicitly write the
solution as

y : [0, h] → R y(t) =
m−1∑
k=0

tk

k!y
(k)
0 ,

therefore a solution exists.
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A Peano existence theorem for first order equations

Proof. If M > 0, let us apply the Lemma and rewrite our problem as a Volterra equation:

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe,

and introduce the polynomial T satisfying the boundary condition and the space U

T (t) =
m−1∑
k=0

xk

k! y (k)
0 , U = {y ∈ C([0, h]) : ‖y − T‖∞ ≤ K }.
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T (t) =
m−1∑
k=0

xk

k! y (k)
0 , U = {y ∈ C([0, h]) : ‖y − T‖∞ ≤ K }.

• U is closed and convex,
• U ⊂ C([0, h]),⇒ U is a non empty Banach space (at least T ∈ U).
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Proof. If M > 0, let us apply the Lemma and rewrite our problem as a Volterra equation:

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +
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∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe,

and introduce the polynomial T satisfying the boundary condition and the space U

T (t) =
m−1∑
k=0

xk

k! y (k)
0 , U = {y ∈ C([0, h]) : ‖y − T‖∞ ≤ K }.

Let us define the operator:

(Ay)(t) = T (t) + 1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ.
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A Peano existence theorem for first order equations

Proof. If M > 0, let us apply the Lemma and rewrite our problem as a Volterra equation:

y = Ay , (Ay)(t) = T (t) + 1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ.

LIGHTBULB we have to prove that A has a fixed point by the following steps:
1. proving that Ay ∈ U,
2. showing that A(U) = {Au : u ∈ U} is relatively compact (Ascoli-Arzelà),
3. apply Schauder’s Fixed Point Theorem for the victory Hand-peace.
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A Peano existence theorem for first order equations

Proof. Step 1. Let us take 0 ≤ t1 ≤ t2 ≤ h

|(Ay)(t1) − (Ay)(t2)| =
1

Γ(α)

∣∣∣∣∫ t1

0
(t1 − τ)α−1f (τ, y(τ))dτ−

∫ t2

0
(t2 − τ)α−1f (τ, y(τ))dτ

∣∣∣∣
=

1
Γ(α)

∣∣∣∣∫ t1

0

[
(t1 − τ)α−1 − (t2 − τ)α−1] f (τ, y(τ))dτ

−

∫ t2

t1

(t2 − τ)α−1f (τ, y(τ))dτ
∣∣∣∣

≤ M
Γ(α)

(∫ t1

0

∣∣(t1 − τ)α−1 − (t2 − τ)α−1∣∣ dτ+
∫ t2

t1

(t2 − τ)α−1 dτ
)
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A Peano existence theorem for first order equations
Proof. Step 1. Let us take 0 ≤ t1 ≤ t2 ≤ h

|(Ay)(t1) − (Ay)(t2)| ≤
M

Γ(α)

(∫ t1

0

∣∣(t1 − τ)α−1 − (t2 − τ)α−1∣∣ dτ+ (t2 − t1)
α

α

)
.

If α = 1 the first integral vanishes.
If α < 1, α− 1 < 0, and hence (t1 − τ)α−1 ≥ (t2 − τ)α−1, thus we remove the | · | and∫ t1

0

∣∣(t1 − τ)α−1 − (t2 − τ)α−1∣∣ = 1
α
(tα1 − tα2 + (t2 − t1)

α) ≤ 1
α
(t2 − t1)

α.

If α > 1 we have (t1 − τ)α−1 ≤ (t2 − τ)α−1∫ t1

0

∣∣(t1 − τ)α−1 − (t2 − τ)α−1∣∣ = 1
α
(tα2 − tα1 − (t2 − t1)

α) ≤ 1
α
(tα2 − tα1 ).
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A Peano existence theorem for first order equations

Proof. Step 1. Let us take 0 ≤ t1 ≤ t2 ≤ h

|(Ay)(t1) − (Ay)(t2)| ≤

{
2M/Γ(α+1)(t2 − t1)

α, α ≤ 1,
M/Γ(α+1)((t2 − t1)

α + tα2 − tα1 ), α > 1.

Therefore,

• Ay is continuous since |(Ay)(t1) − (Ay)(t2)| → 0 for t2 → t1,
• for y ∈ U and t ∈ [0, h] we find⇒ Ay ∈ U if y ∈ U.
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α + tα2 − tα1 ), α > 1.

Therefore,
• Ay is continuous since |(Ay)(t1) − (Ay)(t2)| → 0 for t2 → t1,
• for y ∈ U and t ∈ [0, h] we find

⇒ Ay ∈ U if y ∈ U.

|(Ay)(t) − T (t)| = 1
Γ(α)

∣∣∣∣∫ t

0
(t − τ)α−1f (τ, y(τ))

∣∣∣∣ ≤ 1
Γ(α+ 1)Mtα ≤ 1

Γ(α+ 1)Mhα

(
Hp: h < K Γ(α + 1)

M

1/n
)
≤ 1
Γ(α+ 1)M KΓ(α+ 1)

M = K .
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Therefore,
• Ay is continuous since |(Ay)(t1) − (Ay)(t2)| → 0 for t2 → t1,
• for y ∈ U and t ∈ [0, h] we find |(Ay)(t) − T (t)| ≤ K⇒ Ay ∈ U if y ∈ U.
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A Peano existence theorem for first order equations

Proof. Our plan:
Check proving that Ay ∈ U,
2. showing that A(U) = {Au : u ∈ U} is relatively compact (Ascoli-Arzelà),
3. apply Schauder’s Fixed Point Theorem for the victory Hand-peace.

Step 2. First we prove that the set is bounded, let z ∈ A(U) and t ∈ [0, h]

|z(t)| = |(Ay)(t)| ≤‖T‖∞ +
1

Γ(α)

∫ t

0
(t − τ)α−1|f (τ, y(τ))|d τ

≤‖T‖∞ +
1

Γ(α+ 1)Mhα ≤ ‖T‖∞ + K .
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2. showing that A(U) = {Au : u ∈ U} is relatively compact (Ascoli-Arzelà),
3. apply Schauder’s Fixed Point Theorem for the victory Hand-peace.

Step 2. First we prove that the set is bounded, let z ∈ A(U) and t ∈ [0, h]

|z(t)| ≤ ‖T‖∞ + K .

For the emicontinuity, let 0 ≤ t1 ≤ t2 ≤ h we found (for α ≤ 1)

|(Ay)(t1) − (Ay)(t2)| ≤
2M

Γ(α+ 1)(t2 − t1)
α ≤ 2M

Γ(α+ 1)δ
α, if |t2 − t1| < δ.

the expression on the right is independent of y ,t1, and t2.
20 / 40



A Peano existence theorem for first order equations
Proof. Our plan:
Check proving that Ay ∈ U,
2. showing that A(U) = {Au : u ∈ U} is relatively compact (Ascoli-Arzelà),
3. apply Schauder’s Fixed Point Theorem for the victory Hand-peace.

Step 2. First we prove that the set is bounded, let z ∈ A(U) and t ∈ [0, h]

|z(t)| ≤ ‖T‖∞ + K .

For the emicontinuity, let 0 ≤ t1 ≤ t2 ≤ h we found (for α > 1)

|(Ay)(t1) − (Ay)(t2)| ≤
M

Γ(α+ 1)((t2 − t1)
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(Mean Value Theorem) =
M

Γ(α+ 1)((t2 − t1)
α + α(t2 − t1)τ

α−1), τ ∈ [t1, t2] ⊆ [0, h]
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Step 2. First we prove that the set is bounded, let z ∈ A(U) and t ∈ [0, h]

|z(t)| ≤ ‖T‖∞ + K .

For the emicontinuity, let 0 ≤ t1 ≤ t2 ≤ h we found (for α > 1)

|(Ay)(t1) − (Ay)(t2)| ≤
M

Γ(α+ 1)(δ
α + αδhα − 1), if |t2 − t1| < δ,

the expression on the right is again independent of y ,t1, and t2.
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• We have proved that the operator A is such that {Au : u ∈ U} is relatively compact

in E .⇒ By Schauder’s Fixed Point Theorem we have the existence of at least a solution.

At last…
We have proved existence: what about uniqueness?

CODEA programming idea
We could use the fixed-point iteration as an algorithm for obtaining a solution.
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Uniqueness of the solution à-la-Picard-Lindelöf
As for the classical calculus case, to prove uniqueness we need Lipschitzianity of the system
dynamics w.r.t. to the second component.

Weissinger’s Fixed Point Theorem
Assume (U, d) to be a nonempty complete metric space, and let βj ≥ 0 for every j ∈ N0
and such that

∑∞
j=0 βj converges. Furthermore, let the mapping A : U → U satisfy the

inequality
d(Aju,Ajv) ≤ βjd(u, v), ∀j ∈ N, ∀ u, v ∈ U.

Then A has a uniquely determined fixed point u∗. Moreover, for any u0 ∈ U, the sequence
(Aju0)

∞
j=1 converge to this fixed point.

The plan
RECYCLE Reuse the same set U, and map A from the existence proof,
LESS-THAN-EQUAL Prove the inequality and give an expression of the αj in term of the Lipschitz constant.
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Uniqueness of the solution à-la-Picard-Lindelöf
Theorem
Let 0 < α and m = dαe. Moreover, let y(0)

0 , . . . , y(m−1)
0 ∈ R, K > 0, and h∗ > 0. We define the

same set G:
G =

{
(t, y) : t ∈ [0, h∗] :

∣∣∣∣∣y −

m−1∑
k=0

tk y(k)
0 /k!

∣∣∣∣∣ ≤ K
}
,

and let the function f : G → R be continuous and Lipschitz w.r.t. the second entry

|f (t, y1) − f (t, y2)| ≤ L|y1 − y2|,

for some L > 0 independently of t, y1, and y2. Then, for h such that

M = sup
(t,z)∈G

|f (t, z)|, h =

{
h∗, if M = 0,
min{h∗, (KΓ(α+1)/M

1/n}, else.

there exist a uniquely defined y ∈ C[0, h] solving (FODE).
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Uniqueness of the solution à-la-Picard-Lindelöf

Proof. We are under the same hypotheses of the Existence Theorem, thus (FODE) has a
solution.
We prove by induction on j that

‖Ajy − Aj ỹ‖∞ ≤ (Ltα)j

Γ(1 + αj)‖y − ỹ‖∞.
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We prove by induction on j that

‖Ajy − Aj ỹ‖∞ ≤ (Ltα)j

Γ(1 + αj)‖y − ỹ‖∞.

Base case: j = 0 follows by the definition.
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Γ(1 + αj)‖y − ỹ‖∞.

Inductive hypothesis: we assume it true for j − 1 and prove it for j.
Inductive step:

‖Ajy − Aj ỹ‖∞ =‖A(Aj − 1y) − A(Aj−1ỹ)‖∞
=

1
Γ(α)

sup
0≤w≤t
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0
(w − τ)α−1 [f (τ,Aj−1y(τ)) − f (τ,Aj−1ỹ(τ))

]
dτ
∣∣∣∣

(Lipschitz) ≤ L
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∫w
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(w − τ)α−1 ∣∣Aj−1y(τ) − Aj−1ỹ(τ)

∣∣ dτ
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(Lipschitz) ≤ L

Γ(α)
sup

0≤w≤t

∫w

0
(w − τ)α−1 ∣∣Aj−1y(τ) − Aj−1ỹ(τ)
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∣∣ dτ

(I.H.) ≤ Lj

Γ(α)Γ(1 + α(j − 1))

∫ t

0
(t − τ)α−1tα(j−1) sup

0≤w≤τ
|y(w) − ỹ(w)|dτ
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Inductive hypothesis: we assume it true for j − 1 and prove it for j.
Inductive step:
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Uniqueness of the solution à-la-Picard-Lindelöf
Proof. We are under the same hypotheses of the Existence Theorem, thus (FODE) has a
solution.
We proved by induction on j that

‖Ajy − Aj ỹ‖∞ ≤ (Ltα)j

Γ(1 + αj)‖y − ỹ‖∞ = αj‖y − ỹ‖∞, αj =
(Lh)α

Γ(1 + αj) .

To apply Weissinger’s Fixed Point Theorem we need to prove that the series
+∞∑
j=0

αj =
+∞∑
j=0

(Lh)α
Γ(1 + αj) converges.

Mittag-Leffler

Eα(z) =
+∞∑
k=0

zα
Γ(αk + 1) , α > 0 is an entire function.
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State of the art
We have proved that the Cauchy problem

α > 0, m = dαe,


CDα

[0,t]y(t) = f (t, y(t)), t ∈ [0,T ],

dky(0)
dtk = y(k)

0 , k = 0, 1, . . . ,m − 1.

admits
• for f continuous a local solution in C([0, h]), h < h∗,
• for f continuous and Lipschitz in the second entry a local and unique solution in
C([0, h]), h < h∗.

For classical ODEs this is the point in which one starts proving extension results for the
solutions. They exist also for the Fractional case. We are going to state them without
proof.
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Extension results
Corollary
Assume the hypotheses of the existence Theorem, but substitute G with the domain of
definition of f , i.e., G = [0, h∗]× R. Moreover, assume that f is continuous and that there
exist constants c1 ≥ 0,c2 ≥ 0, 0 ≤ µ < 1 such that

f (t, y) ≤ c1 + c2|y |µ, ∀ (t, y) ∈ G.

Then, there exists a function y ∈ C([0, h∗]) solving (FODE).

• Since G is no longer compact we need to demand a suitable bound explicitly,
Weierstrasse Theorem no longer applies,

• A sufficient condition on f to imply the decay we need is for f to be continuous and
bounded on G,

Exclamation-Triangle Our condition is violated already by linear equations!
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Extension results

Theorem
Let 0 < α and m = dαe. Moreover, let y (0)

0 , . . . , y (m−1)
0 ∈ R and h∗ > 0. We define the set

G = [0, h∗]× R and let f : G → R be continuous and fulfill a Lipschitz condition with
respect to the second variable with a Lipischitz constant L that is independent of t, y1, and
y2. Then there exist a uniquely defined function y ∈ C([0, h∗]) solving the (FODE).

BOOK For a proof see the proof of Theorem 6.8 from (Diethelm 2010, pp 96-102) that is
inspired by the proof for Volterra integral equations in (Linz 1985, Theorem 4.8).

SMILE We can now solve linear equations

CADα
[0,t]y(t) = f (t)y(t) + g(t), f , g ∈ C([0, h∗]), L = ‖f ‖∞ < ∞.

Question-Circle Do we know hot to solve by hand any simple FODE?
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Simple cases and representation formulas
The simplest ODE we know ho to solve is the relaxation equation

R 3 λ < 0,
{

y ′(t) = λy(t), t ∈ [0,T ],

y(0) = y0,
y(t) = y0 exp(λt).

Relaxation FODE
Let α > 0, m = dαe and λ ∈ R. The solution of the Cauchy problem

CAD[0,t]y(t) = λy(t), y(0) = y0, y (k)(0) = 0, k = 1, 2, . . . ,m − 1,

is given by
y(t) = y0Eα(λtα), t ≥ 0.

• The previous existence result tells us that the problem has indeed a unique solution.
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Solution of the relaxation FODE

Two parameters Mittag-Leffler

Eα,β(z) =
+∞∑
k=0

zα
Γ(αk + β)

, α, β > 0 is an entire function.

To see that this is the case we can use Stirling formula and root test
Stirling: Γ(x + 1) = (x/e)x √2πx(1 + o(1)) for x → +∞,

Root test:
∑+∞

n=1 an converge absolutely if C = lim supn→+∞ n
√
|an| < 1.

We write

a1/j
j =

(
e

jα+ β

)α+β/j

(2π(αj + β))−
1/2j(1 + o(1)) → 0 for j → ∞.

Thus the radius of convergence is infinite.
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Solution of the relaxation FODE

α > 0, m = dαe, CAD[0,t]y(t) = λy(t), y(0) = y0, y (k)(0) = 0, k = 1, 2, . . . ,m − 1,

1. y(0) = y0Eα(0) = y0 since

Eα(z) = 1 +
z

Γ(α+ 1) +
z2

Γ(2α+ 1) + . . . ,

2. If α > 1, m ≥ 2, y (k)(0) = 0, k = 1, 2, . . . ,m − 1

y(t) = 1 +
λtα

Γ(α+ 1) +
λ2t2α

Γ(2α+ 1) + . . . ,

imposing the condition on the derivatives implies

y (k)(t) = λtα−k

Γ(α+ 1 − k) +
λ2t2α−k

Γ(2α+ 1 − k) + . . . , k = 1, 2, . . . ,m − 1.
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Solution of the relaxation FODE

α > 0, m = dαe, CAD[0,t]y(t) = λy(t), y(0) = y0, y (k)(0) = 0, k = 1, 2, . . . ,m − 1,

Let pk(t) = tk

CAD[0,t]y(t) = CAD[0,t]

+∞∑
j=0

(λpα)j

Γ(jα+ 1)

 = Im−α
0

dm

dtm

+∞∑
j=0

λjpjα
Γ(jα+ 1)



=Im−α
0

+∞∑
j=1

dm

dtm λ
jpjα

Γ(jα+ 1)

 = Im−α
0

+∞∑
j=1

λjpjα−m
Γ(jα+ 1 − m)
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Why only continuous solutions?
The existence theorems we have seen give us a solution y(t) ∈ C([0, h]), can we have more?

Regularity for ODEs

k ∈ N, f ∈ Ck−1([y0 − K , y0 + k]× R),

{
y ′(t) = f (t, y(t)),
y(0) = y0

⇒ y(t) ∈ Ck .

We can reuse our example computation:

f (t) = (t − a)β, Γ(β+ 1)
Γ(β+ 1 − α)

(t − a)β−α, β /∈ N∧ β > dαe− 1

If we select a = 0, α = 1/2, β = 1/2, then{
CAD[0,t]y(t) = Γ(3/2),

y(0) = 0,
⇒ y(t) =

√
x .

From an analytic right-hand side we got a non differentiable solution.
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Why only continuous solutions?

Luggage-Cart Take-home message
Regularity of the right-hand side of the (FODE) is not sufficient to ensure regularity of the
solution.

FILE Some more restrictive conditions under which regularity can be ensured can be found
in (Diethelm 2007), to give an idea, one have to further ensure conditions for the
zeros of z(t) = f (t, y(t)).

• Furthermore, if the solution of (FODE) is analytic, but not a polynomial of degree
dαe− 1, then f is not analytic.

• This will be important when we try do design numerical methods, since many results
on convergence order usually rely on the regularity of the solution. Going high-order in
the fractional settings is not in general an easy task!
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The Mittag-Leffler Function
The Eα,β(z) takes the role of the exponential function when moving from ODEs to FODEs.

Eα,β(z) =
+∞∑
k=0

zα
Γ(αk + β)

, α, β > 0.

Question-Circle How can we compute it?

Door-closed Using the series representation,
Door-closed A quadrature formula applied to an integral representation,

Inversion of the Laplace transform.

Laplace Transform
For a real- or complex-valued function f (t) of the real variable t defined on R the
(two-sided) Laplace transform is defined as

F (s) = L{f }(s) =
∫+∞
−∞ e−st f (t)dt.
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Inverting the Laplace Transform

If we want fo compute f (t) and have access to F (s) = L{f }(s) we can perform a numerical
inversion, that is

f (t) = 1
2πi

∫σ+∞
σ−i∞ estF (s)ds.

where
• (σ− i∞, σ+ i∞) is called the Bromwich line,
• σ is such that all the singularities of F (s) lies to

the left <(s) = σ.

Exclamation-Triangle Branch lines
If F (s) is a multivalued function we need to add a
branch-cut to make the integrand single-valued.

σ <(z)

=(z)
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Inverting the Laplace Transform
To numerically approximate the integral

f (t) = 1
2πi

∫σ+i∞
σ−i∞ estF (s)ds.

we always need a change of variable, the exponential term oscillates wildly and decays
slowly along the Bromwich line.
We have to change the countour of integration to something more suitable, i.e., we change

s = s(u) 7→ f (t) = 1
2πi

∫+∞
−∞ es(u)tF (s(u))s ′(u)du,

and then approximate the integral with the trapezoidal rule with spacing h

fh,N(t) =
h

2πi

N∑
k=−N

es(uk)tF (s(uk))s ′(uk), uk = kh.
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Inverting the Laplace Transform
Question-Circle What is the best contour?

• Parabolic contour:

s = µ(iu + 1)2, −∞ < u < ∞
• Hyperbolic contour:

s = µ(1 + sin(iu − α)), −∞ < u < ∞
• Talbot contour:

s = −σ+ µθ cot(αθ) + iθν, −π ≤ θ ≤ π

Selecting contour and parameters depends on the error analysis.

35 / 40



Inverting the Laplace Transform
Question-Circle What is the best contour?
• Parabolic contour:

s = µ(iu + 1)2, −∞ < u < ∞

• Hyperbolic contour:

s = µ(1 + sin(iu − α)), −∞ < u < ∞
• Talbot contour:

s = −σ+ µθ cot(αθ) + iθν, −π ≤ θ ≤ π

σ <(z)

=(z)

Selecting contour and parameters depends on the error analysis.

35 / 40



Inverting the Laplace Transform
Question-Circle What is the best contour?
• Parabolic contour:

s = µ(iu + 1)2, −∞ < u < ∞
• Hyperbolic contour:

s = µ(1 + sin(iu − α)), −∞ < u < ∞

• Talbot contour:

s = −σ+ µθ cot(αθ) + iθν, −π ≤ θ ≤ π

σ <(z)

=(z)

Selecting contour and parameters depends on the error analysis.

35 / 40



Inverting the Laplace Transform
Question-Circle What is the best contour?
• Parabolic contour:

s = µ(iu + 1)2, −∞ < u < ∞
• Hyperbolic contour:

s = µ(1 + sin(iu − α)), −∞ < u < ∞
• Talbot contour:

s = −σ+ µθ cot(αθ) + iθν, −π ≤ θ ≤ π

σ <(z)

=(z)

Selecting contour and parameters depends on the error analysis.

35 / 40



Inverting the Laplace Transform
Question-Circle What is the best contour?
• Parabolic contour:

s = µ(iu + 1)2, −∞ < u < ∞
• Hyperbolic contour:

s = µ(1 + sin(iu − α)), −∞ < u < ∞
• Talbot contour:

s = −σ+ µθ cot(αθ) + iθν, −π ≤ θ ≤ π

σ <(z)

=(z)

Selecting contour and parameters depends on the error analysis.
35 / 40



Inverting the Laplace Transform
Brain All the contours exploit the fact that est decays rapidly as <(s) → −∞,
• Trapezoidal rule for integral on the real line for which the integrand decay sufficiently

rapidly is exponential:

Theorem (Trefethen and Weideman 2014, Theorem 5.1)
Suppose that w is analytic in the strip |=(x)| < a for some a > 0. Suppose further that w(x) → 0
uniformly as |x | → +∞ in the strip, and that for some M it satisfies∫+∞

−∞ |w(x + ib)|dx ≤ M, ∀b ∈ (−a, a),

then for any h > 0, the trapezoidal rule wh,N with step-size h exists and satisfies

|wh −

∫+∞
−∞ w(x)dx | ≤ 2M

exp(2πa/h) − 1 ,

and the quantity 2M on the numerator is as small as possible.
36 / 40



Inverting the Laplace Transform

Brain All the contours exploit the fact that est decays rapidly as <(s) → −∞,
• Trapezoidal rule for integral on the real line for which the integrand decay sufficiently

rapidly is exponential:

Steepest descent contours
For some functions it is possible to use a technique called “saddle point technique” from
complex analysis to estimate the asymptotic of complex integrals. This determines the
optimal steepest descent contour.

References for the general problem are:
Talbot: Dingfelder and Weideman 2015; Trefethen, Weideman, and Schmelzer 2006;

Weideman 2006,
Parabolic & Hyperbolic: Weideman and Trefethen 2007.
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Our case: we’ve got poles and a branch cut
In our case the function for which we can compute the Laplace transform is

eα,β(t ; λ) = tβ−1Eα,β(tαλ), t ∈ R+, λ ∈ C.

That is given by

Eα,β(t ; λ) =
sα−β

sα − λ
, <(s) > 0, |λs−α| < 1.

• There are non-integer powers ⇒ Eα,β is a multivalued function and a branch-cut on
the real negative semi-axis is needed,

• We have also the poles for θ = arg(λ)

s∗j = λ
1/α = |λ|

1/αe i θ+2πj
α ,

{
j ∈ Z

∣∣∣∣−α

2 −
θ

2π < j ≤ α

2 −
θ

2π

}
,

Exclamation-TriangleThere could be lots of poles! Finding suitable contours is difficult.
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Cauchy’s residue theorem to the rescue

We can use Cauchy’s residue theorem if we have too many poles

eα,β(t ; λ) =
∑

s∗∈S∗
C

Res(estEα,β(s ; λ), s∗) +
1

2πi

∫
C

estEα,β(s ; λ)ds.

• S∗
C is the set of all singularities lying on the

rightmost part of the complex plane delimited
by C,

• We can compute the residual in close form:

Res(estEα,β(s ; λ), s∗) =
1
α
(s∗)1−βes∗t .

σ<(z)

=(z)
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The full algorithm (Garrappa 2015)

To build the full algorithm few technical steps are needed:
1. Finding an ordering of the poles,

φ(s) = <(s) + |s |
2 , 0 = φ(s∗0 ) < φ(s∗1 ) < · · · < φ(s∗J ),

2. Consider J + 1 parabolas s = φ(s∗j )(u + 1)2 and the relevant J + 1 plane regions Rj ,
3. The regions Rj are the analyticity regions to use in the Trefethen and Weideman result,
4. Obtain bounds on the discretization error and use it to determine optimal µj , step-size

hj and number of quadrature nodes Nk ,
5. Select the best region Rj w.r.t. the lowest computation and reduction of round-off

errors.
CODE it.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function
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Summary and anticipations

We did
Check-Circle Uncovered properties of Riemann-Liouville Derivatives,
Check-Circle Introduced the Caputo Derivative,
Check-Circle Formulation, existence and uniqueness results for FODEs,
Check-Circle The Mittag-Leffler function and its computation.

Next up
CLIPBOARD-LIST Numerical methods for the integration of FODEs.

40 / 40



Bibliography I

Caputo, M. (2008). “Linear models of dissipation whose Q is almost frequency independent. II”.
In: Fract. Calc. Appl. Anal. 11.1. Reprinted from Geophys. J. R. Astr. Soc. 13 (1967), no. 5,
529–539, pp. 4–14. issn: 1311-0454.
Diethelm, K. (2007). “Smoothness properties of solutions of Caputo-type fractional differential
equations”. In: Fract. Calc. Appl. Anal. 10.2, pp. 151–160. issn: 1311-0454.
— (2010). The analysis of fractional differential equations. Vol. 2004. Lecture Notes in
Mathematics. An application-oriented exposition using differential operators of Caputo type.
Springer-Verlag, Berlin, pp. viii+247. isbn: 978-3-642-14573-5. doi:
10.1007/978-3-642-14574-2. url: https://doi.org/10.1007/978-3-642-14574-2.
Diethelm, K. and N. J. Ford (2002). “Analysis of fractional differential equations”. In: J. Math.
Anal. Appl. 265.2, pp. 229–248. issn: 0022-247X. doi: 10.1006/jmaa.2000.7194. url:
https://doi.org/10.1006/jmaa.2000.7194.
Dingfelder, B. and J. A. C. Weideman (2015). “An improved Talbot method for numerical
Laplace transform inversion”. In: Numer. Algorithms 68.1, pp. 167–183. issn: 1017-1398. doi:
10.1007/s11075-014-9895-z. url: https://doi.org/10.1007/s11075-014-9895-z.

https://doi.org/10.1007/978-3-642-14574-2
https://doi.org/10.1007/978-3-642-14574-2
https://doi.org/10.1006/jmaa.2000.7194
https://doi.org/10.1006/jmaa.2000.7194
https://doi.org/10.1007/s11075-014-9895-z
https://doi.org/10.1007/s11075-014-9895-z


Bibliography II

Džrbašjan, M. M. and A. B. Nersesjan (1968). “Fractional derivatives and the Cauchy problem
for differential equations of fractional order”. In: Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3.1,
pp. 3–29. issn: 0002-3043.
Garrappa, R. (2015). “Numerical evaluation of two and three parameter Mittag-Leffler
functions”. In: SIAM J. Numer. Anal. 53.3, pp. 1350–1369. issn: 0036-1429. doi:
10.1137/140971191. url: https://doi.org/10.1137/140971191.
Gerasimov, A. N. (1948). “A generalization of linear laws of deformation and its application to
problems of internal friction”. In: Akad. Nauk SSSR. Prikl. Mat. Meh. 12, pp. 251–260.
Gross, B. (1947). “On creep and relaxation”. In: J. Appl. Phys. 18, pp. 212–221. issn:
0021-8979.
Johnson, W. P. (2002). “The curious history of Faà di Bruno’s formula”. In: Amer. Math.
Monthly 109.3, pp. 217–234. issn: 0002-9890. doi: 10.2307/2695352. url:
https://doi.org/10.2307/2695352.

https://doi.org/10.1137/140971191
https://doi.org/10.1137/140971191
https://doi.org/10.2307/2695352
https://doi.org/10.2307/2695352


Bibliography III

Linz, P. (1985). Analytical and numerical methods for Volterra equations. Vol. 7. SIAM
Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, pp. xiii+227. isbn: 0-89871-198-3. doi: 10.1137/1.9781611970852. url:
https://doi.org/10.1137/1.9781611970852.
Liouville, J. (1832). Mémoire sur quelques questions de géométrie et de mécanique, et sur un
nouveau genre de calcul pour résoudre ces questions.
Rabotnov, I. N. et al. (1969). Creep problems in structural members. Vol. 7. North-Holland
Publishing Company.
Trefethen, L. N., J. A. C. Weideman, and T. Schmelzer (2006). “Talbot quadratures and
rational approximations”. In: BIT 46.3, pp. 653–670. issn: 0006-3835. doi:
10.1007/s10543-006-0077-9. url: https://doi.org/10.1007/s10543-006-0077-9.
Trefethen, L. N. and J. A. C. Weideman (2014). “The exponentially convergent trapezoidal
rule”. In: SIAM Rev. 56.3, pp. 385–458. issn: 0036-1445. doi: 10.1137/130932132. url:
https://doi.org/10.1137/130932132.

https://doi.org/10.1137/1.9781611970852
https://doi.org/10.1137/1.9781611970852
https://doi.org/10.1007/s10543-006-0077-9
https://doi.org/10.1007/s10543-006-0077-9
https://doi.org/10.1137/130932132
https://doi.org/10.1137/130932132


Bibliography IV

Weideman, J. A. C. (2006). “Optimizing Talbot’s contours for the inversion of the Laplace
transform”. In: SIAM J. Numer. Anal. 44.6, pp. 2342–2362. issn: 0036-1429. doi:
10.1137/050625837. url: https://doi.org/10.1137/050625837.
Weideman, J. A. C. and L. N. Trefethen (2007). “Parabolic and hyperbolic contours for
computing the Bromwich integral”. In: Math. Comp. 76.259, pp. 1341–1356. issn: 0025-5718.
doi: 10.1090/S0025-5718-07-01945-X. url:
https://doi.org/10.1090/S0025-5718-07-01945-X.

https://doi.org/10.1137/050625837
https://doi.org/10.1137/050625837
https://doi.org/10.1090/S0025-5718-07-01945-X
https://doi.org/10.1090/S0025-5718-07-01945-X


An introduction to fractional calculus
Fundamental ideas and numerics

Fabio Durastante
Università di Pisa

Envelope fabio.durastante@unipi.it
FIREFOX fdurastante.github.io

May, 2022

mailto:fabio.durastante@unipi.it
https://fdurastante.github.io


The Numerical Integration of FODEs
We want to find a numerical solution of the differential equation written in terms of
Caputo Derivatives

α > 0, m = dαe,


CDα

[0,t]y(t) = f (t, y(t)), t ∈ [0,T ],

dky(0)
dtk = y(k)

0 , k = 0, 1, . . . ,m − 1.
(FODE)

Caputo fractional derivative (Caputo 2008)
Let α ≥ 0, and m = dαe. Then, we define the operator

CDα
[a,t]y = Im−α

[a,t]
dm

dtm y ,

whenever dm

dtm y ∈ L1([a, b]).
1 / 34



The Numerical Integration of ODEs
What methods do we know for ODEs?

Given a grid {tj = jτ}Nj=1 and τ = T/N, approximating y(tj) ≈ y (j).
Explicit methods: Compute y (j) using only values y (k) for k < j

• One Step Methods: Explicit Runge-Kutta Methods (ERK)
• Linear Multistep Methods: Adams–Bashforth, Predictor-Corrector

Implicit methods: Compute y (j) using only values y (k) for k ≤ j

• One Step Methods: Implicit Runge-Kutta Methods (IRK,DIRK,SDIRK)
• Linear Multistep Methods: Adams–Moulton, Backward Differentiation

Formulas (BDFs), Numerical Differentiation Formulas (NDFs),…

Exponential integrators: Compute directly y (N) without any y (j) for j < N.
For both implicit and explicit methods we have also all-at-once formulations, and a
middle-ground represented by Implicit-Explicit (IMEX) methods.
Our objective is to transport what we can for the solution of (FODE).
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Product Integration Rules
Product Integration rules were introduced in the work (Young 1954) for Integral Equations.

From the existence results we know that a solution to (FODE) is a solution to the Integral
Equation

y(t) =
m−1∑
k=0

tk

k!y
(k)
0 +

1
Γ(α)

∫ t

0
(t − τ)α−1f (τ, y(τ))dτ, m = dαe.

• Adams-Bashforth-Moulton methods are obtained by applying a quadrature formula to
the integral,

• We can use, e.g.,
• the fractional rectangular formula with nodes {tj = jτ}n−1

j=1 ,
• or the product trapezoidal quadrature formula with nodes {tj = jτ}nj=1.

To obtain a predictor-corrector method.
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Product Integral Rules

The main idea behind PI rules is to approximate the integral∫ t

0
(t − τ)α−1f (s, y(s))ds

by approximating the vector field f with suitable polynomials..
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Product Integral Rules
The main idea behind PI rules is to approximate the integral∫ t

0
(t − τ)α−1f (s, y(s))ds

by approximating the vector field f with suitable polynomials. We build an Adams-type
method. If we consider a grid {t0, t1, . . . , tN} on the whole [t0,T ] we can decompose the
integral as

y(t) = Tm−1(t) +
1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

(t − s)α−1f (τ, y(τ))dτ, t ≥ tn.

• Replace f in each sub-interval by the first–degree polynomial interpolant
• These produce the usual fractional integral that we now how to solve
• We plug everything in our expression using that:

wn = I(0)n,0 −
I(1)n,0
τ0

+
I(1)n,1
τ0

, bnj =
I(1)n,j−1 − I(1)n,j

τj−1
−

I(1)n,j − I(1)n,j+1
τj

, j ≤ n− 1, bn,n =
I(1)n,n−1
τn−1

.
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• Replace f in each sub-interval by the first–degree polynomial interpolant

pj(τ) = fj+1 +
s − tj+1

τj
, s ∈ [tj , tj + 1], τj = tj+1 − tj , fj = f (tj , yj).
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• Replace f in each sub-interval by the first–degree polynomial interpolant
• These produce the usual fractional integral that we now how to solve

I(k)n,j =
1

Γ(α)

∫ tn

tj

(tn − τ)α−1(τ− tj)
k dτ =

(tn − tj)
α+k

Γ(α+ k + 1) .
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method. If we consider a grid {t0, t1, . . . , tN} on the whole [t0,T ] we can decompose the
integral as

y (n) = Tm−1(tn) + wnf (0) +
n∑

j=1
bn,j f (j),

• Replace f in each sub-interval by the first–degree polynomial interpolant
• These produce the usual fractional integral that we now how to solve
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Product Integral Rules - Convergence

To discuss convergence properties we can piggyback on the theory of Abel’s and
Volterra’s fractional integral equations.
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(t − s)−αK(t, s)y(s)ds = f (t), 0 < α < 1 (Volterra’s Integral Eq.)
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Product Integral Rules - Convergence
To discuss convergence properties we can piggyback on the theory of Abel’s and
Volterra’s fractional integral equations.∫ t

0
(t − s)−αy(s)ds = f (t), 0 < α < 1 (Abel’s Integral Eq.)

If we discretize everything as before we get

[BN � KN ]y = g, BN = τ1−α[bi ,j ], KN = [k(ti , tj)], � Hadamard product.

where y = (y0, . . . , yN)
T and g contains the initial conditions and the evaluations of f .

Convergence analysis for (Cameron and McKee 1985)
“[Consistency of order p] demands that f (t) ∈ C1−α[0,T ] which is necessary in any case for
y(t) to be a smooth function . . . |y(ti) − yi | ≤ Cτp , i = 0, 1, . . . ,m − 1.”
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Product Integral Rules - Convergence
The requirements from the standard theory are far too strong for what we can reasonably
expect from the analysis on the solution regularity we did in the last lecture.

Theorem (Dixon 1985)
Let f be Lipschitz continuous with respect to the second variable and yn be the numerical
approximation obtained by applying the PI trapezoidal rule on the interval [t0,T ]. There
exist a constant C = C1(T − t0), which does not depend on h, such that

‖y(tn) − yn‖ ≤ C(tα−1
n τ1+α + τ2), τ = max

j=0,...,n−1
τj .

• The same drop in the convergence order occurs also when higher degree polynomials
are employed,

• When α > 1 convergence order 2 is obtained.
Brain It doesn’t make much sense to use higher-degree PI rules if 0 < α < 1.
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n τ1+α + τ2), τ = max

j=0,...,n−1
τj .

• The same drop in the convergence order occurs also when higher degree polynomials
are employed,

• When α > 1 convergence order 2 is obtained.

Brain It doesn’t make much sense to use higher-degree PI rules if 0 < α < 1.
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The Fractional Rectangular Formula
Let us reduce to the case with α ∈ (0, 1), m = 1, and a uniform mesh.
To build it we need to approximate the integral with the rectangule rule∫ t

0
(t − τ)α−1f (τ, y(τ))dτ

on the grid {tj = t0 + jτ}Nj=1 with uniform grid spacing τ, we denote

f (j) = f (tj , y (j)) for y (j) ≈ y(tj),

and write it as

y (n) = y0 +
τα

Γ(α)

n−1∑
j=0

bn−j−1f (j), bn = [(n + 1)α − nα]/α, n = 1, . . . ,N.

• This is an explicit method,
• By construction, this is a 1-step method…

but in reality we need all the previous steps!
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Some observations
CODE To build the solution we have to keep in memory either the previous solutions or the

function evaluations,

CODE Using a uniform mesh the evaluation of the weights just involve the computation of
real powers of integer numbers,

CODE We have to compute:
n−2∑
j=0

bn−j−1f (j),

this is a quadratic cost with N, but there is a convolution structure, so we can
expect that some FFT-based trick could come to the rescue.

CODE The 1-step name is related to the number of initial values to start the computation.

LIGHTBULBPredictor-Corrector algorithms
Now that we have two schemes we can think of using them together to build a
predictor-corrector algorithm.
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Fractional Predictor-Corrector Scheme (Diethelm 1997)
We are going to write it again for 0 < α < 1 on a uniform mesh

1. In the prediction step we use the fractional rectangular formula

y (n+1)
P = y (0) +

τα

Γ(α)

n∑
j=0

bj,n+1f (tj , y (j)), bj,n+1 =
(n + 1 − j)α − (n − j)α

α

2. In the correction step we use the fractional trapezoidal formula

y (n+1) = y (0) +
τα

Γ(α)

 n∑
j=0

aj,n+1f (tj , y (j)) + an+1,n+1f (tn+1, y (n+1)
P )


where

aj,n+1 =


(nα+1−(n−α)(n+1)α/α(α+1), j = 0,
(n−j+2)α+1−2(n−j+1)α+1+(n−j)α+1/α(α+1), j = 1, 2, . . . , n,
1/α(α+1), j = n + 1.
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A Fractional Predictor-Corrector Scheme
• Predictor-Corrector schemes are of interest because they represent a good

compromise between accuracy and ease of implementation.

• To investigate the convergence we need to look deeper into the convergence results of
the two PI integral rules (Diethelm, Ford, and Freed 2004).

Theorem (Diethelm, Ford, and Freed 2004, Theorem 2.4)

(a) Let z ∈ C1([0,T ]). Then∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k∑
j=0

bj,k+1z(tj)

∣∣∣∣∣∣ ≤ 1
α
‖z ′‖∞tαk+1τ.

(b) Let z(t) = tp for some p ∈ (0, 1). Then,∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k∑
j=0

bj,k+1z(tj)

∣∣∣∣∣∣ ≤ CRe
α,ptα+p−1

k+1 τ.
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A Fractional Predictor-Corrector Scheme
And analogously for the product trapezoidal formula.

Theorem (Diethelm, Ford, and Freed 2004, Theorem 2.5).
(a) If z ∈ C2([0,T ]), then there exist a constant CTr

α depending only on α such that∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣∣ ≤ CTr
α ‖z ′′‖∞tαk+1τ

2.

(b) Let z ∈ C1([0,T ]) and assume that z ′ fulfills a Lipschitz condition of order µ ∈ (0, 1).
Then, there exists positive constants BTr

α,µ and Mz,µ such that∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣∣ ≤ BTr
α,µMz,µtαk+1τ

1+µ.
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0
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k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣∣ ≤ BTr
α,µMz,µtαk+1τ

1+µ.

(c) Let z(t) = tp for some p ∈ (0, 2) and ρ = min(2, p + 1). Then∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣∣ ≤ CTr
α,ptα+p−ρ

k+1 τρ.
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A Fractional Predictor-Corrector Scheme
Observe that for the fractional rectangular case (b) the bound contains

tα+p−1
k+1 ,

if α+ p < 1 then we get that the overall integration error becomes larger if the size of the
interval of integration becomes smaller!
Similarly for the case (c) for the fractional trapezoidal rule

α < 1, p < 1, ρ = p + 1, tα+p−ρ
k+1 ,

has the same explosive behavior.

Smaller intervals for harder integrals
By making tk+1 smaller we have two effects

1. We reduce the length of the integration interval,
2. We change the weight function in a way that makes the integral more difficult.
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A Fractional Predictor-Corrector Scheme
Lemma (Diethelm, Ford, and Freed 2004, Lemma 3.1)
Assume that the solution y of the initial value problem is such that∣∣∣∣∣∣

∫ tk+1

0
(tk+1 − t)α−1

CADα
[0,t]y(t)dt −

k∑
j=0

bj,k+1CADα
[0,t]y(t)

∣∣∣∣∣∣ ≤ C1tγ1
k+1τ

δ1 ,

and ∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1

CADα
[0,t]y(t)dt −

k+1∑
j=0

aj,k+1CADα
[0,t]y(t)

∣∣∣∣∣∣ ≤ C2tγ2
k+1τ

δ2 ,

with some γ1, γ2 ≥ 0 and δ1, δ2 > 0. Then, for some suitably chosen T > 0, we have

max
0≤j≤N

|y(tj) − y (j)| = O(τq), q = min{δ1 + α, δ2}, N = dT/τe.
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Error bounds

Theorem (Diethelm, Ford, and Freed 2004, Theorem 3.2)
Let 0 < α and assume CADα

[0,t]y(t) ∈ C2([O,T ]) for some suitable T . Then,

max
0≤j≤N

|y(tj) − y (j)| =

{
O(τ2), if α ≥ 1,
O(τ1+α), if α < 1.

Proof. In view of the two bounds for the Fractional Rectangular and Trapezoidal forms we
can apply the previous Lemma with γ1 = γ2 = α > 0, δ1 = 1, δ2 = 2. Therefore we find a
bound of order O(τq) where

q = min{1 + α, 2} =
{

2, if α ≥ 1,
1 + α, if α < 1.
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{
O(τ2), if α ≥ 1,
O(τ1+α), if α < 1.

• Order of convergence is a non-decreasing function of α,
• Hypotheses are stated in terms of the αth Caputo derivative of the solution,
• Can we replace them by similar assumptions on y itself?

Theorem Diethelm, Ford, and Freed 2004, Theorem 3.3
Let α > 1 and assume y ∈ C1+dαe([0,T ]) for some suitable T , then

max
0≤j≤N

|y(tj) − y (j)| = O(τ1+dαe−α).
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Let α > 1 and assume y ∈ C1+dαe([0,T ]) for some suitable T , then

max
0≤j≤N

|y(tj) − y (j)| = O(τ1+dαe−α).

Proof. We need to use the characterization of Caputo’s derivative

CADα
[0,t]y(t) =

m−dαe−1∑
`=0

y (l+dαe)(0)
Γ(dαe− α+ `+ 1) tdαe−α+` + g(t), g ∈ Cm−dαe([O,T ]),

g (m−dαe) ∈ Lip(dαe− α).
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Let α > 1 and assume y ∈ C1+dαe([0,T ]) for some suitable T , then

max
0≤j≤N

|y(tj) − y (j)| = O(τ1+dαe−α).

Proof. Then for α > 1, we can apply the Lemma with γ1 = 0, γ2 = α− 1 > 0, δ1 = 1,
δ2 = 1 + dαe− α and thus δ1 + α = 1 + α > 2 > δ2, min{δ1 + α, δ2} = δ2. The overall
order is then O(τδ2) = O(τ1+dαe−α).
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An example
Example{

CADα
[0,t]y(t) =

40320
Γ(9−α) t

8−α − 3 Γ(5+α/2)
Γ(5−α/2) t

4−α/2 + 9
4Γ(α+ 1) +

(
3tα/2/2 − t4)3

− y(t)3/2,

y(0) = 0.

Solution: y(t) = t8 − 3t4+α/2 + 9
4 tα.

tauval = 2.^(-(1:6));
for i=1:length(hval)
tau = tauval(i);
t0 = 0; T = 1;
alpha = 0.25;
[T, Y] = fde_pi1_ex(alpha, f_fun, t0,

T, y0, tau);↪→
err(i) = norm(Y - ye(T),'inf');

end
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hval = 2.^(-(1:6));
for i=1:length(hval)
h = hval(i);
t0 = 0; T = 1;
[T, Y] = fde_pi12_pc(alpha, f_fun,

t0, T, y0, h, [], 1);↪→
err(i) = norm(Y - ye(T),'inf');

end
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Example{
CADα
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α τ E q

0.25 5.00e-01 2.75e+00
2.50e-01 1.80e+00 0.61
1.25e-01 8.37e-01 1.10
6.25e-02 2.45e-01 1.77
3.12e-02 6.57e-02 1.90
1.56e-02 2.02e-02 1.70
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α τ E q

1.95e-03 9.33e-04 1.42
9.77e-04 3.58e-04 1.38
4.88e-04 1.40e-04 1.35
2.44e-04 5.56e-05 1.33
1.22e-04 2.23e-05 1.32
6.10e-05 9.00e-06 1.31
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More than one correction step
One can think of improving convergence by performing more than one correction step in
the algorithm (Diethelm, Ford, and Freed 2002).
Let us call µ ∈ N the number of correction steps:

y (n+1)
[0] = y (0) + τα

Γ(α)

∑n
j=0 bj,n+1f (tj , y (j)), Prediction step,

y (n+1)
[`] = y (0) + τα

Γ(α)

(∑n
j=0 aj,n+1f (tj , y (j)) + an+1,n+1f (tn+1, y (n+1)

[`−1] )
)
, Correction steps

` = 1, . . . , µ.
y (n+1) ≡ y (n+1)

[µ] .

Brain Each iteration is expected to increase the order of convergence of a fraction α from
order 1 (µ = 0) representing the fractional rectangular rule,
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Convergence behavior
The convergence behavior can be described by using repeatedly the result from (Diethelm,
Ford, and Freed 2004, Lemma 3.1) that we have used to obtain the other convergence
bounds.
Corollary

max
0≤n≤N

|y(tn) − y (n)| =


O(τmin(1+µα,2)), if CADα

[t0,t]y(t) ∈ C2([0,T ]),

O(τmin(1+µα,2−α)), if y(t) ∈ C2([0,T ]),

O(τ1+α), if f (t, y) ∈ C2([O,T ]× D).

• The maximum order of convergence for CADα
[t0,t]y(t) ∈ C2([0,T ]) is obtained for

µ = d1/αe,
• The maximum order of convergence for y(t) ∈ C2([0,T ]) is obtained for µ = d1−α/αe,
• In the third case with a single corrector step, and no improvement is possible.
LIGHTBULB In general we could fix a maximum number of steps µ and halt the procedure when

the error is under a certain tolerance.
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Absolute stability

Let us focus on the test problem

CADα
[t0,t]y(t) = λy(t), y(0) = y0, λ ∈ C, 0 < α < 1.

In the last lecture we have seen that the solution of this problem can be expressed as

y(t) = Eα(λ(t − t0)
α)y0.

Asymptotic behavior
The solution y(t) asymptotically vanishes as t → +∞ for

λ ∈ S∗ = {z ∈ C : | arg(z) − π| < (1 − α/2)π.}
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Asymptotic behavior
The solution y(t) asymptotically vanishes as t → +∞ for

λ ∈ S∗ = {z ∈ C : | arg(z) − π| < (1 − α/2)π.}

The application of PI rule leads to a non-homogeneous
difference equation

y (n) = g (n) +
n∑

j=k
cn−jy (j), n ≥ k,
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Absolute stability

Informally
The stability region of the various PI formulas can be described as the set of all z = ταλ for
which the numerical solution {y (n)}n behaves as the true solution and tends to 0 as
n → +∞.
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Absolute stability
Informally
The stability region of the various PI formulas can be described as the set of all z = ταλ for
which the numerical solution {y (n)}n behaves as the true solution and tends to 0 as
n → +∞.

As for the other theoretical result we are going to leverage information on the associated
Volterra integral equation (Lubich 1986a).

• First we rewrite our non-homogeneous difference equation (in which we simplify the
notation assuming to work with scalars) as{

yn = fn + τα
∑n

j=0 ωn−jg(yj), n ≥ 0
fn = f (tn) + τα

∑−1
j=−m wn,jg(yj), tn = t0 + nτ, t0 = mh.

• Then we assume that hαwn,jg(yj) = O((nτ)α−1τg(yj)), i.e., wn,j = O(nα−1) as
n → +∞, j = −M, . . . ,−1.
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Absolute stability
A connection to the classical theory
In the classical case α = 1, if we can express the term

+∞∑
n=0

ωnζ
n =

σ(ζ−1)

ρ(ζ−1)

as a rational function, then we have found a standard Linear Multistep Method.

A-stable method
A convolution quadrature {ω}n for the Abel equation

y(t) = f (t) + 1
Γ(α)

∫ t

0
(t − s)α−1g [y(s)]ds, t ≥ 0, 0 < α ≤ 1,

is called A-stable if the solution {yn}n given by the convolution quadrature satisfies
yn → 0 as n → +∞ whenever {fn}n has a finite limit ∀τ > 0, ∀ λ ∈ S∗.
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Stability region
In general we cannot expect to have stability for every λ ∈ S∗, consider, e.g.

CADα
[t0,t]y(t) = −5y(t), y(0) = 1, T = 1.

integrated with the explicit fractional rectangular rule
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Stability region
Stability region
The stability region S of a convolution quadrature {ωm} is the set of all complex z = ταλ

for which the numerical solution {yn}n satisfies

yn → 0 as n → +∞ whenever {fn}n has a finite limit.

The method is called strongly stable, if for any λ ∈ S∗ there exists τ0(λ) > 0 such that
ταλ ∈ S for all 0 < τ < τ0(λ). The method is called A(θ)-stable if S contains the sector
| arg(z) − π| < θ.

To obtain the characterization we need, we consider weights
ωn = (−1)n

(
−α

n

)
+ vn, n ≥ 0, {vn}n ∈ `1, (H1)

to which corresponds
ω(ζ) = (1 − ζ)−α + v(ζ) continuous in {ζ ∈ C : |ζ| ≤ 1, ζ 6= 1}, lim

ζ→1−
w(ζ) = +∞.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .
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Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. Let z = ταλ. Since 0 is neither contained in S∗ nor in S, we can assume z 6= 0. We
can rewrite our difference equation as

y(ζ) = f (ζ) + zω(ζ)y(ζ) ⇔ y(ζ) = f (ζ)
1 − zω(ζ)

=
(1 − ζ)αf (ζ)

(1 − ζ)α[1 − zω(ζ)]
.

We first prove that S ⊆ S∗.

• The coefficient sequence (1 − ζ)α[1 − zω(ζ)] is in `1,
• If z ∈ S then 1 − zω(ζ) 6= 0 for |ζ| ≤ 1 with ζ 6= 1.

(H1) (1 − ζ)α[1 − zω(ζ)] = (1 − ζ)α[1 − zv(ζ)] − z and thus
(1 − ζ)α[1 − zω(ζ)] 6= 0 for |ζ| ≤ 1
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We first prove that S ⊆ S∗.
• The coefficient sequence (1− ζ)α[1− zω(ζ)] is in `1, indeed v(ζ) and (1− ζ)α are in
`1 by using (H1) (for the first one with −α instead of α), hence also
1 + (1 − ζ)αv(ζ) = (1 − ζ)αω(ζ), since for any two sequences in `1 we have∑

n |
∑

i an−ibi | ≤
∑

|ai ||bi |.
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Stability region
Wiener inversion Theorem
f (ζ) =

∑+∞
n=0 anζ

n with ‖f ‖1 < +∞, ζ = e inθ, then 1/f (θ) ∈ `1 iff f (θ) 6= 0 for all θ.
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(H1) (1 − ζ)α[1 − zω(ζ)] = (1 − ζ)α[1 − zv(ζ)] − z and thus
(1 − ζ)α[1 − zω(ζ)] 6= 0 for |ζ| ≤ 1 ⇒ 1/(1−ζ)α[1−zω(ζ)] ∈ `1.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. We first prove that S ⊆ S∗. Let f̃n = fn − f∞n→+∞
0 so that we can write

f (ζ) = f∞
1 − ζ

+ f̃ (ζ) ⇒ (1−ζ)αf (ζ) = (1−ζ)α−1f∞+(1−ζ)αf̃ (ζ) has coefficients → 0.
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By (H1) the coefficient sequence of (1 − ζ)α−1 → 0.
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(1 − ζ)αf̃ (ζ) → 0 since (1 − ζ)α ∈ `1 and `1 ∗ c0 ⊂ c0 for ∗ the convolution operator, and
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+ f̃ (ζ) ⇒ (1−ζ)αf (ζ) = (1−ζ)α−1f∞+(1−ζ)αf̃ (ζ) has coefficients → 0.

By (H1) the coefficient sequence of (1 − ζ)α−1 → 0. The coefficient sequence of
(1 − ζ)αf̃ (ζ) → 0 since (1 − ζ)α ∈ `1 and `1 ∗ c0 ⊂ c0 for ∗ the convolution operator, and
c0 the space of zero sequences ⇒ the sequence {yn}n of y(ζ) is in c0. Hence we have
proved that if z ∈ S then z ∈ S∗.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. To conclude we need to prove that S∗ is exhausted by S, we assume that

1 − zω(ζ0) = 0 for some |ζ0| ≤ 1 and by (H1) ζ0 6= 1,

and show that then z /∈ S∗.
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1 − zω(ζ0) = 0 for some |ζ0| ≤ 1 and by (H1) ζ0 6= 1,

and show that then z /∈ S∗.We select

y(ζ) = (1 − ζ)α

ζ− ζ0
=

(1 − ζ)α − (1 − ζ0)
α

ζ− ζ0
+ (1 − ζ0)

α 1
ζ− ζ0

.
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Stability region
Lemma (Lubich 1986a, Lemma 2.1)
Assume that the coefficient sequence of a(ζ) is in `1. Let |ζ0| ≤ 1. Then the coefficient
sequence of

a(ζ) − a(ζ0)

ζ− ζ0
converges to zero.

Proof. To conclude we need to prove that S∗ is exhausted by S, we assume that

1 − zω(ζ0) = 0 for some |ζ0| ≤ 1 and by (H1) ζ0 6= 1,

and show that then z /∈ S∗.We select

y(ζ) = (1 − ζ)α

ζ− ζ0
=

(1 − ζ)α − (1 − ζ0)
α

ζ− ζ0︸ ︷︷ ︸
=0

+(1 − ζ0)
α 1
ζ− ζ0

.
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Stability region
Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. To conclude we need to prove that S∗ is exhausted by S, we assume that

1 − zω(ζ0) = 0 for some |ζ0| ≤ 1 and by (H1) ζ0 6= 1,

and show that then z /∈ S∗.We select

y(ζ) = (1 − ζ)α

ζ− ζ0
= +(1 − ζ0)

α 1
ζ− ζ0

.

On the other hand, 1/ζ−ζ0 = −
∑+∞

n=0 ζ
−n−1
0 ζn diverges! Hence also the sequence

associated to y(ζ) diverges.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Proof. We can now collect the various parts together

f (ζ) = [1 − zω(ζ)]y(ζ) =(1 − ζ)α[1 − zω(ζ)](1 − ζ)−αy(ζ)

=
(1 − ζ)α(1 − zω(ζ)) − (1 − ζ0)(1 − zω(ζ0))

ζ− ζ0

using again the lemma we get that {fn}n goes to zero, but, {yn}n does not, hence z /∈ S∗.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Corollary
If a convolution quadrature satisfying (H1) is applied to the Volterra equation and if
ταλ ∈ S, then {yn}n is bounded whenever {fn}n is bounded. Conversely, if {yn}n is bounded
whenever {fn}n is bounded then ταλ ∈ S.
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Stability region

Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Corollary
The stability region of an explicit convolution quadrature (ω0 = 0) satisfying (H1) is
bounded.

Proof. By the open mapping theorem ω(ζ) maps neighborhood of 0 into neighborhood of
0. Hence S∗ is a neighborhood of ∞, and the result follows from the Theorem.
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Stability region
Theorem (Lubich 1986a, Theorem 2.1)
The stability region of a convolution quadrature under the condition (H1) is

S = C \ {1/ω(ζ) : |ζ| ≤ 1} .

Corollary
The stability region of an explicit convolution quadrature (ω0 = 0) satisfying (H1) is
bounded.

Corollary
Every convolution quadrature satisfying (H1) is strongly stable.

COGS Using these results we can recover the stability regions for the different methods,
Exclamation-Triangle Often PI rules do not possess analytical representation of ω(ζ) we can just use

numerical approximations.
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Stability region: predictor corrector method

For the Predictor-Corrector method we havey (n+1)
P = y (0) + τα

Γ(α)

∑n
j=0 bj,n+1f (tj , y (j)),

y (n+1) = y (0) + τα

Γ(α)

(∑n
j=0 aj,n+1f (tj , y (j)) + an+1,n+1f (tn+1, y (n+1)

P )
)

where

bj,n+1 =
(n + 1 − j)α − (n − j)α

α

aj,n+1 =


(nα+1−(n−α)(n+1)α/α(α+1), j = 0,
(n−j+2)α+1−2(n−j+1)α+1+(n−j)α+1/α(α+1), j = 1, 2, . . . , n,
1/α(α+1), j = n + 1.
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Stability region: predictor corrector method

For the Predictor-Corrector method we have{
y (n+1)

P = y (0) + τα
∑n

j=0 bn−j−1f (tj , y (j)),

y (n+1) = y (0) + ταan,0f (0) + τα
∑n

j=1 an−j f (tn, y (n+1)
P )

where

bn =
(n + 1)α − nα

Γ(α+ 1)
an,0 =(n−1)α+1−nα(n−α−1)/Γ(α+2),

an =

{
1/Γ(α+2), n = 0,
(n−1)α+1−2nα+1+(n+1)α+1/Γ(α+2), n ≥ 1.
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Stability region: predictor corrector method

For the Predictor-Corrector method we have

y (n) = g (n) +
n∑

j=k
cn−jy (j), n ≥ k,

where {
g (n) = (1 + zan,0 + za0 + z2a0bn−1)y (0),

c0 = 0, cn = zan + z2a0bn−1, n ≥ 1.
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COGTo apply the stability region Theorem we have then to investigate the quantity 1 − c(ζ)
for |ζ| ≤ 1, and c(ζ) =
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n=0 cnζ
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For the Predictor-Corrector method we have

y (n) = g (n) +
n∑

j=k
cn−jy (j), n ≥ k,

where {
g (n) = (1 + zan,0 + za0 + z2a0bn−1)y (0),

c0 = 0, cn = zan + z2a0bn−1, n ≥ 1.

COGTo apply the stability region Theorem we have then to investigate the quantity 1 − c(ζ)
for |ζ| ≤ 1, and c(ζ) =

∑+∞
n=0 cnζ

n.

Proposition
The stability region of the Predictor-Corrector method is

S = {z ∈ C | 1 − z(α(ζ) − a0) − z2a0ζb(ζ) 6= 0 : |ζ| ≤ 1}.
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Stability region: predictor corrector method
Proposition
The stability region of the Predictor-Corrector method is

S = {z ∈ C | 1 − z(α(ζ) − a0) − z2a0ζb(ζ) 6= 0 : |ζ| ≤ 1}.

Proof. To apply the Theorem we need to prove (H1), we use the binomial series to write

(n − 1)p = np − pnp−1 +
p(p − 1)

2 np−2 +
p(p − 1)(p − 2)

6 np−3 + O(np−4),

and similarly for (n + 1)p , from which we obtain

bn =
1

Γ(α)
nα−1 + O(nα−2), an,0 =

1
2Γ(α)nα−1 + O(nα−2), αn =

1
Γ(α)

nα−1 + O(nα−3),

and the expression we need for c(ζ) as

c(ζ) = z(α(ζ) − α0) + z2α0ζb(ζ).
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Stability region: predictor corrector method
Proposition
The stability region of the Predictor-Corrector method is

S = {z ∈ C | 1 − z(α(ζ) − a0) − z2a0ζb(ζ) 6= 0 : |ζ| ≤ 1}.

Proof. To apply the Theorem we need to prove (H1), we use the binomial series to write

(n − 1)p = np − pnp−1 +
p(p − 1)

2 np−2 +
p(p − 1)(p − 2)

6 np−3 + O(np−4),

and similarly for (n + 1)p , from which we obtain

bn =
1

Γ(α)
nα−1 + O(nα−2), an,0 =

1
2Γ(α)nα−1 + O(nα−2), αn =

1
Γ(α)

nα−1 + O(nα−3),

and the expression we need for c(ζ) as
c(ζ) = z(α(ζ) − α0) + z2α0ζb(ζ).

COG The expression can be evaluated only numerically. 25 / 34



BINOCULARS A research idea?

We have written a predictor-method in an explicit form, we can write and analyze in a
similar way also a predictor-corrector made of two implicit methods.
• We have now to solve a (possibly) non-linear problem at each step, thus things don’t

seem to good…
• But we can expect better stability and convergence properties.

LIGHTBULB What if we decide to solve the nonlinear problem in reduced precision?
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• We have now to solve a (possibly) non-linear problem at each step, thus things don’t

seem to good…
• But we can expect better stability and convergence properties.
LIGHTBULB What if we decide to solve the nonlinear problem in reduced precision?

Multiprecision algorithms on specialized hardware can give both an acceleration and
maintain the overall accuracy. This idea has already been partially explored for the ODE
case, but not yet for FODEs:
File-Alt B. Burnett et al. (2021). “Performance Evaluation of Mixed-Precision Runge-Kutta Methods”.

In: 2021 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, pp. 1–6

Further analyses
One can investigate also stability regions, effects of multiple correction steps, tolerances
and step-size selections…
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Fractional Linear Multistep Method
To obtain methods that can be analyzed we can move to Linear Multistep Methods.

• For an ODE a FLMM with k step is a method of the form:
k∑

j=0
ajyn+j = τ

k∑
j=0

bj fn+j , n = 0, . . . , s. (1)

for tj = t0 + jτ, for j = 0, . . . ,N, τ = (T − t0)/N,
• They are associated with the polynomials ρ(z) =

∑k
j=0 ajz j , σ(z) =

∑k
j=0 bjz j ,

• The fractional version has been introduced in the pioneering work (Lubich 1986b)

Theorem (Lubich 1986b, Theorem 2.6)
Let (ρ, σ) denote an implicit linear multistep method which is stable and consistent of
order p. Assume that the zeros of σ(ζ) have absolute values less than 1. Let
w(ζ) = σ(ζ−1)/ρ(ζ−1) denote the generating power series of the corresponding convolution
quadrature ω. We define ωα = {ω

(α)
n }+∞

n=0 by ωα(ζ) = ω(ζ)α, then the convolution
quadrature ωα is convergent of order p.
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Fractional Linear Multistep Method

An example is represented by Backward Differentiation Formulas, for which we have
p ωα(ζ)

1 (1 − ζ)−α

2 (3/2 − 2ζ+ 1/2ζ2)−α

3 (11/6 − 3ζ+ 3/2ζ2 − 1/3ζ3)−α

4 (25/12 − 4ζ+ 4ζ2 − 4/3ζ3 + 1/4ζ4)−α

5 (137/60 − 5ζ+ 5ζ2 − 10/3ζ3 + 5/4ζ4 − 1/5ζ5)−α

6 (147/60 − 6ζ+ 15/2ζ2 − 20/3ζ3 + 15/4ζ4 − 6/5ζ5 + 1/6ζ6)−α

28 / 34



Fractional Linear Multistep Method
An example is represented by Backward Differentiation Formulas, for which we have

p ωα(ζ)

1 (1 − ζ)−α

2 (3/2 − 2ζ+ 1/2ζ2)−α

3 (11/6 − 3ζ+ 3/2ζ2 − 1/3ζ3)−α

4 (25/12 − 4ζ+ 4ζ2 − 4/3ζ3 + 1/4ζ4)−α

5 (137/60 − 5ζ+ 5ζ2 − 10/3ζ3 + 5/4ζ4 − 1/5ζ5)−α

6 (147/60 − 6ζ+ 15/2ζ2 − 20/3ζ3 + 15/4ζ4 − 6/5ζ5 + 1/6ζ6)−α

-2 -1 0 1 2
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2

α = 1
For p = 1 we can consider the stability region S = C \ {1/ω(ζ) : |ζ| ≤ 1} and plot the part
of the C-plane we have to remove.
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Fractional Linear Multistep Method

An example is represented by Backward Differentiation Formulas, for which we have
p ωα(ζ)

1 (1 − ζ)−α

2 (3/2 − 2ζ+ 1/2ζ2)−α

3 (11/6 − 3ζ+ 3/2ζ2 − 1/3ζ3)−α

4 (25/12 − 4ζ+ 4ζ2 − 4/3ζ3 + 1/4ζ4)−α

5 (137/60 − 5ζ+ 5ζ2 − 10/3ζ3 + 5/4ζ4 − 1/5ζ5)−α

6 (147/60 − 6ζ+ 15/2ζ2 − 20/3ζ3 + 15/4ζ4 − 6/5ζ5 + 1/6ζ6)−α

Question-Circle How do we obtain the
coefficients?
How can we obtain the
coefficient describing the
method?
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Computing the FLMM coefficients
We have now the converse of the previous problem, we have a closed expression for ω(ζ),
and now we need the coefficients to write

Iατ g(tn) = τα
n∑

j=0
ωn−jg(tj) + τβ

s∑
j=0

wn,jg(tj),

• {ωj }
n
j=0 convolution coefficients from ω(ζ),

• {wn,j }
k
j=0 starting quadrature weights.

• For the convolution coefficients we can use:

Door-closed Fast Fourier Transform (FFT) techniques for formal power series,
Door-closed A recursion technique for complex binomial series.

• Solving a small k × k Vandermonde system.
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The Newton Method for Power Series (Henrici 1979)

Let us suppose that α = 1/2 and that we have a power series of the form

ω(ζ) =

+∞∑
j=0

ωjζ
j ,

for which we want to compute for a generic pth degree BDF

ω(ζ)−2 = q(ζ) with q(ζ) =
p∑

k=1

1
k (1 − ζ)k ,
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The Newton Method for Power Series (Henrici 1979)

Let us suppose that α = 1/2 and that we have a power series of the form

ω(ζ) =

+∞∑
j=0

ωjζ
j ,

for which we want to compute for a generic pth degree BDF

F (ω(ζ)) = 0 with F (w) = w−2 − q(ζ).
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The Newton Method for Power Series (Henrici 1979)
Let us suppose that α = 1/2 and that we have a power series of the form

ω(ζ) =

+∞∑
j=0

ωjζ
j ,

for which we want to compute for a generic pth degree BDF
To which we can apply the Newton’s method for power series{

ω(0)(ζ) = ω0,

ω(m+1)(ζ) =
[
ω(m)(ζ) − F ′(ω(m)(ζ))−1F (ω(m)(ζ))

]
2m+1 ,

for [·]k the truncation operator for a power series, i.e.,
[∑+∞

j=0 ajζ
j
]

k
=

∑k
j=0 ajζ

j , and ω0

the solution of [F (ω0)]1 = 0.
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The Newton Method for Power Series (Henrici 1979)
Let us suppose that α = 1/2 and that we have a power series of the form

ω(ζ) =

+∞∑
j=0

ωjζ
j ,

for which we want to compute for a generic pth degree BDF
To which we can apply the Newton’s method for power seriesω(0)(ζ) = ω0 = q(0)−1/2,

ω(m+1)(ζ) =
[

3/2ω(m)(ζ) − 1/2
(
ω(m)(ζ)

)3 q(ζ)
]

2m+1
,

for [·]k the truncation operator for a power series, i.e.,
[∑+∞

j=0 ajζ
j
]

k
=

∑k
j=0 ajζ

j .
After m step we have that

ω(m)(ζ) = [ω(ζ)]2m =

2m−1∑
j=0

ωjζ
j ∀m ≥ 0 and cost O(2m log(2m)).
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Recurrence relation
Theorem Henrici 1974, Theorem 1.6c, p. 42
Let φ(ζ) = 1 +

∑+∞
n=1 anζ

n be a formal power series. Then for any α ∈ C, we have

(φ(ζ))α =

+∞∑
n=0

v (α)
n ζn,

where coefficients v (α)
n can be evaluated recursively as

v (α)
0 = 1, v (α)

n =

n∑
j=1

(
(α+ 1)j

n − 1
)

ajv (α)
n−j

MONEY-BILL-WAVE This approach costs an O(N2) in general, but can be simplified, e.g., when a1 = ±1,
and ai > 0 for i > 1 it involves only 2N multiplications and N additions.
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Computing the starting weights
The starting weights wn,j in

Iατ g(tn) = τα
n∑

j=0
ωn−jg(tj) + τβ

s∑
j=0

wn,jg(tj),

are introduced to deal with the singular behavior of the solution close to the left endpoint
of the integration interval.

Starting weight selection
We fix them by imposing that Iατ tν is exact for ν ∈ A = Ap−1 ∪ {p − 1} with p the order of
convergence of the FLMM, and Ap−1 = {ν ∈ R | ν = i + jα, i , j ∈ N, ν < p − 1}.

τα
s∑

j=0
wn,j(jh)ν =

1
Γ(α)

∫nτ

0
(nτ− ξ)α−1χν dχ− τα

n∑
j=0

ωn−j(jh)ν, ν ∈ A.
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Solving the Vandermonde system
The resulting linear system is of “real” Vandermonde type, i.e.,

(A)s
j,νi=1 = (jh)νi , νi ∈ A, s = |A|.

• The condition number depends on α!

• If α = 1/M for some integer M then we can rewrite the system in the “integer”
Vandermonde form, thus mildly ill-conditioned,

• If α = 1/M − ε and p ≥ 2, then A will contain 1 and Mα = 1 − Mε, hence the matrix
will have two almost identical columns, thus a bad ill-conditioning.

• The right-hand side

1
Γ(α)

∫nτ

0
(nτ− ξ)α−1χν dχ− τα

n∑
j=0

ωn−j(jh)ν

can suffer from cancellation of digits!
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☼Where are we?

We know a general way to obtain FLMM methods of the form

y (n) = Tm−1(tn) + τβ
s∑

j=0
wn,j f (tj , y (j)) + τα

n∑
j=0

ωn−j f (tj , y (j)),

Check-Circle starting from the polynomials (ρ, σ) of an implicit order p method,

Check-Circle we have seen how to compute the convolution coefficients ωn,
Check-Circle we have seen how to compute the starting nodes wn,j ,
CLIPBOARD-LIST we need to discuss how we compute the starting values for a multi-step method,
CLIPBOARD-LIST we still need to discuss how we can efficiently treat the memory term.
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☼Where are we?

We know a general way to obtain FLMM methods of the form

y (n) = Tm−1(tn) + τ
β

s∑
j=0

wn,j f (tj , y (j)) + τα
n∑

j=0
ωn−j f (tj , y (j)),

Check-Circle starting from the polynomials (ρ, σ) of an implicit order p method,

Check-Circle we have seen how to compute the convolution coefficients ωn,
Check-Circle we have seen how to compute the starting nodes wn,j ,
CLIPBOARD-LIST we need to discuss how we compute the starting values for a multi-step method,
CLIPBOARD-LIST we still need to discuss how we can efficiently treat the memory term.
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Computing the starting values

To initialize the computation we need the values y(0), . . . , y(s), s + 1, s = |A| = Ap−1 ∪ {p − 1}
with p the order of convergence of the FLMM, and
Ap−1 = {ν ∈ R | ν = i + jα, i , j ∈ N, ν < p − 1}.

• We know y(0) from the initial condition, thus we have to solve for the remaining ones.
• To avoid mixing methods we evaluate all the approximations at the same time by solving

y(1)

y(2)

...
y(s)

 =


Tm−1(t1)
Tm−1(t2)

...
Tm−1(ts)

+ τα


(ω1 + w1,0)f0
(ω2 + w2,0)f0

...
(ωs + ws,0)f0

+ τα (Ω⊗ I + W ⊗ I)


f (t1, y(1))

f (t2, y(2))
...

f (ts , y(s))
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Ω =


ω0
ω1 ω0
...

...
. . .

ωs−1 ωs−2 · · · ω0

 , W =


w1,1 w1,2 · · · w1,s
w2,1 w2,2 · · · w2,s

...
...

. . .
...

ws,1 ws,2 · · · ws,s
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f (t2, y(2))
...

f (ts , y(s))


• This will be in general an s × dim(y(j)) nonlinear system that we need to solve before starting

the iteration.

• If the value of α is not very small, viz s is moderate, and the system of ODEs is moderate this
is manageable.
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Treating the memory term

If we compute the sum on the coefficients ωj naively for

y (n) = Tm−1(tn) + τ
β

s∑
j=0

wn,j f (tj , y (j)) + τα
n−1∑
j=0
ωn−j f (tj , y (j)) + ταω0f (tn, y (n)),

we end up having a O(N2) cost! If we do not perform this task efficiently the numerical
solution degenerates in an unworkable task as we either refine our grid or enlarge our
computational domain.

Door-closed We can try to “forget” part of the lag-term,
Door-closed We can consider using a stretched grid towards t0 to reduce N,
Door-closed We can try an approach with nested meshes to reduce the load,
Door-closed We can exploit the fact that this is a convolution and adopt some FFT tricks.
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solution degenerates in an unworkable task as we either refine our grid or enlarge our
computational domain.
Door-closed We can try to “forget” part of the lag-term,
Door-closed We can consider using a stretched grid towards t0 to reduce N,
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The FFT trick (Hairer, Lubich, and Schlichte 1985)
The treatment remains the same indifferently for both PI and FLMM method, let us focus
here on the generic formulation

y (n) = φn +

n∑
j=0

cn−j fj .

• Let r be a moderate number of step, e.g., r = 2k for a small k, we compute the first
steps directly

y (n) = φn +

n∑
j=0

cn−j fj , n = 0, 1, . . . , r − 1.

• If we now want to compute the next r approximations we can separate the lag term as

y (n) = φn +

r−1∑
j=0

cn−j fj +
n∑

j=r
cn−j fj , n ∈ {r , r + 1, . . . , 2r − 1}.
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The FFT trick (Hairer, Lubich, and Schlichte 1985)

0 r 2r 4r 8r
Sr

S2r

S4r

Sr

Sr

S2r

Sr

Tr

Tr

Tr

Tr

Tr

Tr

Tr

Tr

• We can iterate the process for the 4r
approximations in the interval
n ∈ {4r , . . . , 8r − 1}, together with the partial
sums S4r (n, 0, 4r − 1), S2r (n, 4r , 6r − 1),
Sr (n, 6r , 7r − 1) that can be evaluated in
O(8r log2(8r)), O(4r log2(4r)) and
O(2r log2(2r)) respectively,

• At each level we have to complete the
recursion by computing

Tr (p, n) =
n∑

j=p
cn−j fj , p = `r ,

n ∈{`r , `r + 1, . . . , (`+ 1)r − 1},
` =0, 1, 2, . . . .
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Tr

To determine the whole cost we just have to sum
the various components

• Assume that N = 2nt

• O(N log2 N) for S4r ,
+ O(N/2 log2 N/2) for 2 S2r

+ O(N/4 log2 N/4) for 4 Sr

+ r(r+1)/2 for the N/r convolutions Tr
• In general:
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The FFT trick (Hairer, Lubich, and Schlichte 1985)
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Short-memory principle (Ford and Simpson 2001)

We can try to use a “fixed memory length” to reduce the computational (and memory) load.

y(tn+1) = y(tn) +
1
Γ(α)

∫ tn+1

tn

(tn+1 − τ)
α−1f (τ, x(τ))dτ

+
1
Γ(α)

∫ tn

0
((tn+1 − τ)

α−1 − (tn − τ)α−1)f (τ, y(τ))dτ, α ∈ (0, 1).
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M

Γ(α)Eglobal

)1/1−α

, α ∈ (0, 1),

while if we have a local error bound Elocal

TM >

(
Mτ

Γ(α)Elocal

)1/1−α

, α ∈ (0, 1).

7 / 34



Short-memory principle (Ford and Simpson 2001)

SMILE In case α ∈ (0, 1) the short memory method with fixed length can be effective and the
length T is independent of the full interval of integration.

SAD-TEAR Similar bounds can be written for the case α > 1, that is

E < M
Γ(α)

(tαn+1 − Tα−1
M )τ, α > 1.

But now to preserve the order of accuracy, we must choose

Tα−1
M > tα−1

n+1 −
EglobalΓ(α)

M , α > 1,

that we will make us lose all the computational gain.
The idea can be refined by using nested meshes.
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Nested meshes
Zeroing out the memory term is too drastic, we may want to relax this.

Scaling properties

LIGHTBULB We can use the weight on the mesh

Ωατ f (nτ) ≈ Iα[0,t]f (nτ), step length τ

to compute
Ωαwpτf (nwpτ) ≈ Iα[0,t]f (nwpτ), step length wpτ

• In summary for any p ∈ N we get

Ωατ f (nτ) =
n∑

j=0
ωn−j f (jτ) ⇔ Ωαwpτf (nwpτ) = wpα

n∑
j=0
ωn−j f (jwpτ).
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Nested meshes (Ford and Simpson 2001)
Nested mesh
Given τ ∈ R+, the mesh Mτ = {τn, n ∈ N}. Selected w , r , p ∈ N, w > 0, r > p, we have
Mwpτ ⊃ Mw rτ and we decompose the interval as

[0, t] = [0, t − wmT ] ∪ [t − wmT , t − wm−1T ] ∪ · · · ∪ [t − wT , t − T ] ∪ [t − T , t]

for m ∈ N the smallest integer such that t < wm+1T .

LIGHTBULB This links the scaling property with the singularity of the type 1/(t − τ)1−α

suggesting that we should distribute the computational effort logarithmically, and not
uniformly.

• We rewrite our integral as
Iα[0,t]f (t) =
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LIGHTBULB This links the scaling property with the singularity of the type 1/(t − τ)1−α

suggesting that we should distribute the computational effort logarithmically, and not
uniformly.

• We rewrite our integral using the scaling property as

Iα[0,t]f (t) = Iα[t−T ,t]f (t) +
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i=0
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Nested meshes (Ford and Simpson 2001)
In the discrete approximation of

Iα[0,t]f (t) = Iα[t−T ,t]f (t) +
m−1∑
i=0

w iαIα[t−wT ,t−T ]f (w
it) + wmαIα[0,t−T ]f (w

mt).

we approximate
Ωατ,[t−w i+1T ,t−w i T ]f (t) ≈ Ω

α
w iτ,[t−w i+1T ,t−w i T ]f (t)

and substitute
w iαΩατ,[t−wT ,t−T ]f (t) = Ω

α
w iτ,[t−w i+1T ,t−w i T ]f (t).

Theorem (Ford and Simpson 2001, Theorem 1)
The nested mesh scheme preserves the order of the underlying quadrature rule on which it
is based.
Proof. For integration over a fixed interval [0, t] the choice of T fixes (independent of h) the
number of subranges over which the integral is evaluated, on each of them we have en error O(hp).
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Nested meshes (Ford and Simpson 2001)

• The first benefit is that we evaluate a fixed number of quadrature coefficients and
then re-use them on all successive intervals,

MONEY-BILL-WAVE This approach cost O(wm) with respect to O(w2m) of the full method,
COG We could use linear extrapolation techniques to improve the results.
COG Selecting the various parameter may need a bit of tuning.
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CODE Available codes
With respect to the ordinary case for which there exists many reliable and high-performance
codes, the choices for computing the solution of fractional differential equation is much
more sparse.
• From (Garrappa 2018)

CODE FDE_PI1_Ex.m - Explicit Product-Integration of rectanguar type
CODE FDE_PI1_Im.m - Implicit Product-Integration of rectanguar type
CODE FDE_PI2_Im.m - Implicit Product-Integration of trapezoidal type
CODE FDE_PI12_PC.m - Product-Integration with predictor-corrector

• From (Garrappa 2015)
CODE FLMM2 Matlab code - Three implicit second order Fractional Linear Multistep Methods.

BINOCULARSA remark
All these methods use direct-solver for the Newton method inside them, there is space to
make improvement on the solution strategies. Furthermore, a challenge that yet remains:
can we find a strategy that combines the convolution features and savings on the memory?

13 / 34

https://www.dm.uniba.it/members/garrappa/software_folder/fde_pi1_ex.m
https://www.dm.uniba.it/members/garrappa/software_folder/fde_pi1_im.m
https://www.dm.uniba.it/members/garrappa/software_folder/fde_pi2_im.m
https://www.dm.uniba.it/members/garrappa/software_folder/fde_pi12_pc.m
http://www.mathworks.com/matlabcentral/fileexchange/47081-flmm2


What do we have now

We know a general way to obtain FLMM methods of the form

y (n) = Tm−1(tn) + τ
β

s∑
j=0

wn,j f (tj , y (j)) + τα
n∑

j=0
ωn−j f (tj , y (j)),

Check-Circle starting from the polynomials (ρ, σ) of an implicit order p method,
Check-Circle we have seen how to compute the convolution coefficients ωn,
Check-Circle we have seen how to compute the starting nodes wn,j ,
Check-Circle we know how we can compute the starting values for a multi-step method by solving a

nonlinear system with Newton,
Check-Circle we have some hints on how we can efficiently treat the memory term.
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A worked out example
Let us write everything for a case, let us start from the 2nd order BDF formula for ODEs

y (n+2) −
4
3y (n+1) +

1
3y (n) =

2
3τfn+2,

• First of all we write down the (ρ, σ) polynomials
defining the scheme:

ρ(ζ) = ζ2 −
4
3ζ+

1
3 , σ(ζ) =

2
3ζ

2.

• Then we compute the generating function ω(ζ)

ω(ζ) =
ρ(1/ζ)

σ(1/ζ)
=

2
3
(
1 − 4ζ/3 + ζ2/3

) .
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α = 0.5

0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

{1/ω(ζ)α : |ζ| ≤ 1}
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A worked out example

Now we need to expand the convolution coefficients of

ωα(ζ) = (ω(ζ))α =
2α
3α (1 − 4ζ/3 + ζ2/3)−α.
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Now we need to expand the convolution coefficients of

ωα(ζ) = (ω(ζ))α =
2α
3α (1 − 4ζ/3 + ζ2/3)−α.

Theorem (Henrici 1974, Theorem 1.6c, p. 42)
Let φ(ζ) = 1 +

∑+∞
n=1 anζ

n be a formal power series. Then for any α ∈ C, we have

(φ(ζ))α =

+∞∑
n=0

v(α)
n ζn,

where coefficients v(α)
n can be evaluated recursively as

v(α)
0 = 1, v(α)

n =

n∑
j=1

(
(α+ 1)j

n − 1
)

ajv(α)
n−j

16 / 34



A worked out example
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ωα(ζ) = (ω(ζ))α =
2α
3α (1 − 4ζ/3 + ζ2/3)−α.

• ωn = 2α/3αω̃n,

• a1 = −4/3, a2 = 1/3, aj = 0 if j ≥ 3, thus using

ω̃
(α)
0 = 1, ω̃
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n =
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)
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3
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A worked out example

100 200

0.2

0.4

0.6

0.8

α = 0.5.

• Since the aj are a finite small number, we can
compute the coefficients in an O(N) operations,

omega = zeros(1,N+1) ;
onethird = 1/3 ; fourthird = 4/3;
twothird_oneminusalpha = 2/3*(1-alpha);
fourthird_oneminusalpha = 4/3*(1-alpha);
omega(1) = 1 ; omega(2) = fourthird*alpha*omega(1);
for n = 2 : N
omega(n+1) = (fourthird -

fourthird_oneminusalpha/n)*omega(n) + ...↪→
(twothird_oneminusalpha/n - onethird)*omega(n-1);

end
omega = omega*((2/3)^(alpha));

• We can solve CAD0.5
[0,2]y(t) = −2y(t), y(0) = 1
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α = 0.5.

• Since the aj are a finite small number, we can
compute the coefficients in an O(N) operations,

• We can solve CAD0.5
[0,2]y(t) = −2y(t), y(0) = 1

τ |y (n) − y(2)| order

2−6 1.44e-04 1.61
2−7 4.42e-05 1.71
2−8 1.28e-05 1.79
2−9 3.57e-06 1.84
2−10 9.68e-07 1.88
2−11 2.85e-07 1.76
2−12 8.17e-08 1.80
2−13 2.29e-08 1.84
2−14 6.27e-09 1.87
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A worked out example

100 200

0.2

0.4

0.6

0.8

α = 0.5.

• Since the aj are a finite small number, we can
compute the coefficients in an O(N) operations,

• We can solve CAD0.5
[0,2]y(t) = −2y(t), y(0) = 1

• For the starting weights we have to solve a 3 × 3
Vandermonde system: 1 1 1

0 1
√

2
0 1 2

wn,0
wn,1
wn,2

 =

b1
b2
b3


number of time-step times.

Reuse
Since we have a fixed time-grid we can reuse the same
factorization for the Vandermonde system and compute all
the weights in a single sweep.
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Fractional Brusselator

The Brusselator is a model of the autocatalytic chemical reaction, it is described by{
ẋ1 = a − (µ+ 1)x1 + x2

1 x2,

ẋ2 = µx1 − x2
1 x2,

a, µ > 0.

• If µ > a2 + 1 then a single Brusselator has a
unique limit cycle,

• If (a − 1)2 < µ ≤ a2 + 1 all the orbits tend to the
steady state.
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Fractional Brusselator
The Brusselator is a model of the autocatalytic chemical reaction, it is described by{

ẋ1 = a − (µ+ 1)x1 + x2
1 x2,

ẋ2 = µx1 − x2
1 x2,

a, µ > 0.

a = 1 ; mu = 4 ;
param = [ a , mu ] ;
f_fun = @(t,y,par) [ ...
par(1) - (par(2)+1)*y(1) + y(1)^2*y(2) ; ...
par(2)*y(1) - y(1)^2*y(2) ] ;
t0 = 0 ; T = 100 ;
y0 = [ 1 ; 1] ;
[T,Y] = ode45(@(t,y)

f_fun(t,y,param),[t0,T],y0);↪→
figure(1)
plot(Y(:,1),Y(:,2),'k-',y(1,1),y(2,1),'ro') 0 2 4 6

0

2

4

6

8
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Fractional Brusselator
The Brusselator is a model of the autocatalytic chemical reaction, it is described by{

CADα1x(t) = a − (µ+ 1)x1 + x2
1 x2,

CADα2x(t) = µx1 − x2
1 x2,

a, µ > 0.

alpha = [0.8,0.7] ;
h = 1e-2;
[t, y] =

fde_pi1_ex(alpha,f_fun,t0,T,y0,h,param) ;↪→
The cycle of the single fractional Brusselator is
contained in the region{

(x1, x2) :
a

µ+ 1 < x1 <
2a
µ
, 0 < x2 <

µ(1 + µ)

a

}
0 2 4 6

0

2

4

6

8
Fractional Brusselator
Ordinary Brusselator
y0
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Fractional Brusselator
The Brusselator is a model of the autocatalytic chemical reaction, it is described by{

CADα1x(t) = a − (µ+ 1)x1 + x2
1 x2,

CADα2x(t) = µx1 − x2
1 x2,

a, µ > 0.

alpha = [0.8,0.7] ;
h = 1e-2;
[t, y] =

fde_pi1_ex(alpha,f_fun,t0,T,y0,h,param) ;↪→
The cycle of the single fractional Brusselator is
contained in the region{

(x1, x2) :
a

µ+ 1 < x1 <
2a
µ
, 0 < x2 <

µ(1 + µ)

a

}

Question-CircleOf interest (Wang and Li
2007)
Finding the smallest values α1, α2
for which a limit cycle exist is of
interest.
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Bagley-Torvik Model (Bagley and Torvik 1986)

Stoke’s Second Problem
Can we determine the behavior of a
half-space of Newtonian, viscous
fluid undergoing the motion induced
by the prescribed uniform sinusoidal
motion of a plate on the surface?
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Bagley-Torvik Model (Bagley and Torvik 1986)

Stoke’s Second Problem
Can we determine the behavior of a
half-space of Newtonian, viscous
fluid undergoing the motion induced
by the prescribed uniform sinusoidal
motion of a plate on the surface?

If we write down the equation of motion we find

ρ
∂v
∂t = µ

∂2v
∂z2

• ρ is the fluid density, µ is the viscosity, v is the
profile of the transverse fluid velocity.

• We apply Laplace transform to the equation
ṽ = Lv(s),

• We solve and impose the boundary condition
given by the ṽp = LVp(s),

• Since the shear stress is given by
σ(t, z) = µvz(t, z) we can write its Laplace
transform.
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Bagley-Torvik Model (Bagley and Torvik 1986)

K

m

X

Immersed Plate

Assumptions:
• The spring is massless and its oscillations do not disturb

the fluid,
• The area A of the plate is sufficiently large as to produce in

the fluid adjacent to the plate the velocity field and
stresses we just derived,

Deriving the equation:

mẌ = FX = −KX − 2Aσ(t, 0)

Using the expression for the strain and Vp(t, 0) = Ẋ(t) we find

mẌ + 2A√µρCAD3/2
[0,t]X + KX = 0.
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mẌ = FX = −KX − 2Aσ(t, 0)

Using the expression for the strain and Vp(t, 0) = Ẋ(t) we find
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Linear Multi-Term FDEs

The Bagley-Torvik model is an example of a Linear Multi-Term FDE, that is, something of
the form

λQCADαQ y(t) + λQ−1CADαQ−1y(t) + · · ·+ λ2CADα2y(t) + λ1CADα1y(t) = f (t, y(t)),

with
• λi ∈ R ∀ i = 1, . . . ,Q,
• 0 < α1 < α2 < . . . < αQ−1 < αQ and αQ 6= 0.

For this problem we have mQ = max mi , mi = dαie, i = 1, . . . ,Q initial conditions:

y(t0) = y0, y ′(t0) = y (1)
0 , . . . , y (mQ−1)(t0) = y (mQ−1)

0 .

Question-Circle How can we solve them?
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Linear Multi-Term FDEs

We need to recall one of the properties we have seen of the Caputo derivatives
(P1) Iα[t0,T ]CADα

[t0,T ]y(t) = y(t) − Tm−1[y , t0](t),

(P2) Iβ[t0,T ]CADα
[t0,T ]y(t) = Iβ[t0,T ]RLDα

[t0,T ] [y(t) − Tm−1[y ; t0](t)] =
Iβ−α[t0,T ] [y(t) − Tm−1[y ; t0](t)], β > α.

We start from the multi-term equation

• we multiply both sides by IαQ
[t0,T ],

• we use P1 on the left-hand side, P2 on the right-hand side,
• and re-arrange to get an expression for the solution.
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Linear Multi-Term FDEs: generalizing PI rules
First we do a bit of rewriting of

y(t) = TmQ−1[y , t0](t) −
Q−1∑
i=1

λi
λQ

IαQ−αi
[t0,t] [y(t) − Tmi−1[y ; t0](t)] +

1
λQ

IαQ
[t0,T ]f (t, y(t))

• we employ the usual fractional integral for polynomials:

Iα[t0,t]Tm−1[y ; t0](t) =
m−1∑
k=0

(t − t0)
k+α

Γ(k + α)
y (k)(t0),

α ∈ {α1, . . . , αQ−1},
m ∈ {m1, . . . ,mQ−1}.

• We use it to simplify the expression

T̃ (t) = TmQ−1[y ; t0](t) +
Q−1∑
i=1

λi
λQ

mi−1∑
k=0

(t − t0)
k+αQ−αi

Γ(k + αQ − αi + 1)y (k)(t0).
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Linear Multi-Term FDEs: generalizing PI rules
Now we have an expression that we can treat by adapting one of the Product Integral rules

y(t) = T̃ (t) −
Q−1∑
i=1

λi
λQ

IαQ−αi
[t0,t] y(t) + 1

λQ
IαQ
[t0,T ]f (t, y(t)).

We can start from the rectangular product integral rule on a uniform grid

y (n) = T̃ (tn) −
Q−1∑
i=1

λi
λQ
ταQ−αi

n∑
j=0

b(αQ−αi )
n−j−1 y (j) +

1
λQ

n∑
j=0

b(αQ )
n−j−1f (tj , y (j)).

with
b(α)

n = [(n + 1)α − nα]/α, n = 1, . . . ,N.

We can do it similarly for the Implicit Trapezoidal Rule and then for the
Predictor-Corrector method (Diethelm 2003).
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Linear Multi-Term FDEs: generalizing PI rules

Question-Circle Can we do something similar for FLMMs?

COG We don’t know how to determine the starting values wn,j for the quadrature. Thus this
approach is not viable.
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Linear Multi-Term FDEs: generalizing PI rules

Question-Circle Can we do something similar for FLMMs?
COG We don’t know how to determine the starting values wn,j for the quadrature. Thus this
approach is not viable.
Available codes (Garrappa 2018):

CODE MT_FDE_PI1_Ex.m - Explicit Product-Integration of rectanguar type

CODE MT_FDE_PI1_Im.m - Implicit Product-Integration of rectanguar type

CODE MT_FDE_PI2_Im.m - Implicit Product-Integration of trapezoidal type

CODE MT_FDE_PI12_PC.m- Product-Integration with predictor-corrector

25 / 34

https://www.dm.uniba.it/members/garrappa/software_folder/mt_fde_pi1_ex.m
https://www.dm.uniba.it/members/garrappa/software_folder/mt_fde_pi1_im.m
https://www.dm.uniba.it/members/garrappa/software_folder/mt_fde_pi2_im.m
https://www.dm.uniba.it/members/garrappa/software_folder/mt_fde_pi12_pc.m


Linear Multi-Term FDEs: back to Bagley-Torvik
We reached the equation

mẌ + 2A√µρCAD3/2
[0,t]X + KX = 0.

m = 10; A = 6; K = 3;
mu = 2; rho = 2;
alpha = [2 3/2] ;
lambda = [m 2*A*sqrt(mu*rho)] ;
f_fun = @(t,X) -K*X;
J_fun = @(t,X) -K;
t0 = 0 ; T = 100 ;
X0 = [0 , 2 ];
h = 1e-2;
[t, X] = mt_fde_pi1_ex(alpha, lambda, f_fun,

t0, T, X0, h);↪→ 0 20 40 60 80 100
0

2

4

6

8

But does it fit the reality?
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Linear Multi-Term FDEs: back to Bagley-Torvik
The model we have derived is a
model of the form

σ(t) = G0ε(t) + G1ε̇(t),
ε(t) = x(t)

δ

f (t) = mẍ(t) + fp(t),
fp(t) = 2A

δ
(G0 + G1CADαx(t)).

One can do parameter tuning to
find the fractional order from
experimental data and compare
the results with the integer-order
model. The results on the left by
Bagley and Torvik 1986 show that
the fractional model obtain a
better fit with the measured data.
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Equivalent formulations of the Multi-Term FDEs
In the integer-order case we know how to rewrite the equation

y (n)(t) = f (t, y (n−1)(t), . . . , y (1)(t), y(t)), y (j)(0) = y (j)
0 , j = 0, 1, . . . , n − 1,

as a system of first-order equations.

Question-Circle Can we do something similar in the fractional case?
(A1) Let us assume that our multi-term equation is of the form

CADαk y(t) = f (t, CADαk−1y(t), . . . , CADα1(t), y(t)), y (j)(0) = y (j)
0 ,

j = 0, 1, . . . , n − 1,

for αk > αk−1 > · · · > α1 > 0, αj − αj−1 ≤ 1 ∀ j = 1, 2, . . . , k, 0 < α1 ≤ 1.
(A2) Assume also that αj ∈ Q ∀ j = 1, 2, . . . , k, and that M is the least common multiple

of α1, α2, . . . , αk .
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0 , j = 0, 1, . . . , n − 1,

as a system of first-order equations.

Question-Circle Can we do something similar in the fractional case?

(A1) Let us assume that our multi-term equation is of the form

CADαk y(t) = f (t, CADαk−1y(t), . . . , CADα1(t), y(t)), y (j)(0) = y (j)
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Equivalent formulations of the Multi-Term FDEs

Theorem (Diethelm 2010, Theorem 8.1)
Under the assumptions (A1) and (A2), set γ = 1/M, and N = Mαk , then the IVP is
equivalent to

CADγy0(t) = y1(t),
CADγy1(t) = y2(t),
...
CADγyN−2(t) = yN−1(t),
CADγyN−1(t) = f (t, y0(t), yαk−1/M(t), . . . , yα1/M(t), y(t))

yi(0) =
{

y (j/m)
0 , if j

M ∈ N0,

0, otherwise.

⇒ whenever y = (y0, . . . , yN−1)
T with y0 ∈ Cdαke[0, b], for some b > 0, is a solution of

the N-dimensional system, then y ≡ y0 is a solution of the multi-term FDE.
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0 , if j

M ∈ N0,
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Equivalent formulations of the Multi-Term FDEs
We can relax (A2) from the rationality requirement to a requirement on being
commensurable2.

(A2)’ Let 1 ≥ αk > αk−1 > . . . > α1 > 0 and assume the equation to be commensurate,
then we define α̃j = αj/α1 for j = 1, . . . , k, let M̃ be the least common multiple of the
denominators of the values α̃1, . . . , α̃k .

Theorem (Diethelm 2010, Theorem 8.2)
Under the assumption (A1) and (A2)’, set γ = α1/M̃ and N = M̃αk/α1, then the equivalence
relation of the N-dimensional system and of the multi-term FDE holds as in the previous
result.

LIGHTBULB Existence and uniqueness results can be obtained for the single term reformulation,
COG See (Ford and Connolly 2009) for other reformulations and comparisons.

2Two non-zero real numbers α and β are said to be commensurable if their ratio α/β ∈ Q.
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The Method of Lines
Consider a partial differential equations of the form

Find u(x, t) s.t. ut = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+,

where L is a differential operator, either linear or nonlinear, coupled with the opportune
boundary conditions, and given suitable initial conditions.

A classical way of approaching this task is using a Method Of Lines (MOL) approach,
that is

1. we discretize w.r.t. the space variables with some method (e.g., Finite
Elements/Differences/Volumes, meshfree/meshless methods, spectral methods…)

Mut = F (t, u), M ∈ Rnd×nd , F : R× Rnd → Rnd , u : R → Rnd .

2. now we have a (possibly nonlinear, non-autonomous) system of ODEs to which we can
apply an integrator.
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PDEs with fractional derivatives with respect to time

We can think of using the methods we have seen until now for solving PDEs in which the
derivative with respect to time has been substituted by the fractional derivative in the
Caputo sense

Find u(x, t) s.t. CADαu = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+.
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derivative with respect to time has been substituted by the fractional derivative in the
Caputo sense

Find u(x, t) s.t. CADαu = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+.

Examples:
DICE-ONE Time-fractional diffusion equation

CADα
t u = div(p(x) grad u) − q(x)u + F (x , t), 0 < α ≤ 1.

DICE-TWO Time-fractional advection-dispersion equation

CADα
t u = div(p(x) grad u) − ν grad(u), 0 < α ≤ 1.

DICE-THREE Time-fractional Schrödinger equation

(iTρ)αCADα
t ψ = −

L2
ρ

2Nm
∇2ψ+ Nνψ, 0 < α ≤ 1.
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Caputo sense

Find u(x, t) s.t. CADαu = Lu, x ∈ Ω ⊆ Rd , t ∈ I ⊆ R+.

Examples:
DICE-FIVE Time-fractional Burgers equation equation

CADα
t u = uxx + Aupux , 0 < α ≤ 1, p > 0.

DICE-SIX Time-fractional Korteweg–de Vries equation

CADα
t u = uxxx + Aupux , 0 < α ≤ 1, p > 0.

DICE-D20 Time-fractional (incompressible) Navier–Stokes equation{
CADα

t (u · ∇)u = ν∇2u − 1
ρ∇p + f ,

∇ · u = 0.
0 < α ≤ 1.
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An example with diffusion
Let us consider the case of

CADα
t u = 0.05∇2u, α = 0.3, 1.

and integrate it with the FBDF2 with τ = 10−2.

How
can you describe the observed behavior?
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Conclusions and next steps

Check-Circle We have completed the construction of several schemes for the integration of FODEs,

Check-Circle We have discussed the case of FODEs with multiple terms and different orders,
Check-Circle We started looking into some time-fractional PDEs using the Method of Lines together

with our FODEs algorithms.
CLIPBOARD-LIST Can we better describe this “subdiffusive” behavior we have observed in

time-fractional diffusion equation?
CLIPBOARD-LIST For linear problems can we investigate the “exponential” fractional integrators?
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Subdiffusion equations
At the end of the last lecture we had observed the following behavior:

for the solution of:
CADα

t u = 0.05∇2u, α = 0.3, 1.

The visual effect seemed to be a slowing down of the diffusion.
1 / 45



Brownian motion (Metzler and Klafter 2000)

• Consider a 1D lattice with cell size ∆x ,
• In discrete time steps of span ∆t a test particle jumps to one of its neighbour sites,

• The process can be modelled by the master equation

Wj(t + ∆t) = 1
2Wj−1(t) +

1
2Wj+1(t)
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Brownian motion (Metzler and Klafter 2000)
We now substitute the expansions

Wj(t + ∆t) =Wj(t) + ∆t ∂Wj
∂t + O([∆t]2), for ∆t → 0,

Wj±1(t) =W (x , t)± ∆x ∂W
∂x +

(∆x)2

2
∂2W
∂x2 + O([∆x ]3), for ∆x → 0,

in
Wj(t + ∆t) = 1

2Wj−1(t) +
1
2Wj+1(t)

obtaining

W (x , t) + ∆t∂W
∂t + O

(
∆t2) = W (x , t) + 1

2∆x2∂
2W
∂x2 + O

(
∆x3)
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in
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2Wj−1(t) +
1
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∂2W
∂x2 , K1 = lim

∆x→0
∆t→0

∆x2

2∆t <∞.
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Brownian motion

∂W
∂t = K1

∂2W
∂x2

Let us call X the random variable measuring the distance covered in two consecutive jumps
• Assume that the pdf of X (appropriately normalised) has existing moments

X =
∑

i
Xi , X2,

and mean time-span ∆t between any two individual jump events.

• Then the central limit theorem assures that exists

V =
X
∆t (Mean velocity) K =

X2 − X2

2∆t (Diffusion coefficient)

and that
W (x , t) = 1

2
√
πK1t

exp
(
−x2/4K1t

)
.
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Brownian motion: the Fourier domain

We can rewrite
W (x , t) = 1

2
√
πK1t

exp
(
−x2/4K1t

)
.

in the Fourier domain as

W (k, t) = exp(−K1k2t), W0(x) = lim
t→0+

W (x , t) = δ(x),

that solve the Fourier transformed diffusion equation

∂W
∂t = −K1k2W (k, t),

that is a relaxation equation, for a fixed wavenumber k.
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From the discrete to the continuous

The Continuous Time Random Walk model (CTRW):
LIGHTBULB Both the length of a given jump, and the waiting time elapsing between two

successive jumps are drawn from a pdf ψ(x , t)

Walking The jump length pdf

λ(x) =
∫+∞

0
ψ(x , y)dt,

CLOCK The waiting time pdf

w(t) =
∫+∞
−∞ ψ(x , t)dx
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Walking The jump length pdf

λ(x) =
∫+∞

0
ψ(x , y)dt,

CLOCK The waiting time pdf

w(t) =
∫+∞
−∞ ψ(x , t)dx

• If the jump length and waiting time are independent random variables then:

ψ(x , t) = w(t)λ(x)
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Characterization of CTRW
To categorise different CTRW one can look at the quantities

T =

∫+∞
0

tw(t)dt, (Characteristic waiting time),

and
Σ2 =

∫+∞
−∞ x2λ(x)dx (Jump length variance),

specifically, are they finite? Do they diverge?

The master (Langevin) equation for this process is then given by

η(x , t) =
∫+∞
−∞ dx ′

∫+∞
0

dt ′ η(x ′, t ′)ψ(x − x ′, t − t ′) + δ(x)δ(t),
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Characterization of CTRW
Then if we use

η(x , t) =
∫+∞
−∞ dx ′

∫+∞
0

dt ′ η(x ′, t ′)ψ(x − x ′, t − t ′) + δ(x)δ(t),

we can write the pdf of being in x at time t as

W (x , t) =
∫ t

0
η(x , t ′)Ψ(t − t ′),dt, Ψ(t) = 1 −

∫ t

0
w(t ′)dt ′,

where the latter is the cumulative probability assigned to the probability of no jump event
during the time interval t − t ′.

Fact
If both T and Σ2 are finite the long-time limit corresponds to Brownian motion, e.g.,
w(t) = τ−1exp(−t/τ), T = τ, λ(x) = (4πσ2)−1/2 exp(−x2/4σ2), Σ2 = 2σ2, we recover the
standard diffusion equation.
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The CTRW in the Fourier-Laplace domain
We take

W (x , t) =
∫ t

0
η(x , t ′)Ψ(t − t ′),dt, Ψ(t) = 1 −

∫ t

0
w(t ′)dt ′,

and rewrite it again in the Fourier-Laplace domain (Fourier for the space variable,
Laplace for the time one) as

W (k, u) = 1 − w(u)
u

W0(k)
1 −ψ(k, u) , W0(k) =

∫+∞
−∞ W0(x)e−i2πkx dx .

In the Brownian case

w(u) ∼ 1 − uτ+ O(τ2), λ(k) ∼ 1 − σ2k2 + O(k4), W0(x) = δ(x)

then
W (k, u) = 1

u + K1k2 , K1 = σ2/τ.
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The case of long rests
Bed Long rests
The characteristic waiting time T =

∫+∞
0 tw(t)dt diverges, but the jump length

variance Σ2 =
∫+∞
−∞ x2λ(x)dx is finite.

• To realize this we can select
w(t) ∼ Aα (τ/t)1+α , 0 < α < 1,

• For the jump pdf we use again the Gaussian jump length
λ(x) = (4πσ2)−

1/2 exp(−x2/4σ2).

• To get the form of the equation we first go to the Laplace domain:
w(u) ∼ 1 − (uτ)α,

• and then obtain the expression for W (k, u) in the Fourier-Laplace space
W (k, u) = W0(k)/u/

(
1+Kαu−αk2).
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The case of long rests

To get an expression of the equation we use the Laplace transform for fractional integrals:

L
{

I−α[0,t]W (x , t)
}
= u−αW (x , u), α ≥ 0,

and together with
W (k, u) =

W0(k)/u

(1 + Kαu−αk2)
.

we infer the fractional integral equation

W (x , t) − W0(x) = I[0,t]Kα
∂2

∂x2 W (x , t).
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we infer the fractional integral equation
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∂t = RLDα

[0,t]Kα
∂2

∂x2 W (x , t).

We can compute also the mean squared displacement

〈x2(t)〉 = L−1
{

lim
k→0

−
d2

dk2 W (k, u)
}

=
2Kα

Γ(1 + α)
tα.
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The case of long rests

We have obtained a Fractional Differential Equation:

∂W
∂t = RLDα

[0,t]Kα
∂2

∂x2 W (x , t), 0 < α < 1

but this is not the model we started looking at, that was

CADα
[0,t]W = Kα

∂2

∂x2 W (x , t), 0 < α < 1

Question-Circle Are they related?

It turns out that this is indeed the case (Sokolov and Klafter 2005),
the proof involves doing some work in inverting Fourier-Laplace transform.

We now have an interpretation of what a Fractional Derivative with respect to time is. We
will come back to this when we will speak about fractional derivative with respect to space.
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“Exponential” Fractional Integrators
We start from the FDE{

CADα
[t0,t]u(t) + λy(t) = f (t),

u(0) = u0,
α ∈ R>0, λ ∈ R, u(t) : [t0,T ] → R.

Then we rewrite the solution as

u(t) = eα,1(t − t0; λ)u0 +

∫ t

t0

eα,α(t − s ; λ)f (s)ds, eα,β = tβ−1Eα,β(−λtα),

for Eα,β(z) the Mittag-Leffler (ML) function with two parameters.

LIGHTBULB We can use this formulation to build different PI rules,
LIGHTBULB We can use it to address the problem

CADα
[t0,t]U(t) + Ay(t) = F (U(t)), U(0) = U0.
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Evaluation of the ML function
For both the approaches we need reliable ways for computing the ML function on both
the real line and with matrix argument.

Scalar case Inversion of the Laplace transform via the Optimal Parabola Contour
selection algorithm (Garrappa 2015),

Matrix argument To apply algorithm for matrix-function evaluation we may need also the
value of the derivative of the ML function, e.g., Schur-Parlett type
algorithm (Garrappa and Popolizio 2018; Higham and Liu 2021).

In general, we expect to mostly need matrix function–times–vector operations:

y = Eα,β(A)v, A ∈ Rn×n, y, v ∈ Rn.

We postpone it to after we have discussed the actual necessities we have.
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PI - “Exponential” Fractional Integrators
We start from the formula

u(t) = eα,1(t − t0; λ)u0 +

∫ t

t0

eα,α(t − s ; λ)f (s)ds, eα,β = tβ−1Eα,β(−λtα),

and select a grid {ti }
N
i=0, then

u(tn) = eα,1(tn − t0; λ)u0 +
n−1∑
j=0

∫ tj+1

tj

eα,α(tn − s ; λ)f (s)ds.

• In general we have
eα,β(t ; λ) = τβ−1eα,β(t/τ; ταλ)

• For s ∈ [tj , tj+1] let us consider the change of variables s = tj + rτ, r ∈ [0, 1]
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PI - “Exponential” Fractional Integrators
Then a PI rule for

u(tn) = eα,1(tn − t0; λ)u0 + τ
α

n−1∑
j=0

∫1

0
eα,α((t−tj )/τ− r ; ταλ)f (tj + rτ)dr .

is obtained by selecting q + 1 distinct nodes 0 ≤ c0 < c1 < · · · < cq ≤ 1 and replacing
f (tj + rτ) with

p[q]
j (tj+rτ) =

q∑
`=0

L[q]
` (r)f (tj+c`τ), r ∈ [0, 1], L[q]

` Lagrange basis element of degree q.

And selecting the weights

ω
[q;α]
` (n, z) =

∫1

0
eα,α(n − j − r ; z)L[q]

` (r)dr .
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PI - “Exponential” Fractional Integrators
Theorem (Garrappa and Popolizio 2011, Theorem 4.2)
Let α > 0 and f (t) ∈ Cq+2([t0,T ]). The error of a q-step exponential PI rule is given by

u(tn) − u(n) = τq+1 C [q]
0

(q + 1)!

∫ tn

t0

eα,α(tn − s ; λ)f (q+1)(s)ds + O(τq+1+α),

where the constant C [q]
0 depends only on the nodes c`.

• For q = 2, c0 = 0, c1 = 1/2 c2 = 1, one finds C [2]
0 = 0, thus an interpolatory formula

of order O(τq+1+α).
LIGHTBULB The general idea is to select nodes c` in such way that

C [q]
ν =

∫1

0
ωq(r)ξ(1 − ν, 1 − r)dr , ν ∈ R,

for ξ the Hurwitz zeta function, are zeroed out in the error expansion for the method.
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The MOL/Matrix case
Let us go back to the case that sparked our interest in going “exponential”, that was the
MOL problem {

CADα
[0,t]u(t) + Au(t) = g(t), t > 0,

u(0) = u0.

By the variation of constant formula, we have seen that we can express the solution as

u(t) = Eα,1(−tαA)u0 +

∫ t

0
(t − s)α−1Eα,α(−A(t − s)α)g(s)ds.

• In the general case we then have to apply one of the PI rules to compute the integral
term,

• If g(s) =
∑q

k=0 skvk for some vectors, we can compute the integral on the right-hand
side in closed form and obtain

u(t) = Eα,1(−tαA)y0 +

q∑
k=0

Γ(k + 1)tα+kEα,α+k+1(−tαA)vk , t > 0.
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Matrix functions: the normal case

If A is a normal matrix, and f is a function existing on the spectrum of A, then

f (A) = Uf (Λ)UH , UHU = I, Λ = diag(λ1, . . . , λn), Aui = λiui , U = [u1, . . . , un].

This is, e.g., sufficient for the cases in which
• A is the discretization of a self-adjoint operator,
• A is symmetric.

Eα,β(z) is an analytic function, and therefore we can compute it for every possible
eigenvalue λ in the spectrum of A.

What about the non-normal and nond-diagonalizable case? For diagonalizable matrices, we
can use the eigendecomposition at the same way.
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Matrix functions: the Jordan Canonical Form
Jordan Canonical Form
We recall that any matrix A ∈ Cn×n can be expressed in Jordan canonical form as

Z−1AZ = J = diag(J1, . . . , Jp), for Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk ,

where Z is nonsingular and m1 + m2 + . . .+ mp = n. If each block in which the eigenvalue
λk appears is of size 1 then λk is said to be a semisimple eigenvalue.

• This is a theoretical object, it is useful to prove and define things, not to implement
things.

• Now that we have a decomposition of the matrix, we need to introduce a suitable
definition of being defined on the spectrum.
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Matrix functions: the general case

Let us denote by λ1, . . . , λs the distinct eigenvalues of A, and by ni the order of the largest
Jordan block in which the λi appears, i.e., the index of the eigenvalue λi .

Defined on the spectrum
The function f is defined on the spectrum of A if the values

f (j)(λi), j = 0, 1, . . . , ni − 1, i = 1, . . . s,

exist, where f (j) denotes the jth derivative of f , with f (0) = f .

Exclamation-Triangle Again for the ML function and α > 0 we have no problem with this.
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Matrix functions: the general case
Matrix function
Lef f be defined on the spectrum of A ∈ Cn×n, which is represented in Jordan canonical
form as Z−1AZ = J ,

f (A) = Zf (J)Z−1 = Z diag(f (J1), . . . , f (Jp))Z−1,

where

f (Jk) =


f (λk) f ′(λk) . . .

f (mk−1)(λk)
(mk−1)!

f (λk)
. . . ...
. . . f ′(λk)

f (λk)

 .
Moreover, let f be a multivalued function and suppose some eigenvalues occur in more
than one Jordan block. If the same choice of branch of f is made in each block, then we
say that f (A) is a primary matrix function.
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Matrix functions: computing f (A) and f (A)v

To march our scheme for

u(t) = Eα,1(−tαA)u0 +

∫ t

0
(t − s)α−1Eα,α(−A(t − s)α)g(s)ds.

we need to compute operations of the form f (A)v, nevertheless, we will have to compute
f (·) at least on some small matrix.

Schur decomposition and matrix functions
Given a matrix A there exist always a matrix Q such that Q∗Q = I, and a upper triangular
matrix T such that A = QTQ∗. Then, if f is defined on the spectrum of A we can
compute f (A) as f (A) = Qf (T )Q∗.

But how do we compute the matrix function of an upper triangular matrix?
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Matrix functions: the upper triangular case

Assumption we assume that T is such that each block Ti ,j has clustered eigenvalues, and
distinct diagonal blocks have far enough eigenvalues.

Exclamation-circle If the assumption doesn’t hold we look for a block permutation.
(T1,1)1,1 (T1,1)1,2

0 (T1,1)2,2
T1,2

0 (T2,2)1,1 (T2,2)1,2
0 (T2,2)2,2


Exclamation-Triangle Close eigenvalues may lead to severe
accuracy loss, even far apert eigenvalues can
produce more inaccurate answers than
expected, see (Davies and Higham 2003).
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Exclamation-Triangle Close eigenvalues may lead to severe
accuracy loss, even far apert eigenvalues can
produce more inaccurate answers than
expected, see (Davies and Higham 2003).

• To evaluate f (Tii) we use the Taylor
series in σ

f (Ti ,i) =
+∞∑
k=0

f (k)
k! Mk ,

for σ = trace(Ti,i )/m, m = dim(Ti ,i), and
M = Ti ,i − σI.
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0 (T2,2)2,2



Exclamation-Triangle Close eigenvalues may lead to severe
accuracy loss, even far apert eigenvalues can
produce more inaccurate answers than
expected, see (Davies and Higham 2003).

For the off-diagonal blocks we apply the
block-Parlett recurrence
Fi ,i = f (Ti ,i), i = 1, . . . , n;
for j = 2, . . . , n do

for i = j − 1, j − 2, . . . , 1 do
Solve Sylvester equation for Fi ,j :
Ti ,iFj,j −Fi ,jTj,j = Fi ,iTi ,j −Ti ,jFj,j
+
∑j−1

k=0(Fi ,k − Tk,j − Ti ,kFk,j).
end

end
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0 (T1,1)2,2
T1,2
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Exclamation-Triangle Close eigenvalues may lead to severe
accuracy loss, even far apert eigenvalues can
produce more inaccurate answers than
expected, see (Davies and Higham 2003).

What we need
To use the algorithm we have sketched out,
we need to be able to compute the derivatives
of the ML function sufficiently accurately.
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Derivatives of the ML function
The key observation for this task is

dk

dzk Eα,β(z) =
+∞∑
j=0

(j + k)kz j

Γ(αj + αk + β)
=

k!
Γ(k + 1)

+∞∑
j=0

Γ(j + k + 1)z j

j!Γ(αj + αk + β)
= k!Ek+1

α,αk+β(z),

where

Eγα,β(z) =
1
Γ(γ)

+∞∑
j=0

Γ(1 + γ)z j

j!Γ(αj + β) ,

is called the Prabhakar function.

Its efficient computation can be obtained, similarly to the ML function, by means of a
Laplace transform inversion

L
{

tβ−1Eγα,β(t
αz)

}
(s) = sαγ−β

(sα − tαz)γ , <(s) > 0, |tαzs−α| < 1.
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Computing the Prabhakar function (Garrappa 2015)
We select t = 1 in

L
{

tβ−1Eγα,β(t
αz)

}
(s) = sαγ−β

(sα − tαz)γ , <(s) > 0, |tαzs−α| < 1.

• Since

dk

dzk Eα,β(z) = k!Ek+1
α,αk+β(z) =

k!
2πi

∫
C

esHk(s ; z)ds ≡ Ik(z),

• we use the Optimal Parabolic Contour we have already
discussed in Lecture 2 to determine the deformation of
the Bromwich line to evaluate

I [N]
k =

k!h
2πi

N∑
j=−N

eσ(uj )Hk(σ(uj); z)σ ′(uj).
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σ<(z)

=(z)

s = µ(iu + 1)2, −∞ <

u <∞
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Hammer An alternative option (Higham and Liu 2021)
We needed the ML derivatives to apply Schur-Parlett to non-diagonalizable matrices.

Diagonalization by perturbation
Let A be nonnormal

Ã = A + E

for E a suitable perturbation is likely to be diagonalizable. Diagonalizable matrices are
dense in Cn×n, for a given A and machine precision ε then the best approximate
diagonalization can be measured in terms of

σ(A, ε) = inf
E ,V

σ(A,V ,E , ε) = inf
E ,V

{κ2(V )ε+ ‖E‖2} .

We can expect to measure on f (A) by estimating
‖f (A + E) − f (A)‖ . ‖Lf (A,E)‖ ≤ ‖Lf (A)‖‖E‖,

for Lf (A,E) the Fréchet derivative of f at A in direction E , ‖Lf (A)‖ = max
‖E‖=1

{‖Lf (A,E)‖}.
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Hammer An alternative option (Higham and Liu 2021)

Fréchet derivative
The Fréchet derivative of a matrix function f : Cn×n → Cn×n at a point X ∈ Cn×n is a
linear mapping L : Cn×n → Cn×n E 7→ Lf (X ,E) such that for all E ∈ Cn×n we find

f (X + E) − f (X) − L(X ,E) = o(‖E‖).

Thus, in our estimate we have

‖f (A + E) − f (A)‖ . ‖Lf (A,E)‖ ≤ ‖Lf (A)‖‖E‖,

and therefore the change in f induced by E grows as ‖Lf (A)‖2‖E‖2 and there are many
cases in which ‖Lf (A)‖2 � 1.
LIGHTBULB The idea from (Higham and Liu 2021) is to use a structured perturbation:

“take E to be upper triangular standard Gaussian matrix.”
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Hammer An alternative option (Higham and Liu 2021)
The idea in few steps

1. Compute the Schur decomposition A = QTQ∗,

2. Consider the perturbed matrices T̃ = T + E

• T̃ is still upper triangular,
• Eigenvectors can be compute by back-substitution: (T̃ − t̃i,i I)vi = 0, i = 1, . . . ,m,

3. Compute in precision uh the diagonalization
T̃ = VDV−1, D = diag(λi),

with distinct λi ,
4. Form f (T̃ ) = Vf (D)V−1 in precision uh

What precision do we need?
To have κ1(V )uh . u we select for cmu ≈ mini | diag(t̃1,1I − T̃2,2)|

uh .
cmu2

maxi<j |̃ti ,j | (maxi<j |̃ti,j |/cmu + 1)k−2 , k = “size of the Jordan block” ≥ 2.
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From small to large matrices
We now know how to compute Eα,β(A) for a small matrix A, either with
Door-closed Classical Schur-Parlett algorithm with Laplace inversion technique for the needed

derivative of the ML function (Garrappa and Popolizio 2018),
CODE https://it.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-

matrix-arguments
Door-closed Multiprecision derivative-free Schur-Parlett algorithm (Higham and Liu 2021),

CODE https://github.com/Xiaobo-Liu/mp-spalg

What about large matrices?

LIGHTBULB Projection methods for matrix functions
We can exploit the subspace projection idea, take V ∈ Rn×k spanning a given subspace Wk

f (A)v ≈ Vf (V T AV )V T v V T AV ∈ Rk×k , k � n.
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Krylov Projection Methods
Different methods are obtained for different choices of the projection spaces Wk(A, v).

A general framework
Given a set of scalars {σ1, . . . , σk−1} ⊂ C (the extended complex plane), that are not
eigenvalues of A, let

qk−1(z) =
∏k−1

j=1
(σj − z).

The rational Krylov subspace of order k associated with A, v and qk−1 is defined by

Qk(A, v) = [qk−1(A)]−1 Kk(A, v), Kk(A, v) = Span{v,Av, . . . ,Ak−1v}.

A matrix expression
Given {µ1, . . . , µk−1} ⊂ C such that σj 6= µ−2

j , we define the matrices

Cj = (µjσjA − I) (σj I − A)−1, and Qk(A, v) = Span{v,C1v, . . . ,Ck−1 · · ·C2C1v}.
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Krylov Projection Methods: special cases

A matrix expression
Given {µ1, . . . , µk−1} ⊂ C such that σj 6= µ−2

j , we define the matrices

Cj = (µjσjA − I) (σj I − A)−1, and Qk(A, v) = Span{v,C1v, . . . ,Ck−1 · · ·C2C1v}.

Polynomial Krylov Wk(A, v) = Kk(A, v) set µj = 1 and σj = ∞ for each j,

Extended Krylov W2k−1(A, v) = Span{v,A−1v,Av, . . . ,A−(k−1)v,Ak−1v}, set

(µj , σj) =

{
(1,∞), for j even,
(0, 0), for j odd.

Shift-And-Invert Wk(A, v) = Span{v, (σI − A)−1v, . . . , (σI − A)−(k−1)v}, take µj = 0 and
σj = σ for each j,
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The ML function (Moret and Novati 2011)
To estimate the convergence behavior of general projection methods in the non-normal we
need the concept of field of values (or numerical range.)

Field of Values/Numerical Range

Given A ∈ CN×N we denote its field of values as

W (A) =
{
〈x,Ax〉
〈x, x〉 , 0 6= x ∈ CN

}
,

where 〈·, ·〉 represents the Euclidean inner product.
−2 0 2 4

−2

0

2

It has many properties, e.g., W (A) ⊆ D(0, ‖A‖) (disk centered on 0 with radius ‖A‖), is
compact, sub-additive W (A + B) ⊆ W (A) + W (B), unitarily invariant
W (UAUH) = UW (A)UH , etc. see (Benzi 2021)

.
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The ML function (Moret and Novati 2011)
Assumptions:

(A1) We assume that ∃a > 0, θ ∈ [0, π/2) such that

W (A) ⊂ Σθ,a = {λ ∈ C : | arg(λ) − a| ≤ θ}.

(A2) β > 0, α ∈ (0, 2) be such that απ/2 < π− θ, ε > 0 and
απ

2 < µ ≤ min{π, απ}, µ < π− θ.

Method of choice: we use polynomial Krylov method Km(A, v):

AVm = VmHm +hm+1,mvm+1eT
m, Span Vm = Span{vi }

m
i=1 = Km(A, v), Hm = V H

m AVm.

We want to bound:

Rm = Eα,β(−A)v − VmEα,β(−Hm)e1, m ≥ 1.
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The ML function (Moret and Novati 2011)
We first express the error in integral form, starting from (Podlubny 1999, Theorem 1.1)

Eα,β(z) =
1

2απi

∫
C(ε,µ)

exp(λ1/α)λ1−β/α

λ− z dλ, z ∈ G−(ε, µ),

where

• ∀ ε > 0, 0 < µ < π

C(ε, µ) =
⋃ {

C1(ε, µ) = {λ : λ = ε exp(iϕ), −µ ≤ ϕ ≤ µ},
C2(ε, µ) = {λ : λ = r exp(±iµ), r ≥ ε}.

• The contour C(ε, µ) divides the complex plane into two
domains, G−(ε, µ) and G+(ε, µ) lying respectively on the
left and on the right of C(ε, µ).
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An Expression for the Error
From the previous we find

Eα,β(−A) = 1
2απi

∫
C(ε,µ)

exp(λ1/α)λ
1−β/α(λI + A)−1 dλ, σ(−A) ∈ G−(ε, µ),

and together with

Rm = Eα,β(−A)v − VmEα,β(−Hm)e1, m ≥ 1,

we write
Rm =

1
2απi

∫
C(ε,µ)

exp(λ1/α)λ
1−β/αδm(λ),dλ,

for

δm(λ) = (λI + A)−1v − Vm(λI + Hm)
−1e1

= (λI + A)−1v − Vm(λI + Hm)
−1V H

m v.
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An Expression for the Error
Observe now that

δm(λ) = (λI + A)−1v − Vm(λI + Hm)
−1V H

m v = ∆mv,

By using the Arnoldi relation, since vm+1 ⊥ Vm:

V H
m (λI + A)Vm = λI + Hm,

Therefore we have
∆m(λI + A)Vm = 0.

For an arbitrary y ∈ Cm we have then

(λI + A)−1v − Vm(λI + Hm)
−1V H

m v = ∆m(v − (λI + A)Vmy) = ∆mpm(A)v,

where pm(z) is a polynomial of degree ≤ m with pm(−λ) = 1.
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An Expression for the Error
We have therefore proved that
‖δm(A)‖ ≤ ‖(λI +A)−1 −Vm(λI +Hm)

−1V H
m ‖‖pm(A)v‖, ∀pm ∈ P≤m[z] with pm(−λ) = 1.

By using (Diele, Moret, and Ragni 2008/09, Lemma 2) we also have the following
expression

‖δm(λ)‖ =

∏m
j=1 hj+1,j

|det(λI + Hm)|
‖(λI + A)−1vm+1‖.

To obtain the first bound we call then
D(λ) = dist(λ,W (−A)) ∀ λ ∈ C(ε, µ).

Representation function
Using (A1) and (A2) we can find a function ν(ϕ) such that

∀ λ = |λ| exp(±iϕ) ∈ C(ε, µ) D(λ) ≥ ν(ϕ)|λ|, ν(ϕ) ≥ ν > 0.
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A First Error Bound

Theorem (Moret and Novati 2011, Theorem 3.2)
Let assumptions (A1) and (A2) hold, then for m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(| cos(µ/α)|+ 1))
mα− 1 + β

)
.

Proof. We use ‖(λI +A)−1‖ ≤ D(λ)−1 and W (Hm) ⊆ W (A) in the error expression Rm

39 / 45



A First Error Bound

Theorem (Moret and Novati 2011, Theorem 3.2)
Let assumptions (A1) and (A2) hold, then for m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(| cos(µ/α)|+ 1))
mα− 1 + β

)
.

Proof. We use ‖(λI + A)−1‖ ≤ D(λ)−1 and W (Hm) ⊆ W (A) in the error expression Rm
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∥∥∥∥∥ 1
2απi

∫
C(ε,µ)

exp(λ1/α)λ
1−β/αδm(λ),dλ

∥∥∥∥∥
≤
∏m

j=1 hj+1,j

2πα

∫
C(ε,µ)

∣∣exp(λ1/α)λ1−β/α
∣∣

D(λ)m+1 |dλ|.
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2πα (I1 + I2),

with

I1 =

∫
C1(ε,µ)

∣∣exp(λ1/α)λ1−β/α
∣∣

D(λ)m+1 |dλ| ≤ 2ε
1−β
α

−m
∫µ

0

exp(ε1/α cos(ϕ/α))
ν(ϕ)m+1 dϕ,
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2πα

(
2ε

1−β
α

−m
∫µ

0

exp(ε1/α cos(ϕ/α))
ν(ϕ)m+1 dϕ+ I2

)
,

with

I2 =

∫
C2(ε,µ)

∣∣exp(λ1/α)λ1−β/α
∣∣

D(λ)m+1 |dλ| ≤ 2
νm+1

∫+∞
ε

r
1−β
α exp(−r 1

α | cos(µ/α)|)
rm+1 dr

=
2

νm+1

∫+∞
ε1/α

exp(−s | cos(µ/α)|)
smα+β ds ≤ 2α exp(−ε1/α| cos(µ/α)|)

(mα+ β− 1)νm+1ε
mα+β−1

α

.
39 / 45



A First Error Bound

Theorem (Moret and Novati 2011, Theorem 3.2)
Let assumptions (A1) and (A2) hold, then for m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(| cos(µ/α)|+ 1))
mα− 1 + β

)
.

Proof. We use ‖(λI + A)−1‖ ≤ D(λ)−1 and W (Hm) ⊆ W (A) in the error expression Rm

‖Rm‖ ≤
∏m

j=1 hj+1,j

2πα

(
2ε

1−β
α

−m
∫µ

0

exp(ε1/α cos(ϕ/α))
ν(ϕ)m+1 dϕ+

2α exp(−ε1/α| cos(µ/α)|)
(mα+ β− 1)νm+1ε

mα+β−1
α

)

The result follows then by setting ε = Mα and simplifying the expression.

39 / 45



A First Error Bound

Theorem (Moret and Novati 2011, Theorem 3.2)
Let assumptions (A1) and (A2) hold, then for m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(| cos(µ/α)|+ 1))
mα− 1 + β

)
.

Proof. We use ‖(λI + A)−1‖ ≤ D(λ)−1 and W (Hm) ⊆ W (A) in the error expression Rm

‖Rm‖ ≤
∏m

j=1 hj+1,j

2πα

(
2ε

1−β
α

−m
∫µ

0

exp(ε1/α cos(ϕ/α))
ν(ϕ)m+1 dϕ+

2α exp(−ε1/α| cos(µ/α)|)
(mα+ β− 1)νm+1ε

mα+β−1
α

)

The result follows then by setting ε = Mα and simplifying the expression.

Exclamation-Triangle With the same proof another bound for the case of small α can be obtained.
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A First Error Bound: small αs

Theorem (Moret and Novati 2011, Theorem 3.2)
Let assumptions (A1) and (A2) hold, then for m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(| cos(µ/α)|+ 1))
mα− 1 + β

)
.

Corollary (Moret and Novati 2011, Corollary 3.3)
Let assumptions (A1) and (A2) hold. Let m ≥ 1 be such that mα+ β > 0, then for every
M > 0, we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

4νm+1Mmα
4M1−β

π

(
µ

α
+

exp(−M(1 + | cos(µ/α)|))
M | cos(µ/α)|

)
.
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A First Error Bound: some observations
COG The ML function is entire for α > 0 ⇒ superlinear convergence for large enough m:

M = mα+ β− 1 ⇒ ‖Rm‖ ∝
(

exp(1)
M

)M
ν−(m+1)

m∏
j=1

hj+1,j .

COG To better understand this, we use that for every monic polynomial of degree m we find
m∏

j=1
hj+1,j ≤,

Therefore, if we take qm as the monic Faber polynomial associated to a closed
convex subset Ω ⊃ W (−A) we get the bound in terms of the logarithmic capacity γ
of Ω.⇒ we have discovered:

‖Rm‖ ∝
(

exp(1)
mα

)mα (γ
ν

)m
.
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Specialized bounds
The bound can be refined under stricter hypotheses.

Theorem (Moret and Novati 2011, Theorem 3.5)
Assume that A is Hermitian with σ(A) ⊆ [a, b] ⊂ [0,+∞). Assume that 0 < α < 1, β ≥ α.
Let µ ≤ π/2, απ/2 < µ < απ. Then for every index m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤ 4M1−β

π

(
µ

α
+

exp(−M(1 + | cos(µ/α)|))
M | cos(µ/α)|

)
exp(M)Φ(u(Mα exp(iµ)))−m.

for Φ(u) = u +
√

u2 − 1, u(z) = (|b+z |+|a+z |)/b−a.

Limiting relation
If α→ 0, β = 1, we have E0,1(−z) = (1 + z)−1, |z | < 1. Then setting µ = απ and letting
M = 1, we find

‖Rm‖ ≤ 4(π exp(1) − exp(−1))
πΦ(u(1))m
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The Shift-and-Invert Method (Moret and Novati 2011)
We remain under the assumptions (A1) and (A2) and consider the matrix

Z = (I + hA)−1, h > 0,
together with the space Km(Z , v).

We can write the analogous Arnoldi relation for Um = [u1, . . . , um] spanning Km(Z , v):
ZUm = UmSm + sm+1,mum+1eT

m, Sm = UH
mZUm.

The approximation is then given by
y = f (A)v ≈ ym = Vmf (Bm)e1 where (I + hBm)Sm = I.

We can repeat the general error analysis using

Rm = Eα,β(−A)v − UmEα,β(−Bm)e1 =
1

2παi

∫
C(ε,µ)

exp(λ1/α)λ
(1−β)/αbm(λ)dλ,

for bm(λ) = (λI + A)−1v − Um(λI + Bm)
−1e1.
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Error bound (Moret and Novati 2011)
Theorem (Moret and Novati 2011, Theorem 4.3)
For every matrix A satisfying (A1) and (A2), assume 0 < α < 1 and β ≥ α. Then, there
exists a function g(h), continuous in any bounded interval 0 < h1 ≤ h ≤ h2, such that for
m ≥ 2,

‖Rm‖ ≤ g(h)
m − 1 .

Theorem (Moret and Novati 2011, Theorem 4.5)
Assume that A is Hermitian with σ(A) ⊆ [a,+∞), a ≥ 0. Assume 0 < α ≤ 2/3 and β ≥ α.
Then, for every m ≥ 1 we have

‖Rm‖ ≤ K1Qmh
β−1
α

(1 +
√

2)m−1
+

K2hβ/α

(m − 1)2 exp
(
−

h−1/α

√
2

)
,

where Qm = max0≤|ϕ|≤3απ/4 exp
(
h−1/α cosϕ/α

)
(1 − cosϕ)

m−1
2 , with K1, K2 constants.
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ML function, what have we found?
COG The polynomial method suffers both for small α values and for large field of values.

COG For the shift-and-invert method the convergence doesn’t deteriorate with the size of
W (A), its uniform with respect to the h parameter.

WRENCH To obtain a complete method one still has to find a way to repeatedly compute the
matrix functions in

u(t) = Eα,1(−tαA)u0 +

∫ t

0
(t − s)α−1Eα,α(−A(t − s)α)g(s)ds.

BINOCULARS Research ideas: finding better rational approximations/poles/expansions together
with error analysis for the ML function.

Other extensions
A variant with restart is discussed in (Moret and Popolizio 2014), the combination with
other matrix-functions in (Moret and Novati 2019).
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Questions in Complex Networks

A complex network is a graph with
non-trivial topological features, neither a
structured graph (lattices, Cayley graphs,

etc.) nor a completely random graph.

We are interested in tasks in exploratory
data analysis, that is analyzing the data to
summarize their main characteristics:
Object-ungroup Divide the nodes into groups that are in

the same community (clustering),
STAR Find the “most relevant” nodes in the

network (centrality),
ARROWS-ALT-H Find the “most relevant” edge in the

network (edge centrality)
Balance-Scale Individuation of motifs, computation of

fluxes, maximum cuts, etc.
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BOOK-DEAD Notation

Network
A network G = (V ,E) is defined as a pair of sets: a set V = {1, 2, . . . , n} of nodes and a
set E ⊂ V × V of edges between them.

Adjacency Matrix
We represent a Network via its adjacency
matrix A = (aij) ∈ Rn×n, entrywise defined as

aij =

{
wij if (i , j) ∈ E
0 otherwise

where wij > 0 is the weight of edge (i , j).
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set E ⊂ V × V of edges between them.

Directed/Undirected
If ∀ (i , j) ∈ E then (j, i) ∈ E the network is
said to be undirected is directed otherwise.

Directed Undirected Loop
An edge from a node to itself is called a loop.

Adjacency Matrix
We represent a Network via its adjacency
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set E ⊂ V × V of edges between them.

w12

w13

w25

w14
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0 w12 w13 w14 0
w12 0 0 0 w25

w13 0 0 0 0
w14 0 0 0 0
0 w25 0 0 0





Adjacency Matrix
We represent a Network via its adjacency
matrix A = (aij) ∈ Rn×n, entrywise defined as

aij =

{
wij if (i , j) ∈ E
0 otherwise

where wij > 0 is the weight of edge (i , j).
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STAR Centrality Measures: the limiting cases

• Degree centrality:

di =
n∑

j=1
aij = (A1)i

• Eigenvector centrality: ρ(A) > 0 the
spectral radius of the irreducible A ≥ 0

xi =
1
ρ(A)

n∑
j=1

aijxj Degree centrality is oblivious to the whole
topology of the network.
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• Degree centrality:

di =
n∑

j=1
aij = (A1)i

• Eigenvector centrality: ρ(A) > 0 the
spectral radius of the irreducible A ≥ 0

xi =
1
ρ(A)

n∑
j=1

aijxj
Eigenvector centrality considers both the
number of neighbors and their importance

when assigning scores to nodes.
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Walking Walk based centralities and Matrix Functions

Consider the analytic function f in
{z ∈ C : |z | < Rf }:

f (z) =
∞∑

r=0
crzr , cr ≥ 0

then under suitable hypothesis on the
spectrum of A we can write:

f (A) =
∞∑

r=0
crAr .

Walking (Ar )i1,ir+1 is the number of walks from i1 to
ir+1.

AB

A walk of length r is a sequence of r + 1
nodes i1, i2, . . . , ir+1 such that (i`, i`+1) ∈ E

for all ` = 1, . . . , r .
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Consider the analytic function f in
{z ∈ C : |z | < Rf }:

f (z) =
∞∑

r=0
crzr , cr ≥ 0

then under suitable hypothesis on the
spectrum of A we can write:

f (A) =
∞∑

r=0
crAr .

Walking (Ar )i1,ir+1 is the number of walks from i1 to
ir+1.

• (f (A))ij is a weighted sum of the
number of all walks of any length that
start from node i and end at node j,

• cr → 0 as r increases thus walks of
longer lengths are considered to be less
important,

• The most popular functions used in
networks science are f (z) = ez and
f (z) = (1 + z)−1.
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Walking Walk based centralities

• Subgraph centrality:

si(f ) = eT
i f (A)ei =

∞∑
r=0

cr (Ar )ii .

• Total (node) communicability:

ti(f ) =
n∑

j=1
(f (A))ij =

n∑
j=1

∞∑
r=0

cr (Ar )ij
Subgraph centrality accounts for the

returnability of information from a node to
itself: it is a weighted count of all the

subgraphs node i is involved in.
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• Subgraph centrality:

si(f ) = eT
i f (A)ei =

∞∑
r=0

cr (Ar )ii .

• Total (node) communicability:

ti(f ) =
n∑

j=1
(f (A))ij =

n∑
j=1

∞∑
r=0

cr (Ar )ij
For the total comunicability the importance

of a node depends on how well it
communicates with the whole network, itself

included
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The Mittag-Leffler Function
The Mittag–Leffler (ML) function is an analytic functions given, ∀α,β > 0, by

Eα,β(z) =
∞∑

r=0
cr (α,β)zr =

∞∑
r=0

zr

Γ(αr + β) ,

where
• cr (α,β) = Γ(αr + β)−1,
• Γ(z) is the Euler Gamma function:

Γ(z) =
∫∞

0
tz−1e−tdt.

For particular choices of α,β > 0, the ML
function Eα,β(z) has a nice closed form
descriptions.

α β Function

0 1 (1 − z)−1

Resolvent
1 1 exp(z)

Exponential
1
2 1 exp(z2) erfc(−z)

Error Function1

2 1 cosh(
√

z)
Hyperbolic Cosine

2 2 sinh(
√

z)/
√

z
Hyperbolic Sine

4 1 1
2 [cos(z1/4) + cosh(z1/4)]

1 k ≥ 2 z1−k(ez −
∑k−2

r=0
zr

r! )

ϕk−1(z) =
∑∞

r=0
zr

(r+k−1)!
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The Mittag-Leffler Function: other occurrences
Another use of it is in the case E1,2(z) = ψ1(z) for computing the non-backtracking
exponential generating function for simple graphs (Arrigo et al. 2018) is:

∞∑
r=0

pr (A)
r ! =

[
I 0

]
ψ1(Y )

[
A

A2 − D

]
+ I,

where pr (A) is a matrix whose entries represent the number of non-backtracking walks of
length r between any two given nodes

Backtracking walk
A walk is backtracking if it contains at least one pair
of successive edeges of the form i 7→ j, j 7→ i . We say
that is non-backtracking otherwise.
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The Mittag-Leffler Function: other occurrences

Another use of it is in the case E1,2(z) = ψ1(z) for computing the non-backtracking
exponential generating function for simple graphs (Arrigo et al. 2018) is:

∞∑
r=0

pr (A)
r ! =

[
I 0

]
ψ1(Y )

[
A

A2 − D

]
+ I,

where pr (A) is a matrix whose entries represent the number of non-backtracking walks of
length r between any two given nodes D = diag(A), and Y is the first companion
linearization of the matrix polynomial (D − I) − Aλ+ Iλ2:

Y =

[
0 I

I − D A

]
.
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The Mittag-Leffler Function: other occurrences
To compute centrality and communicability indices for directed networks, if A is the
adjacency matrix of a directed graph, then

A =

[
O A
AT O

] ⇒ exp(A) =

[
cosh(

√
AAT ) A(

√
AT A)† sinh(

√
AT A)

sinh(
√

AT A)(
√

AT A)†AT cosh(
√

AT A))

]

Centrality and communicability
indices for directed networks defined
by exploiting the representation of
such networks as bipartite graphs;
details in (Benzi, Estrada, and
Klymko 2013).
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LIGHTBULB Defining Mittag-Leffler based centralities

For each choice of α,β > 0 we want to
define Walking centralities based on

Eα,β(z) =
∞∑

r=0
cr (α,β)zr

=

∞∑
r=0

zr

Γ(αr + β) ,

The idea of a Walking centrality relies on the fact
that walks of longer lengths are less

important, but c(r) := Γ(αr + 1) is not
monotonic for certain values of α ∈ (0, 1)! 0 1 2 3

0

0.2

0.4

0.6

0.8

1

1.2

r
Γ
(α

r+
1)

-1

α = 0.0 α = 0.1 α = 0.2
α = 0.3 α = 0.4 α = 0.5
α = 0.6 α = 0.7 α = 0.8
α = 0.9 α = 1.0
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Hammer Enforcing monotonicity

Lemma (Arrigo, D.)
Suppose that α ∈ (0, 1). The coefficients c̃r (α, γ) = γ

rcr (α) defining the power series for
the entire function Ẽα(z) = Eα(γz) are monotonically decreasing as a function of
r = 0, 1, 2, . . . for all 0 < γ < Γ(α+ 1).

Proof. For each α ∈ (0, 1) we want to determine conditions on γ = γ(α) that imply that

c̃r (α, γ) ≥ c̃r+1(α, γ) for all r ∈ N

From the definition of c̃r (α, γ) we have that the above inequality is equivalent to verifying

γ ≤ Γ(αr + α+ 1)
Γ(αr + 1) , for all r ≥ 0

since γ > 0 and Γ(x) > 0 for all x ≥ 0.
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the entire function Ẽα(z) = Eα(γz) are monotonically decreasing as a function of
r = 0, 1, 2, . . . for all 0 < γ < Γ(α+ 1).

Proof. Since Hx , the Harmonic number for x ∈ R, is an increasing function of x , α > 0
by hypothesis, and Γ(x) > 0 for all x ≥ 0, it follows that

d
dx

(
Γ(αx + α+ 1)
Γ(αx + 1)

)
=
α
(
Hα(x+1) − Hαx

)
Γ(αx + α+ 1)

Γ(αx + 1) ≥ 0,

and thus the minimum of Γ(αx+α+1)
Γ(αx+1) is achieved at x = 0.
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d
dx

(
Γ(αx + α+ 1)
Γ(αx + 1)

)
=
α
(
Hα(x+1) − Hαx

)
Γ(αx + α+ 1)

Γ(αx + 1) ≥ 0,

and thus the minimum of Γ(αx+α+1)
Γ(αx+1) is achieved at x = 0.

Luggage-Cart Take-home message
Mittag–Leffler functions with α ∈ (0, 1) can be employed since they have a power series expansion
that can be interpreted in terms of walks; however, care should be taken since to enforce monotonic
behavior of the coefficients. 10 / 37



EYE A matter of magnitude

Adjacency matrices of simple graphs have positive and negative eigenvalues (tr(A) = 0)!

Newmann/Dolphins

0 20 40 60
−4

0

5

8

i

λ
i

E0.4,1(ρ(A)) = E0.4,1(7.1936 . . .) ≈ 1060
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EYE A matter of magnitude
We know asymptotic expansions for the ML function for θ ∈ (πα2 ,min(π, απ)) and any
p ∈ N:

Proposition (Gorenflo et al. 2014, Proposition 3.6)
Let 0 < α < 2 and θ ∈ (πα2 ,min(π, απ)). Then we have the following asymptotics for the
Mittag–Leffler function for any p ∈ N

Eα(z) =
1
α

ez
1
α −

p∑
k=1

z−k

Γ(1 − αk) + O(|z|−1−p), |z| → +∞, |arg(z)| ≤ θ,

Eα(z) = −

p∑
k=1

z−k

Γ(1 − αk) + O(|z|−1−p), |z| → +∞, θ ≤ |arg(z)| ≤ π.

We need to set the γ to scale the largest modulus eigenvalue in the computable range!
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Hammer A matter of magnitude
Lemma (Arrigo, D.)
Suppose that α ∈ (0, 1], and A ∈ Rn×n is symmetric. Then for all

γ ≤ 1
λmax(A)

(
K̄ log(10) + log(α)

)α
it holds that maxi ,j(|Eα(γA)|)i ,j ≤ N̄ where N̄ ≈ 10K̄ for a given K̄ ∈ N is the largest
representable number on a given machine.

Proof. We have λmax(γA) = γλmax(A) ∈ R, since A is symmetric; then empolying the
asymptotic expansion, and using the fact that arg(z) = 0 for z ∈ R, for p = 0 we find

1
α

e(γλmax(A))
1
α ≤ N̄ ≈ 10K̄ ,

which immediately yields the conclusion.
12 / 37



Well-posedness and machine representability

Subgraph and total communicability
centralities
Let A be the adjacency matrix of a simple
graph G = (V ,E). Let α ∈ [0, 1] and let
0 < γ ≤ µ(α). Then, for all nodes
i ∈ V = {1, 2, . . . , n} we define:

• ML-subgraph centrality:

si(Ẽα) = Eα(γA)ii

• ML-total communicability:

ti(Ẽα) = (Eα(γA)1)i

Proposition (Arrigo, D.)
Let A be the adjacency matrix of an undirected
network with at least one edge and let ρ(A) > 0
be its spectral radius. Moreover, let N̄ ≈ 10K̄ be
the largest representable number on a given
machine. Then the Mittag–Leffler function
Ẽα(z) = Eα(γz) is representable in the machine,
and admits a series expansion with decreasing
coefficients when α ∈ (0, 1) and 0 < γ ≤ µ(α)

µ(α) := min


Γ(α+ 1),(

K̄ log(10) + log(α)
)α

ρ(A)

13 / 37



LIGHTBULB The main idea behind ML centralities
Theorem (Benzi and Klymko 2015)
Let G = (V ,E) be a connected, undirected, unweighted
network with primitive A, and f an analytic function with
strictly positive series expansion defined on the spectrum
of A.

• For γ→ 0+, the rankings produced by both s(γ) and
t(γ) converge to those produced by the vector of
degree centralities,

• If in addition f is analytic on the whole real axis or is
such that,∞∑

r=0
cr R r

f = lim
γ→1−

∞∑
r=0

cr tr R t
f = +∞,

then, for t → Rf /ρ(A), the rankings produced by both
s(γ) and t(γ) converge to those produced by the
eigenvector centrality.

LIGHTBULB We build measures that “interpolate
asymptotically” between four other

“central” centralities measures: Degree,
Eigenvector, Exponential and Resolvent

walk centralities.
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Calculator ML matrix-function vector products
The tasks of computing ML-subgraph centrality and ML-total communicability relies on the
task of computing the ML function “with matrix argument”, which is a delicate task
File We can use, e.g., the techniques and the code developed in (Garrappa and Popolizio

2018),
Hand-point-right then for “large networks” we adopt a polynomial Krylov subspace projection technique

(Moret and Novati 2011) to handle the computations
• For V a basis of Km(A, 1) = span{v,Av, . . . ,Am−1v}

t(γ) ≈ VEα(γV T AV )V T 1,

• For V a basis of Km(A, ei) = span{ei ,Aei , . . . ,Am−1ei },

si(γ) ≈ eT
i VEα(γV T AV )V T ei .

15 / 37



Calculator ML matrix-function vector products

The tasks of computing ML-subgraph centrality and ML-total communicability relies on the
task of computing the ML function “with matrix argument”, which is a delicate task
File We can use, e.g., the techniques and the code developed in (Garrappa and Popolizio

2018),
Hand-point-right then for “large networks” we adopt a polynomial Krylov subspace projection technique

(Moret and Novati 2011) to handle the computations
• For V a basis of Km(A, ei) = span{ei ,Aei , . . . ,Am−1ei },

si(γ) ≈ eT
i VEα(γV T AV )V T ei .

Subgraph centrality is computationally quite expensive to derive for all nodes but
approximation techniques for few top ranked nodes are available (Fenu et al. 2013).
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Numerical Examples

We compare subgraph centrality with eigenvector centrality and degree centrality as we
let α and γ vary on a real-world network
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(b)
Kendall correlation coefficient between the ranking induced by total communicability vectors s(Ẽα)
and by (a) degree centrality or (b) eigenvector centrality, the red line displays the value of µ.
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Numerical Examples

We compare total comunicability with eigenvector centrality and degree centrality as we
let α and γ vary on a real-world network
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Kendall correlation coefficient between the ranking induced by total communicability vectors s(Ẽα)
and by (a) degree centrality or (b) eigenvector centrality, the red line displays the value of µ.
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Numerical Examples

We compare with eigenvector centrality and degree centrality as we let α and γ vary
on a real-world network
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Kendall correlation coefficient between the ranking induced by total communicability vectors t(Ẽα)
and by (a) degree centrality or (b) eigenvector centrality, the red line displays the value of µ.
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Numerical Examples

We compare with eigenvector centrality and degree centrality as we let α and γ vary
on a real-world network
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Time-fractional dynamical models on networks

There are several generalizations of ODE-based models on networks:
File Time (and space) generalized diffusion equation on networks (Diaz-Diaz and Estrada

2022)
CADα

[0,t]f (t) = −Lf (t), f (0) = f0,

for L the graph Laplacian, i.e., L = diag(A1) −A, A adjacency matrix of an undirected
graph,

File Decision-making models (West, Turalska, and Grigolini 2015),
File Epidemics modeling with fractional derivative in time on newtorks, e.g., (Huo and

Zhao 2016).

There are many more models that involve using fractional derivatives with respect to
the “space variables”, we postpone that discussion after having treated the issue in
general for the continuous case.
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Other types of fractional derivatives w.r.t. time
Another type of FDE w.r.t. that is gaining traction and interest, they are called fractional
derivatives of distributed order, i.e.,∫m

0
a(r)CADr

[0,t]u(t)dr = f (t), m > 0,

and more generally ∫m

0
a(r)F

(
CADr

[0,t]u(t)
)

dr = f (t, u(t)), m > 0.

Applications are, e.g.,
File Dielectric induction and diffusion (Caputo 2001),
File Kinetic models (Sokolov, Chechkin, and Klafter 2004),
File Distributed-order oscillators (Atanackovic, Budincevic, and Pilipovic 2005).
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Distributed order FDEs

We can connect them with something we have already seen, consider the multi-term
differential equation:

k∑
i=1
γi CADri

[0,t]u(t) = f (t, u(t)), 0 < r1 < r2 < . . . < rk

u(`)(0) = ϕ`, ` = 0, . . . ,m − 1, m =

⌈
max

i=1,...,k
ri

⌉
.

LIGHTBULB One way of thinking about the distributed-order equation is therefore as the limiting
case of with a very large number of terms and where the coefficients γi take the
values from the function a.

Question-Circle What can we say about the solutions?
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Distributed order FDEs

For the linear case ∫m

0
a(r)CADr

[0,t]u(t)dr = f (t), m > 0, (LDFODE)

we can prove existence under some assumptions:
(A1) m ∈ N,
(A2) a is absolutely integrable on [0,m] with

∫m
0 a(r)sr dr 6= 0 for <(s) > 0,

(A3) f ∈ L1([0,∞)],
(A4) u is such that CADr

[0,∞)u(t) for t ∈ [0,+∞) for r ∈ [0,m].
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We apply Laplace transform, then use (A4) and exchange the transform and the integral∫m

0
a(r)

(
srL{u}(s) − u(0)sr−1) dr −

m−1∑
j=1

∫m

j
a(r)u(j)(0)sr−j−1 dr = L {f } (s)
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Distributed order FDEs
For the linear case ∫m

0
a(r)CADr

[0,t]u(t)dr = f (t), m > 0, (LDFODE)

we can prove existence under some assumptions:
(A1) m ∈ N,
(A2) a is absolutely integrable on [0,m] with

∫m
0 a(r)sr dr 6= 0 for <(s) > 0,

(A3) f ∈ L1([0,∞)],
(A4) u is such that CADr

[0,∞)u(t) for t ∈ [0,+∞) for r ∈ [0,m].
We apply Laplace transform, then use (A4) and exchange the transform and the integral.
After rearranging and inverting using (A1)–(A3)

u(t) = u(0)+
(

f ∗ L−1

{
1∫m

0 a(z)(s)z dz

})
(t)+

m−1∑
j=1

u(j)(0)L−1

{∫m
j a(r)sr−j−1 dr∫m

0 sra(r)dr

}
(t).
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Distributed order FDEs

For the linear case ∫m

0
a(r)CADr

[0,t]u(t)dr = f (t), m > 0, (LDFODE)

we can prove existence under some assumptions:
(A1) m ∈ N,
(A2) a is absolutely integrable on [0,m] with

∫m
0 a(r)sr dr 6= 0 for <(s) > 0,

(A3) f ∈ L1([0,∞)],
(A4) u is such that CADr

[0,∞)u(t) for t ∈ [0,+∞) for r ∈ [0,m].

Theorem (Diethelm and Ford 2009, Theorem 3.1)
Under assumptions (A1)–(A4) on a, f and u, (LDFODE) has a unique solution.
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Properties of the (LDFODE) solution
Proposition (Diethelm and Ford 2009)

1. Under assumptions (A1)–(A4) and for fixed T > 0 the solution to (LDFODE) satisfies
u(m)(t) is bounded and measurable in [0,T ].

2. Let u ∈ Cp([O,T ]) with some p ∈ N and T > 0. For every fixed t ∈ [0,T ], consider
CADr

[0,t]u(t) = z(r) as a function of r . Then,
• At the integer argument j = 1, 2, . . . , p − 1 the function z has a jump

discontinuity that can be described as

lim
r→j+

z(r) − lim
r→j−

z(r) = −u(j)(0).

• There exist a continuous transition iff u(j)(0) = 0.

Question-Circle How can we discretize and solve this type of equations?

21 / 37



Properties of the (LDFODE) solution
Proposition (Diethelm and Ford 2009)

1. Under assumptions (A1)–(A4) and for fixed T > 0 the solution to (LDFODE) satisfies
u(m)(t) is bounded and measurable in [0,T ].

2. Let u ∈ Cp([O,T ]) with some p ∈ N and T > 0. For every fixed t ∈ [0,T ], consider
CADr

[0,t]u(t) = z(r) as a function of r . Then,
• At the integer argument j = 1, 2, . . . , p − 1 the function z has a jump

discontinuity that can be described as

lim
r→j+

z(r) − lim
r→j−

z(r) = −u(j)(0).

• There exist a continuous transition iff u(j)(0) = 0.

Question-Circle How can we discretize and solve this type of equations?

21 / 37



Discretization strategies
1. We discretize the integral term in the distributed-order equation

COG Fix φ(z) = a(z)CADz
[0,t]u(t) and use a quadrature formula

∫m

0
φ(z)dz ≈

n∑
j=0

wjφ(zj)

Exclamation-Triangle Every integer value in the interval [0,m] is a zj , in general every zj ∈ Q.

2. We solve the multi-term equation

COG With the choice we have made we now have a multiterm equation of the form
n∑

j=0
wja(zj)CADzj

[0,t]u(t) = f (t), z1 < z2 < . . . < zn,

COG We apply the reformulation as a system of equations of order q being the greatest
common divisor of the derivative orders.
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2. We solve the multi-term equation

COG With the choice we have made we now have a multiterm equation of the form
n∑

j=0
wja(zj)CADzj

[0,t]u(t) = f (t), z1 < z2 < . . . < zn,

COG We apply the reformulation as a system of equations of order q being the greatest
common divisor of the derivative orders.
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Error analysis
To select the quadrature formula we have to take into account the jumps in the
integrand∫m

0
a(r)CADr

[0,t]u(t)dr =

m−1∑
i=0

∫ i+1

i
a(r)CADr

[0,t]u(t)dr =

m−1∑
i=0

ni∑
j=0

wija(zij)CADzij
[0,t]u(t)

with
COG zi0 = i , zi ,ni = i + 1, ∀i ,

COG j = 0, j = ni the expressions CADzij
[0,t]u(t) must be interpreted as

lim
s→z+i0

CADs
[0,t]u(t) = lim

s→i+
CADs

[0,t]u(t),

lim
s→z−ini

CADs
[0,t]u(t) = lim

s→(i+1)−
CADs

[0,t]u(t).

COG The sequence {zj } = {z0 = z00, z1 = z01, . . . , zn0 = z0n0 = z10 = 1, . . .}.
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Error analysis
To proceed further we also need to require further regularity on the a function.
We assume

(Q1) We use a convergent quadrature rule of order p > 0,
(Q2) For all i , the weights of the quadrature rule are bounded by

C1n−1
i ≤ min

j=0,1,...,ni
|wij | ≤ max

j=0,1,...,ni
|wij | ≤ C2n−1

i ,

with some constants C1 and C2.
(Q3) The function a is p-times continuously differentiable on [0,m].

Proposition (Diethelm and Ford 2009)
If ũ is the solution of (LDFODE) obtained using a quadrature formula satistying
(Q1)–(Q4), then

u(t) = ũ(t) + O(max
i

{n−p
i }), for ni → +∞ ∀ i .

24 / 37



Error analysis

Thus, if we assume that we apply a numerical method for the multi-term equation which
has order of convergence O(τq) we have then

Theorem (Diethelm and Ford 2009, Theorem 4.1)
Under the conditions (A1)–(A4), (Q1)–(Q3), the overall error of the proposed algorithm
for (LDFODE) satisfies for jτ ∈ [0,T ]:

max{|uj −u(jτ)| : j ≥ 0, jτ ≤ T } = O(τq)+O(max
i

{n−p
i }) for ni → +∞ ∀ i , τ→ 0.

WRENCH To reduce the number of terms and the regularity requirements on a one could use a
Gauss-type quadrature built explicitely for the given function a(z) (that now needs to
be only continuous) (Durastante 2019).
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Variable order FDEs
Consider a function α : [0,T ] ⊂ R+ → (0, 1) we can think of generalizing the
Riemann-Liouville integral as

Iα(t)[0,t] =
1

Γ(α(t))

∫ t

0
(t − τ)α(t)−1f (τ)dτ,

possibly coupled with the Riemann-Liouville variable-order derivative

RLDα(t)
[0,t] =

1
Γ(1 − α(t))

d
dt

∫ t

0
(t − τ)−α(t)f (τ)dτ,

Exclamation-Triangle The characterization of fractional calculus based on these operators is rather
problematic since RLDα(t)

[0,t] is not a left-inverse of Iα(t)[0,t] ; see (Samko 1995).
Some of this generalizations have found use in physical modeling, but they are problematic
from a rigorous point of view.
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Variable order FDEs a Laplace domain version

Among the first ideas in developing a time-variable time-fractional calculus there are three
seminal works by Giambattista Scarpi
File G. Scarpi, Sopra il moto laminare di liquidi a viscosist variabile nel tempo. Atti

Accademia delle Scienze, Isitituto di Bologna, Rendiconti (Ser XII), 9 (1972), pp.
54-68,

File G. Scarpi, Sulla possibilità di un modello reologico intermedio di tipo evolutivo. Atti
Accad Naz Lincei Rend Cl Sci Fis Mat Nat (8), 52 (1972), pp. 912-917;

File G. Scarpi, Sui modelli reologici intermedi per liquidi viscoelastici. Atti Accad Sci
Torino: Cl Sci Fis Mat Natur, 107 (1973), pp. 239-243.

Recently, this approach has been taken again into account to overcome the limitation given
by the naive replacement of the α(t) function in the kernel of Fractional Integrals and
Derivatives; (Garrappa, Giusti, and Mainardi 2021).
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Scarpi’s Derivative (Garrappa, Giusti, and Mainardi 2021)
To introduce this new version we need to use again the Laplace transform of the Caputo
derivative and Riemann-Liouville integrals

L{CADα
[0,t]f (t)}(s) = sαF (s) − sα−1f (0), L{Iα[0,t]f (t)}(s) =

1
sαF (s),

and consider a locally integrable function α(t) : [0,T ] → (0, 1) .

LIGHTBULB Scarpi’s idea
If α(t) ≡ α, t > 0, Lα(s) = A(s) = α/s, then

L
{

t−α
Γ(1 − α)

}
(s) = ssA(s)−1 = sα−1 L

{
tα−1

Γ(α)

}
(s) = s−sA(s) =

1
sα .

LIGHTBULB Apply the same relation to any α(t) with A(s) = L{α(t), s} =
∫+∞

0 e−stα(t)dt.
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Scarpi’s Derivative (Garrappa, Giusti, and Mainardi 2021)
Scarpi Fractional Derivative
Let α(t) : [0,T ] → (0, 1) be a locally integrable function with Laplace transform A(s), and
let f ∈ L1([0,T ]). We define the Scarpi fractional derivative SDα(t)

[0,t] of variable order α(t)
as

SDα(t)
[0,t] f (t) =

d
dt

∫ t

0
φα(t − τ)f (τ)dτ− φα(t)f (0), t ∈ (0,T ],

where the kernel function φa(t) is the inverse Laplace transform

φa(t) = L−1 {Φα(s)} (t), Φα(s) = ssA(s)−1.

Proposition (Garrappa, Giusti, and Mainardi 2021, Proposition 2.1)
Let α(t) : [0,T ] → (0, 1) be a locally integrable function with Laplace transform A(s), let
φα(t) be the inverse Laplace transform of Φα(s) = ssA(s)−1, if f ∈ A([0,T ]) then

SDα(t)
[0,t] f (t) =

∫ t

0
φα(t − τ)f ′(τ)dτ, t ∈ [0,T ].
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Scarpi’s Integral (Garrappa, Giusti, and Mainardi 2021)
To “fix” the behavior of the naive definition we need also the related formulation of the
fractional integral, that is having an operator for which

SDα(t)
[0,t] S Iα(t)[0,t] f (t) = f (t) Iα(t)[0,t] SDα(t)

[0,t] f (t) = f (t) − f (0),

Going there-and-back the Laplace domain can be rewritten as the Sonine condition∫ t

0
φα(t − τ)ψα(τ) = 1, t > 0.

Scarpi Fractional Integral
Let α : [0,T ] → (0, 1) be a locally integrable function with Laplace transform A(s), let
f ∈ L1([0,T ]) we define the Scarpi fractional integral as

S Iα(t)[0,t] f (t) =
∫ t

0
ψα(t − τ)f (τ)dτ,

with ψα(t) = L−1 {Ψα(s)} (t) for Ψα(s) = s−sA(s).

30 / 37



Scarpi’s Integral (Garrappa, Giusti, and Mainardi 2021)
To “fix” the behavior of the naive definition we need also the related formulation of the
fractional integral, that is having an operator for which

SDα(t)
[0,t] S Iα(t)[0,t] f (t) = f (t) Iα(t)[0,t] SDα(t)

[0,t] f (t) = f (t) − f (0),

Going there-and-back the Laplace domain can be rewritten as the Sonine condition∫ t

0
φα(t − τ)ψα(τ) = 1, t > 0.

Scarpi Fractional Integral
Let α : [0,T ] → (0, 1) be a locally integrable function with Laplace transform A(s), let
f ∈ L1([0,T ]) we define the Scarpi fractional integral as

S Iα(t)[0,t] f (t) =
∫ t

0
ψα(t − τ)f (τ)dτ,

with ψα(t) = L−1 {Ψα(s)} (t) for Ψα(s) = s−sA(s).
30 / 37



Finding good α(t) (Garrappa, Giusti, and Mainardi 2021)
In principle not all transition functions α(t) will allow for a suitable definition of a pair of
Scarpi’s operators.

Necessary condition A necessary requirement to ensure that φ(t) and ψ(t) form a Sonine
pair is for them to have an integrable singularity at the origin. two functions

Reality we also want our Kernels to be real, but this follows from having a real α(t)
and hence A(s) = A(s),

Kernels are LT a necessary conditions to have Φα(s) and Ψα(s) Laplace transform of two
functions φα(t) and ψα(t) is to require

lim
t→0+

α(t) = α ∈ (0, 1)

and then the initial value Theorem for the Laplace transform ensures
that {Φα, Ψα} → 0 for s → +∞, and thus they are the LT transform of two
functions.⇒ Any function α(t) with LT A(s) is suitable provided tha Φα(s) and Ψα(s) are
LTs of some functions.

31 / 37



Finding good α(t) (Garrappa, Giusti, and Mainardi 2021)
In principle not all transition functions α(t) will allow for a suitable definition of a pair of
Scarpi’s operators.
Necessary condition A necessary requirement to ensure that φ(t) and ψ(t) form a Sonine

pair is for them to have an integrable singularity at the origin. two functions

Reality we also want our Kernels to be real, but this follows from having a real α(t)
and hence A(s) = A(s),

Kernels are LT a necessary conditions to have Φα(s) and Ψα(s) Laplace transform of two
functions φα(t) and ψα(t) is to require

lim
t→0+

α(t) = α ∈ (0, 1)

and then the initial value Theorem for the Laplace transform ensures
that {Φα, Ψα} → 0 for s → +∞, and thus they are the LT transform of two
functions.⇒ Any function α(t) with LT A(s) is suitable provided tha Φα(s) and Ψα(s) are
LTs of some functions.

31 / 37



Finding good α(t) (Garrappa, Giusti, and Mainardi 2021)
In principle not all transition functions α(t) will allow for a suitable definition of a pair of
Scarpi’s operators.
Necessary condition A necessary requirement to ensure that φ(t) and ψ(t) form a Sonine

pair is for them to have an integrable singularity at the origin. two functions
Reality we also want our Kernels to be real, but this follows from having a real α(t)

and hence A(s) = A(s),

Kernels are LT a necessary conditions to have Φα(s) and Ψα(s) Laplace transform of two
functions φα(t) and ψα(t) is to require

lim
t→0+

α(t) = α ∈ (0, 1)

and then the initial value Theorem for the Laplace transform ensures
that {Φα, Ψα} → 0 for s → +∞, and thus they are the LT transform of two
functions.⇒ Any function α(t) with LT A(s) is suitable provided tha Φα(s) and Ψα(s) are
LTs of some functions.

31 / 37



Finding good α(t) (Garrappa, Giusti, and Mainardi 2021)
In principle not all transition functions α(t) will allow for a suitable definition of a pair of
Scarpi’s operators.
Necessary condition A necessary requirement to ensure that φ(t) and ψ(t) form a Sonine

pair is for them to have an integrable singularity at the origin. two functions
Reality we also want our Kernels to be real, but this follows from having a real α(t)

and hence A(s) = A(s),
Kernels are LT a necessary conditions to have Φα(s) and Ψα(s) Laplace transform of two

functions φα(t) and ψα(t) is to require
lim

t→0+
α(t) = α ∈ (0, 1)

and then the initial value Theorem for the Laplace transform ensures
that {Φα, Ψα} → 0 for s → +∞, and thus they are the LT transform of two
functions.

⇒ Any function α(t) with LT A(s) is suitable provided tha Φα(s) and Ψα(s) are
LTs of some functions.

31 / 37



Finding good α(t) (Garrappa, Giusti, and Mainardi 2021)
In principle not all transition functions α(t) will allow for a suitable definition of a pair of
Scarpi’s operators.
Necessary condition A necessary requirement to ensure that φ(t) and ψ(t) form a Sonine

pair is for them to have an integrable singularity at the origin. two functions
Reality we also want our Kernels to be real, but this follows from having a real α(t)

and hence A(s) = A(s),
Kernels are LT a necessary conditions to have Φα(s) and Ψα(s) Laplace transform of two

functions φα(t) and ψα(t) is to require
lim

t→0+
α(t) = α ∈ (0, 1)

and then the initial value Theorem for the Laplace transform ensures
that {Φα, Ψα} → 0 for s → +∞, and thus they are the LT transform of two
functions.⇒ Any function α(t) with LT A(s) is suitable provided tha Φα(s) and Ψα(s) are
LTs of some functions.

31 / 37



Solving FDEs with Scarpi’s Derivative
Consider the case {

SDα(t)
[0,t] y(t) = −λy(t),

y(0) = y0
R 3 λ > 0

1. We apply Laplace transform on both sides
ssA(s)Y (s) − ssA(s)−1y0 = −λY (s)

where Y (s) = L{y(t)}(s)
2. Solve for Y (s)

Y (s) = y0
s(1 + λΨα(s))

,

3. Numerically invert the Laplace transform with one of the algorithms we have seen
when discussing the computation of the Mittag-Leffler function, e.g., parabolic contour
and Trapezoidal quadrature

y(t) = L−1{Y (s)}(t).
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An example
Consider the function

α(t) = α2 + (α1 − α2)e−ct

together with its Laplace transform

A(s) =
∫∞

0
e−stα(t)dt =

α2c + α1s
s(c + s)

alpha1 = 0.6;
alpha2 = 0.8;
c = 2.0;
a = @(t) alpha2 + (alpha1-alpha2).*exp(-c*t);
A = @(s) (alpha2*c + alpha1*s)./(s.*(c+s));
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together with its Laplace transform

A(s) =
∫∞

0
e−stα(t)dt =

α2c + α1s
s(c + s)

We can easily visualize also the Ψα(s) and Φα(s)
kernels.

plot(t,t.^(t.*A(t)-1),'-',t,t.^(-t.*A(t)),'-
','LineWidth',2)↪→

legend('\Phi_\alpha(s)','\Psi_\alpha(s)')
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An example: inverting the Laplace transform

We can then solve{
SDα(t)

[0,t] y(t) = −0.5y(t),
y(0) = 1

by first setting the various quantities:

y0 = 1;
lambda = 0.5;
Psi = @(s) s.^(-s.*A(s));
F = @(s) y0./(s.*(1 + lambda*Psi(s)));
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An example: inverting the Laplace transform
We can then solve{

SDα(t)
[0,t] y(t) = −0.5y(t),

y(0) = 1

Then inverting the Laplace transform on a parabolic
contour

L = -log(eps); N = ceil(4*L/3/pi);
h = 2*pi/L + L/2/pi/N^2; p = L^3/4/pi^2/N^2;
u = (0:N)*h; f = zeros(size(t));
for n = 1:length(t)
mu = p/t(n);
z = mu*(u*1i + 1).^2; z1 = 2*mu*(1i-u);
G = exp(z.*t(n)).*F(z).*z1;
f(n) = (imag(G(1))/2+sum(imag(G(2:N+1))))*h/pi;

end
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An example: inverting the Laplace transform
We can then solve{

SDα(t)
[0,t] y(t) = −0.5y(t),

y(0) = 1

And we can comapre the solution with the one obtained
for the two fixed orders, observing that indeed we transition
from one behavior to the other:

f_fun = @(t,y) -lambda*y;
J_fun = @(t,y) -lambda;
t0 = 0; T = 4; h = 1e-2;
alpha = alpha1;
[t1, y1] = fde_pi2_im(alpha,f_fun,J_fun,t0,T,y0,h);
alpha = alpha2;
[t2, y2] = fde_pi2_im(alpha,f_fun,J_fun,t0,T,y0,h);
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BINOCULARS Possible research directions

BINOCULARS Scarpi FDEs with more difficult dynamics, e.g., the vector case with a
non-diagonalizable matrix, non-linear FDEs, etc.

BINOCULARS Algorithms for the automatic selection of contours and parameters given the FDE.
BINOCULARS In the complex-network case Diaz-Diaz and Estrada 2022 explored the case of

standard time-fractional evolutions, what about distributed or variable order? Are they
reasonable from a modeling point of view? Can we efficiently use them?

BINOCULARS All-at-once formulations for the other FDEs?
BINOCULARS General poles for Rational Krylov methods for the computation of Mittag-Leffler

matrix-function times vector algorithms?
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Conclusions
In this first part of the course we have dealt with
COG Defining and analyzing properties of Riemann-Liouville integral and derivatives,
COG Defining and analyzing properties of Caputo integral and derivatives,
COG Existence, uniqueness and regularity of FDEs with Caputo derivatives,
COG Explored the connection between time-fractional derivatives and CTRW,
COG FDEs with mulitple, distributed and variable orders.

For what concerns numerical methods we have seen
WRENCH Product Integral Rules and Fractional Linear Multistep Methods for integrating FDEs,
WRENCH An overview of some inversion techniques for the Laplace Transform,
WRENCH Computation of the Mittag-Leffler function and its derivative on scalar and matrix

arguments,
WRENCH Krylov methods for the computation of matrix functions.
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Programs for the (near) future
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Fractional Diffusion Equation

Starting from the past. . .

: We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,

� Given a particle we can act either on the Ó jump length or on the Âwaiting time.

The Continuous Time Random Walk model (CTRW):

� Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ψ(x , t)

Ó λ(x) =

∫+∞
0

ψ(x , y) dt, jump length,

Â w(t) =

∫+∞
−∞ ψ(x , t) dx , waiting time,

1 / 36



Fractional Diffusion Equation

Starting from the past. . .

: We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,

� Given a particle we can act either on the Ó jump length or on the Âwaiting time.

The Continuous Time Random Walk model (CTRW):

� Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ψ(x , t)

Ó λ(x) =

∫+∞
0

ψ(x , y) dt, jump length,

Â w(t) =

∫+∞
−∞ ψ(x , t) dx , waiting time,

1 / 36



Fractional Diffusion Equation

Starting from the past. . .

: We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,

� Given a particle we can act either on the Ó jump length or on the Âwaiting time.

The Continuous Time Random Walk model (CTRW):

� Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ψ(x , t)

Ó λ(x) =

∫+∞
0

ψ(x , y) dt, jump length,

Â w(t) =

∫+∞
−∞ ψ(x , t) dx , waiting time,

1 / 36



Fractional Diffusion Equation

Starting from the past. . .

: We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,

� Given a particle we can act either on the Ó jump length or on the Âwaiting time.

The Continuous Time Random Walk model (CTRW):

� Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ψ(x , t)

Ó λ(x) =

∫+∞
0

ψ(x , y) dt, jump length,

Â w(t) =

∫+∞
−∞ ψ(x , t) dx , waiting time,

1 / 36



Fractional Diffusion Equation
Starting from the past. . .

: We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,

� Given a particle we can act either on the Ó jump length or on the Âwaiting time.

The Continuous Time Random Walk model (CTRW):

� Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ψ(x , t)

Ó λ(x) =

∫+∞
0

ψ(x , y) dt, jump length,

Jump length

λ(x)dx produces the probability for a jump length in the interval (x , x + dx).

Â w(t) =

∫+∞
−∞ ψ(x , t) dx , waiting time,

1 / 36



Fractional Diffusion Equation
Starting from the past. . .

: We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,

� Given a particle we can act either on the Ó jump length or on the Âwaiting time.

The Continuous Time Random Walk model (CTRW):

� Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ψ(x , t)

Ó λ(x) =

∫+∞
0

ψ(x , y) dt, jump length,

Â w(t) =

∫+∞
−∞ ψ(x , t) dx , waiting time,

Waiting time

w(t)dt produces the probability for a waiting time in the interval (t, t + dt).

1 / 36



Fractional Diffusion Equation
Starting from the past. . .

: We have seen in Lecture 5 that there is a connection between diffusion equations
and random walks,

� Given a particle we can act either on the Ó jump length or on the Âwaiting time.

The Continuous Time Random Walk model (CTRW):

� Both the length of a given jump, and the waiting time elapsing between two
successive jumps are drawn from a pdf ψ(x , t)

Ó λ(x) =

∫+∞
0

ψ(x , y) dt, jump length,

Â w(t) =

∫+∞
−∞ ψ(x , t) dx , waiting time,

• If the jump length and waiting time are independent random variables then:

ψ(x , t) = w(t)λ(x).
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Characterization of CTRW

To categorise different CTRW one can look at the quantities

T =

∫+∞
0

tw(t) dt, (Characteristic waiting time),

and

Σ2 =

∫+∞
−∞ x2λ(x) dx (Jump length variance),

specifically, are they finite? Do they diverge?

The master (Langevin) equation for this process is then given by

η(x , t) =

∫+∞
−∞ dx ′

∫+∞
0

dt ′ η(x ′, t ′)ψ(x − x ′, t − t ′) + δ(x)δ(t),
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dt ′ η(x ′, t ′)ψ(x − x ′, t − t ′) + δ(x)δ(t),

Pdf of having arrived at position x at time t – η(x , t) – having just arrived at x ′ at time t ′

– η(x ′, t ′) – with initial condition δ(x).
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Characterization of CTRW
Then if we use

η(x , t) =

∫+∞
−∞ dx ′

∫+∞
0

dt ′ η(x ′, t ′)ψ(x − x ′, t − t ′) + δ(x)δ(t),

we can write the pdf of being in x at time t as

W (x , t) =

∫ t
0
η(x , t ′)Ψ(t − t ′), dt, Ψ(t) = 1−

∫ t
0
w(t ′) dt ′,

where the latter is the cumulative probability assigned to the probability of no jump event
during the time interval t − t ′.

Fact I - Ordinary Diffusion

If both T and Σ2 are finite the long-time limit corresponds to Brownian motion, e.g.,
w(t) = τ−1exp(−t/τ), T = τ, λ(x) = (4πσ2)−1/2 exp(−x2/4σ2), Σ2 = 2σ2, we recover the
standard diffusion equation.
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η(x , t ′)Ψ(t − t ′), dt, Ψ(t) = 1−

∫ t
0
w(t ′) dt ′,

where the latter is the cumulative probability assigned to the probability of no jump event
during the time interval t − t ′.

Fact II - Subdifussion

The characteristic waiting time T =
∫+∞
0 tw(t) dt diverges, but the jump length

variance Σ2 =
∫+∞
−∞ x2λ(x)dx is finite, we obtain a subdiffusive process. Particles make

long rests.
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Long jumps: Lévy Flights
What if we take a finite waiting time and a diverging jump length?

Â Poissonian waiting time,

Rmk: T is finite and so the process is Markovian!

Ó Lévy distribution for the jump length

λ(k) = exp(−σµ|k |µ) ∼ 1− σµ|k |µ,

Asymptotic

For |x | ≫ σ, 1 < µ < 2 ⇒ λ(x) ∼ Aµσ
−µ|x |−1−µ.

• In the Fourier-Laplace space we get

W (k , u) =
1

u + Kµ|k |µ
,

• then after a (double) inversion
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−µ|x |−1−µ.

• In the Fourier-Laplace space we get

W (k , u) =
1

u + Kµ|k |µ
,

• then after a (double) inversion

∂W

∂t
= Kµ · 1

Γ(1− µ)

d

dx

∫ x
−∞W (ξ, t)(x − ξ)α dξ, K =

σµ

τ
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What if we take a finite waiting time and a diverging jump length?

Â Poissonian waiting time, Rmk: T is finite and so the process is Markovian!
Ó Lévy distribution for the jump length

λ(k) = exp(−σµ|k |µ) ∼ 1− σµ|k |µ,

Asymptotic

For |x | ≫ σ, 1 < µ < 2 ⇒ λ(x) ∼ Aµσ
−µ|x |−1−µ.
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1
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Brownian jumps vs Lévy Flights
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%% Brownian motion

N = 7000;

x = cumsum(randn(N,1));

y = cumsum(randn(N,1));
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%% Levy distribution

N = 7000;

pd_levy = makedist('Stable','alpha',1.5,

'beta',0,'gam',1, 'delta',0);↪→
xl = cumsum(random(pd_levy,N,1));

yl = cumsum(random(pd_levy,N,1));
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The (Space) Fractional Diffusion Equations

We want to solve our problem in a domain of finite size, therefore we have to move the
lower and upper bounds of the Riemann-Liouville integral to a finite domain size and select
some boundary conditions.

Absorbing boundary conditions (Dirichlet)

A common choice is given by: W (xl , t) = W (xr ,T ) ≡ 0

They can be justified in various way

A Variational formulation from a generalized Fickian law (Jin et al. 2015),

A Lyapunov inequality (Ferreira 2013).


∂W
∂t = θ RLDα[0,x ]W (x , t) + (1− θ)RLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0,

W (x , t) = W0(x).

(FDE1)
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Finite Difference Approaches to Riemann–Liouville

The first approach we want to discuss is finite differences, thus how can we discretize
the Riemann-Liouville operators?

Back to the basics

1. First derivative
df

dx
= lim

h→0

f (x) − f (x − h)

h
,

2. nth derivative

dnf

dxn
= lim

h→0

∆nf (x)

h
, ∆nf (x) =

n∑
j=0

(
n

j

)
(−1)j f (x − jh).

� Let’s use again our favourite trick and replace n ∈ N with α ∈ R!
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The Grünwald–Letnikov Fractional Derivative

The Grünwald–Letnikov Fractional Derivative (Grünwald 1867; Letnikov 1868)

Given R ∋ α > 0 define the Grünwald–Letnikov fractional derivative of a function f (x) as

GLDαf = lim
h→0

∆αf (x)

h
, ∆αf (x) =

+∞∑
j=0

(
α

j

)
(−1)j f (x − jh),

(
α

j

)
=

Γ(α+ 1)

j !Γ(α− j + 1)
.

® For what functions f does it make sense?

® How is it related to the Riemann-Liouville (and henceforth to the Caputo) fractional
derivative?

� If we can find an easy relation with the Riemann-Liouville derivative we can use it to
discretize by truncating ∆α to a given N.
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The Grünwald–Letnikov Fractional Derivative

Let us collect the ingredients we need.

í The binomial series

(1+ z)α =

+∞∑
j=0

(
α

j

)
z j ,

converges for any z ∈ C with |z | ≤ 1 and any α > 0,

í The series
+∞∑
j=0

∣∣∣∣(αj
)
(−1)j

∣∣∣∣ < +∞,
converges, since (1+ (−1))α = 0.⇒ If we take f to be bounded then GLDαf exists.
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The Grünwald–Letnikov Fractional Derivative

Let us take the Fourier transform of ∆αf (x)∫
e−ikx

+∞∑
j=0

(
α

j

)
(−1)j f (x − jh)dx =

+∞∑
j=0

(
α

j

)
(−1)j

∫
e−ikx f (x − jh) dx

=

∞∑
j=0

(
α

j

)
(−1)je−ikjh f̂ (k)

=(1− e−ikh)αf̂ (k).

[ We are using the uniform convergence of the series ∆αf (x),

- furthermore we are requiring that each term is integrable.
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If k ̸= 0 then the Fourier transform of the GL derivative operator is given by

h−α(ikh)α
(
1− e−ikh

ikh

)
f̂ (k) → (ik)αf̂ (k), for h → 0.

The same holds by direct computation for k = 0.

⇒ The Fourier transform converges pointwise to the same Fourier transform of the
Riemann-Liouville derivative (we are also using the continuity Theorem of Fourier
transform.)

10 / 36



The Grünwald–Letnikov Fractional Derivative
Let us take the Fourier transform of ∆αf (x)∫

e−ikx
+∞∑
j=0

(
α

j

)
(−1)j f (x − jh) dx =(1− e−ikh)αf̂ (k).

[ We are using the uniform convergence of the series ∆αf (x),

- furthermore we are requiring that each term is integrable.

If k ̸= 0 then the Fourier transform of the GL derivative operator is given by

h−α(ikh)α
(
1− e−ikh

ikh

)
f̂ (k) → (ik)αf̂ (k), for h → 0.

The same holds by direct computation for k = 0.⇒ The Fourier transform converges pointwise to the same Fourier transform of the
Riemann-Liouville derivative (we are also using the continuity Theorem of Fourier
transform.)

10 / 36



The Grünwald–Letnikov Fractional Derivative
What is the connection then?

1. Let us look better into the weights

g
(α)
j ≜ (−1)j

(
α

j

)
=

−αΓ(j − α)

Γ(j + 1)Γ(1− α)

2. Using Γ(x + 1) = xΓ(x) and Γ(x + 1) ∼
√
2πxxxe−x for x → +∞

g
(α)
j ∼j−α−1 j → +∞.

3. Since g
(α)
0 = 1 we write the quotient

∆αf (x)

∆xα
= (∆x)−α

f (x) + +∞∑
j=1

g
(α)
j f (x − j∆x)
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The Grünwald–Letnikov Fractional Derivative

What is the connection then?

3. Since g
(α)
0 = 1 we write the quotient

∆αf (x)

∆xα
= (∆x)−α

f (x) + +∞∑
j=1

g
(α)
j f (x − j∆x)



4.
∑+∞

j=0 wj = 0. Then g
(α)
j < 0 for all j ≥ 1 and thus

∑+∞
j=1 g

(α)
j = −1. We define

b
(α)
j = −w

(α)
j for j ≥ 1, so that

bj ∼
α

Γ(1− α)
j−α−1 for j → +∞, +∞∑

j=1

bj = 1.
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The Grünwald–Letnikov Fractional Derivative
Then we take 0 < α < 1

∆αf (x)

∆xα
=(∆x)−α

+∞∑
j=1

[f (x) − f (x − j∆x)]bj

≈
+∞∑
j=1

[f (x) − f (x − j∆x)]
α

Γ(1− α)
(j∆x)−α−1∆x

≈
∫+∞
0

[f (x) − f (x − y)]
α

Γ(1− α)
y−α−1 dy

• Integrate by parts with u = f (x) − f (x − y)
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1

Γ(1− α)

∫+∞
0

f ′(x − y)y−α dy =
1

Γ(1− α)

∫+∞
0

d

dx
f (x − y)y−α dy
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The Grünwald–Letnikov Fractional Derivative

Let us move everything to a fixed interval [a, b].

Grünwald–Letnikov revisited

Let α > 0, f ∈ C⌈α⌉([a, b]), a < x ≤ b, then

GLD[a,x ]f (x) = lim
N→+∞

∆αhN f (x)

hαN
= lim

N→+∞ 1

hαN

N∑
k=0

(−1)k
(
α

k

)
f (x − khN),

with hN = (x − a)/N.

4 In the definition we have implicitly extended f (with an abuse of notation) in such a
way that

f : (−∞, b] → R, x 7→ {
f (x), if x ∈ [a, b],

0, if x ∈ (−∞, a).
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Computing the coefficients
We can compute N + 1 g

(α)
j coefficients in 3N + 1 flops by using the recurrence relation

g
(α)
j =

(
1−

α+ 1

j

)
gαj−1, g0 = 1.

In a line of code

function [g] = gl(n,alpha)

%GL Produces the N+1 Grunwald-Letnikov

coefficients for a given alpha↪→
g = cumprod([1, 1 - ((alpha+1) ./

(1:n))]);↪→
end

10
1

10
2

10
-8

10
-6

10
-4

=1.1

bound

=1.5

bound

=1.8

bound
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A finite difference discretization
Before going to the two-sided case in (FDE1), let us start with the simpler case

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)RLDα[0,x ]w + f (x , t), 1 < α ≤ 2, v(x), d(x) ≥ 0.

1. Substitute the Riemann-Liouville derivative with the Grünwald–Letnikov one,

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)GLDα[0,x ]w + f (x , t),

2. Choose N ∈ N at which to truncate the series expansions

∂wi

∂t
= −vi

wi − wi−1

hN
+

di
hαN

i∑
k=0

(−1)k
(
α

k

)
wi−k + fi ,

3. Now we need to select a scheme for discretizing it in time: explicit? implicit?

16 / 36



A finite difference discretization
Before going to the two-sided case in (FDE1), let us start with the simpler case

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)RLDα[0,x ]w + f (x , t), 1 < α ≤ 2, v(x), d(x) ≥ 0.

1. Substitute the Riemann-Liouville derivative with the Grünwald–Letnikov one,

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)GLDα[0,x ]w + f (x , t),

2. Choose N ∈ N at which to truncate the series expansions

∂wi

∂t
= −vi

wi − wi−1

hN
+

di
hαN

i∑
k=0

(−1)k
(
α

k

)
wi−k + fi ,

3. Now we need to select a scheme for discretizing it in time: explicit? implicit?

16 / 36



A finite difference discretization
Before going to the two-sided case in (FDE1), let us start with the simpler case

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)RLDα[0,x ]w + f (x , t), 1 < α ≤ 2, v(x), d(x) ≥ 0.

1. Substitute the Riemann-Liouville derivative with the Grünwald–Letnikov one,

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)GLDα[0,x ]w + f (x , t),

2. Choose N ∈ N at which to truncate the series expansions

∂wi

∂t
= −vi

wi − wi−1

hN
+

di
hαN

i∑
k=0

(−1)k
(
α

k

)
wi−k + fi ,

3. Now we need to select a scheme for discretizing it in time: explicit? implicit?

16 / 36



A finite difference discretization
Before going to the two-sided case in (FDE1), let us start with the simpler case

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)RLDα[0,x ]w + f (x , t), 1 < α ≤ 2, v(x), d(x) ≥ 0.

1. Substitute the Riemann-Liouville derivative with the Grünwald–Letnikov one,

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)GLDα[0,x ]w + f (x , t),

2. Choose N ∈ N at which to truncate the series expansions

∂wi

∂t
= −vi

wi − wi−1

hN
+

di
hαN

i∑
k=0

(−1)k
(
α

k

)
wi−k + fi ,

3. Now we need to select a scheme for discretizing it in time: explicit? implicit?
16 / 36



A finite difference discretization: explicit Euler
Let us select explicit Euler

wn+1
i − wn

i

∆t
= −vi

wn
i − wn

i−1

hN
+

di
hαN

i∑
k=0

(−1)k
(
α

k

)
wn
i−k + f ni ,

• For convenience we call gk = (−1)k
(
α
k

)
,

• Rearrange everything to compute wn+1
i

• Is this stable? Do we have to put a restriction on the choice of hN and ∆t?
• Suppose that w0

i is affected by an error, i.e., ŵ0
i = w0

i + ϵ0i , we can then look at the
propagation of the error,

• We call µi = 1− ∆t/hNvi + ∆t/hαNdi
• By iterating the argument we found that the error at step n is amplified by the factor
µi , that is

ϵni = µni ϵ
0
i .

• To have stability we need to require that exist hN such that |µi | < 1 for all h < hN .
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i = w0

i + ϵ0i , we can then look at the
propagation of the error,

• We call µi = 1− ∆t/hNvi + ∆t/hαNdi
• By iterating the argument we found that the error at step n is amplified by the factor
µi , that is

ϵni = µni ϵ
0
i .

• To have stability we need to require that exist hN such that |µi | < 1 for all h < hN .

17 / 36



A finite difference discretization: explicit Euler
Let us select explicit Euler

wn+1
i = wn

i − ∆t vi
wn
i − wn

i−1

hN
+ ∆t

di
hαN

i∑
k=0

gkw
n
i−k + f ni ,

• For convenience we call gk = (−1)k
(
α
k

)
,

• Rearrange everything to compute wn+1
i

• Is this stable? Do we have to put a restriction on the choice of hN and ∆t?
• Suppose that w0

i is affected by an error, i.e., ŵ0
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ŵ1
i = µiϵ

0
i + c1i ,

• For convenience we call gk = (−1)k
(
α
k

)
,

• Rearrange everything to compute wn+1
i , and using that g0 = 1, g1 = −α

• Is this stable? Do we have to put a restriction on the choice of hN and ∆t?

• Suppose that w0
i is affected by an error, i.e., ŵ0
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A finite difference discretization: explicit Euler

µi ≡ 1−
∆t

hN
vi +

∆t

hαN
di < 1 ⇔ hN >

(
di
vi

)1/α−1

. The method is not stable as h is refined!

Theorem (Meerschaert and Tadjeran 2004)

The explicit Euler solution method based on the Grünwald–Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.

Theorem (Meerschaert and Tadjeran 2004)

The implicit Euler solution method based on the Grünwald–Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.
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A finite difference discretization: implicit Euler

µi ≡ 1−
∆t
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A finite difference discretization: ex/implicit Euler

µi ≡ 1−
∆t

hN
vi +

∆t

hαN
di < 1 ⇔ hN >

(
di
vi

)1/α−1

. The method is not stable as h is refined!

Theorem (Meerschaert and Tadjeran 2004)

The explicit Euler solution method based on the Grünwald–Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.

Theorem (Meerschaert and Tadjeran 2004)

The implicit Euler solution method based on the Grünwald–Letnikov approximation of the
Riemann-Liouville fractional derivative is unstable.

m And now what? How do we fix it?
18 / 36



The Shifted Grünwald–Letnikov Fractional Derivative

Shifted Grünwald–Letnikov Fractional Derivative

Let α > 0, f ∈ C⌈α⌉([a, b]), a < x ≤ b, N ∋ p > 0 then

GLD[a,x ]f (x) = lim
N→+∞

∆αhN f (x)

hαN
= lim

N→+∞ 1

hαN

N∑
k=0

(−1)k
(
α

k

)
f (x − (k − p)hN),

with hN = (x − a)/N.

If we repeat the argument with the Fourier transform, we discover

F{GLD[a,x ]f (x)}(k) = (−ik)αω(−ikh)f̂ (k),

with

ω(z) =

(
1− e−z

z

)α
ezp = 1−

(
p −

α

2

)
z + O(|z |2).
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F{GLD[a,x ]f (x)}(k) = F {RLDα(−∞,x ]f }(k) + ϕ̂(k , h)
with

|ϕ(k , h)| ≤ |k |αC |hk ||f̂ (k)| ⇒ |ϕ(h, x)| < ICh, I =

∫+∞
−∞ (1+ |k |)α+1|f̂ (k)|dk < +∞.
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with hN = (x − a)/N.

• They give the same operator uniformly in x as h → 0, therefore we can use the shifted
version with any shift to approximate the Riemann-Liouville derivative,

• To get the best constant C we can minimize the |p − α/2| term in ω(z), that is, we
select p = 1.

® Let us see if using the shifted version with p = 1 solves our stability problem.
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Back to finite differences: implicit Euler

We use the shifted Grünwald–Letnikov and the implicit Euler method

wn+1
i − wn

i

∆t
= −vi

wn+1
i − wn+1

i−1

hN
+

di
hαN

i+1∑
k=0

gkw
n+1
i−k+1 + f n+1

i .

• Set Ei = vi∆t/hN ,
Bi = di∆t/hαN ,

• reorder the system of
equations,

• and obtain

ANw
n+1 = wn + ∆t fn+1.
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0 ,wn+1

1 , . . . ,wn+1
N ]T ,

wn =[wn
0 ,w

n
1 , . . . ,w

n
N ]

T ,

fn+1 =∆t[0, f n1 , . . . , f
n
N−1, 0]

T .

å To prove stability we need to have ρ(A−1
N ) ≤ 1:

ϵ1 = A−1
N ϵ0.
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Back to finite differences: implicit Euler

Let (λ, x) be an eigencouple of AN , i.e., ANx = λx, x ̸= 0.

1. Choose i such that |xi | = max{|xj | : j = 0, . . . ,N},

2. Then
N∑
j=0

(AN)i ,jxj = xi , and thus

λ = Ai ,i +

N∑
j=0
j ̸=i

(AN)i ,j
xj
xi
,

3. If i = 0 or i = N then λ = 1, otherwise
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(AN)i ,j
xj
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j ̸=i
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xj
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Back to finite differences: implicit Euler

4. We have
∑

k≥0 gk = 0, α ∈ (1, 2] and thus g1 = −α and gk ≥ 0 for k ̸= 1, thus

−g1 ≥
j∑

k=0
k ̸=1

gk ∀ j = 0, 1, 2, . . .

furthermore |xj/xi | < 1, and thus

i+1∑
j=0
j ̸=i

gi−j+1

∣∣∣∣xjxi
∣∣∣∣ ≤ i+1∑

j=0
j ̸=i

gi−j+1 ≤ −g1.

3. If i = 0 or i = N then λ = 1, otherwise

|λ| ≥ 1+ Ei︸︷︷︸
≥0

(1− xi−1/xi︸ ︷︷ ︸
≤1

) + Bi︸︷︷︸
≥0

g1 + i+1∑
j=0
j ̸=i

gi−j+1

∣∣∣∣xjxi
∣∣∣∣
 ≥ 1.
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Back to finite differences: implicit Euler

Theorem (Meerschaert and Tadjeran 2004)

The implicit Euler method solution to

∂w

∂t
= −v(x)

∂w

∂x
+ d(x)RLDα[0,x ]w + f (x , t), 1 < α ≤ 2, v(x), d(x) ≥ 0.

with boundary conditions w(0, t) = 0, w(1, t) = 0 for all t ≥ 0, based on the shifted
Grünwald–Letnikov approximation with hN = 1/N, is consistent of order O(h + ∆t) and
unconditionally stable.

4 We have only a left-sided fractional derivative, we could put a non-homogeneous
condition on the right-hand side,

# We can now start looking into the matrices to devise solution strategies for the
sequence of linear systems

ANw
n+1 = wn + ∆t fn+1.

23 / 36



Grünwald–Letnikov matrices

To look at the matrices we go back to the first form of the diffusion equation (FDE1)
∂W
∂t = θ RLDα[0,x ]W (x , t) + (1− θ)RLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0,

W (x , t) = W0(x).

1. Substitute the Riemann-Liouville derivative with the Grünwald–Letnikov one,

2. Choose N ∈ N at which to truncate the shifted series expansions

3. Apply, e.g., backward Euler to discretize the derivative w.r.t. time
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2. Choose N ∈ N at which to truncate the shifted series expansions

hαN
∂Wi

∂t
= θ

i+1∑
k=0

(−1)k
(
α

k

)
Wi−k+1 + (1− θ)

N−i+2∑
k=0

(−1)k
(
α

k

)
Wi+k−1, i = 0, . . . ,N.

3. Apply, e.g., backward Euler to discretize the derivative w.r.t. time
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hαN
∆t

(W j+1
i −W j

i ) = θ

i−k+1∑
k=0

(−1)k
(
α

k

)
W j

i−k+1+(1−θ)
N+i−2∑
k=0

(−1)k
(
α

k

)
W j

i+k−1,
i = 0, . . . ,N,
j = 0, . . . ,M − 1.
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The matrix formulation
We call again wj , wj+1 the vectors containing the solution on inner grid points, then we
can rewrite the set of linear equations as(

IN −
∆t

hαN

[
θGN + (1− θ)GT

N

])
wn+1 = wn

where

GN =



1 0 · · · · · · 0
g2 g1 g0
...

. . .
. . .

. . .
...

. . .
. . . g0

gN−1 · · · g3 g2 g1
0 · · · · · · 0 1



function G = glmatrix(N,alpha)

%%GLMATRIX produces the GL discretization of

% the Riemann-Liouville derivative

g = gl(N,alpha);

c = zeros(N,1); r = zeros(1,N);

r(1:2) = g(2:-1:1);

c(1:N) = g(2:end);

G = toeplitz(c,r);

end
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The matrix formulation
To obtain a simple code for the complete problem

%% Discretization data

hN = 1/(N-1); x = 0:hN:1;

dt = hN; t = 0:dt:1;

%% Discretize

G = glmatrix(N,alpha); Gt =

glmatrix(N,alpha).';↪→
I = eye(N,N);

% apply B.C.

G(1,:) = -I(1,:); G(N,:) = -I(N,:);

Gt(1,:) = -I(1,:); Gt(N,:) = -I(N,:);

% Left-hand side

A = I - dt/hN^alpha*(theta*G + (1-theta)*Gt);

% Right-hand side

w = w0(x).';

• Select θ = 1/2, α = 3/2, and
W0(x) = 5x(1− x),

• Discretize the interval [0, 1] on
N points,

• Build the I and GN matrices,

• Apply the Dirichlet b.c.s,

• Assemble A and w0.
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• Discretize the interval [0, 1] on
N points,

• Build the I and GN matrices,

• Apply the Dirichlet b.c.s,

• Assemble A and w0.

March the scheme in time:

for i=2:N

w = A\w;

end
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The solution step

® How can we efficiently solve the linear systems

Awn+1 = wn,

needed for the time-stepping?
® Can we find a reliable procedure working also for multi-dimensional cases?
® Is dense linear algebra a compulsory choice?

These matrices have structures we can
exploit!
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Toeplitz matrices
Toeplitz matrix

A Toeplitz matrix is a matrix whose entries are constant along the diagonals

Tn(f ) =


t0 t−1 . . . t2−n t1−n

t1 t0 t−1 . . . t2−n
... t1 t0

. . .
...

tn−2 . . .
. . .

. . . t−1

tn−1 tn−2 . . . t1 t0

 .

Generating function

f (x) =
+∞∑

k=−∞ tke
i ·kx , tk =

1

2π

∫π
−π

f (θ)e−ikθdθ, k = 0,±1,±2, . . .

the tk are the Fourier coefficients is called a generating function of the matrix Tn(f ).

29 / 36



Toeplitz matrices
Toeplitz matrix

A Toeplitz matrix is a matrix whose entries are constant along the diagonals

Tn(f ) =


t0 t−1 . . . t2−n t1−n

t1 t0 t−1 . . . t2−n
... t1 t0

. . .
...

tn−2 . . .
. . .

. . . t−1

tn−1 tn−2 . . . t1 t0

 .

Generating function

f (x) =
+∞∑

k=−∞ tke
i ·kx , tk =

1

2π

∫π
−π

f (θ)e−ikθdθ, k = 0,±1,±2, . . .

the tk are the Fourier coefficients is called a generating function of the matrix Tn(f ).
29 / 36



Circulant matrices

Circulant matrix

A Circulant matrix Cn ∈ Rn×n is a Toeplitz matrix in which each row is a cyclic shift of
the row above it, i.e., (Cn)i ,j = c(j−i) mod n:

Cn =



c0 c1 c2 . . . . . . cn−1

cn−1 c0 c1
. . .

...

cn−2 cn−1 c0 c1
. . .

...
...

. . .
. . .

. . .
. . . c2

...
. . .

. . . c0 c1
c1 . . . . . . cn−2 cn−1 c0


.
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Toeplitz and Circulant matrices: some properties

Properties

1. The operator Tn : L1[−π, π] → Cn×n defined by the Toeplitz matrix construction is
linear and positive, i.e., if f ≥ 0 then Tn(f ) = Tn(f )

H ∀ n and xHTn(f )x ≥ 0
∀ x ∈ Cn.

2. Given f ∈ L1[−π, π] such that mf = ess inf(f ) and Mf = ess sup(f ).
If mf > −∞ then mf ≤ λj(Tn(f )) ∀j = 1, . . . , n;
If Mf <∞ then Mf ≥ λj(Tn(f )) ∀j = 1, . . . , n.
If f is not identical to a real constant and both the inequalities hold,

mf < λj(Tn(f )) < Mf ∀j = 1, . . . , n.

3. Circulant matrices are simultaneously diagonalized by the unitary matrix Fn

(Fn)j ,k =
1√
n
e

−2πi j k
n , C =

{
Cn ∈ Cn×n | Cn = FDFH : D = diag(d0, d1, . . . , dn−1)

}
.
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Asymptotic distribution - I

Asymptotic eigenvalue distribution

Given a sequence of matrices {Xn}n ∈ Cdn×dn with dn = {dimXn}n
n→+∞−→ ∞ monotonically

and a µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that the sequence
{X }n is distributed in the sense of the eigenvalues as the function f and write {Xn}n ∼λ f if
and only if,

lim
n→∞ 1

dn

dn∑
j=0

F (λj(Xn)) =
1

µ(D)

∫
D
F (f (t))dt, ∀F ∈ Cc(D),

where λj(·) indicates the j-th eigenvalue.
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Asymptotic distribution - II

Asymptotic singular value distribution

Given a sequence of matrices {Xn}n ∈ Cdn×dn with dn = {dimXn}n
n→+∞−→ ∞ monotonically

and a µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that the sequence
{X }n is distributed in the sense of the singular values as the function f and write
{Xn}n ∼σ f if and only if

lim
n→∞ 1

dn

dn∑
j=0

F (σj(Xn)) =
1

µ(D)

∫
D
F (|f (t)|)dt, ∀F ∈ Cc(D),

where σj(·) is the j-th singular value.
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Asymptotic distribution - III

Theorem (Asymptotic distribution of Toeplitz matrices)

Given the generating function f , Tn(f ) is distributed in the sense of the eigenvalues as f ,
written also as Tn(f ) ∼λ f , if one of the following conditions hold:

1. (Grenander and Szegö 2001): f is real valued and f ∈ L∞,

2. (Tyrtyshnikov 1996): f is real valued and f ∈ L2.

Moreover, Tn(f ) is distributed in the sense of the singular values as f , written also as
Tn(f ) ∼σ f , if one of the following conditions hold:

1. (Avram 1988; Parter 1986): f ∈ L∞,

2. (Tyrtyshnikov 1996): f ∈ L2.
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Singular value distribution of GN

« The matrix GN is a Toeplitz and Hessenberg matrix,

® Does it have a generating function?

• Yes! And we have already computed it several times! The coefficients {g
(α)
k }k where

given by the binomial expansion of (1+ z)α, and thus

f (θ) = e−iθ (1+ exp(i(θ+ π)))α , θ ∈ [0, 2π)
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Singular value distribution of GN

« The matrix GN is a Toeplitz and Hessenberg matrix,
® Does it have a generating function?
• Yes! And we have already computed it several times! The coefficients {g

(α)
k }k where

given by the binomial expansion of (1+ z)α, and thus

f (θ) = e−iθ (1+ exp(i(θ+ π)))α , θ ∈ [0, 2π)

N = 100;

alpha = 1.5;

G = glmatrix(N,alpha);

s = @(t) exp(-1i*t).*(1 + ...

exp(1i*(t+pi))).^alpha;

sv = svd(G);

th = linspace(0,2*pi,N);

plot(th,sv,'o',th,sort(abs(s(th)),...

'descend'),'-','LineWidth',2);
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Conclusion and summary

¥ We introduced partial differential equations with fractional (FPDE) derivative with
respect to the space variables,

¥ we connected fractional diffusion and continuous time random walk using Lévy flights,

¥ we introduced the Grünwald-Letnikov fractional derivative, highlighted the connection
with the Riemann-Liouville derivative.

¥ We introduced a stable discretization of finite difference type,

¥ and we started investigating the structure of the underlying matrices.

Next up

Á Investigating the structure of the underlying matrices for different FPDEs.

Á Looking into some preconditioners and solution strategies based on structured
matrices.
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Solving linear system with Toeplitz-like matrices
In the last lecture we discretized{

∂W
∂t = θ RLDα[0,x ]W (x , t) + (1− θ)RLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

Obtaining (
IN −

∆t

hαN

[
θGN + (1− θ)GT

N

])
wn+1 = wn

with

GN =



1 0 · · · · · · 0
g2 g1 g0
...

. . .
. . .

. . .
...

. . .
. . . g0

gN−1 · · · g3 g2 g1
0 · · · · · · 0 1


.

1 / 42



Solving linear system with Toeplitz-like matrices
In the last lecture we discretized{

∂W
∂t = θ GLDα[0,x ]W (x , t) + (1− θ)GLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

Obtaining (
IN −

∆t

hαN

[
θGN + (1− θ)GT

N

])
wn+1 = wn

with

GN =



1 0 · · · · · · 0
g2 g1 g0
...

. . .
. . .

. . .
...

. . .
. . . g0

gN−1 · · · g3 g2 g1
0 · · · · · · 0 1


.

1 / 42



Solving linear system with Toeplitz-like matrices

The matrix

AN = IN −
∆t

hαN

[
θGN + (1− θ)GT

N

]
,

is a Toepltiz matrix plus some rank corrections.

4 By rearranging the right-hand side or restricting to solve only for the internal nodes we
can avoid the rank corrections.

® How do we solve such systems?

� Direct methods

⇒ fast and superfast Toeplitz solvers

� Iterative methods

⇒ preconditioned Krylov methods, multigrid solvers/preconditioners
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Direct Toeplitz solvers

Direct Toeplitz solver are mostly based on the answer to the following question:

® is the inverse of a Toeplitz matrix still a Toeplitz matrix?

So the answer is no, but. . . it seems that there is still some structure there, doesn’t it?
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The Gohberg–Semencul formula
. . . starting from a displacement representation of Tn, i.e.,

t0Tn =


t0 0 · · · 0

t1 t0
. . .

...
...

...
. . . 0

tn−1 tn−2 · · · t0



t0 t−1 · · · t1−n

0 t0 · · · t2−n

0 0
...

...
... t−1

0 0 · · · t0

−


0 0 · · · 0 0
t1 0 · · · 0 0

t2 t1
. . .

...
...

...
...

. . . 0 0
tn−1 tn−2 · · · t1 0



0 t−1 t−2 · · · t1−n

0 0 t−1 · · · t2−n

...
...

...
. . .

...
0 0 0 t−1

0 0 0 · · · 0


Gohberg and Semencul 1972 obtained a displacement representation of the inverse

z1T
−1
n =


z1 0 · · · 0

z2 z1
. . .

...
...

...
. . . 0

zn−1 zn−2 · · · 0
zn zn−1 · · · z1



vn vn−1 · · · v1
0 vn · · · v2

0 0
...

...
... vn−1

0 0 · · · vn

−


0 0 · · · 0 0
v1 0 · · · 0 0

v2 v1
. . .

...
...

...
...

. . . 0 0
vn−1 vn−2 · · · v1 0



0 zn zn−1 · · · z1
0 0 zn · · · z2
...

...
...

. . .
...

0 0 0 zn
0 0 0 · · · 0


with z1 = vn.
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Direct Toeplitz solvers
By cleverly computing the vectors z and v from the {tn}n coefficients, one obtains several
“fast” and “superfast” algorithms:

Algorithm Complexity

Levinson 1946 O(n2)
Trench 1964 O(n2)
Zohar 1974 O(n2)
Bitmead and Anderson 1980 O(n log2(n))
Brent, Gustavson, and Yun 1980 O(n log2(n))
Hoog 1987 O(n log2(n))
Ammar and Gragg 1988 O(n log2(n))
T. F. Chan and Hansen 1992 O(n2)

Bini and Meini 1999 O(n logm +m log2m log n/m)

n size of the matrix, m size of the bandwidth.
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In our case

To treat our case (
IN −

∆t

hαN

[
θGN + (1− θ)GT

N

])
wn+1 = wn

we can then apply one of those algorithms (some of them use symmetry).

® What happens if we need to treat the case(
IN −

∆t

hαN

[
D

(1)
n GN + D

(2)
n GT

N

])
wn+1 = wn

with D
(·)
n diagonal matrices coming from the discretization of anisotropic

space-variant diffusion coefficients?

® What happens if we need to treat multi-dimensional cases?
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Krylov subspace methods
To overcome these challenges, we use an iterative approach based on Krylov subspaces.

Krylov subspace

A Krylov subspace K for the matrix A related to a non null vector v is defined as

Km(A, v) = Span{v,Av,A2v, . . . ,Am−1v}.

- The fundamental operation is the matrix-vector product.
� Their use is effective when these products are cheap.

L We can compute Tn(f )v in O(n log(n)) operations!

C2n

[
v
0n

]
=

[
Tn(f ) En

En Tn(f )

]
︸ ︷︷ ︸

Circulant

[
v
0n

]
=

[
Tn(f )v
Env

]
, En =


0 tn−1 . . . t2 t1

t1−n 0 tn−1 . . . t2
... t1−n 0

. . .
...

t−2 . . .
. . .

. . . tn−1

t−1 t−2 . . . t1−n 0

.
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The Conjugate Gradient Method
When A is symmetric positive definite the
method of choice is the Conjugate Gradient.

Theorem.

Let A be SPD and k2(A) = λn/λ1 be the 2–norm
condition number of A. We have:

∥r(m)∥2
∥r(0)∥2

≤
√
k2(A)

∥x∗ − x(m)∥A
∥x∗ − x(0)∥A

.

Corollary.

If A is SPD with eigenvalues 0 < λ1 ≤ . . . ≤ λn,
we have

∥x∗ − x(m)∥A
∥x∗ − x(0)∥A

≤ 2

(√
k2(A) − 1√
k2(A) + 1

)m

.

Input: A ∈ Rn×n SPD, Nmax , x(0)

Output: x̃, candidate approximation.
r(0) ← ∥b − Ax(0)∥2, r = r(0), p← r;

ρ0 ← ∥r(0)∥2;
for k = 1, . . . ,Nmax do

if k = 1 then
p← r;

end
else

β← ρ1/ρ0;
p← r + β p;

end
w← A p;
α← ρ1/pTw;
x← x + αp;
r← r − αw;

ρ1 ← ∥r∥22;
if then

Return: x̃ = x;
end

end
8 / 42



The Conjugate Gradient Method

. The bound in the corollary is descriptive of the convergence behavior.

Theorem.

Let A ∈ Rn×n be SPD. Let m an integer, 1 < m < n and c > 0 a constant such that for
the eigenvalues of A we have

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn−m+1 ≤ c < . . . ≤ λn.

Fixed ε > 0 an upper bound in exact arithmetic for the minimum number of iterations k
reducing the relative error in energy norm form the approximation x(k) generated by CG by
ε is given by

min

{⌈
1

2

√
c/λ1 log

(
2

ε

)
+m + 1

⌉
, n

}
® How can we put ourselves in the hypotheses of the Theorem?
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Clustered spectra

A proper cluster

A sequence of matrices {An}n≥0, An ∈ Cn×n, has a proper cluster of eigenvalues in p ∈ C
if, ∀ε > 0, if the number of eigenvalues of An not in D(p, ε) = {z ∈ C | |z − p| < ε} is
bounded by a constant r that does not depend on n. Eigenvalues not in the proper cluster
are called outlier eigenvalues.

® Do the matrices

AN = IN −
∆t

2hαN

[
GN + GT

N

]
have a clustered spectra?

4 We can investigate this question by looking again at the spectral distribution of the
sequence {AN }N .
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Asymptotic distribution: the symmetric case

AN = IN −
∆t

2hαN

[
GN + GT

N

]
,

the sequence {AN }N is not yet ready for the analysis, we have the coefficient ∆t/2hαN that
varies with N.

- For consistency reason it makes sense to select ∆t ≡ hN ≡ νN , then, since α ∈ (1, 2]
we have that ν1−α for ν→ 0+ goes to +∞.

⇒ We look instead at the sequence:

{να−1
N AN }N = {να−1

N IN − (GN+GT
N )/2}N ,

and is such that ∥να−1IN∥ = να−1 < C independently of N.
! {−(GN+GT

N )/2}N is now a symmetric Toeplitz sequence with known generating
function:

pα(θ) = f (θ) + f (−θ) = −e−iθ(1− e iθ)α − e iθ(1− e−iθ)α.⇒ We have just discovered that: {να−1
N AN }N ∼λ pα(θ).
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Asymptotic distribution: the symmetric case

{να−1
N AN } =

{
να−1
N IN −

1

2

[
GN + GT

N

]}
N

∼λ pα(θ) = −e−iθ(1− e iθ)α − e iθ(1− e−iθ)α,

N = 100; alpha = 1.3;

hN = 1/(N-1); dt = hN; nu = dt;

G = glmatrix(N,alpha); I = eye(N,N);

A = nu^(alpha-1)*I-0.5*(G+G');

ev = eig(A);

f = @(t)-exp(-1i*t).*(1-exp(1i*t))

.^alpha;↪→
p = @(t)nu^(alpha-1)+0.5*(f(t)

+conj(f(t)));↪→
t = linspace(-pi,pi,N);

plot(t,ev,'o',t,sort(p(t),'ascend'),'-')

. the spectrum is not clustered!
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CG with a non clustered spectra
Let us test the CG with different values of α and N.

α 1.8 1.5 1.2

N Iteration

100 49 34 16
200 87 42 17
500 155 53 18

1000 209 63 19
5000 398 92 21
10000 523 108 22

4 The number if iterations grows with N,

4 Smaller values of α seem to be easier.

/ We would like number of iterations independent
on both size and value of α. In this case this is
called having a method with a superlinear
convergence and robust with respect to the
parameters.

® Can we?

A = nu^(alpha-1)*I-0.5*(G+G'); b = nu^(alpha-1)*ones(N,1);

[x,flag,relres,iter,resvec] = pcg(A,b,1e-6,N)
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Preconditioned CG

å To try and achieve this result we need to
modify the spectrum of the system, i.e.,
we need to precondition.

� We modify the system

Ax = b,

into
M−1Ax = M−1b,

with M SPD and such that M−1A has a
clustered spectra.

Input: A ∈ Rn×n SPD, Nmax , x(0), M ∈ Rn×n SPD
preconditioner

r(0) ← b − Ax(0), z(0) ← M−1r(0), p(0) ← z(0);
for j = 0, . . . ,Nmax do

αj ← <r(j),z(j)>/Ap(j),p(j);

x(j+1) ← x(j) + αjp
(j);

r(j+1) ← r(j) − αjAp
(j);

if then
Return: x̃ = x(j+1);

end

z(j+1) ← M−1r(j+1);

βj ← <r(j+1),z(j+1)>/<r(j),z(j)>;

p(j+1) ← z(j+1) + βjp
(j);

end

. M−1 has to be easy to apply, possibly it has to have the same cost of multiplying by A.
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Circulant preconditioners for Toeplitz matrices

� If M is circulant than applying M−1 costs O(n log n) operations, same as applying A.

4Observe that, nevertheless, this doubles the cost per iteration, can we do better?

ω-circulant matrices

Let ω = exp(iθ) for θ ∈ [−π, π]. A matrix W
(ω)
n of size n is said to be an ω–circulant

matrix if it has the spectral decomposition

W
(ω)
n = ΩH

n F
H
n ΛnFnΩn,

where Fn is the Fourier matrix and Ωn = diag(1,ω−1/n, . . . ,ω
−(n−1)/n) and Λn is the

diagonal matrix of the eigenvalues. In particular 1–circulant matrices are circulant matrices
while {−1}–circulant matrices are the skew–circulant matrices.

� We can use them to reduce the overall cost of the preconditioning step!
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Circulant preconditioners for Toeplitz matrices

The ø key idea is observing that we can decompose any Toeplitz matrix into the sum of a
circulant and of a skew-circulant matrix

Tn = Un + Vn, Un = FH
n Λ

(1)
n Fn, Vn = ΩH

n F
H
n Λ

(2)
n FnΩn

where

eT1 Un =1/2
[
t0, t−1 + tn−1, . . . , t−(n−1)+t1

]
,

Wne1 =1/2 [t0,−(tn−1 − t−1), . . . ,−(t−1 − tn−1)]
T .

Then we can compute the product

C−1
n Tn = FH

n

[
Λ−1

n

(
Λ

(1)
n + FnΩ

H
n F

H
n Λ

(2)
n FnΩnF

H
n

)]
Fn.
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And solve C−1
n Tnx = C−1

n b as

Λ−1
n

(
Λ

(1)
n + FnΩ

H
n F

H
n Λ

(2)
n FnΩnF

H
n

)
Fnx︸︷︷︸
=x̃

= Λ−1
n Fnb︸ ︷︷ ︸
=b̃

4 FFTs per iteration!
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Circulant preconditioners for Toeplitz matrices

®This is then computationally efficient, can we find the right circulant matrix to have a
clustered spectra?

åWe need to change the problem into an equivalent one: the aim is discharging
everything on the generating functions!
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Circulant preconditioners for Toeplitz matrices

®This is then computationally efficient, can we find the right circulant matrix to have a
clustered spectra?
åWe need to change the problem into an equivalent one: the aim is discharging
everything on the generating functions!

Continuous convolution

Given two scalar functions f and g in the Schwartz space, i.e., f , g ∈ C∞(R) such that

∃C (f )
α,β,C

(g)
α ′,β ′ ∈ R with ∥xα∂βf (x)∥∞ ≤ Cαβ and ∥xα ′

∂β ′g(x)∥∞ ≤ Cα
′β ′

, α, β, α ′, β ′

scalar indices, we define the convolution operation, “∗”, as

[f ∗ g ](t) =
∫+∞
−∞ f (τ)g(t − τ)d τ =

∫+∞
−∞ g(τ)f (t − τ)d τ.
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Circulant preconditioners for Toeplitz matrices
®This is then computationally efficient, can we find the right circulant matrix to have a
clustered spectra?
åWe need to change the problem into an equivalent one: the aim is discharging
everything on the generating functions!

Discrete convolution

For two arbitrary 2π–periodic continuous functions,

f (θ) =
+∞∑

k=−∞ tke
ikθ and g =

+∞∑
k=−∞ ske

ikθ

their convolution product is given by

[f ∗ g ](θ) =
+∞∑

k=−∞ sktke
ikθ.
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Circulant preconditioners for Toeplitz matrices

®This is then computationally efficient, can we find the right circulant matrix to have a
clustered spectra?
åWe need to change the problem into an equivalent one: the aim is discharging
everything on the generating functions!

�Using a Kernel

Given a kernel Kn(θ) defined on [0, 2π] and a generating function f for a Toeplitz sequence
Tn(f ), we consider the circulant matrix Cn with eigenvalues given by

λj(Cn) = [Kn ∗ f ]
(
2πj

n

)
, 0 ≤ j < n,

� We have rewritten the problem of finding an appropriate preconditioner to the
problem of approximating the generating function of the underlying Toeplitz
matrix.
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Circulant preconditioners for Toeplitz matrices

Theorem (R. H. Chan and Yeung 1992)

Lef f be a 2π–periodic continuous positive function. Let Kn(θ) be a kernel such that

Kn ∗ f n→+∞−→ f uniformly on [−π, π]. If Cn is the sequence of circulant matrices with
eigenvalues given by

λj(Cn) = [Kn ∗ f ]
(
2πj

n

)
, 0 ≤ j < n,

then the spectra of the sequence {C−1
n Tn(f )}n is clustered around 1.

® Is this the result we need?

- It requires a continuous positive function generating function f ! Ours is:

pα(θ) = −e−iθ(1− e iθ)α − e iθ(1− e−iθ)α,

and it does seem to have a zero.
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Circulant preconditioners: cases with a zero

Order of the zero

Let f : [a, b] ⊂ R→ R be a continuous nonnegative function. We say that f has a zero
order β > 0 at θ0 ∈ [a, b] if there exist two real constants C1,C2 > 0 such that

lim inf
θ→θ0

f (θ)

|θ− θ0|β
= C1, lim sup

θ→θ0
f (θ)

|θ− θ0|β
= C2.

Proposition (Donatelli, Mazza, and Serra-Capizzano 2016)

Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof.
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Proof. We first prove that is nonnegative by direct computation

pα(θ) = −

+∞∑
k=−1

g
(α)
k+1(e

ikθ + e−ikθ)
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(α)
1 + (g

(α)
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Circulant preconditioners: cases with a zero

Proposition (Donatelli, Mazza, and Serra-Capizzano 2016)

Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof. Then we focus on the zero. Let us rewrite

1− e iθ =
√
2− 2 cos θe iϕ, 1− e−iθ =

√
2− 2 cos θe iψ,

where

ϕ =

{
arctan

(
− sin θ
1−cos θ

)
, θ ̸= 0,

limθ→0+ arctan
(

− sin θ
1−cos θ

)
= −π

2 , θ = 0.
ψ = −ϕ.
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Proposition (Donatelli, Mazza, and Serra-Capizzano 2016)

Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof. Then we focus on the zero. Let us rewrite

1− e iθ =
√
2− 2 cos θe iϕ, 1− e−iθ =

√
2− 2 cos θe iψ,

and write

pα(θ) = − e−iθ(
√
2− 2 cos θe iϕ)α − e iθ(

√
2− 2 cos θe−iϕ)α

=−
√
(2− 2 cos θ)αe i(αϕ−θ) −

√
(2− 2 cos θ)αe−i(αϕ−θ)

=− 2
√

(2− 2 cos θ)αrα(θ), rα(θ) = cos(αϕ− θ).
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Circulant preconditioners: cases with a zero

Proposition (Donatelli, Mazza, and Serra-Capizzano 2016)

Given α ∈ (1, 2), then the function pα(θ) is nonnegative and has a zero of order α at 0.

Proof. Then we focus on the zero. Let us rewrite

1− e iθ =
√
2− 2 cos θe iϕ, 1− e−iθ =

√
2− 2 cos θe iψ,

and write

pα(θ) = −2
√
(2− 2 cos θ)αrα(θ), rα(θ) = cos(αϕ− θ).

Since lim
θ→0−

rα(θ) = lim
θ→0+

rα(θ) = cos(απ/2), we find

lim
θ→0

pα(θ)

|θ|α
= −2 lim

θ→0

(2− 2 cos θ)α/2

|θ|α
rα(θ) = −2 cos(απ/2) ∈ (0, 2),

i.e., pα has a zero of order α at 0 according to the definition.
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Circulant preconditioners: cases with a zero

t = linspace(-pi,pi,100);

f = @(alpha)

-exp(-1i*t).*(1-exp(1i*t)).^alpha;↪→
p = @(alpha) f(alpha) +

conj(f(alpha));↪→
plot(t,p(1.2)./max(p(1.2)),...

t,p(1.5)./max(p(1.5)),...

t,p(1.8)./max(p(1.8)),

t,p(2)./max(p(2)),...

'LineWidth',2);

legend({'\alpha=1.2','\alpha=1.5',...

'\alpha=1.8','\alpha=2'},...

'Location','north');
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Circulant preconditioners: cases with a zero

4 p2(θ) = 2(2− 2 cos θ), i.e., 2×Laplacian
generating function,

4 pα(θ)/∥pα∥∞ approaches the order of
the zero of the Laplacian in 0, i.e., it
increases up to 2 as α tends to 2.

® What can we do for the case in this
case?

� matching the zeros of the generating
function, heuristically, if the
preconditioner have a spectrum that
behaves as a function g with zeros of
the same order, and in the same place of
f , then f /g no loner have the
problematic behavior. . .
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Generalized Jackson Kernel

Generalized Jackson Kernel

Given θ ∈ [−π, π], N ∋ r ≥ 1 and N ∋ m > 0 such that r(m − 1) < n ≤ rm, i.e.,
m = ⌈n/r⌉, the generalized Jackson kernel function is defined as,

Km,2r (θ) =
km,2r
m2r−1

(
sin(mθ/2)

sin(θ/2)

)2r

, km,2r s.t.
1

2π

∫π
−π

Km,2r (θ)dθ = 1.

We build a circulant preconditioner Jn,m,r from its eigenvalues using the Jackson kernel

λj(Jn,m,r ) = [Km,2r ∗ f ]
(
2jπ

n

)
, j = 0, . . . , n − 1.

å With some work can be generalized to the case of multiple zeros of different order,

å One can prove also that a and b are bounded away from zero.
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Generalized Jackson Kernel

Theorem (R. H. Chan, Ng, and Yip 2002)

Let f be a nonnegative 2π–periodic continuous function with a zero of order 2ν at θ0. Let
r > ν and m = ⌈n/r⌉. Then there exists numbers a, b independent from n and such that
the spectrum of J−1

n,m,rTn(f ) is clustered in [a, b] and at most 2ν+ 1 eigenvalues are not in
[a, b] for n sufficiently large.

We build a circulant preconditioner Jn,m,r from its eigenvalues using the Jackson kernel

λj(Jn,m,r ) = [Km,2r ∗ f ]
(
2jπ

n

)
, j = 0, . . . , n − 1.

å With some work can be generalized to the case of multiple zeros of different order,

å One can prove also that a and b are bounded away from zero.
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�Time to do some tests

We consider the following circulant preconditioners,

Dirichlet kernel, a.k.a. the Strang circulant preconditioner

Dn(θ) =
sin ((n + 1/2)θ)

sin (θ/2)


tk , 0 < k ≤ ⌊n/2⌋,
tk−n, ⌊n/2⌋ < j < n,
cn+k , 0 < −k < n.

Modified Dirichlet kernel, a.k.a. the T. Chan circulant preconditioner

1/2 (Dn−1(θ) +Dn−2(θ))


t1 + 1/2t̄n−1, k = 1,
tk + tn−k , 2 ≤ k ≤ n − 2,
1/2tn−1 + t̄1, k = n − 1.

R.H. Chan Dn−1(θ) tk + t̄n−k , 0 < k ≤ n − 1.

Jackson with r = 2.
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�Time to do some tests

We consider the following circulant preconditioners,

Dirichlet kernel, a.k.a. the Strang circulant preconditioner

c = fft([t(1:n/2);0;conj(t(n/2:-1:2))].')';

Modified Dirichlet kernel, a.k.a. the T. Chan circulant preconditioner

coef = (1/n:1/n:1-1/n)';

c = fft([t(1);(1-coef).*t(2:n)+coef.*t1]);

R.H. Chan c = fft([t(1);t(2:n)+t1].')';

Jackson with r = 2.
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We consider the following circulant preconditioners,

Dirichlet kernel, a.k.a. the Strang circulant preconditioner

c = fft([t(1:n/2);0;conj(t(n/2:-1:2))].')';

Modified Dirichlet kernel, a.k.a. the T. Chan circulant preconditioner

coef = (1/n:1/n:1-1/n)';

c = fft([t(1);(1-coef).*t(2:n)+coef.*t1]);

R.H. Chan c = fft([t(1);t(2:n)+t1].')';

Jackson with r = 2.

We test both clustering properties and convergence behavior inside the Preconditioned
Conjugate Gradient algorithm.

23 / 42



å Jackson Kernel Circulant Preconditioner

For r = 2, 3, 4 it can be built as

n = length(t);

t1 = conj(t(n:-1:2));

if r == 2 || r == 3 || r == 4

coef = convol(n,r).';

c = [t(1)*coef(1)

(coef(2:n).*t(2:n)...↪→
+coef(n:-1:2).*t1).'];

c = fft(c)';

else

error('r needs to be 2, 3 or 4');

end

c = real(c);

function [ c ] = jacksonprec( t,r )

m = floor(n/r); a = 1:-1/m:1/m; r0 = 1;

coef = [a(m:-1:2) a];

while r0 < r

M = (2*r0+3)*m; b1 = zeros(M,1);

c = zeros(M,1); c(1:m) = a;

c(M:-1:M-m+2) = a(2:m);

b1(m:m+2*r0*(m-1)) = coef;

tp = ifft(fft(b1).*fft(c));

coef = real(tp(1:2*(r0+1)*(m-1)+1));

r0 = r0+1;

end

M = r*(m-1)+1;

coef = [coef(M:-1:1)' zeros(1,n-M)]';

coef = coef';

end
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�Back to the example

We try to solve again

for θ = 1/2


∂W
∂t = θ RLDα[0,x ]W (x , t) + (1− θ)RLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0,

W (x , t) = W0(x).

Ô We have removed the rank corrections due to the boundary conditions to have a pure
Toeplitz matrix, i.e., we solve the equation only in the inner nodes.
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�Back to the example

We try to solve again for θ = 1/2

TN−2(pα(θ))w
n+1 ≡

(
hαN
∆t

IN−2 −
1

2

[
GN−2 + GT

N−2

])
wn+1 =

hαN
∆t

wn

Ô We have removed the rank corrections due to the boundary conditions to have a pure
Toeplitz matrix, i.e., we solve the equation only in the inner nodes.
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�Back to the example
We try to solve again

for θ = 1/2

TN−2(pα(θ))w
n+1 ≡

(
hαN
∆t

IN−2 −
1

2

[
GN−2 + GT

N−2

])
wn+1 =

hαN
∆t

wn

Ô We have removed the rank corrections due to the boundary conditions to have a pure
Toeplitz matrix, i.e., we solve the equation only in the inner nodes.

%% Problem data

theta = 0.5;

alpha = 1.8;

w0 = @(x) 5*x.*(1-x);

%% Discretization data

N = 10;

hN = 1/(N-1); x = 0:hN:1;

dt = hN; t = 0:dt:1;

%% Discretize

G = glmatrix(N,alpha);

Gr = G(2:N-1,2:N-1); Grt = Gr.';

I = eye(N-2,N-2);

% Left-hand side

nu = hN^alpha/dt;

A = nu*I - (theta*Gr + (1-theta)*Grt);

% Right-hand side

w = w0(x).';
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xA look at the spectrum

N = 100, α = 1.8

0 2 4 6

Original

T.Chan

Strang

R.Chan

Jackson

N = 1000, α = 1.8

®Can you guess what is happening with the Jackson Kernel preconditioner?
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xA look at the spectrum

N = 100, α = 1.5

0 1 2 3

Original

T.Chan

Strang

R.Chan

Jackson

N = 1000, α = 1.5

0 1 2 3 4 5

Original

T.Chan

Strang

R.Chan

Jackson

®Can you guess what is happening with the Jackson Kernel preconditioner?
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xA look at the spectrum

N = 100, α = 1.2

0 1 2 3

Original

T.Chan

Strang

R.Chan

Jackson

N = 1000, α = 1.2

0 0.5 1 1.5 2 2.5 3

Original

T.Chan

Strang

R.Chan

Jackson

®Can you guess what is happening with the Jackson Kernel preconditioner?
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xA look at the spectrum

N = 100, α = 1.2

0 1 2 3

Original

T.Chan

Strang

R.Chan

Jackson

N = 1000, α = 1.2

0 0.5 1 1.5 2 2.5 3

Original

T.Chan

Strang

R.Chan

Jackson

®Can you guess what is happening with the Jackson Kernel preconditioner?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

2.0

25 15 6 8 2 2
26 31 6 10 2 2
27 63 6 12 2 2
28 127 5 13 2 2
29 251 5 14 2 2
210 464 5 15 2 2
211 713 4 15 2 2

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.8

25 15 6 8 5 5
26 31 6 9 5 5
27 61 6 9 5 5
28 108 6 11 5 5
29 174 6 11 6 5
210 234 6 11 6 6
211 314 6 10 6 6

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.6

25 15 6 7 5 5
26 31 6 8 5 5
27 51 6 8 5 5
28 73 5 8 5 5
29 91 5 8 6 5
210 111 6 7 6 6
211 135 6 7 6 6

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.4

25 15 5 7 5 5
26 27 5 7 5 5
27 35 5 7 5 5
28 41 5 6 5 5
29 46 5 6 5 5
210 51 5 6 5 5
211 56 5 6 5 5

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?

27 / 42



"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.2

25 15 5 6 4 4
26 19 5 6 5 5
27 20 5 5 5 5
28 21 5 5 5 5
29 22 5 5 5 5
210 22 5 5 5 5
211 22 5 5 5 5

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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α N PCG Jackson T.Chan R.Chan Strang

1.2

25 15 5 6 4 4
26 19 5 6 5 5
27 20 5 5 5 5
28 21 5 5 5 5
29 22 5 5 5 5
210 22 5 5 5 5
211 22 5 5 5 5

4 We got robustness with respect to both α and N.

® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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"A look at the convergence

α N PCG Jackson T.Chan R.Chan Strang

1.2

25 15 5 6 4 4
26 19 5 6 5 5
27 20 5 5 5 5
28 21 5 5 5 5
29 22 5 5 5 5
210 22 5 5 5 5
211 22 5 5 5 5

4 We got robustness with respect to both α and N.
® What do we do in the non symmetric case, i.e., θ ̸= 1/2?
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Non symmetric Toeplitz system

If Tn(f ) is non symmetric (or more generally, non Hermitian), then f is a complex-valued
function then

X we no longer have information on the asymptotic spectral distribution, but only on
the singular values,

X we can no longer apply fast direct Toeplitz solvers,

X we can no longer apply the CG to Tn(f )x = b.

® What to do?

� Apply the PCG to the normal equations (CGNR):

Tn(f )
HTn(f )x = Tn(f )

Hb,

� Use another Krylov method: GMRES or TFQMR

® do we know how to precondition these methods?
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The GMRES method (Saad and Schultz 1986)

The Generalized Minimum Residual (GMRES) is a Krylov projection method
approximating the solution of linear system

Ax = b

on the affine subspace

x(0) +Km(A, v1), r(0) = b− A x(0), v1 = r(0)/∥r(0)∥2

, for x(0) a starting guess for the solution.
By this choice, we enforce the Arnoldi relation:

AVm = VmHm + wme
T
m = Vm+1Hm, SpanVm = Span{v1 · · · vm} = Km(A, v1),

and Hm m ×m Hessenberg submatrix extracted from Hm by deleting the (m + 1)th line.
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The GMRES method (Saad and Schultz 1986)
Input: A ∈ Rn×n,b ∈ Rn, m, x(0)

r(0) ← b− A x(0), β← ∥r(0)∥2;
v1 ← r(0)/β;
for j = 1, . . . ,m do

wj ← A vj ;
for i = 1, . . . , j do

hi,j ←< wj , vi >;
wj ← wj − hi,j vi ;

end
hj+1,j ← ∥wj∥2;
if hj+1,j = 0 or convergence
then

m = j ;
break;

end
vj+1 = wj/∥wj∥2;

end

Compute y(m) such that ∥r(m)∥2 =
∥b− A x(m)∥2 = ∥βe1 − Hmy∥2 = miny∈Rm ;

Build candidate approximation x̃;

Minimizing the residual

At step m, the candidate solution x(m) is the vector
minimizing the 2–norm residual:

∥r(m)∥2 = ∥b− A x(m)∥2,
with

b− A x(m) = Vm+1(βe1 − Hmy).

GMRES variants

Variants obtained by different least square problem
solutions, and different orthogonalization algorithms.

30 / 42



The GMRES method (Saad and Schultz 1986)
Input: A ∈ Rn×n,b ∈ Rn, m, x(0)

r(0) ← b− A x(0), β← ∥r(0)∥2;
v1 ← r(0)/β;
for j = 1, . . . ,m do

wj ← A vj ;
for i = 1, . . . , j do

hi,j ←< wj , vi >;
wj ← wj − hi,j vi ;

end
hj+1,j ← ∥wj∥2;
if hj+1,j = 0 or convergence
then

m = j ;
break;

end
vj+1 = wj/∥wj∥2;

end

Compute y(m) such that ∥r(m)∥2 =
∥b− A x(m)∥2 = ∥βe1 − Hmy∥2 = miny∈Rm ;

Build candidate approximation x̃;

Minimizing the residual

At step m, the candidate solution x(m) is the vector
minimizing the 2–norm residual:

∥r(m)∥2 = ∥b− A x(m)∥2,
with

b− A x(m) = Vm+1(βe1 − Hmy).

GMRES variants

Variants obtained by different least square problem
solutions, and different orthogonalization algorithms.

30 / 42



The GMRES method (Saad and Schultz 1986)
Input: A ∈ Rn×n,b ∈ Rn, m, x(0)

r(0) ← b− A x(0), β← ∥r(0)∥2;
v1 ← r(0)/β;
for j = 1, . . . ,m do

wj ← A vj ;
for i = 1, . . . , j do

hi,j ←< wj , vi >;
wj ← wj − hi,j vi ;

end
hj+1,j ← ∥wj∥2;
if hj+1,j = 0 or convergence
then

m = j ;
break;

end
vj+1 = wj/∥wj∥2;

end

Compute y(m) such that ∥r(m)∥2 =
∥b− A x(m)∥2 = ∥βe1 − Hmy∥2 = miny∈Rm ;

Build candidate approximation x̃;

Minimizing the residual

At step m, the candidate solution x(m) is the vector
minimizing the 2–norm residual:

∥r(m)∥2 = ∥b− A x(m)∥2,
with

b− A x(m) = Vm+1(βe1 − Hmy).

GMRES variants

Variants obtained by different least square problem
solutions, and different orthogonalization algorithms.

30 / 42



The GMRES convergence theory (or lack thereof. . .)

Theorem (Convergence, diagonalizable)

If A can be diagonalized, i.e. if we can find X ∈ Rn×n non singular and such that

A = X ΛX−1, Λ = diag(λ1, . . . , λn), K2(X ) = ∥X∥2 ∥X−1∥2,

K2(X ) = ∥X∥2 ∥X−1∥2 condition number of X , then at step m, we have

∥r∥2 ≤ K2(X )∥r(0)∥2 min
p(z)∈Pm

p(0)=1

max
i=1,...,n

|p(λi )|, (DiagGMRES)

where p(z) is the polynomial of degree less or equal to m such that p(0) = 1 and the
expression in the right hand side of (DiagGMRES) is minimum.

. The eigenvectors can be arbitrarily ill-conditioned, i.e., K2(X ) ≫ 1,

- being diagonalizable can be a strong assumption.
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The GMRES convergence theory (or lack thereof. . .)

Theorem (Almostr everything is possible) (Greenbaum, Pták, and Strakoš 1996)

Given a non-increasing positive sequence {fk }k=0,...,n−1 with fn−1 > 0 and a set of non–zero
complex numbers {λi }i=1,2,...,n ⊂ C, there exist a matrix A with eigenvalues λ1, λ2, . . . , λn
and a right-hand side b with ∥b∥ = f0 such that the residual vectors r(k) at each step of
the GMRES algorithm applied to solve Ax = b with x(0) = 0, satisfy ∥r(k)∥ = fk ,
∀ k = 1, 2, . . . , n − 1.

X “Any non-increasing convergence curve is possible for GMRES”.

® What happens if we have a clustered spectrum?

� In the clustered case we can partition σ(A) as follows

σ(A) = σc(A) ∪ σ0(A) ∪ σ1(A),
where
• σc(A) denotes the clustered set of eigenvalues of A,
• σ0(A) ∪ σ1(A) denotes the set of the outliers.
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GMRES in the clustered and diagonalizable case

σ(A) = σc(A)︸ ︷︷ ︸
clustered

∪σ0(A) ∪ σ1(A)︸ ︷︷ ︸
outliers

,

we assume that

1. the clustered set σc(A) of eigenvalues is contained in a convex set Ω,

2. and, that denoting two sets of j0 and j1 outliers as

σ0(A) = {λ̂1, λ̂2, . . . , λ̂j0} and σ1(A) = {λ̃1, λ̃2, . . . , λ̃j1}

where if λ̂j ∈ σ0(A), we have

1 < |1− z/̂λj | ≤ cj , ∀z ∈ Ω,

while, for λ̃j ∈ σ1(A),
0 < |1− z/̃λj | < 1, ∀z ∈ Ω,
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GMRES in the clustered and diagonalizable case

Theorem

The number of full GMRES iterations j needed to attain a tolerance ε on the relative
residual in the 2-norm ∥r(j)∥2/∥r(0)∥2 for the linear system Ax = b, where A is diagonalizable,
is bounded above by

min

{
j0 + j1 +

⌈
log(ε) − log(κ2(X ))

log(ρ)
−

j0∑
ℓ=1

log(cℓ)

log(ρ)

⌉
, n

}
,

where

ρk =

(
a/d +

√
(a/d)2 − 1

)k
+
(
a/d +

√
(a/d)2 − 1

)−k

(
c/d +

√
(c/d)2 − 1

)k
+
(
c/d +

√
(c/d)2 − 1

)−k
,

and the set Ω ∈ C+ is the ellipse with center c , focal distance d and major semi axis a.
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GMRES the non-diagonalizable case
In this case we have to turn to either the field of values or the ε-pseudospectra of A.
We need to bound the right-hand side of

∥rm∥2 ≤ min
p(z)∈Pm

p(0)=1

∥p(A)r0∥, m = 1, 2, . . .

or in the worst case scenario

∥rm∥2
∥r0∥

≤ max
v∈Cn

∥v∥=1

min
p(z)∈Pm

p(0)=1

∥p(A)v∥, m = 1, 2, . . .

Ó If A is real, and M = (A+AT )/2 is SPD, then (Eisenstat, Elman, and Schultz 1983)

max
v∈Rn

∥v∥=1

min
p(z)∈Pm

p(0)=1

∥p(A)v∥ ≤
(
1−

λmin(M)2

λmax(ATA)

)m/2

.
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GMRES the non-diagonalizable case

∥rm∥2 ≤ min
p(z)∈Pm

p(0)=1

∥p(A)r0∥, m = 1, 2, . . .

we recall that the field of values of A is given by

W (A) = {< Av, v > : v ∈ Cn, ∥v∥ = 1}, ν(A) = min
z∈W (A)

|z |,

with ν(A) the distance of W (A) from the origin.

Ó For a general nonsingular A (Eiermann and Ernst 2001)

max
v∈Cn

∥v∥=1

min
p(z)∈Pm

p(0)=1

∥p(A)v∥ ≤ (1− ν(A)ν(A−1))
m/2.

. This bound is useful only when 0 /∈ W (A) and 0 /∈ W (A−1).
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Some experimentation with the FOV in our case

να−1
N AN = να−1

N IN − θGN + (1− θ)GT
N ,

θ = 0.2, α = 1.2, N = 100
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Some experimentation with the FOV in our case

ÓUnfortunate truth

In general it is difficult to say something about the Field of Value of preconditioned
matrices.

® What do we do in practice?
“To speed up the CG-like methods, we can choose a matrix C such that the
singular values of the preconditioned matrix C−1A are clustered.” – (R. H. Chan
and Ng 1996, P. 439)

® How do we build a Circulant preconditioner for a our non-symmetric Toeplitz
matrix?

� We can use a suitably modified Strang preconditioner for our case (Lei and Sun 2013)
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�A Circulant preconditioner (Lei and Sun 2013)

We can build a circulant preconditioner as

P =
hαN
∆t

IN + θs(GN) + (1− θ)s(GT
N ),

where

(s(GN)):,1 = −



g
(α)
1
...

gα⌊(N+1)/2⌋
0
...
0

g
(α)
0


,

function [ev,evt] = sunprec(N,alpha)

g = gl(N,alpha);

v = zeros(N,1);

v(1:floor((N+1)/2)) =

g((1:floor((N+1)/2))+1);↪→
v(end) = g(1);

ev = fft(-v);

v = zeros(N,1);

v(1) = g(2);

v(2) = g(1);

v(end:-1:floor((N+1)/2)+2) =

g(3:floor((N+1)/2)+1);↪→
evt = fft(-v);

end
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(α)
1

g
(α)
0

0
...
0

gα⌊(N+1)/2⌋
...

g
(α)
2


.

function [ev,evt] = sunprec(N,alpha)

g = gl(N,alpha);

v = zeros(N,1);

v(1:floor((N+1)/2)) =

g((1:floor((N+1)/2))+1);↪→
v(end) = g(1);

ev = fft(-v);

v = zeros(N,1);

v(1) = g(2);

v(2) = g(1);

v(end:-1:floor((N+1)/2)+2) =

g(3:floor((N+1)/2)+1);↪→
evt = fft(-v);

end

39 / 42
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We can build a circulant preconditioner as

P =
hαN
∆t

IN + θs(GN) + (1− θ)s(GT
N ),

Ó It uses the construction of the Strang
preconditioner using only half o the
bandwidth of the Toeplitz matrices.

Ó All the eigenvalues of s(GN) and s(GT
N )

fall inside the open disc
{z ∈ C : |z − α| < α} by Gershgorin
theorem, indeed:

rN = gα0 +

⌊(N+1)/2⌋∑
k=2

<
∑
k=0
k ̸=1
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(α)
k = −g
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1 = α.
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�A Circulant preconditioner (Lei and Sun 2013)

® Will it work?
We can always write:

P−1AN − IN = P−1(AN − P)

= P−1
N UN − P−1

N VN

,

now for the Strang preconditioner of a Toeplitz matrix with with generating function in the
Wiener class, it holds that for any ε > 0 exists N ′ and M ′ such that

AN − s(AN) = UN + VN , rank(UN) ≤ M ′ and ∥VN∥2 < ε ∀N > N ′.

å rank(P−1
N UN) ≤ rank(UN) ≤ M ′,
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AN − s(AN) = UN + VN , rank(UN) ≤ M ′ and ∥VN∥2 < ε ∀N > N ′.

å rank(P−1
N UN) ≤ rank(UN) ≤ M ′,

Ó ∀ k = 1, 2, . . . ,N, |λ(PN)| ≥ ℜ(Λ(PN)k,k) =
hαN/∆t + θℜ(Λ(s(GN))kk) + (1− θ)ℜ(Λ(s(GT

N ))kk) ≥ hαN/∆t > 0 and thus
∥P−1

N ∥2 ≤ ∆t/hαN
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� If we select ∆t and hN in such a way that hαN/∆t is bounded and bounded away from
zero we have the result.
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Results with GMRES

(
hαN
∆t

IN−2 −
[
θGN−2 + (1− θ)GT

N−2

])
wn+1 =

hαN
∆t
, θ = 0.2

α N GMRES P

1.2

25 28 6
26 31 6
27 33 6
28 34 6
29 35 6
210 36 6
211 36 6

α N GMRES P

1.4

25 31 6
26 46 6
27 54 6
28 62 7
29 69 7
210 78 7
211 87 7

α N GMRES P

1.6

25 32 6
26 59 6
27 82 7
28 105 7
29 128 7
210 156 7
211 189 7

α N GMRES P

1.8

25 32 6
26 64 6
27 109 6
28 162 7
29 222 7
210 287 7
211 372 7
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Results with GMRES

[ev,evt] = sunprec(N,alpha);

c = nu + theta*ev + (1-theta)*evt;

P = @(x) cprec(c,x);

[X,FLAGsun,RELRESsun,ITERsun,RESVECsun] = gmres(A,(nu*w),[],1e-9,N,P);
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Conclusion and summary

¥ We have discussed the solution of Toeplitz linear systems,

¥ Studied the usage and convergence of PCG and GMRES method,

¥ Tested the usage of Circulant preconditioners for Toeplitz linear systems.

Next up

Á We need to discuss the next problem in difficulty{
∂W
∂t = d+(x , t) RLDα[0,x ]W (x , t) + d−(x , t)RLDα[x ,1]W (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

Á What happens if we go to more than one spatial dimension?
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Variable coefficients cases
We now want to solve the slightly more complex case{

∂W
∂t = d+(x , t) RLDα

[0,x ]W (x , t) + d−(x , t)RLDα
[x ,1]W (x , t),

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

with d+(x , t), d−(x , t) ≥ 0 and not identically zero.

1. We go through all the same discretization procedure: from Riemann–Liouville to
(shifted) Grünwald–Letnikov, then series truncation, etc.

2. we obtain a matrix sequence of the form

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

where D±
N are diagonal matrices whose entries sample the functions d±

N (x , t) on
the finite difference grid.

X We no longer have Toeplitz matrices!
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Not all hope is lost

9 We can still perform fast matrix-vector products:

ANx = νx− D+
N (GNx) − D−

N (G
T
N x)

still O(N logN) cost.

� Maybe we can use some trick to reuse circulant preconditioners

1. If d±
N (x , t) do not vary much maybe we can average them, i.e.,

P(t) = νI − d̂+(t)s(GN) − d̂−(t)s(GT
N ),

with d̂±(t) = 1/N
∑N

i=1 d
±(xi , t)
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The averaging trick

Does it work?

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

w0 = @(x) 5*x.*(1-x);

hN = 1/(N-1); x = 0:hN:1; dt = hN; t = 0:dt:1;

dplus = @(x,t) gamma(3-alpha).*x.^alpha;

dminus = @(x,t) gamma(3-alpha).*(2-x).^alpha;

% Discretize

G = glmatrix(N,alpha); Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x,0)); Dminus = diag(dminus(x,0));

% Left-hand side

nu = hN^alpha/dt;

A = nu*I - (Dplus*Gr + Dminus*Grt);
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The averaging trick

Does it work?

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

% Solve

[ev,evt] = sunprec(N,alpha);

c = nu + mean(dplus(x,0))*ev + mean(dminus(x,0))*evt;

P = @(x) cprec(c,x);

[X,FLAGsun,RELRESsun,ITERsun,RESVECsun] = gmres(A,(nu*w),[],1e-9,N,P);
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The averaging trick

Does it work?

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

α N GMRES P

1.2

25 31 13
26 50 14
27 64 14
28 75 15
29 84 15
210 91 14
211 96 14

α N GMRES P

1.4

25 31 13
26 59 14
27 92 15
28 127 15
29 161 15
210 196 15
211 231 15

α N GMRES P

1.6

25 32 13
26 62 13
27 112 14
28 183 14
29 262 14
210 353 14
211 456 14

α N GMRES P

1.8

25 32 12
26 64 12
27 126 13
28 225 13
29 378 13
210 559 12
211 779 12

3 / 36



The averaging trick

Does it work?

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

α N GMRES P

1.2

25 31 13
26 50 14
27 64 14
28 75 15
29 84 15
210 91 14
211 96 14

α N GMRES P

1.4

25 31 13
26 59 14
27 92 15
28 127 15
29 161 15
210 196 15
211 231 15

α N GMRES P

1.6

25 32 13
26 62 13
27 112 14
28 183 14
29 262 14
210 353 14
211 456 14

α N GMRES P

1.8

25 32 12
26 64 12
27 126 13
28 225 13
29 378 13
210 559 12
211 779 12

å We have doubled the number of iterations but things still seem reasonable. . .
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Can we prove anything?

What did we actually prove for the constant coefficient case?

Ó We proved that P−1AN − I =“small norm”+“small rank”, i.e., that the preconditioner
delivered a clustering of the eigenvalues.

4 We don’t have a cluster, yet eigenvalues are in a fairly small region.
| let’s investigate!
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Having a cluster: Cn − An

For two matrix sequences {Cn}n and {An}n (both of order n) we say that they are ε-close by
rank if

∀ ε > 0 An − Cn = En,ε + Rn,ε,
∥En,ε∥2 ≤ ε,

rank(Rn,ε) ≤ r(n, ε) = o(n) for n→ +∞,
(ε-close)

Ô Let γn(ε) count how many singular values σ(An − Cn) are greater than ε, i.e.,

γn(ε) = |{j : σj(An − Cn) > ε, j = 1, . . . , n}| ,

⇒ (ε-close) is telling us that γn(ε) = o(n) for n→ +∞.

� Then we know that {An − Cn}n has a singular value cluster at zero, if γn(ε) = O(1)
which holds equally with r(n, ε) = r(ε) = O(1) for any ε > 0 then we have a proper
cluster by the definition we have seen during the last lecture.
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Having a cluster: C−1
n An − In

To estimate the convergence rate we have shown that C−1
n An and In are (ε-close)

matrix sequences, one usually use the following nomenclature

[ Cn is superlinear for An if r(n, ε) = O(1),

[ Cn is sublinear for An if r(n, ε) = o(n).

å Strategy

It is usually easier to prove that Cn and An are (ε-close), rather than C−1
n An and In.

Proposition

If Cn and C−1
n are bounded uniformly in n, then An and Cn are (ε-close) by O(1) rank if

and only if C−1
n An and In are.

Proof.
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Proposition

If Cn and C−1
n are bounded uniformly in n, then An and Cn are (ε-close) by O(1) rank if

and only if C−1
n An and In are.

Proof.
An − Cn = Cn(C

−1
n An − In), and C−1

n An − In = C−1
n (An − Cn).
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n are bounded uniformly in n, then An and Cn are (ε-close) by O(1) rank if

and only if C−1
n An and In are.

Proof.

C−1
n An−In = C−1

n En,ε+C−1
n Rn,ε, ∥C−1

n En,ε∥ ≤ ε/∥Cn∥2, rank(C−1
n Rn,ε) ≤ r(n, ε) = O(1).

6 / 36



Having a cluster: C−1
n An − In

The connection between boundedness and ε-closeness can also be inverted, i.e.,

Proposition

Let Cn be non singular. If Cn is bounded uniformly in n and An and Cn are not (ε-close) by
O(1) rank, then Cn is not superlinear for An.

Proof.

- Both propositions makes assumption on Cn, can we say something without having to
impose anything on Cn, ∥Cn∥2 or ∥C−1

n ∥2?
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Proof. By contradiction, if Cn is superlinear for An, then C−1
n An − In is the sum of a term

of bounded norm ε/∥Cn∥2 and a term of rank bounded by O(1). Therefore,

An − Cn = Cn(C
−1
n An − In),

is the sum of a term of norm bounded by ε and a term of constant rank: X this
contradicts the assumption that An and Cn are not (ε-close) by O(1) rank.

- Both propositions makes assumption on Cn, can we say something without having to
impose anything on Cn, ∥Cn∥2 or ∥C−1

n ∥2?
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Having a cluster: C−1
n An − In

Proposition

Let An and Cn be non singular. If An is bounded uniformly in n and if An and Cn are not
(ε-close) by O(1) rank, then Cn is not superlinear for An.

Proof.

We prove it again by contradiction. If Cn is superlinear for An, then (ε-close) holds
for C−1

n An − In with r(n, ε) = O(1). We use Sherman-Morrison-Woodbury formula to show
that

A−1
n Cn − In = En,ε + Rn,ε, ∥En,ε < ε and Rn,ε = O(1).

Therefore,
−(An − Cn) = An(A

−1
n Cn − In)

is the sum of a term of norm bounded by O(ε) and a term o constant rank X this
contradicts An and Cn non being (ε-close) by O(1) rank.

® If we have information on the spectral distribution of the involved sequences, can we
conclude something?
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Asymptotic spectral distribution for non-Toeplitz sequences

For Toeplitz matrices we discovered that the following definitions holds for suitably
chosen generating functions f .

Asymptotic eigenvalue distribution

Given a sequence of matrices {Xn}n ∈ Cdn×dn with dn = {dimXn}n
n→+∞−→ ∞ monotonically

and a µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that the sequence
{X }n is distributed in the sense of the eigenvalues as the function f and write {Xn}n ∼λ f if
and only if,

lim
n→∞ 1

dn

dn∑
j=0

F (λj(Xn)) =
1

µ(D)

∫
D
F (f (t))dt, ∀F ∈ Cc(D),

where λj(·) indicates the j-th eigenvalue.

9 / 36



Asymptotic spectral distribution for non-Toeplitz sequences

For Toeplitz matrices we discovered that the following definitions holds for suitably
chosen generating functions f .

Asymptotic singular value distribution

Given a sequence of matrices {Xn}n ∈ Cdn×dn with dn = {dimXn}n
n→+∞−→ ∞ monotonically

and a µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that the sequence
{X }n is distributed in the sense of the singular values as the function f and write
{Xn}n ∼σ f if and only if

lim
n→∞ 1

dn

dn∑
j=0

F (σj(Xn)) =
1

µ(D)

∫
D
F (|f (t)|)dt, ∀F ∈ Cc(D),

where σj(·) is the j-th singular value.
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Asymptotic spectral distribution for non-Toeplitz sequences

For Toeplitz matrices we discovered that the following definitions holds for suitably
chosen generating functions f .

® Are there any other matrix sequences for which these definitions hold?

1. Sequence of matrices describing the energy on fractals, e.g., a version of the
Szegö limit theorems on the Sierpiński gasket (Okoudjou, Rogers, and Strichartz 2010);

2. Locally Toeplitz Sequences (Tilli 1998);

3. Generalized Locally Toeplitz Sequences (Garoni and Serra-Capizzano 2017, 2018).
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Asymptotic spectral distribution for non-Toeplitz sequences

For Toeplitz matrices we discovered that the following definitions holds for suitably
chosen generating functions f .

® Are there any other matrix sequences for which these definitions hold?

1. Sequence of matrices describing the energy on fractals, e.g., a version of the
Szegö limit theorems on the Sierpiński gasket (Okoudjou, Rogers, and Strichartz 2010);

2. Locally Toeplitz Sequences (Tilli 1998);

3. Generalized Locally Toeplitz Sequences (Garoni and Serra-Capizzano 2017, 2018).

GLT Sequences

They are a ∗-algebra of matrix sequences {AN }N to which we can extend some of the
techniques and results we have briefly discussed for Toeplitz sequences. They can be used
to describe asymptotic spectral properties of matrix sequences coming from the
discretization of differential equations on highly regular meshes.
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GLT Sequences (Garoni and Serra-Capizzano 2017, 2018)

ÒThe machinery and the relative notation is unfortunately cumbersome.

⌣We need just few tools to get a couple of results for the case at hand.
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GLT Sequences (without the agonizing pain)
⌣We need just few tools to get a couple of results for the case at hand.

Theorem (Axiomatic description) (Garoni and Serra-Capizzano 2017, 2018)

1. Each GLT sequence has a singular value symbol f (x , θ) for (x , θ) ∈ [0, 1]× [−π, π]. If
the sequence is Hermitian, then the distribution also holds in the eigenvalue sense. If
{AN }N has a GLT symbol f (x , θ) we will write {AN }N ∼glt f (x , θ).

2. The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combinations,
products, inversion (whenever the symbol is singular, at most, in a set of zero
Lebesgue measure), and conjugation.

3. Every Toeplitz sequence generated by an L1 function f = f (θ) is a GLT sequence and
its symbol is f . Every diagonal sampling matrix (Dn)ii = a(i/n) obtained from a
continuous a(x) is a GLT sequence and its symbol is a.

4. Every sequence which is distributed as the constant zero in the singular value sense is
a GLT sequence with symbol 0.
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GLT Sequences (without the agonizing pain)
⌣We need just few tools to get a couple of results for the case at hand.

Theorem (Axiomatic description) (Garoni and Serra-Capizzano 2017, 2018)

5. If {AN }N ∼GLT κ and the matrices AN are such that AN = XN + Yn, where
• every XN is Hermitian,
• the spectral norms of XN and YN are uniformly bounded with respect to N,
• the trace-norm of YN divided by the matrix size N converges to 0,

then the distribution holds in the eigenvalue sense.

® Okay, but what do we do with this stuff?

� We take the sequence we have {An}n from our problem, and we try to show that it can
be obtained via the ∗-algebra properties as the linear combination/product (with
maybe some inversions and some zero distributed sequences) of GLT matrices of which
we know the symbol (a.k.a., Toeplitz and diagonal matrices).

# If we are successful, then we know the spectral distribution of our sequence.
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® Okay, but what do we do with this stuff?

� We take the sequence we have {An}n from our problem, and we try to show that it can
be obtained via the ∗-algebra properties as the linear combination/product (with
maybe some inversions and some zero distributed sequences) of GLT matrices of which
we know the symbol (a.k.a., Toeplitz and diagonal matrices).
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GLT stuff for the case at hand

We want to discover the GLT symbol, a.k.a., the spectral distribution for the
discretization of:{

∂W
∂t = d+(x , t) RLDα

[0,x ]W (x , t) + d−(x , t)RLDα
[x ,1]W (x , t),

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

Theorem (Donatelli, Mazza, and Serra-Capizzano 2016)

We assume ν = O(1), and that for a fixed instant of time tm the functions
d+(x , t) ≡ d+(x) and d−(x , t) ≡ d−(x) are both Riemann integrable over [0, 1], then

{AN }N ∼GLT hα(x , θ) = d+(x)fα(θ) + d−(x)fα(−θ), (x , θ) ∈ [0, 1]× [−π, π].
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GLT stuff for the case at hand
We want to discover the GLT symbol, a.k.a., the spectral distribution for:

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

Theorem (Donatelli, Mazza, and Serra-Capizzano 2016)

We assume ν = O(1), and that for a fixed instant of time tm the functions
d+(x , t) ≡ d+(x) and d−(x , t) ≡ d−(x) are both Riemann integrable over [0, 1], then

{AN }N ∼GLT hα(x , θ) = d+(x)fα(θ) + d−(x)fα(−θ), (x , θ) ∈ [0, 1]× [−π, π].

Proof. The diagonal elements of the matrices D±
N are a uniform sampling of the functions

d±(x) ∈ [0, 1], thus D±
N ∼GLT d±(x). Toeplitz matrices GN and GT

N are also
{GN }N ∼GLT fα(θ) and {GT

N }N ∼GLT fα(−θ). Finally {νIN }N ∼GLT 0 since ν = o(1) by
hypothesis. The conclusion than follows from the ∗-algebra property, i.e.,

{AN }N ∼GLT 0+ d+(x)pα(θ) + d−(x)pα(−θ) = hα(x , θ).
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

N = 100
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);

Dplus = diag(dplus(x));

Dminus = diag(dminus(x));

nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT stuff for the case at hand

alpha = 1.5; N = 100;

hN = 1/(N-1); x = 0:hN:1; dt = hN;

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

G = glmatrix(N,alpha); % Discretize

Gr = G; Grt = G.'; I = eye(N,N);
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nu = hN^alpha/dt;

A = nu*I -(Dplus*Gr + Dminus*Grt);

f = @(theta) -exp(-1i*theta).*...

(1-exp(1i*theta)).^alpha;

xsq = linspace(0,1,sqrt(N));

tsq = linspace(-pi,pi,sqrt(N));

[X,THETA] = meshgrid(xsq,tsq);

h = @(x,theta) nu +

(dplus(x).*f(theta) ...↪→
+ dminus(x).*f(-theta));

sv = svd(full(A));
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GLT: a negative result for circulant matrices

®And so we have the asymptotic distribution of our singular values, but what do we
do with it?

- The function

k(x , θ) = d+(x)fα(θ) + d−(x)fα(−θ) for (x , θ) ∈ [0, 1]× [−π, π],

depends on both x and θ, on the other hand any circulant preconditioner will
depend only on the θ variable!⇒ No circulant preconditioner will ever cluster the singular values of a sequence with a
“space variant” spectral distribution.

® What type of preconditioner can we use to solve this issue?
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� Structure preserving preconditioners

The GLT class of sequences is a ∗-algebra, thus we can try to proecondition the sequence
{AN }N with something from the same class. We then look for:

� A sequence {PN }N in the GLT class,

� A sequence {PN }N such that {P−1
N AN }N ∼GLT 1,

� A sequence {PN }N that is easy enough to invert.

`An old idea anew

This a modification of an old idea, if we take a Toeplitz system Tn(f ) then we can use
Tn(1/f ) as a preconditioner!

# P−1
n = Tn(1/f ) is not the inverse of Tn(f ),

# If we have Tn(1/f ), its application cost is O(n log n),

- Computing the Fourier coefficients of 1/f can be expensive.
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Preconditioning Toeplitz with Toeplitz

We have expressed the Fourier coefficients of f as

tk =
1

2π

∫2π
0

f (θ)e−ikθ dθ, k = 0,±1,±2, . . . ,

we say that f is

[ of analytic type if tk = 0 for k < 0, or

[ of coanalytic type if tk = 0 for k > 0.

Lemma

Let f be of analytic type (or respectively coanalytic type) and a0 ̸= 0. Then Tn(f ) is
invertible if and only if 1/f is bounded and of analytic type (or respectively coanalytic type).
In either case, we have Tn(1/f )Tn(f ) = Tn(f )Tn(1/f ) = In, for In is the identity matrix.
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Preconditioning Toeplitz with Toeplitz

Lemma (Chan and Ng 1993)

Let f be a positive trigonometric polynomial of degree K

f (θ) =
K∑

k=−K

tke
ikθ.

Then for n > 2K , rank(Tn(1/f )Tn(f ) − In) ≤ 2K .

Proof. Let

1

f (θ)
=

+∞∑
k=−∞ ρke

ikθ

⇒ K∑
k=−K

tkρm−k =

{
1, if m = 0,

0, otherwise.

Thus for n > 2K , the entries of Tn(1/f )Tn(f ) − In are all zeros except possibly entries in
its first and last K columns.
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Preconditioning Toeplitz with Toeplitz

Given |α| < 1 consider

f (θ) =
1+ α2 − αe iθ − αe−iθ

1− α2

Tn(f ) is tridiagonal and SPD.

function T = kacmatrix(n,alpha)

%KACMATRIX Kac-Murdock-Szego matrices

e = ones(n,1);

T = spdiags(([-alpha,1+alpha^2,-alpha]

./(1-alpha^2)).*e,-1:1,n,n);↪→
end

We can express

1

f (θ)
=

+∞∑
k=−∞ t |k |e ikθ =

1− α2

(1− αe iθ) (1− αe−iθ)
,

and Tn(1/f ) is then a dense Toeplitz matrix.
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Preconditioning Toeplitz with Toeplitz
We can compute the coefficients in an inefficient way and apply it to the CG/PCG

N CG PCG

32 20 2
64 20 2
128 20 2
256 20 2
512 20 2
1024 20 2
2048 20 2

α = 0.5

function T = invkacmatrix(n,alpha)

%INVKACMATRIX Gives back the 1/Kac-Murdock-Szego

matrices↪→
f = @(th) (1 - alpha^2)./((1-alpha*exp(1i*th))

.*(1-alpha*exp(-1i*th)));↪→
c = zeros(n,1); r = zeros(1,n);

for k=1:n

r(k) = integral(@(th) f(th).*exp(1i*th*(k-1)),0,2*pi)

/(2*pi);↪→
c(k) = integral(@(th) f(th).*exp(-1i*th*(k-1)),0,2*pi)

/(2*pi);↪→
end

T = real(toeplitz(r,c));

end
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Preconditioning Toeplitz with Toeplitz
We can compute the coefficients in an inefficient way and apply it to the CG/PCG

N CG PCG

32 20 3
64 20 2
128 20 2
256 20 2
512 20 2
1024 20 2
2048 20 2

α = 0.8

function T = invkacmatrix(n,alpha)

%INVKACMATRIX Gives back the 1/Kac-Murdock-Szego

matrices↪→
f = @(th) (1 - alpha^2)./((1-alpha*exp(1i*th))

.*(1-alpha*exp(-1i*th)));↪→
c = zeros(n,1); r = zeros(1,n);

for k=1:n
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/(2*pi);↪→
c(k) = integral(@(th) f(th).*exp(-1i*th*(k-1)),0,2*pi)
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end

T = real(toeplitz(r,c));

end
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Preconditioning Toeplitz with Toeplitz

We can compute the coefficients in an inefficient way and apply it to the CG/PCG

rank (Tn(1/f )Tn(f ) − In) = 2
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Preconditioning Toeplitz with Toeplitz

We can compute the coefficients in an inefficient way and apply it to the CG/PCG

rank
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nz = 65536
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nz = 766
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−
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=
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-10
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Preconditioning Toeplitz with Toeplitz

We can compute the coefficients in an inefficient way and apply it to the CG/PCG

rank (Tn(1/f )Tn(f ) − In) =

10
0

10
1

10
2

10
-15

10
-10

10
-5

v An exercise to make the evaluation and construction of the involved quantities would
be using the fft to compute the Fourier coefficients of 1/f (θ).
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Preconditioning Toeplitz with Toeplitz

Lemma (Chan and Ng 1993)

Let f be a positive 2π-periodic continuous function. Then for all ε > 0, there exists
positive integers M and N such that for all n > N,

Tn(1/f )Tn(f ) = In + Ln + Un,where rank(Ln) ≤ M and ∥Un∥2 < ε.

Proof. By the Weierstrass Theorem, there exists a positive trigonometric polynomial

pK (θ) =
+K∑

k=−K

ρke
ikθ, ρ−k = ρk , such that fmin/2 ≤ pK (θ) ≤ 2fmax ∀ θ ∈ [0, 2π], and

max
θ∈[0,2π]

|f (θ) − pK (θ)| ≤
fmin

2
(−1+

√
1+ ε)min

{
fmin

2fmax
, 1

}
.
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Let f be a positive 2π-periodic continuous function. Then for all ε > 0, there exists
positive integers M and N such that for all n > N,

Tn(1/f )Tn(f ) = In + Ln + Un,where rank(Ln) ≤ M and ∥Un∥2 < ε.

Proof. We write

Tn(1/f )Tn(f ) = Tn(1/f )T
−1
n (1/pK )Tn(1/pK )Tn(pK )T

−1
n (pK )Tn(f )

= (In + Vn) (Tn(1/pK )Tn(pK )) (In +Wn)

where Vn = (Tn(1/f ) − Tn(1/pK )T
−1
n (1/pK )) and Wn = T−1

n (pk)(Tn(f ) − Tn(pK ))
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and by the property of the generating functions and the Weierstrass Theorem

∥T−1
n (pK )∥2 ≤

2

fmin
, ∥T−1

n (1/pK )∥2 ≤ 2fmax, ∥Tn(f ) − Tn(pK )∥2 ≤
(−1+

√
1+ ε)fmin

2
,

∥Tn(1/f ) − Tn(1/pK )∥2 ≤ max
θin[0,2π]

∣∣∣∣ 1

f (θ)
−

1

pK (θ)

∣∣∣∣ ≤ 2

f 2min

max
θ∈[0,2π]

|f (θ) − pK (θ)|
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Preconditioning Toeplitz with Toeplitz
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Tn(1/pK )Tn(pK ) = In + L̃n with rank(L̃n) ≤ 2K .
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Preconditioning Toeplitz with Toeplitz

Lemma (Chan and Ng 1993)

Let f be a positive 2π-periodic continuous function. Then for all ε > 0, there exists
positive integers M and N such that for all n > N,

Tn(1/f )Tn(f ) = In + Ln + Un,where rank(Ln) ≤ M and ∥Un∥2 < ε.

Proof. We write

Tn(1/f )Tn(f ) = (In + Vn)(In + L̃n)(In +Wn) ≡ In + Ln + Un,

where
Un = Vn +Wn + VnWn, Ln = L̃n(In +Wn) + VnL̃n(In +Wn),

and using the previous relations

rank(Ln) ≤ 4K , and ∥Un∥2 ≤ ε.
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Preconditioning Toeplitz with Toeplitz

Theorem (Chan and Ng 1993)

Let f be a positive 2π-periodic continuous function. Then for all ε > 0, there exist
positive integers M and N such that for all n > N, at most M eigenvalues of
Tn(1/f )Tn(f ) − In have absolute value greater than ε.

Proof (idea). The HPD matrix Xn = T
1/2
n (1/f )Tn(f )T

1/2
n (1/f ) ∼ Tn(1/f )Tn(f ). Use the

decomposition of the previous Theorem and the uniform boundedness of T
±1/2
n (1/f ).

X We still need positive generating functions,

Ô If f is not given explicitly or the evaluation of 1/f (θ) are costly the approach is
infeasible.

� The idea from (Chan and Ng 1993) is to reduce the cost of working with f and 1/f
by using convolution products with Kernel functions.
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Preconditioning GLT with GLT
GLT sequences are a ∗-algebra, some of the analysis is therefore greatly simplified.

Theorem (Garoni and Serra-Capizzano 2017, Section 8.4)

Let {AN }N be a sequence of Hermitian matrices such that {AN }N ∼GLT κ, and let {PN }N be
a sequence of Hermitian positive definite matrices such that {PN }N ∼GLT ξ and ξ ̸= 0 a.e.
Then

{P−1
N AN }N ∼GLT ξ−1κ, {P−1

N AN }N ∼σ, λ (ξ−1κ, Id).

⌣ We need less than positive!

å If we move to the non-symmetric case, we are left just with a relation with respect to
the singular values.

# The general idea for a GLT preconditioner is then to find a GLT sequence {PN }N
• that is easy to invert,
• and such that ξ1κ = 1 or at least a quantity bounded and bounded away from

zero.
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Preconditioning GLT with GLT
Let us finally go back to our case of interest

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

we build a preconditioner with the same structure such that

Ô we have a small bandwidth ⇒ a small computational cost,

X the symbol of a bandwidth Toeplitz matrix is a trigonometric polynomial, hence the
zero of the symbol cannot be of fractional order.

� P1,N = νI + D+
NBN + D−

NB
T
N , Bn = Tn(1− exp(−iθ)),

[ {P1,N }N ∼GLT p1(x , θ) = d+(x)(1− e−iθ) + d−(x)(1− e iθ), holds only in the singular
value sense!

� P2,N = νI + D+
NLN + D−

NL
T
N , Bn = Tn(2− 2 cos(θ))

[ {P2,N }N ∼GLT p2(x , θ) = (d+(x) + d−(x))(2− 2 cos(θ)), holds also in the eigenvalue
sense!
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Preconditioning GLT with GLT

X Since the symbol of a bandwidth Toeplitz matrix is a trigonometric polynomial, hence
the zero of the symbol cannot be of fractional order:

d±(x , t) = d > 0 : lim
θ→0

h(x , θ)

pk(x , θ)
= +∞, k ∈ {1, 2}.

Theorem (Serra 1995, Theorem 3.1)

Let f be an integrable function defined on [−π, π] having in x = x0 the unique zero of
order ρ. Then, by choosing 2k the even number which minimizes the distance from ρ and
setting g = |x − x0|

2k , the condition number of Tn(g)
−1Tn(f ) is asymptotical to n2k−ρ.

In our case

We expect the condition number of the preconditioned matrix to be O(N |α−k |), k ∈ {1, 2}.
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Preconditioning GLT with GLT

Let’s numerically test our idea.
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Preconditioning GLT with GLT
Test case is

d+(x , t) = Γ(3− α)xα, d−(x , t) = Γ(3− α)(2− x)α

α N GMRES P P1,N P2,N

1.2 25 31 13 10 13
26 50 14 11 15
27 64 14 11 16
28 75 15 11 16
29 84 15 11 16
210 91 14 10 16
211 96 14 10 16
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P
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� To do better we need to move towards Multigrid methods.
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Circulant matrices at any cost
Despite the clear negative results concerning the impossibility of obtaining a cluster using
circulant matrices in the space-dependent case, the literature contains several attempts in
this direction.

One of the most reused idea originates from (Pan et al. 2014), and goes as follows

1. We want to solve a “diagonal times Toeplitz” linear system, i.e.,

AN = νIN −
(
D+
NGN + D−

NG
T
N

)
,

2. Call d+
i = d+(xi ) and d−

i = d(xi ), i = 1, 2, . . . ,N,
3. Define the Toeplitz matrices

Ki = νIn −
(
d+
i GN + d−

i G
T
N

)
, i = 1, 2, . . . ,N.

4. Since eTi AN = eTi Ki , approximate

eTi A
−1 ≈ eTi K

−1
i .
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Circulant matrices at any cost
But how do we approximate the inversion?

� Build P1 =

N∑
i=1

eie
T
i K

−1
i

Ó it costs too much! N Toeplitz solve per iteration.

� Build P2 =

N∑
i=1

eie
T
i C

−1
i with Ci = s(Ki ) (Strang preconditioner)

Ò it still cost too much! O(N2 log(N)) per iteration.

� Build P3 =

N∑
i=1

eie
T
i

ℓ∑
j=1

ϕj(xi )C
−1
j

7 The cost is now O(ℓN logN) operations.

Ó where for ℓ ≪ N values {xij }
ℓ
j=1 ⊂ {xi }

N
i=1 ϕj(x) are the basis of the piecewise linear

interpolation of

qλ(x) =
1

ν+ λd+(x) + λd−(x)
, λ ∈ C.
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Circulant matrices at any cost

The analysis of the 7 P3 preconditioner is quite involved, furthermore

Ô the iteration number dependence on the selection of the interpolation nodes and the
value of λ is unclear,

Ô the resulting preconditioner is always a circulant matrix, thus the general theory
tells us that there is no hope of getting a cluster of any sort.

. The extension of this preconditioners to the multi-dimensional settings is even more
challenging: interpolation of surfaces, and higher dimensional objects is a tough problem!

p For these reasons we will not pursue further these results, if you are interested start
from (Pan et al. 2014), and look to the next episodes.
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Multidimensional cases

What happens if our equation becomes
∂W
∂t =

(
θ RLDα

[0,x ] ·+(1− θ)RLDα
[x ,1]·

)
W (x , y , t) + θ ∈ [0, 1],(

θ RLDα
[0,y ] ·+(1− θ)RLDα

[y ,1]·
)
W (x , y , t)

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

å If we repeat the discretization procedure we have used in the 1D case we end up with
a block-Toeplitz-with-Toeplitz-blocks matrix,

� then we could attempt solution by using a block-circulant-with-circulant-blocks
preconditioner! In the 1D case (either symmetric or not) the procedure was working,
maybe we are lucky. . .
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Multidimensional cases

What happens if our equation becomes
∂W
∂t =

(
d+
x (x , t)

RLDα
[0,x ] ·+1− θ)d−

x (x , t)
RLDα

[x ,1]·
)
W (x , y , t)+,(

d+
y (x , y , t)

RLDα
[0,y ] ·+1− θ)d−

y (x , y , t)
RLDα

[y ,1]·
)
W (x , y , t)

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

å It should not be difficult to imagine, but in this case we should end up again with a
matrix sequence of GLT type,

� we can attempt the solution by doing something similar to what we have done in the
1D case: using a Toeplitz preconditioner. . .
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ÓA negative result
In the constant coefficient case we have a general negative result:

“Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear” –
Serra Capizzano and Tyrtyshnikov 1999

Theorem (Serra Capizzano and Tyrtyshnikov 1999, Theorem 4.1)

For In + An, An = An(f ) a p-level Toeplitz matrix, any preconditioner for the form In + Cn,
where pn is a p-level circulant matrix, is not superlinear.

X The number of iterations for the preconditioned system will always depend on the
size of the system!

� The dependence can still by milder than the one of the original system, thus there are
cases in which this could be worthwhile (at least for a while).

It is a difficult world

Already the case with constant coefficient is difficult to treat. Maybe we can find a way to
reduce the number of dimensions.
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ÓAnother negative result and a proposal

X The result we have obtained by means of GLT theory for the variable coefficient case
remains valid also in two dimensions: no circulant preconditioner can have a strong
cluster!

� We could attempt generalizing the P1,N and P2,N preconditioners to the new setting.

Ô The matrix of the system in 2D has now the form

AN = νIN −
(
D+
N(GNx ⊗ INy ) + D−

N(INx ⊗ GNy )
)
, N = (Nx ,Ny ).

� If the diffusion coefficients are constants, this a BTTB matrix,
� If the diffusion coefficients are space variant, we can show (following the same

road as before) that the resulting matrix sequence is a GLT sequence.

Ô P1,N = νIN −
(
D+
N(TNx (1− e−iθ1)⊗ INy ) + D−

N(INx ⊗ TNy (1− e−iθ2))
)
;

Ô P2,N = νIN −
(
D+
N(TNx (2− 2 cos(θ1))⊗ INy ) + D−

N(INx ⊗ TNy (2− 2 cos(θ2))
)
.
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The structure preserving preconditioners

- To apply both P1,N and P2,N we now need to solve an auxiliary sparse linear system
related to the discretization of a 2D problem.

� Using a sparse direct solver is not going to scale well with N = (Nx ,Ny ),

X We need to employ an iterative technique to do the preconditioner application!

å Methods of this type are usually called multi-iterative methods⇒ If we apply P1,N or P2,N using a fixed number of iterations of a fixed point
technique, then we can still use GMRES,⇒ If we apply P1,N or P2,N using a variable number of iterations of a fixed point
technique or a nonstationary solver, then we have to use the Flexible-GMRES.

® What is the right combination?

The right combination of iterative schemes to use does really depend on the machine we
have under our hands!
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Flexible-GMRES (Saad 1993)
The Flexible variant of GMRES is built from the right-preconditioned GMRES algorithm.

Input: A ∈ Rn×n, m, x(0), M ∈ Rn×n

1 r(0) ← b − Ax(0); /* Arnoldi process */

2 β← ∥r(0)∥2, v(1) ← r(0)/β;
3 for j = 1, . . . ,m do
4 z(j) ← P−1v(j);

5 w← Az(j);
6 for i = 1, . . . , j do
7 hi,j ←< w, v(i) >;

8 w← w − hi,jv
(i);

9 end
10 hj+1,j ← ∥w∥2;
11 v(j+1) ← w/hj+1,j ;

12 end

13 Vm ← [v(1), . . . , v(m)];
// Build the Krylov subspace basis

14 y(m) ← argminy ∥βe1 − Hmy∥2;
15 x(m) ← x(0) + P−1Vmy

(m);
// Conv. check, possibly a restart

16 if Stopping criteria satisfied then
17 Return: x̃ = x(m);
18 else
19 x(0) ← x(m); /* Restart */

20 goto 1;

21 end

Same preconditioner

Line 15 forms the approximate solution of the
linear system as x(0) + P−1Vmy

(m).
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5 w← Az(j);
6 for i = 1, . . . , j do
7 hi,j ←< w, v(i) >;

8 w← w − hi,jv
(i);

9 end
10 hj+1,j ← ∥w∥2;
11 v(j+1) ← w/hj+1,j ;

12 end

13 Zm ← [z(1), . . . , z(m)];
// Build the Krylov subspace basis

14 y(m) ← argminy ∥βe1 − Hmy∥2;
15 x(m) ← x(0) + Zmy

(m);
// Conv. check, possibly a restart

16 if Stopping criteria satisfied then
17 Return: x̃ = x(m);
18 else
19 x(0) ← x(m); /* Restart */

20 goto 1;

21 end

Changing preconditioner

Line 15 forms the approximate solution of the
linear system as x(0) + Zmy

(m).
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Flexible-GMRES (Saad 1993)
With this variant of the GMRES we are solving

AP−1y = b, with Px = y,

with a preconditioner P whose action depends on the vector to which it is applied,

J in terms of memory we have to store two basis instead of one,

" we use the true residual instead of the preconditioned one: the results are more
reliable!

Some usual choices of multi-iterative schemes are

å Inner/Outer GMRES method: we fix a preconditioner P, solve the systems

z(j) ← P−1v(j),

by a recursive call to GMRES;

å A Multigrid algorithm in which some smoother or coarse solver is non stationary;

å Non stationary polynomial preconditioners.
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Exploiting the Kronecker structure

The multidimensional case has a new structure we can exploit: Kronecker sums!

AN = νIN −
(
D+
N(GNx ⊗ INy ) + D−

N(INx ⊗ GNy )
)
, N = (Nx ,Ny ).

Ô If we assume separable coefficients, i.e.,

d+(x , y) = d+
1 (x)d

+
2 (y), d−(x , y) = d−

1 (x)d
−
2 (y).

Ô We write the solution vector x as a matrix X such that x = vec(X ), where vec(·) is
the operation that stacks the columns of X , and the right-hand side b as B with
b = vec(B).

å We got ourselves a matrix equation involving objects of “smaller size”.
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the operation that stacks the columns of X , and the right-hand side b as B with
b = vec(B).

å We got ourselves a matrix equation involving objects of “smaller size”.
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Conclusion and summary

¥ We have characterized the spectral properties of the involved matrix sequences,

¥ We investigated several preconditioning strategies that made use of the structure of
the underlying matrices,

¥ We started investigating multi-iterative schemes and looking for ways of reducing the
dimensionality of the involved problems.

Next up

Á How and when do we solve the matrix equation formulation,

Á What do we do when we have more than two dimensions?

Á All-at-once formulations.
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\The curse of dimensionality

In the last lesson we saw that:

- Circulant preconditioners cannot cluster cases with variable coefficients,

- Multilevel circulant preconditioners cannot cluster multilevel Toeplitz systems,

- Preconditioner based on matrix algebras with fast simultaneous diagonalization
cannot cluster multilevel Toeplitz systems.

® Can we reduce the dimensionality of the problem to reuse the information and good
results we have in the 1D case?

å Alternating-direction implicit method,
å reformulation as matrix equations,
å reformulation as tensor problems.
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Matrix equation reformulations

The simplest way of introducing this reformulation is to go back to the 1D problem (now
with a source term):{

∂W
∂t = θ RLDα

[0,x ]W (x , t) + (1− θ)RLDα
[x ,1]W (x , t) + f (x , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

To solve everything we have to solve the sequence of linear systems

1

∆t

(
W(m+1) −W(m)

)
=

1

hα

(
θGN + (1− θ)GT

N

)
W(m+1)) + f (m+1), m = 0, . . . ,M − 1.

� Do we really have to solve this sequentially?
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Matrix equation reformulations

Following (Breiten, Simoncini, and Stoll 2016), we can collect the time steps altogether:(
BM ⊗ IN −

∆t

hα
IM ⊗ TN

)
Ŵ = F,

since 
IN − ∆t

hαTN

−IN IN − ∆t
hαTN

. . .
. . .

−IN IN − ∆t
hαTN




W(1)

W(2)

...

W(M−1)

 =


W(0) + ∆tf (1)

∆tf (2)

...

∆tf (M),


for TN =

(
θGN + (1− θ)GT

N

)
, BM = TM(1− e iθ).

This is now a coupled system of size MN ×MN, that is larger and uglier than before. . .
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Matrix equation reformulations
® Where is the advantage in dealing with(

BM ⊗ IN −
∆t

hα
IM ⊗ TN

)
Ŵ = F?

Let’s call W = [W(1)| · · · |W(M)]N×M , F = [W(0) +∆tf (1)| · · · |∆tfM ]N×M , and rewrite our
problem as

�Compute W ∈ RN×M s.t. ANW +WBT
M = F .

� This is a well-know object called Sylvester equation!

® Did we gain anything?

Back to this in a few moment. . .

® Since we are accumulating all the time steps in one step, is it appropriate to simply
use one of the methods we already know (e.g. Euler, BDFs, Adams’, etc.) or can we
do better?

Á Next lecture!
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∆t

hα
TN?

Let’s call W = [W(1)| · · · |W(M)]N×M , F = [W(0) +∆tf (1)| · · · |∆tfM ]N×M , and rewrite our
problem as

�Compute W ∈ RN×M s.t. ANW +WBT
M = F .

� This is a well-know object called Sylvester equation!

® Did we gain anything?

Back to this in a few moment. . .

® Since we are accumulating all the time steps in one step, is it appropriate to simply
use one of the methods we already know (e.g. Euler, BDFs, Adams’, etc.) or can we
do better?

Á Next lecture!

4 / 38



Matrix equation reformulations

® Where is the advantage in dealing with

(BM ⊗ IN + IM ⊗ AN) Ŵ = F, AN = −
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What about the 2D problem?

What happens if we want then to reformulate:
∂W
∂t =

(
θ RLDα

[0,x ] ·+(1− θ)RLDα
[x ,1]·

)
W (x , y , t)

+
(
θ RLDα

[0,y ] ·+(1− θ)RLDα
[y ,1]·

)
W (x , y , t) + f (x , y , t), θ ∈ [0, 1],

W (0, t) = W (1, t) = 0, W (x , t) = W0(x).

By the usual procedure
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=

1

hα

(
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Nx
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Ny
)
)
W(m+1)

+ f (m+1), m = 0, . . . ,M − 1.
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Ó The clever observation is now that

INxNy − ∆tGNxNy = INy ⊗
(
1

2
INx − ∆tG̃Nx

)
+

(
1

2
INy − ∆tG̃Ny

)
⊗ INx .
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Solving Sylvester equations (Simoncini 2016)

J This rewriting effort will be worth it only if we can efficiently solve Sylvester equations:

AX + XB = C , A ∈ RN×N , B ∈ RM×M , C ∈ RN×M .

The solution can be expressed in closed form in a number of ways, e.g.,

Numerical mehtods

These formulations can exploited to devise numerical methods, to avoid a very long detour,
we are going to just mention a couple of them; read (Simoncini 2016) for the full story.

6 / 38



Solving Sylvester equations (Simoncini 2016)

J This rewriting effort will be worth it only if we can efficiently solve Sylvester equations:

AX + XB = C , A ∈ RN×N , B ∈ RM×M , C ∈ RN×M .

The solution can be expressed in closed form in a number of ways, e.g., as integrals of
resolvents

X = −
1

4π2

∫
Γ1

∫
Γ2

(γIN − A)−1C (µIM − B)−1

λ+ µ
dµdλ,

for Γ1, Γ2 contours containing and sufficiently close to the spectra of A and B , respectively.
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The Bartels and Stewart 1972 algorithm

L The first step costs O(N3) and O(M3)
operations by QR algorithm for general
A and B,

L The last step is just two matrix-matrix
multiplications.

Input: A, B, C
Compute Schur factorizations
URUH = AH and B = VSVH ;

Solve RHY + YS = UHCV for Y ;

Compute X = UYVH ;

We can solve the system with triangular coefficients by substitution⇒ The leading cost is the Schur factorization O(N3 +M3)!Ó only small matrices.
� We may gain something if A and B are in upper Hessenberg form. . .
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(Y )1,1 element is readily obtained by solving: (♠+♣)(Y )11 = ⋆.

⇒ The leading cost is the Schur factorization O(N3 +M3)!Ó only small matrices.
� We may gain something if A and B are in upper Hessenberg form. . .
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Then we proceed with the first row. . .

⇒ The leading cost is the Schur factorization O(N3 +M3)!Ó only small matrices.
� We may gain something if A and B are in upper Hessenberg form. . .
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The small case scenario

There are a number of variations that we can apply for the case of small matrices

å We can use real Schur form instead of the complex one, avoids complex arithmetic,
but now for in the second step we have to solve some Sylvester equation with 2× 2
coefficients. We do it by going back to a small linear system.

å We can go directly for the Hessenberg form instead of Schur (Golub, Nash, and
Van Loan 1979).

å If A is much larger than B then we can work on the block case

.

å If B = −A and C is small rank, then we are falling back to our “fast
small-displacement-rank solver” scenario, e.g., (Gohberg, Kailath, and Olshevsky
1995).
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But our cases are not small. . .

If only we knew a way to from a large matrix setting, to a small one made of Hessenberg
matrices. . .
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å If B = −A and C is small rank, then we are falling back to our “fast
small-displacement-rank solver” scenario, e.g., (Gohberg, Kailath, and Olshevsky
1995).

� But our cases are not small. . .

If only we knew a way to from a large matrix setting, to a small one made of Hessenberg
matrices. . . wait a second, we may know a trick or two for this! �
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When in doubt: project!

When we have to solve linear systems with a large matrix, we have seen that a good
solution is represented by the Krylov projection methods.

® Can we do something similar for this problem too?

sometimes, it is a matter of rank.

Theorem (Simoncini 2016, Theorem 4)

Let A and B be stable1 and real symmetric, with spectra contained in [a, b] and [c , d ],
respectively. Define η = 2(b − a)(d − c)/((a + c)(b + d)). Assume C is of rank p. Then
the singular values σ1 ≥ · · · ≥ σmin{M,N} of the solution X to the Sylvester equation satisfy

σpr+1

σ1
≤

(
1−

√
k ′
r

1+
√
k ′
r

)2

, 1 ≤ pr < n, k ′
r =

1

1+ η+
√

η(η+ 2)
.

1A matrix is called stable (or sometimes Hurwitz) if every eigenvalue has strictly negative real part.
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Projection methods for low-rank right-hand sides
Let us assume that rank (C ) = p ≪ min{n,m}.

Ó Decompose C = C1C
H
2 ;

Ó Select V = span(Vk) and W = span(Wj) subspaces of CN and CM ;
Ó Basis Vk , k ≪ N, and Wj , j ≪ M, are orthonormal and such that V and W are not

orthogonal to range(C1) and range(C2) respectively;
Ó Build an approximation X̃ = VkYW

H
j ≈ X with residual R = C1C

H
2 − AX̃ − X̃B.

Galerkin (orthogonality) condition

Call x̃ = vec(X̃ ) = (Wj ⊗ Vk) vec(Y ), then we want Vk and Wk to be selected as

(Wj ⊗ Vk)
H(c−Ax) = 0 ⇔ VH

k RWj = 0 with A = BT ⊗ I + I ⊗ A, c = vec(C ).

å To compute Y , solve the small Sylvester equation:

VH
k AVkY + YWH

j BWj = VH
k C1(W

H
j C2)

H

⇒ Bartels and Stewart.
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Projection methods for low-rank right-hand sides

Existence of the solution

If VH
k AVk and −WH

j BWj have disjoint spectra we can solve

VH
k AVkY + YWH

j BWj = VH
k C1(W

H
j C2)

H ∀C = C1C
H
2 .

To enforce it, is sufficient to have A and −B with disjoint field of values.

11 / 38



Projection methods for low-rank right-hand sides
The cost of one iteration for m > n
and p = rank(C ) is then given by

L O((kp)3) flops for the solution
of the projected problem,

L Orthogonalization of the new
basis vectors with respect to
the older vectors: O(mkp2),

L Orthogonalization of the new
block: O(mp2).

Loss of rank

If the generated basis experiences
loss of rank, deflation procedures
can be applied to remove redundant
columns.

Input: A, B, C1 and C2

Orthogonalize columns of C1 to get v1 = V1;
Orthogonalize columns of C2 to get v2 = W1;
for k = 1, 2, . . . , do

Compute Yk solution to
V H
k AVkY + YW H

k BWk − V H
k C1(W

H
k C2)

H = 0;
if converged then

Return Vk , Yk and Wk such that
Xk = VkYkW

∗
k and stop.

end
/* Compute next bases blocks */

Compute ṽ and ŵ from the approximate space;
Make v̂ orthogonal w.r.t. {v1, . . . , vk };
Make ŵ orthogonal w.r.t. {w1, . . . ,wk };
Orthogonalize col.s of v̂ and ŵ for vk+1 and wk+1;
Update: Vk+1 = [Vk , vk+1], Wk+1 = [Wk ,wk+1];

end
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Selection of V and W
® How do we select the approximation spaces V and W?

� Standard block Krylov subspace

V = range{[C1,AC1,A
2C2, . . .]}, W = range{[C2,B

HC1, (B
H)2C2, . . .]},

� Rational block Krylov subspace

V = range{[(A+ σ1I )
−1C1, (A+ σ2I )

−1(A+ σ1I )
−1C1, . . .]},

W = range{[(BH + η1I )
−1C2, (B

H + η2I )
−1(BH + η1I )

−1C2, . . .]},

� Global Krylov subspace:

V =

∑
i≥0

AiCiγi , γi ∈ R

 = span{C1,AC1,A
2C2, . . .}

where the linear combination is performed blockwise, and analogously for W.
12 / 38



Stopping criterions
To change the “if converged” in the algorithm we have to monitor the residual, e.g.,

∥R∥2 = ∥AX̃ + X̃B − C1C
∗
2 ∥2 or ∥R∥F = ∥AX̃ + X̃B − C1C

∗
2 ∥F .

. R is dense and large: we should avoid assembling it!

- If we are using Krylov subspaces, we can employ Arnoldi-like relations to this end:

AVk = [Vk , v̂k ]Hk and BHWj = [Wj , ŵj ]K j ,

with [Vk , v̂k ] and [Wj , ŵj ] having orthonormal columns.

å If ∃C (k)
1 and C

(j)
2 s.t. C1 = [Vk , v̂k ]C

(k)
1 and C2 = [Wj , ŵj ]C

(j)
2

∥R∥F = ∥HkY [I , 0] + [I ; 0]YKH
j − C

(k)
1 (C

(j)
2 )H∥F .

J The matrix in the last norm is small if k and j are small, if we are under the
å conditions on the spaces we can monitor the residual along the way.
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with [Vk , v̂k ] and [Wj , ŵj ] having orthonormal columns.

å If ∃C (k)
1 and C

(j)
2 s.t. C1 = [Vk , v̂k ]C

(k)
1 and C2 = [Wj , ŵj ]C
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Variants: as many as for standard Krylov methods

 We can use different approximation space dimensions for A and B.

 We can use different approximation spaces of the same dimension.
 We could use nonsymmetric Lanczos (oblique subspaces) if B = AH and C1C

∗
2 is

nonsymmetric to build simultaneously Kj(A,C1) and Kj(A,C2).
 We could use Krylov methods with restart to save memory.
 If A and B are symmetric (and not necessarily equal), we could use short-term block

recurrences.

[ The review by Simoncini 2016 has pointers to all the different strategies available.

® Where were we?

For the two equations we wanted to solve we have then the following questions:

® Is our C low-rank?

® What type of Krylov subspace should we select?

® Does any of this stuff converge at all?
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Low-rank, regularity and separability

å For the 1D+1D case we have to solve

ANW +WBT
M = F , with F = [W(0) + ∆tf (1)| · · · |∆tfM ]N×M ,

with (f (m))i = f (xi , tm).

å For the 1D+2D case we have to solve for m = 0, . . . ,M − 1(
1

2
INx − ∆tG̃Nx

)
W̃ (m+1) + W̃ (m+1)

(
1

2
INy − ∆tG̃Ny

)T

= W̃ (m) + ∆tF (m+1),

with (F (m+1))i ,j = f (xi , yj , tm+1).

® Low-Rank

When is it that these matrices have a fixed, size-independent “small” rank?
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Low-rank, regularity and separability

� If a function f (x , y) = f1(x)f2(y) then
f (x1, y1) f (x1, y2) · · · f (x1, yn)
f (x2, y1) f (x2, y2) · · · f (x2, yn)

...
...

. . .
...

f (xn, y1) f (xn, y2) · · · f (xn, yn)




f1(x1)f2(y1) f1(x1)f2(y2) · · · f1(x1)f2(yn)
f1(x2)f2(y1) f1(x2)f2(y2) · · · f1(x2)f2(yn)

...
...

. . .
...

f1(xn)f2(y1) f1(xn)f2(y2) · · · f1(xn)f2(yn)

 =


f1(x1)
f1(x2)

...
f1(xn)

 [f2(y1) f2(y2) · · · fn(yn)
]
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 =


f1(x1)
f1(x2)

...
f1(xn)

 [f2(y1) f2(y2) · · · fn(yn)
]

4 To have a simple example:

n = 10;

f1 = @(x) exp(-2*x); f2 = @(y) sin(2*pi*y); f = @(x,y) f1(x).*f2(y);

x = linspace(0,1,n); y = linspace(0,1,n);

[X,Y] = meshgrid(x,y);

A = f(X.',Y.'); a1 = f1(x); a2 = f2(y);

norm(A-a1.'*a2)

that answers us >> ans = 0.
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 =


f1(x1)
f1(x2)

...
f1(xn)

 [f2(y1) f2(y2) · · · fn(yn)
]

What happens if f (x , y) is not separable? E.g., if f (x , y) = sin(π(x + y))?

n = 10;

f = @(x,y) sin(pi*(x+y));

x = linspace(0,1,n);

y = linspace(0,1,n);

[X,Y] = meshgrid(x,y); A = f(X.',Y.');

sv = svd(A); 2 4 6 8 10
10−20

10−8

104
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]

What happens if f (x , y) is not separable? E.g., if f (x , y) = sin(π(x + y))?

sin(π(x + y)) = sin(πx) cos(πy) + cos(πx) sin(πy)

is the sum of two separable functions, i.e., we get a matrix that has rank equal to 2.

� We can try to generalize this decomposition idea to more general functions!
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Low-rank, regularity and separability
We can approximate a function of two variables as the sum of separable functions

f (x , y) =
K∑

k=1

fkTk(x)Tk(y), {Tk(·)}k Čebyšëv polynomials.

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider f (x , y) = exp(−40(x2 − xy + 2y2 − 1/2)2).

cheb.xy

ff=@(x,y)exp(-40*(x.^2-x.*y+2*y.^2-1/2).^2);

f=chebfun2(ff);

levels = 0.1:0.1:0.9;

contour(f,levels);

axis([-1 1 -1 1]);

axis square
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Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider f (x , y) = exp(−40(x2 − xy + 2y2 − 1/2)2).

Forcing a rank K approximation

levels = 0.1:0.1:0.9;

for K = 1:9

contour(chebfun2(ff,K),levels)

xlim([-1 1]), axis equal

end

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

17 / 38



Low-rank, regularity and separability
We can approximate a function of two variables as the sum of separable functions

f (x , y) =
K∑

k=1

fkTk(x)Tk(y), {Tk(·)}k Čebyšëv polynomials.
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f (x , y) =
K∑

k=1

fkTk(x)Tk(y), {Tk(·)}k Čebyšëv polynomials.

Example (Using Chebfun (Driscoll, Hale, and Trefethen 2014))

Consider f (x , y) = exp(−40(x2 − xy + 2y2 − 1/2)2).

F = (f (xi , xj))i ,j rank(F ) =

0 10 20 30
10

-40

10
-20

10
0
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17 / 38



Low-rank, regularity and separability

4 Not every right-hand side will have a small-enough rank!

� Whenever we have closed form expression of the involved functions we can work
with polynomial basis expansion to discover the rank.

Ó To actually compute the decomposition C = C1C
H
2 we need we can either

X assemble everything and use the SVD,
� work with polynomial expansion and truncate it for small enough coefficients,

e.g., (Beckermann and Townsend 2019; Carvajal, Chapman, and Geddes 2005;
Townsend and Trefethen 2013),

= using algorithm that only need to compute few entries of A, such as
Adaptive-Cross-Approximation (Tyrtyshnikov 2000), or RandSVD-type
algorithms (Halko, Martinsson, and Tropp 2011).

- Approximating approximating we could get where we wanted. . .

Let us remember that the approximation of the low-rank term must be done together with
the approximation induced by the FDE solution method. We may not need to go as far as
machine precision.
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Selecting the Krylov subspace

If we are now in the case of a low rank right-hand side, we have to select Krylov subspaces
for the spaces V and W.

- From the work we have done in the last couple of lectures, we know how to solve
linear systems involving discretization of 1D problems,

� Rational (block) Krylov subspace can therefore be a good choice!

V = range{[(A+ σ1I )
−1C1, (A+ σ2I )

−1(A+ σ1I )
−1C1, . . .]},

W = range{[(BH + η1I )
−1C2, (B

H + η2I )
−1(BH + η1I )

−1C2, . . .]},

® . . . but how do we select the poles?

. This is not an easy problem in general! A maybe lazy (but surprisingly well behaving)
choice is to set {σi , ηi } ∈ {0,∞} ⇒ if we choose the two values alternately, then we
get the Extended Krylov Subspace.
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. This is not an easy problem in general! A maybe lazy (but surprisingly well behaving)
choice is to set {σi , ηi } ∈ {0,∞} ⇒ if we choose the two values alternately, then we
get the Extended Krylov Subspace.
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The Extended Krylov Subspace approach
If B = AT and C = C1C

T
2 with C1 = C2, we can generate the space:

EK(A,C1) = range([C1,A
−1C1,AC1,A

−2C1,A
2C1, . . .]) = V = W.

The resulting algorithm is the KPIK method by (Simoncini 2007), and can be easily
extended to solve the general case, by building both

V = EK(A,C1) = range([C1,A
−1C1,AC1,A

−2C1,A
2C1, . . .]),

W = EK(BT ,C2) = range([C2,B
−TC2,B

TC2,A
−2TC2,A

2TC2, . . .]).

For our two problems, we have to solve systems and do mat-vec with matrices

1D: A =
−∆t

hαN
(θGN + (1− θ)GT

N ) B =TM(1− e iθ)

2D: A =
1

2
INx −

∆t

hαNx

(θGNx + (1− θ)GT
Nx
) B =

1

2
INy −

∆t

hαNy

(θGNy + (1− θ)GT
Ny
)
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A couple of examples - I
Let us start from the 1D+1D case{

∂W
∂t = Γ(3− α)xα RLDα

[0,x ]W + Γ(3− α)(2− x)αRLDα
[x ,2]W − x(x − 2)e−t ,

W (0, t) = W (1, t) = 0, W (x , 0) = 5x(2− x);

We can discretize it in the usual way:

w0 = @(x) 5*x.*(2-x);

hN = 2/(N-1); x = 0:hN:2;

dt = hN; t = 0:dt:1; M = length(t);

dplus=@(x,t)gamma(3-alpha).*x.^alpha;

dmin=@(x,t)gamma(3-alpha).*(2-x).^alpha;

f= @(x,t) -x.*(x-2).*exp(-t);

G = glmatrix(N,alpha);

Gr = G; Grt = G.';

Dplus = diag(dplus(x,0));

Dminus = diag(dmin(x,0));

I = eye(N,N); e = ones(N,1);

A = -dt*(Dplus*Gr +

Dminus*Grt)/hN^alpha;↪→
B = spdiags([-e,e],-1:0,M,M);

[X,T] = meshgrid(x,t);

C = dt*f(X,T);

C(1,:) = w0(x) + C(1,:);

C = -C';

[U,S,V] = svd(C);

C1 = U(:,1:2)*sqrt(S(1:2,1:2));

C2 = (sqrt(S(1:2,1:2))*

V(:,1:2).').';↪→
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

0

2

1

2

1

3

x

4

1

t

5

0.5

0 0

N = 28, M = 27, α = 1.5
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.2 25 7 4.982093e-10
26 11 7.629176e-11
27 15 3.721767e-10
28 21 2.406077e-10
29 28 4.726518e-10
210 37 8.250742e-10
211 50 5.928325e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.3 25 8 7.473189e-41
26 10 3.324155e-10
27 14 1.876221e-10
28 18 6.104754e-10
29 24 4.098504e-10
210 31 5.142375e-10
211 40 6.702602e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.4 25 7 4.900654e-10
26 10 4.402728e-11
27 13 1.970841e-10
28 17 2.024635e-10
29 22 5.120085e-10
210 28 8.263324e-10
211 36 8.596848e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.5 25 7 1.235969e-10
26 9 2.799035e-10
27 13 1.007848e-10
28 16 6.145733e-10
29 21 7.639171e-10
210 27 5.857467e-10
211 34 8.065585e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.6 25 7 2.480357e-11
26 9 8.683894e-11
27 13 7.692141e-11
28 16 3.792143e-10
29 21 3.991222e-10
210 26 6.017048e-10
211 33 6.133773e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.7 25 7 5.588528e-12
26 8 6.692127e-10
27 12 8.189936e-10
28 16 3.403250e-10
29 20 9.093120e-10
210 26 3.550244e-10
211 32 7.478792e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = 2M IT Rel. Residual

1.8 25 6 6.097527e-10
26 8 9.737670e-11
27 13 6.202872e-11
28 16 2.193864e-10
29 20 7.469866e-10
210 25 8.191797e-10
211 32 5.086938e-10
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A couple of examples - I

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!
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A couple of examples - II
We can then try the 1D+2D case

∂W
∂t = Γ(3− α)xα RLDα

[0,x ]W + Γ(3− α)(2− x)αRLDα
[x ,2]W

+ Γ(3− α)yα RLDα
[0,y ]W + Γ(3− α)(2− y)αRLDα

[y ,2]W

+ sin(πx) sin(πy)e−t ,

W (x , y , t) = 0, (x , y) ∈ ∂[0, 2]2,

W (x , y , 0) = 5x(2− x)y(2− y),

for which the discretization proceeds along the usual lines, i.e,

hN = 2/(N-1); x = 0:hN:2; y = 0:hN:2; [X,Y] = meshgrid(x,y);

dt = hN; t = 0:dt:1; M = length(t);

w0 = @(x,y) 5*x.*(2-x).*y.*(2-y);

dplus = @(x,t) gamma(3-alpha).*x.^alpha;

dminus = @(x,t) gamma(3-alpha).*(2-x).^alpha;

f = @(x,y,t) sin(pi*x).*sin(pi*y).*exp(-t);
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A couple of examples - II
We can then try the 1D+2D case

∂W
∂t = Γ(3− α)xα RLDα

[0,x ]W + Γ(3− α)(2− x)αRLDα
[x ,2]W

+ Γ(3− α)yα RLDα
[0,y ]W + Γ(3− α)(2− y)αRLDα

[y ,2]W

+ sin(πx) sin(πy)e−t ,

W (x , y , t) = 0, (x , y) ∈ ∂[0, 2]2,

W (x , y , 0) = 5x(2− x)y(2− y),

for which the discretization proceeds along the usual lines, i.e,

G = glmatrix(N,alpha); Gr = G; Grt = G.';

Dplus = diag(dplus(x,0)); Dminus = diag(dminus(x,0));

I = eye(N,N); e = ones(N,1);

A = 0.5*I -dt*(Dplus*Gr + Dminus*Grt)/hN^alpha; % Left-hand side

B = (0.5*I -dt*(Dplus*Gr + Dminus*Grt)/hN^alpha).';

C = w0(X,Y) + dt*f(X,Y,t(1)); C = -C'; [U,S,V] = svd(C); % Right-hand side

C1 = U(:,1:2)*sqrt(S(1:2,1:2)); C2 = (sqrt(S(1:2,1:2))*V(:,1:2).').';
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.2 25 7 8.572314e-12
26 9 1.035235e-10
27 10 6.376925e-10
28 11 4.294848e-10
29 11 4.831316e-10
210 11 3.340377e-10
211 10 8.493637e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.3 25 7 7.117681e-11
26 9 7.410001e-11
27 10 6.311608e-10
28 11 6.629092e-10
29 11 7.935697e-10
210 11 5.256769e-10
211 11 3.021361e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.4 25 7 6.199844e-11
26 9 5.440959e-11
27 10 6.223106e-10
28 12 2.743756e-10
29 12 6.270319e-10
210 12 4.310692e-10
211 11 4.849822e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.5 25 7 5.108938e-11
26 8 7.696608e-10
27 10 5.554438e-10
28 12 3.501633e-10
29 13 4.696907e-10
210 13 5.839644e-10
211 12 6.172378e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.6 25 7 4.147318e-11
26 9 1.120891e-10
27 10 4.652358e-10
28 12 3.624143e-10
29 13 6.835564e-10
210 14 5.920602e-10
211 13 8.882506e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.7 25 7 3.321348e-11
26 9 9.437180e-11
27 10 7.551800e-10
28 12 3.268160e-10
29 13 7.715645e-10
210 14 8.954668e-10
211 15 5.806398e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!

α N = M IT Rel. Residual

1.8 25 7 2.639521e-11
26 9 7.654578e-11
27 10 6.909946e-10
28 12 4.424195e-10
29 13 7.255110e-10
210 15 4.728355e-10
211 15 8.400505e-10
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A couple of examples - II

And then use the kpik sylv solver from V. Simoncini’s software:

m = 100;

tol = 1e-9;

[LA,UA] = lu(A); % Direct solutions!

[LB,UB] = lu(B);

[X1,X2,res]=kpik_sylv(A,LA,UA,

B,LB,UB,C1,C2,m,tol);↪→
SOL = X1*X2'; % Not clever al all!

. We are using LU-factorization and direct
solutions;

. We are reassembling the solution!
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Convergence

® What can we say about the convergence?

Ô If A is symmetric and positive definite, and B = AT , i.e., we are solving a Lyapunov
equation, and using polynomial Krylov subspace:

Theorem (Simoncini and Druskin 2009, Proposition 3.1)

Let A be symmetric and positive definite, and let λmin be the smallest eigenvalue of A. Let
λ̂min, λ̂max be the extreme eigenvalue of A+ λminI and κ̂ = λ̂max/̂λmin. Then

∥X − Xm∥ ≤ 4

√
κ̂+ 1

λ̂min

√
κ̂

(√
κ̂− 1√
κ̂+ 1

)m

.

. If B = AT but A is no longer symmetric, one then needs again bounds related to the
Field-of-Values of A, see (Simoncini and Druskin 2009).
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Convergence
If we have B ̸= AT things are more involved and due to (Beckermann 2011), and we need
preliminary work.

[ First of all, we need a more manageable expression of the rational Krylov subspace, let
us re-brand the poles in the extended complex plane C = C ∪ {∞} as

zA,1, . . . , zA,m ∈ C \Λ(A), zB,1, . . . , zB,n ∈ C \Λ(B),

and introduce the polynomials

QA(z) =
m∏
j=1

zA,j ̸=∞
(z − zA,j) and QB(z) =

n∏
j=1

zB,j ̸=∞
(z − zA,j).

[ The two rational spaces can then be written as

V = {RA(A)C1 : RA ∈ Pm−1/QA}, W = {RB(B)
HC2 : RB ∈ Pn−1/QB }.
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Convergence

å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB
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Theorem (Beckermann 2011, Theorem 2.1)

Let rank(C ) = 1. The rational Galerkin residual ρ can be decomposed into the sum
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ρ1,2U
1

RG
B

(Am)C1,mC
H
2 RG

B (B), ρ2,1 = RG
A (A)C1C

H
2,n

1

RG
A

(Bn)V
H ,

ρ2,2 =
RG
A (A)C1C

H
2 RG

B (B)

RG
A (∞)RG

B (∞)
.
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RB
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H
2,nRB(Bn)∥F
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,

for c0 = 2diam(W (A),W (B))/ dist(W (A),W (B)).
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Convergence
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RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB

å Now we have a representation of the residual in the orthogonal bases associated
to the given Krylov subspaces, and furthermore we know that ρ2,2 = 0 if at least one
of the zA,j or zB,j is ∞, i.e., if either of the initial vectors are in the subspace.

Ó The bounds are then obtained by having upper-bounds of the quantities

Em(♠,Q♠, z) = min
p∈P♡

∥∥∥ P
Q♠

(♠)
∥∥∥∣∣∣ P

Q♠
(z)
∣∣∣ , for ♠ = {A,B}, ♡ = {m, n}.

⇒ This can be faced by using the upper bound given by Crouziex upper-bound for
matrix-functions.

27 / 38



Convergence

å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB

å Now we have a representation of the residual in the orthogonal bases associated
to the given Krylov subspaces, and furthermore we know that ρ2,2 = 0 if at least one
of the zA,j or zB,j is ∞, i.e., if either of the initial vectors are in the subspace.

Ó The bounds are then obtained by having upper-bounds of the quantities

Em(♠,Q♠, z) = min
p∈P♡

∥∥∥ P
Q♠

(♠)
∥∥∥∣∣∣ P

Q♠
(z)
∣∣∣ , for ♠ = {A,B}, ♡ = {m, n}.

⇒ This can be faced by using the upper bound given by Crouziex upper-bound for
matrix-functions.

27 / 38



Convergence

å Consider the rational functions for the projected matrices Am and Bn on V and W

RG
A (z) =

det(zI − A)

QA(z)
∈ Pm/QA, RG

B (z) =
det(zI − Bn)

QB(z)
∈ Pn/QB

å Now we have a representation of the residual in the orthogonal bases associated
to the given Krylov subspaces, and furthermore we know that ρ2,2 = 0 if at least one
of the zA,j or zB,j is ∞, i.e., if either of the initial vectors are in the subspace.

Ó The bounds are then obtained by having upper-bounds of the quantities

Em(♠,Q♠, z) = min
p∈P♡

∥∥∥ P
Q♠

(♠)
∥∥∥∣∣∣ P

Q♠
(z)
∣∣∣ , for ♠ = {A,B}, ♡ = {m, n}.

⇒ This can be faced by using the upper bound given by Crouziex upper-bound for
matrix-functions.

27 / 38



Convergence: potential theory

� In order to obtain the bounds and the rate of convergence, we need to work with the
Green functions of C \W (A) and C \W (B) with poles at ζ ∈ C called gA(·, ζ) and
gB(·, ζ) respectively; (Saff and Totik 1997).

With this potential functions the bound can then be expressed in terms of the functions

uA,m(z) = exp

−

m∑
j=1

gA(z , zA,j)

 , and uB,n(z) = exp

−

n∑
j=1

gB(z , zB,j)

 .

O A mad research idea

Given the case we are interested in, can we find optimal poles, i.e., the one minimizing the
bounds and have both α robustness, and M and N independence?
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X Let’s blow up the bridges
® What do we do if the space coefficients are not separable?

Ó We decompose

d±(x , y) =
K∑

k=1

t±k Tk(x)Tk(y)

and substitute in our equation obtaining

K∑
k=1

(
ÃkX + XB̃T

k

)
= C1C

T
2 .

� We can try generalize the Galerkin projection

2K∑
k=1

ÂkXB̂k = C1C
T
2 ⇒ 2K∑

k=1

(V T
m ÂkVm)X (W T

m B̂kWm) = VmC1(W
T
m C2)

T ,

Ó How do we select V and W? How do we generate nested subspace? How do we solve the
reduced multiterm equation?

⇒ many more questions than answers. . . Ó.
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m ÂkVm)X (W T

m B̂kWm) = VmC1(W
T
m C2)

T ,

Ó How do we select V and W? How do we generate nested subspace? How do we solve the
reduced multiterm equation?

⇒ many more questions than answers. . . Ó.

29 / 38



X Let’s blow up the bridges
® What do we do if the space coefficients are not separable?

Ó We decompose

d±(x , y) =
K∑

k=1

t±k Tk(x)Tk(y)

and substitute in our equation obtaining

K∑
k=1

(
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X Let’s blow up the bridges

® What if the convergence rate is poor?

Since convergence depends on the spectrum, we may be tempted to precondition the
equation with a matrix P, i.e.,

⇒ the only possibility is playing around with the poles.

® Can we use the Kronecker structure to put together 1D+2D case as a single matrix
equation or, more generally, 1D+dD equations as a single matrix equation?

å This is a whole different can of worms and it’s called tensor equations.

® What if the right-hand side is not low rank?

� We can use some approximation strategy, solve the matrix-equation incompletely
and use it as a preconditioner inside a FGMRES method, or turn to other
structures. . .
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Rank-structured matrices

Global low-rank matrices is not the only setting in which computations can be spared!

Quasiseparable matrix

A matrix A is quasiseparable of order k if the
maximum of the ranks of all its submatrices
contained in the strictly upper or lower part is
less or equal than k .

Example: k-banded matrices

A banded matrix with bandwidth k is
quasiseparable of order (at most) k . In
particular, diagonal matrices are
quasiseparable of order 0, tridiagonal matrices
are quasiseparable of order 1, etc.
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Rank-structured matrices

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.7)

Let A and B be symmetric positive definite matrices of quasiseparable rank kA and kB ,
respectively, and suppose that the spectra of A and B are both contained in the interval [a, b].
Then, if X solves the Sylvester equation AX + XB = C , with C of quasiseparable rank kC , a
generic off-diagonal block Y of X satisfies

σ1+kℓ(Y )

σ1(Y )
≤ 4ρ−2ℓ,

where k ≜ kA + kB + kC , ρ = exp
(

π2

2µ( b
a )

)
and µ(·) the Grötzsch ring function

µ(λ) ≜
π

2

K (
√
1− λ2)

K (λ)
, K (λ) ≜

∫1
0

1

(1− t2)(1− λ2t2)
dt.

. As usual, the non-symmetric case requires using the field-of-values!
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Theorem (Massei, Palitta, and Robol 2018, Theorem 2.7)

Let A and B be symmetric positive definite matrices of quasiseparable rank kA and kB ,
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and µ(·) the Grötzsch ring function

µ(λ) ≜
π

2

K (
√
1− λ2)

K (λ)
, K (λ) ≜

∫1
0

1

(1− t2)(1− λ2t2)
dt.

. As usual, the non-symmetric case requires using the field-of-values!

32 / 38



Rank-structured matrices

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.12)

Let A,B be matrices of quasiseparable rank kA and kB respectively and such that
W (A) ⊆ E and W (−B) ⊆ F . Consider the Sylvester equation AX + XB = C , with C of
quasiseparable rank kC . Then a generic off-diagonal block Y of the solution X satisfies

σ1+kℓ(Y )

σ1(Y )
≤ C2 · Zℓ(E ,F ), k := kA + kB + kC .

Where Zℓ(E ,F ) is the solution of the Zolotarev problem

Zℓ(E ,F ) ≜ inf
r(x)∈Rℓ,ℓ

maxx∈E |r(x)|

miny∈F |r(y)|
, ℓ ≥ 1,

for Rℓ,ℓ is the set of rational functions of degree at most (ℓ, ℓ), and C is the Crouzeix
universal constant.
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The Zolotarev 3rd Problem
Zolotarev’s third problem is exactly the computation of

Zℓ(E ,F ) ≜ inf
r(x)∈Rℓ,ℓ

maxx∈E |r(x)|

miny∈F |r(y)|
, ℓ ≥ 1,

for two given sets E , F and a degree ℓ, informally:
“Find a rational function that is as small as possible on a set E while being ≥ 1 in
absolute value on another set F”

Ò For general sets E and F the solution is not explicitly known.
Ó However, there are cases where a solution is known.

Example: two equal intervals

One can prove that for E = [−b,−1] and F = [1, b] the solution is

sup
x∈[−b,1]∪[1,b]

|R(x) − sgn(x)| =

√
Zℓ(E ,F )

1+ Zℓ(E ,F )

⇒ This is Zolotarev 4th problem!
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The Zolotarev 4th Problem
A closed form solution, involving Jacobi elliptic functions, is available in the RKToolbox

b = 3; % E = [-b,-1] and F = [1,b]

k = 8; % Degree of rational approximant to sign.

% Solution to Z's fourth problem:

r = rkfun.gallery('sign', k/2, b);

% Plot the computed rational function:

x = linspace(-5, 5, 1000);

y1 = linspace(-3, -1, 1000);

y2 = linspace(1, 3, 1000);

fill([-b -1 -1 -b -b], 1.5*[-1 -1 1 1 -1], .9*[1 1

1] ),↪→
hold on

fill([b 1 1 b b],1.5*[-1 -1 1 1 -1],.9*[1 1 1] )

[~,l1,l2] = plotyy(x,r(x),[y1 0 y2],[(1-abs(r(y1)))

NaN (1-abs(r(y2)))]);↪→
l1.LineWidth = 2; l2.LineWidth = 2;

hold off

⇒ Zolotarev problem is then solved
by solving for Zℓ(E ,F ).
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The Zolotarev 3rd Problem

Solve for Zℓ(E ,F ) s.t. sup
x∈[−b,1]∪[1,b]

|R(x) − sgn(x)| =

√
Zℓ(E ,F )

1+ Zℓ(E ,F )

% Extrema for [-1,-1/b]\cup [1/b,1]:

K = ellipke(1-1/b^2);

[sn, cn, dn] = ellipj((0:k)*K/k, 1-1/b^2);

% Transplant to [-b,-1]\cup [1,b]:

extrema = b*dn;

vals = 1-r(extrema);

c = mean( vals(1:2:end) );

e = eig( [ 2-4/c^2 1 ; 1 0 ] );

Zk = min(abs(e))
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x

0.9999995

0.9999996

0.9999997

0.9999998

0.9999999

1

1.0000001

1.0000002

1.0000003

1.0000004

1.0000005
extrema of sign approximation error

From which we obtain Zk = 4.3542e-14.
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The Zolotarev 3rd Problem

To visualize the function realizing the extrema, one can use a Mobius transform to convert
the best rational approximation to the sgn function that solves the 4th problem r(x) to the
extremal rational function Rℓ,ℓ(x) solving the 3rd:

Rℓ,ℓ(x) =

1+Zℓ(E ,F )
(1−Zℓ(E ,F ))r(x)(

1− 1+Zℓ(E ,F )
1−Zℓ(E ,F ) r(x)

)

Ó There are other cases for which one can solve
the 3rd problem, e.g., unsymmetrical intervals, or
rectangles (Istace and Thiran 1995).

� If we are satisfied by the quasi-separability rank of
the solution we can then attempt it!
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Conclusion and summary

¥ We have reformulated several of our problems in terms of matrix equations,

¥ We have discussed projection methods for the solution of Sylvester equations,

¥ We have seen some limitations of the approach and shown a possible extension.

Next up

Á More on rank-structured matrices and related solution strategies,

Á All-at-once in time: using different methods to march in time than the standard ones,

Á Still some other approaches with structured preconditioners.
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Sylvester with quasiseparable matrices
Let’s start again from the problem we wanted to solve

AX + XBT = C , A ∈ Rn×n, B ∈ Rm×m, X ,C ∈ Rn×m,

with A, B, and C quasiseparable

Quasiseparable matrix

A matrix A is quasiseparable of order k if
the maximum of the ranks of all its
submatrices contained in the strictly
upper or lower part is less or equal
than k .

� We have seen that A, B, and C quasiseparable ⇒ X with decay of the singular values
of off-diagonal blocks of C .
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Sylvester with quasiseparable matrices

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.12)

Let A,B be matrices of quasiseparable rank kA and kB respectively and such that
W (A) ⊆ E and W (−B) ⊆ F . Consider the Sylvester equation AX + XB = C , with C of
quasiseparable rank kC . Then a generic off-diagonal block Y of the solution X satisfies

σ1+kℓ(Y )

σ1(Y )
≤ C2 · Zℓ(E ,F ), k := kA + kB + kC .

Where Zℓ(E ,F ) is the solution of the Zolotarev problem

Zℓ(E ,F ) ≜ inf
r(x)∈Rℓ,ℓ

maxx∈E |r(x)|

miny∈F |r(y)|
, ℓ ≥ 1,

for Rℓ,ℓ is the set of rational functions of degree at most (ℓ, ℓ), and C is the Crouzeix
universal constant.
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Sylvester with quasiseparable matrices

® Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

ϵ-quasiseparable matrices of rank k (ε-qsrank k)

We say that A has ϵ-quasiseparable rank k if, for every off-diagonal block Y , σk+1(Y ) ≤ ϵ.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) ϵ-quasiseparable rank k.
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4 Submatrices and off-diagonal blocks

If a matrix A has ϵ-quasiseparable rank k ,
then any of its principal submatrix A ′ has
ϵ-quasiseparable rank k .

Any off-diagonal block Y of A ′ is also an
off-diagonal block of A ⇒ σk+1(Y ) ≤ ϵ.

For ⊕ the direct sum

Technical lemma

Let A be a matrix with ϵ-quasiseparable
rank k , Q any (k + 1)× (k + 1) unitary
matrix. Then, (In−k−1 ⊕ Q)A also has
ϵ-quasiseparable rank k.
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Sylvester with quasiseparable matrices

® Do the decaying singular values in the blocks implies the existence of a quasiseparable
approximant?

ϵ-quasiseparable matrices of rank k (ε-qsrank k)

We say that A has ϵ-quasiseparable rank k if, for every off-diagonal block Y , σk+1(Y ) ≤ ϵ.
If the property holds for the lower (respectively upper) offdiagonal blocks, we say that A
has lower (respectively upper) ϵ-quasiseparable rank k.

Q

A =
Q acts on the tall block of A without
changing its singular values, while the
small one has small rank thanks to the

small number of rows.

3 / 40



Sylvester with quasiseparable matrices

Theorem (Massei, Palitta, and Robol 2018, Theorem 2.16)

Let A be of ϵ-quasiseparable rank k , for ϵ > 0. Then, there exists a matrix δA of norm
bounded by ∥δA∥2 ≤ 2

√
n · ϵ so that A+ δA is k-quasiseparable.

4 A matrix with ϵ-quasiseparable
rank of k can be well-approximated
by a matrix with exact quasisepara-
ble rank k!

4 If the spectra of A and −B
are well-separated in the Zolotarev
sense, we can preserve structure!

® How can we operate efficiently with these
matrix structures?

J Reduced cost for BLAS-like operations,

: Contained storage cost.

� Hierarchical matrix formats!
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® How can we operate efficiently with these
matrix structures?

J Reduced cost for BLAS-like operations,

: Contained storage cost.
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Hierarchical matrix formats

There exist many hierarchical matrix formats:

å H-Matrices,

å H2-Matrices,

å Hierarchical Off-Diagonal Low-Rank (HODLR),

å Hierarchically SemiSeparable (HSS),

å Block Low-Rank (BLR).

Â The topic would deserve a Ph.D. course on its own. . . We are gonna focus only on the
case of HODLR matrices (Hackbusch 2015, Chapter 3).
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HODLR-matrices

The general idea:

e The grey blocks are low rank matrices represented in a compressed form,

g the diagonal blocks in the last step are stored as dense matrices.

z We need now a formal definition and a way to define operations.
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HODLR-matrices: trees

� Cluster tree

Given n ∈ N, let Tp be a completely balanced binary tree of depth p whose nodes are
subsets of {1, . . . , n}. We say that Tp is a cluster tree if it satisfies:

à The root is I 01 := I = {1, . . . , n}.


 The nodes at level ℓ, denoted by I ℓ1, . . . , I
ℓ
2ℓ
, form a partitioning of {1, . . . , n} into

consecutive indices:
I ℓi = {n

(ℓ)
i−1 + 1 . . . , n

(ℓ)
i − 1, n

(ℓ)
i }

for some integers 0 = n
(ℓ)
0 ≤ n

(ℓ)
1 ≤ · · · ≤ n

(ℓ)

2ℓ
= n, ℓ = 0, . . . p. In particular, if

n
(ℓ)
i−1 = n

(ℓ)
i then I ℓi = ∅.


 The node I ℓi has children I ℓ+1
2i−1 and I ℓ+1

2i , for any 1 ≤ ℓ ≤ p − 1. The children form a
partitioning of their parent.

� Nodes at a level ℓ partition A into a 2ℓ × 2ℓ block matrix with blocks {A(I ℓi , I
ℓ
j )}

2ℓ
i ,j=1.
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HODLR-matrices: trees

I = {1, 2, 3, 4, 5, 6, 7, 8}

I 11 = {1, 2, 3, 4} I 12 = {5, 6, 7, 8}

I 21 = {1, 2} I 22 = {3, 4} I 23 = {5, 6} I 24 = {7, 8}

I 31 = {1} I 32 = {2} I 33 = {3} I 34 = {4} I 35 = {5} I 36 = {6} I 37 = {7} I 38 = {8}

à The root I = {1, . . . , 8},


 Nodes at level 1: I 11 and I 21 ,


 Nodes at level 2: 
(I 11 )= {I 21 , I
2
2 }, 
(I 12 )= {I 23 , I

2
4 },


 Nodes at level 3: 
(I 21 ) = {I 31 , I
3
2 }, . . ., 
(I 24 ) = {I 37 , I

3
8 }.

ℓ = 0
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HODLR-matrices: definition

HODLR matrix

Let A ∈ Rn×n and consider a cluster tree Tp.
1. Given k ∈ N, A is said to be a (Tp, k)-HODLR matrix if every off-diagonal block

A(I ℓi , I
ℓ
j ) such that I ℓi and I ℓj are siblings in Tp, ℓ = 1, . . . , p,

has rank at most k .

2. The HODLR rank of A (with respect to Tp) is the smallest integer k such that A is a
(Tp, k)-HODLR matrix.

à Tp is often chosen to be as balanced as possible, i.e., cardinalities of I ℓi are nearly
equal for a given ℓ, with a dept determined by a minimal diagonal block size nmin.

Ó The classical choice is to have a binary tree, i.e., n = 2pnmin.
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HODLR-matrices: occupied space
If we assume identical ranks k and a balanced partitioning then

L Storage for off-diagonal blocks A(I ℓi , I
ℓ
j ) = U

(ℓ)
i (V

(ℓ)
j )T , U

(ℓ)
i ,V

(ℓ)
j ∈ Rmℓ×k :

On level ℓ > 0 there are 2ℓ off-diagonal blocks

2k

p∑
ℓ=1

2ℓmℓ = 2kn0

p∑
ℓ=1

2ℓ2p−ℓ2kn0p2
p = 2knp = 2kn log2(n/n0),

L Storage requirements for diagonal blocks

2pn20 = nn0,

N Total, assuming n0 = O(1), is then

O(kn log n).

� Both requirements on ranks and partitioning can be relaxed to obtain similar results.

10 / 40



HODLR-matrices: occupied space
If we assume identical ranks k and a balanced partitioning then

L Storage for off-diagonal blocks A(I ℓi , I
ℓ
j ) = U

(ℓ)
i (V

(ℓ)
j )T , U

(ℓ)
i ,V

(ℓ)
j ∈ Rmℓ×k :

On level ℓ > 0 there are 2ℓ off-diagonal blocks

2k

p∑
ℓ=1

2ℓmℓ = 2kn0

p∑
ℓ=1

2ℓ2p−ℓ2kn0p2
p = 2knp = 2kn log2(n/n0),

L Storage requirements for diagonal blocks

2pn20 = nn0,

N Total, assuming n0 = O(1), is then

O(kn log n).

� Both requirements on ranks and partitioning can be relaxed to obtain similar results.

10 / 40



HODLR-matrices: occupied space
If we assume identical ranks k and a balanced partitioning then

L Storage for off-diagonal blocks A(I ℓi , I
ℓ
j ) = U

(ℓ)
i (V

(ℓ)
j )T , U

(ℓ)
i ,V

(ℓ)
j ∈ Rmℓ×k :

On level ℓ > 0 there are 2ℓ off-diagonal blocks

2k

p∑
ℓ=1

2ℓmℓ = 2kn0

p∑
ℓ=1

2ℓ2p−ℓ2kn0p2
p = 2knp = 2kn log2(n/n0),

L Storage requirements for diagonal blocks

2pn20 = nn0,

N Total, assuming n0 = O(1), is then

O(kn log n).

� Both requirements on ranks and partitioning can be relaxed to obtain similar results.

10 / 40



HODLR-matrices: occupied space
If we assume identical ranks k and a balanced partitioning then

L Storage for off-diagonal blocks A(I ℓi , I
ℓ
j ) = U

(ℓ)
i (V

(ℓ)
j )T , U

(ℓ)
i ,V

(ℓ)
j ∈ Rmℓ×k :

On level ℓ > 0 there are 2ℓ off-diagonal blocks

2k

p∑
ℓ=1

2ℓmℓ = 2kn0

p∑
ℓ=1

2ℓ2p−ℓ2kn0p2
p = 2knp = 2kn log2(n/n0),

L Storage requirements for diagonal blocks

2pn20 = nn0,

N Total, assuming n0 = O(1), is then

O(kn log n).

� Both requirements on ranks and partitioning can be relaxed to obtain similar results.
10 / 40



HODLR-matrices: building the representation

. Is non trivial to construct structured representations efficiently, especially if you want
to avoid computing the whole n2 coefficients!

à Build a cluster tree Tp for the given index set,

If A is dense:

e Use Householder QR decomposition with column pivoting or SVD on off-diagonal
blocks,

å The rank of each off-diagonal block A(I pi , I
p
j ) is chosen such that the spectral norm

of the approximation error is bounded by ϵ times ∥A(I pi , I
p
j )∥2.

If A is sparse:

e Use a two sided Lanczos method only requiring matrix-vector multiplications with
an off-diagonal block and its transpose, combined with recompression to each
off-diagonal block.

If A is structured use an ad-hoc constructor!
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HODLR of Grünwald–Letnikov

Theorem (Fiedler 2010, Theorem A)

Let x, y two real vectors of length N, with ascending and descending ordered entries,
respectively. Moreover, we denote with C (x, y) the Cauchy matrix defined by

Cij =
1

xi − yj
, i , j = 1, . . . ,N.

If C (x, y) = C (x, y)T , xi ∈ [a, b], yj ∈ [c , d ] with a > d , then C (x, y) is positive definite.

Theorem (Beckermann and Townsend 2019, Theorem 5.5)

Let H be a positive semidefinite Hankel matrix of size N. Then, the ϵ-rank of H is
bounded by

rankϵ(H) ≤ 2+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
16

ϵ

)⌉
≜ B(N, ϵ).
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1

xi − yj
, i , j = 1, . . . ,N.

If C (x, y) = C (x, y)T , xi ∈ [a, b], yj ∈ [c , d ] with a > d , then C (x, y) is positive definite.

Theorem (Beckermann and Townsend 2019, Theorem 5.5)

Let H be a positive semidefinite Hankel matrix of size N. Then, the ϵ-rank of H is
bounded by

rankϵ(H) ≤ 2+ 2

⌈
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π2
log

(
4

π
N

)
log

(
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ϵ

)⌉
≜ B(N, ϵ).
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We need to work with GN ∈ RN×N

GN = −



g
(α)
1 g

(α)
0 0 · · · 0 0

g
(α)
2 g

(α)
1 g

(α)
0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g
(α)
N−1

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
N g

(α)
N−1 · · · · · · g

(α)
2 g

(α)
1



Lemma (Massei, Mazza, and Robol
2019)

Consider the Hankel matrix H defined as

H = (hij), hij = g
(α)
i+j ,

for 1 ≤ α ≤ 2. Then, H is positive
semidefinite.

� Show that H is obtained as the sum of a positive definite Cauchy matrix and a positive
semidefinite matrix.

� Use the result by Beckermann and Townsend 2019.
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Proof. For k ≥ 2 we rewrite g
(α)
k as

g
(α)
k =

(−1)k

k!
α(α− 1) . . . (α− k + 1)

=
α(α− 1)

k!
(k − α− 1)(k − α− 2) . . . (2− α)

= α(α− 1)
Γ(k − α)

Γ(k + 1)Γ(2− α)
.
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Proof. For k ≥ 2 we rewrite g
(α)
k as

g
(α)
k = α(α− 1)

Γ(k − α)

Γ(k + 1)Γ(2− α)
.

Use the Gauss representation of the Euler Γ

Γ(z) = lim
m→∞ m!mz

z(z + 1)(z + 2) . . . (z +m)
, z ̸= {0,−1,−2, . . .},

we rewrite

g
(α)
k = α(α− 1) lim

m→∞ 1

m!m3

m∏
p=0

k + 1+ p

k − α+ p
(2− α+ p).

14 / 40



HODLR of Grünwald–Letnikov

Proof. For k ≥ 2 we rewrite g
(α)
k as

g
(α)
k = α(α− 1)

Γ(k − α)

Γ(k + 1)Γ(2− α)
.

We rewrite

H = lim
m→+∞H0 ◦ . . . ◦ Hm, (Hp)ij =

i + j + 1+ p

i + j − α+ p

for ◦ the Hadamard product, {Hj }
m
j=0 Hankel matrices.
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Γ(k + 1)Γ(2− α)
.
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H = lim
m→+∞H0 ◦ . . . ◦ Hm, (Hp)ij =

i + j + 1+ p

i + j − α+ p

for ◦ the Hadamard product, {Hj }
m
j=0 Hankel matrices. Schur Product Theorem tells us that

“the Hadamard product of two positive definite matrices is also a positive definite matrix”⇒ If H0 ◦ . . . ◦Hm is positive semidefinite for every m then H is also positive semidefinite.
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(α)
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g
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.
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H = lim
m→+∞H0 ◦ . . . ◦ Hm, (Hp)ij =

i + j + 1+ p

i + j − α+ p

for ◦ the Hadamard product, {Hj }
m
j=0 Hankel matrices. Rewrite

(Hp)ij =
i + j + 1+ p

i + j − α+ p
= 1+

α+ 1

i + j − α+ p

, Hp = 11T+(α+1)·C (x,−x), x =

1...
N

+p − α

2
1,
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Proof. For k ≥ 2 we rewrite g

(α)
k as

g
(α)
k = α(α− 1)

Γ(k − α)

Γ(k + 1)Γ(2− α)
.

We rewrite

H = lim
m→+∞H0 ◦ . . . ◦ Hm, (Hp)ij =

i + j + 1+ p

i + j − α+ p

for ◦ the Hadamard product, {Hj }
m
j=0 Hankel matrices. Rewrite

(Hp)ij = 1+
α+ 1

i + j − α+ p
, Hp = 11T + (α+ 1) · C (x,−x), x =

1...
N

+
p − α

2
1,

x ≥ 0 for α < 2, thus C (x,−x) is PD. Then Hp is positive semidefinite as the sum of a
PD and positive semidefinite matrix.
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Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every ϵ > 0, the ϵ-qsrank of GN is bounded by

qsrankϵ(GN) ≤ B
(
N,
ϵ

2

)
= 2+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ϵ

)⌉
.

Proof.
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For every ϵ > 0, the ϵ-qsrank of GN is bounded by

qsrankϵ(GN) ≤ B
(
N,
ϵ

2

)
= 2+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ϵ

)⌉
.

Proof. We just need to work on the lower triangle, for the upper the rank is at most 1
(Hessenberg).
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Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every ϵ > 0, the ϵ-qsrank of GN is bounded by

qsrankϵ(GN) ≤ B
(
N,
ϵ

2

)
= 2+ 2

⌈
2

π2
log
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π
N
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log
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ϵ

)⌉
.

Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N.
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)
= 2+ 2
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log
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ϵ

)⌉
.

Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N. (If rank(Y + δY ) = k and ∥δY ∥2 ≤ ϵ∥GN∥2
then the submatrices of δY verify the analogous claim for the corresponding ones of Y .)
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For every ϵ > 0, the ϵ-qsrank of GN is bounded by
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)
= 2+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ϵ
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.

Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N.
Entries Y are given by Yij = −g

(α)
1+i−j+t . Call h = max{s, t}, and A the h × h matrix

defined by Aij = −g
(α)
1+i−j+h.
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A = Y

For every 1 ≤ i ≤ s and 1 ≤ j ≤ t one have

Yij = −g
(α)
1+i−j+t = −g

(α)
1+i−(j−t+h)+h = Ai ,j−t+h.

Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N.
Entries Y are given by Yij = −g

(α)
1+i−j+t . Call h = max{s, t}, and A the h×h matrix defined

by Aij = −g
(α)
1+i−j+h.Y coincides with either the last t columns or the first s rows of A.
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Entries Y are given by Yij = −g
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1+i−j+t . Call h = max{s, t}, and A the h × h matrix

defined by Aij = −g
(α)
1+i−j+h.Y coincides with either the last t columns or the first s rows of

A. In particular, Y is a submatrix of A and therefore ∥Y ∥2 ≤ ∥A∥2.
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Proof. Let Y ∈ Rs×t be any lower off-diagonal block of GN . Without loss of generality we
assume that Y is maximal, i.e. s + t = N.
Entries Y are given by Yij = −g

(α)
1+i−j+t . Call h = max{s, t}, and A the h × h matrix

defined by Aij = −g
(α)
1+i−j+h.Y coincides with either the last t columns or the first s rows of

A. In particular, Y is a submatrix of A and therefore ∥Y ∥2 ≤ ∥A∥2. Ó We need now to
estimate ∥A∥2 in terms of ∥GN∥2, thus we partition

A =

[
A(11) A(12)

A(21) A(22)

]
, A(ij) ∈ Cmij×nij ,

{
m1j = ni1 = ⌈h2⌉
m2j = ni2 = ⌊h2⌋

,

{
h ≤ N − 1,

mi ,j + ni ,j ≤ N,
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Proof. and consider the subdiagonal block T (ij) of GN defined by

T (ij) = GN(N−mij +1 : N,N−mij −nij +1 : N−mij), i , j = 1, 2,
T (ij) ∈ Rmij×nij ,

mij + nij ≤ N.

4 Since g
(α)
j > g

(α)
j+1 > 0, |T (ij)| ≥ |A(ij)| for every i , j = 1, 2,

� Being T (ij) and A(ij) nonpositive and the 2 norm monotonous, ∥A(ij)∥2 ≤ ∥T (ij)∥2.
� By exploiting

∥A∥2 ≤
∥∥∥∥[A(11)

A(22)

]∥∥∥∥
2

+

∥∥∥∥[ A(12)

A(21)

]∥∥∥∥
2

= max{∥A(11)∥2, ∥A(22)∥2}+max{∥A(12)∥2, ∥A(21)∥2}
⇒ ∥A∥2 ≤ 2∥GN∥2.

X Conclude by the result on Hankel matrices!
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Proposition (Massei, Mazza, and Robol 2019, Lemma 3.15)

For every ϵ > 0, the ϵ-qsrank of GN is bounded by

qsrankϵ(GN) ≤ B
(
N,
ϵ

2

)
= 2+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ϵ

)⌉
.

Proof. We call J the h × h flip matrix, so that −AJ is Hankel and positive semidefinite:

rankϵ
2
(A) = rankϵ

2
(AJ) ≤ B

(
N,
ϵ

2

)
.

Y is a submatrix of A, thus there exists δY such that

∥δY ∥2 ≤ ε∥GN∥2 and rank(Y + δY ) ≤ B
(
N,
ϵ

2

)
.

⇒ qsrankϵ(GN) ≤ B
(
N, ϵ2

)
.
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HODLR of Grünwald–Letnikov

Let’s do some experiments with the § hm-toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)

%%GLMATRIX produces the GL discretization of

% the Riemann-Liouville derivative in HODLR

% format

g = gl(N,alpha);

c = zeros(N,1);

r = zeros(1,N);

r(1:2) = g(2:-1:1);

c(1:N) = g(2:end);

hodlroption( 'threshold', tol);

G = hodlr('toeplitz',c,r);

end

18 / 40

https://github.com/numpi/hm-toolbox


HODLR of Grünwald–Letnikov
Let’s do some experiments with the § hm-toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)

%%GLMATRIX produces the GL discretization of

% the Riemann-Liouville derivative in HODLR

% format

g = gl(N,alpha);

c = zeros(N,1);

r = zeros(1,N);

r(1:2) = g(2:-1:1);

c(1:N) = g(2:end);

hodlroption( 'threshold', tol);

G = hodlr('toeplitz',c,r);

end G = glhodlrmatrix(6000,1.5,1e-6);

18 / 40

https://github.com/numpi/hm-toolbox


HODLR of Grünwald–Letnikov
Let’s do some experiments with the § hm-toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)

%%GLMATRIX produces the GL discretization of

% the Riemann-Liouville derivative in HODLR

% format

g = gl(N,alpha);

c = zeros(N,1);

r = zeros(1,N);

r(1:2) = g(2:-1:1);

c(1:N) = g(2:end);

hodlroption( 'threshold', tol);

G = hodlr('toeplitz',c,r);

end G = glhodlrmatrix(6000,1.5,1e-9);

18 / 40

https://github.com/numpi/hm-toolbox


HODLR of Grünwald–Letnikov

Let’s do some experiments with the § hm-toolbox (Massei, Robol, and Kressner 2020).

function G = glhodlrmatrix(N,alpha,tol)

%%GLMATRIX produces the GL discretization of

% the Riemann-Liouville derivative in HODLR

% format

g = gl(N,alpha);

c = zeros(N,1);

r = zeros(1,N);

r(1:2) = g(2:-1:1);

c(1:N) = g(2:end);

hodlroption( 'threshold', tol);

G = hodlr('toeplitz',c,r);

end G = glhodlrmatrix(6000,1.5,1e-12);

18 / 40

https://github.com/numpi/hm-toolbox


HODLR Matrix: the whole discretization

Matrix GN was only a piece of the whole discretization matrix

AN = IN +
∆t

hα

(
D+
(m)GN + D−

(m)G
T
N

)
,

does it share the same structure?

Corollary (Massei, Mazza, and Robol 2019, Corollary 3.16)

qsrankϵ(AN) ≤ 3+ 2

⌈
2

π2
log

(
4

π
N

)
log

(
32

ϵ̂

)⌉
, ϵ̂ ≜

∥AN∥
∥GN∥ ·max{∥D+

(m)∥, ∥D−
(m)∥}

ϵ.
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(m)∥}

ϵ.

Proof. Result is invariant under scaling, so assume wlog that ∆t
hα = 1.
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∥AN∥
∥GN∥ ·max{∥D+

(m)∥, ∥D−
(m)∥}

ϵ.

Proof. Result is invariant under scaling, so assume wlog that ∆t
hα = 1. A generic

off-diagonal block Y , wlog in the lower triangular part, If Y does not intersect the first
subdiagonal, is a subblock of D+

(m)GN , so there exists a perturbation δY with norm

bounded by ∥δY ∥ ≤ ∥D+
(m)∥∥GN∥ · ϵ̂ such that Y + δY has rank at most B(N, ϵ̂/2). In

particular, δY satisfies ∥δY ∥ ≤ ∥AN∥ · ϵ.
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(m)∥, ∥D−
(m)∥}
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Proof. Result is invariant under scaling, so assume wlog that ∆t
hα = 1. Since we have

excluded one subdiagonal, a generic off-diagonal block Y we can find a perturbation with
norm bounded by ∥AN∥ · ϵ such that Y + δY has rank 1+B(N, ϵ̂/2).
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A HODLR right-hand side

® What are right-hand sides functions f (x , y , t) so that the matrix C has a HODLR
structure?

Consider the function
f (x , y) = log (τ+ |x − y |) , τ > 0.

Ó If we discretize it by finite differences on
a rectangular domain we find

Ci ,j = log (τ+ |xi − yj |)

� The modulus function it is not regular
in the whole domain but it is analytic
when the sign of x − y is constant.

� We can use again Chebyshev basis to
approximate it in a separable fashion.
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A HODLR right-hand side
® What are right-hand sides functions f (x , y , t) so that the matrix C has a HODLR
structure?

Consider the function
f (x , y) = log (τ+ |x − y |) , τ > 0.

Ó If we discretize it by finite differences on
a rectangular domain we find

Ci ,j = log (τ+ |xi − yj |)

� The modulus function it is not regular
in the whole domain but it is analytic
when the sign of x − y is constant.

� We can use again Chebyshev basis to
approximate it in a separable fashion.

x = linspace(0,1,N); y = linspace(0,1,N);

[X,Y] = meshgrid(x,y); tau = 1;

C = log(tau + abs(X-Y)); hC = hodlr(C);

20 / 40



Separability (a bit more formally)

Separable expansion (Hackbusch 2015, Definition 4.4)

Take a function χ(x , y) : X × Y → R, we call

χ(x , y) =
r∑
ν=1

ϕ
(r)
ν (x)ψ

(r)
ν (y) + Rr (x , y), for x ∈ X , y ∈ Y ,

a separable expansion of χ with r terms in X × Y with remainder Rr .

å To have an idea of the goodness of the separable expansion, we would like to have

{∥Rr∥∞, ∥Rr∥Lp }
r→0−→ 0 as fast as possible, e.g., exponentially.

Ó If ∥Rr∥ ≤ c1 exp(−c2r
α) ⇒ ∥Rr∥ ≤ ε if r ≥

⌈(
1
c2
log

1/α c1
ε

)⌉
= O(log

1/α 1/ε) ε→ 0.

� We can use Taylor expansions, Chebyshev expansion, Hermite/Lagrange interpolation,
cross approximation. . . In all the cases, the behavior of Rr is tied to the regularity of
χ(x , y); see (Hackbusch 2015, Chapter 4).
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BLAS with HODLR format

® We now have everything represented in the right format, but can we operate with it?

y = Ax: Matrix-vector products, recursively:

y(I 11 ) = A(I 11 , I
1
1 )x(I

1
1 ) + A(I 11 , I

1
2 )x(I

1
2 ),

y(I 12 ) = A(I 12 , I
1
1 )x(I

1
1 ) + A(I 12 , I

1
2 )x(I

1
2 ).

Ó Off-diagonal blocks A(I 11 , I
1
2 ) and A(I 12 , I

1
1 ) are obtained by multiplying

n/2 × n/2 low-rank matrix with vector. This cost cLR·x(n/2) = 2nk.
Ó Diagonal blocks are processed recursively at a cost

cA·x(n) = 2cA·x(n/2) + 4kn + n.

Master theorem (divide and conquer): cA·x(n) = (4k + 1) log2(n)n.
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BLAS with HODLR format

C = A+ B: Adding two equally partitioned HODLR matrices increases the ranks of
off-diagonal blocks by a factor 2.

Ó We need truncation Tk(A(I
ℓ
1, I

ℓ
j ) + B(I ℓ1, I

ℓ
j )), costs

cLR+LR = cSVD × (nk2 + k3),

where cSVD is the cost of the given low-rank truncation algorithm (SVD,
rand-SVD, QR, . . .)

Total cost is then:
p∑
ℓ=1

2ℓcLR+LR(mℓ) =cSVD

p∑
ℓ=1

2ℓ(k3 +mℓk
2)

≤cSVD

(
2p+1k3 +

p∑
ℓ=1

2ℓ2p−ℓn0k
2

)
≤cSVD

(
2nk3 + n log2(n)k

2
)
.
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BLAS with HODLR format

C = AB: Matrix-matrix multiplication can also be done recursively

· =

 · + · · + ·

· + · · + ·


where is a n/2 × n/2 HODLR matrix and is a low-rank block.

1. · · of 2 HODLR n/2 matrices,

2. · · of 2 low-rank blocks,

3. · · of HODLR times low-rank,

4. · · of low-rank times HODLR.
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BLAS with HODLR format

C = AB: Matrix-matrix multiplication can also be done recursively

· =

 · + · · + ·

· + · · + ·


where is a n/2 × n/2 HODLR matrix and is a low-rank block.

1. · · of 2 HODLR n/2 matrices,

2. · · of 2 low-rank blocks,

3. · · of HODLR times low-rank,

4. · · of low-rank times HODLR.

N Total cost cH·H(n) ∈ O(k3n log n + k2n log2 n).
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BLAS with HODLR format

Approximate solution of a linear system Ax = b with HODLR matrix A:

A ≈ LU Approximate LU-factorization A ≈ LU in HODLR format:

≈ ·

Forward substitution to solve Ly = b,

Backward substitution to solve Ux = y.

We need to analyze the two steps separately.
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BLAS with HODLR format

Approximate LU factorization, on level ℓ = 1:

A =

[
A11 A12

A21 A22

]
, L =

[
L11 O
L21 L22

]
, U =

[
U11 U12

O U22

]
It is done in four steps

1. Compute LU factors L11, U11 of A11,

2. Compute U12 = L−1
11 A12 by forward substitution,

3. Compute L21 = A21U
−1
11 by backward substitution,

4. Compute LU factors L22, U22 of A22 − L21U12.

The analysis of the cost is analogous to the matrix-matrix multiplication case, but we need
to know how to do and how-much does forward/backward substitution costs.
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BLAS with HODLR format
Forward substitution with lower triangular L in HODLR format: y = L−1b

L =

[
L11 O
L21 L22

]
, y =

[
y1
y2

]
, b =

[
b1
b2

]
with L21 low-rank, and L11, L22 HODLR.

1. Solve L11y1 = b1,

2. Compute b̃2 = b2 − L21y1,

3. Solve L22y2 = b̃2.

Cost recursively:
cforw = 2cforw(n/2) + (2k + 1)n.

On level ℓ = p, we have the direct solution of 2p = n/n0 linear systems of size n0 × n0.
N Total cost cforw ∈ O(kn log(n)), and analogously for backward substitution.
N Total cost cLU(n) ≲ cH·H(n) ∈ O(k3n log n + k2n log2 n).
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BLAS with HODLR format

The § hm-toolbox (Massei, Robol, and
Kressner 2020) contains all the routines.

Ð They overload the standard MATLAB
operation by the same name, i.e., if you
have variables in the right class you
operate directly in this format.

à One can use different cluster tree Tp to
get smaller ranks. They are determined
by the partitioning of the index set on
the leaf level and represented as the

vector c = [n
(p)
1 , . . . , n

(p)
2p ], change it to

change the HODLR matrix.

Operation HODLR complexity

A*v O(kn log n)
A\v O(k2n log2 n)
A+B O(k2n log n)
A*B O(k2n log2 n)
A\B O(k2n log2 n)
inv(A) O(k2n log2 n)
A.*B2 O(k4n log n)

lu(A), chol(A) O(k2n log2 n)
qr(A) O(k2n log2 n)

compression O(k2n log(n))

2The complexity of the Hadamard product is dominated by the recompression stage due to the k2

HODLR rank of A ◦ B. Without recompression the cost is O(k2n log n).
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HODLR solver for the 1D case
We can modify our first example to get a solution for the 1D problem in the new format.

%% Discretization

N = 2^7; hN = 1/(N-1); x = 0:hN:1; dt = hN;

alpha = 1.5; % Coefficients

dplus=@(x)gamma(3-alpha).*x.^alpha;

dminus=@(x)gamma(3-alpha).*(1-x).^alpha;

w = @(x) 5*x.*(1-x);

tol = 1e-9; % HODLR building

tic;

G = glhodlrmatrix(N,alpha,tol);

Dplus = hodlr('diagonal',dplus(x));

Dminus = hodlr('diagonal',dminus(x));

I = hodlr('eye', N);

nu = hN^alpha/dt;

A = nu*I -(Dplus*G + Dminus*G');

buildtime = toc;

%% Solving

[L,U] = lu(A);

flu = @() lu(A);

timelu = timeit(flu,2);

w = w(x).';

solvetime = 0;

for i=1:N

tic;

w = U\(L\(nu*w));

solvetime = solvetime + toc;

end

solvetime = solvetime/N;

Â Let us try looking at the
timings.
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HODLR solver for the 1D case

We take α = 1.5, and ε = 10−9

N Build (s) LU (s) Avg. Solve (s)

27 8.96e-03 1.44e-04 2.93e-04
28 1.35e-02 4.63e-04 3.33e-04
29 3.14e-02 2.05e-03 5.41e-04
210 7.28e-02 6.21e-03 9.35e-04
211 1.59e-01 1.63e-02 1.75e-03
212 3.85e-01 4.33e-02 3.68e-03
213 8.81e-01 1.27e-01 7.99e-03
214 2.19e+00 3.73e-01 1.55e-02

: Largest matrix occupies 46.25 Mb, against the 2 Gb of the dense storage and the 0.87
Mb of storing three diagonals and 2× (2N − 1) for the Toeplitz storage.
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Back to Sylvester (Massei, Palitta, and Robol 2018)

To solve the Sylvester equation with HODLR coefficients

AX + XBT = C , A ∈ Rn×n, B ∈ Rm×m, X ,C ∈ Rn×m,

we can use the integral formulation

X =

∫+∞
0

e−AtCe−BT t dt.

We perform the change of variables: t = f (θ) ≜ L · cot
(
θ
2

)2
, rewriting the integral as

X = 2L

∫π
0

sin(θ)

(1− cos(θ))2
e−Af (θ)Ce−BT f (θ) dθ,

with L a parameter to be optimized for convergence.
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Back to Sylvester (Massei, Palitta, and Robol 2018)
We now have an integral on a finite domain ⇒ Gauss-Legendre quadrature

X ≈
m∑
j=1

ωj · e−Af (θj )Ce−BT f (θj ),

for {θj ,wj }
m
j=1 are the Legendre points and weights, and ωj = 2Lwj · sin(θj )

(1−cos(θj ))2
.

® The dominant cost is now computing e−Af (θj ) and e−BT f (θj ), how do we do it?

Ð A good idea could be using rational approximation to exp(t)

� (d , d)-Padé with scaling and squaring eA = (e2
−kA)2

k
and k = ⌈log2 ∥A∥2⌉.

� Rational Chebyshev function (Popolizio and Simoncini 2008):

ex ≈ r1
x − s1

+ . . .+
rd

x − sd
.

requiring d inversions and additions that is uniformly accurate for every positive value
of t, and thus is better in the case in which ∥A∥2 is large.
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Back to Sylvester (Massei, Palitta, and Robol 2018)
Input: lyap integral
A,B,C ,m;

/* Solves AX + XBT = C with m
integration points */

L← 100 ; /* Should be tuned for

accuracy! */

[w , θ]← GaussLegendrePtsm ;
/* Integration points and weights

on [0, π] */

X ← 0n×n;
for i = 1, . . . ,m do

f ← L · cot(θi

2 )
2;

X ← X + wi
sin(θi)

(1−cosθi)2
· expm (−f · A) ·

C · expm (−f · BT );

end
X ← 2L · X ;

Mixed structures

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.
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Mixed structures

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.

Build

EKs(A,U) = span{U,A−1U,AU, . . .}

EKs(B
T ,V ) = span{V ,B−TV ,BTV , . . .},
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If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.

Build EKs(A,U), EKs(B
T ,V ), project on

Ãs = U∗
s AUs , B̃s = V ∗

s BVs , Ũ = U∗
s U, and

Ṽ = V ∗
s V .
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/* Solves AX + XBT = C with m
integration points */

L← 100 ; /* Should be tuned for

accuracy! */

[w , θ]← GaussLegendrePtsm ;
/* Integration points and weights

on [0, π] */

X ← 0n×n;
for i = 1, . . . ,m do

f ← L · cot(θi

2 )
2;

X ← X + wi
sin(θi)

(1−cosθi)2
· expm (−f · A) ·

C · expm (−f · BT );

end
X ← 2L · X ;

Mixed structures

If the right-hand side C is low-rank, and the
structure in the matrices A and B is HODLR,
thus permitting to perform fast matrix vector
multiplications and system solutions; then we
can apply the extended Krylov subspace
method we had already seen.

Build EKs(A,U), EKs(B
T ,V ), project on

Ãs = U∗
s AUs , B̃s = V ∗

s BVs , Ũ = U∗
s U, and

Ṽ = V ∗
s V . Solve ÃsXs + Xs B̃s = ŨṼ T

with dense arithmetic.
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s U, and

Ṽ = V ∗
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s BVs , Ũ = U∗
s U, and

Ṽ = V ∗
s V . Solve ÃsXs + Xs B̃s = ŨṼ T

with dense arithmetic. An approximation is
UsXsV

∗
s . Another viable approach in the

literature is (Kressner, Massei, and Robol
2019).
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A numerical test (Massei, Mazza, and Robol 2019)

We use the usual square [0, 1]2, and the source f

f (x , y , t) = 100 · (sin(10πx) cos(πy) + sin(10t) sin(πx) · y(1− y)) .

for both constant coefficient d+ = d− = 1, and variable coefficients

d+
1 (x) = Γ(1.2)(1+ x)α1 , d−

1 (x) = Γ(1.2)(2− x)α1 ,

d+
2 (y) = Γ(1.2)(1+ y)α2 , d−

2 (y) = Γ(1.2)(2− y)α2 .

The fractional orders are α1 = 1.3, α2 = 1.7, and α1 = 1.7, α2 = 1.9. Methods are

� Sylvester by Extended-Krylov with stopping ϵ = 10−6 (HODLR),

å HODLR arithmetic is set to work with a truncation of 10−8.

� Sylvester by Extended-Krylov with stopping ϵ = 10−6 (Breiten, Simoncini, and Stoll
2016),

å Inner solve with: GMRES with tolerance 10−7 and structured preconditioners,
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A numerical test (Massei, Mazza, and Robol 2019)

Constant coefficient with α1 = 1.3 and α2 = 1.7.

N tHODLR tBSS rankϵ qsrankϵ

512 0.26 1.26 14 11
1,024 0.17 1.75 15 11
2,048 0.31 3.57 15 12
4,096 0.58 9.21 16 12
8,192 1.17 18.14 16 13
16,384 2.48 37.24 16 13
32,768 5.18 77.28 16 14
65,536 11.76 168.29 15 14 103 104 105

10−1

100

101

102

N

T
im

e
(s
)

HODLR
BSS

Ð FD_Example.m from § github.com/numpi/fme
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A numerical test (Massei, Mazza, and Robol 2019)

Constant coefficient with α1 = 1.7 and α2 = 1.9.

N tHODLR tBSS rankϵ qsrankϵ

512 0.13 0.7 17 10
1,024 0.2 1.4 18 10
2,048 0.37 2.85 19 11
4,096 0.79 6.53 20 11
8,192 1.67 11.57 20 11
16,384 3.98 22.2 21 11
32,768 8.56 47.75 22 11
65,536 23.86 91.53 23 11 103 104 105

10−1

100

101

102

N

T
im

e
(s
)

HODLR
BSS

Ð FD_Example.m from § github.com/numpi/fme
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A numerical test (Massei, Mazza, and Robol 2019)

Non-constant coefficient case with α1 = 1.3 and α2 = 1.7.

N tHODLR tBSS rankϵ qsrankϵ

512 0.1 0.95 14 10
1,024 0.16 1.45 14 11
2,048 0.29 2.83 15 12
4,096 0.55 7.39 16 12
8,192 1.11 13.02 16 13
16,384 2.41 24.27 16 13
32,768 5.02 44.5 16 14
65,536 11.28 76.78 16 14 103 104 105

10−1

100

101

102

N

T
im

e
(s
)

HODLR
BSS

Ð FD_Example_vc.m from § github.com/numpi/fme
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A numerical test (Massei, Mazza, and Robol 2019)

Non-constant coefficient case with α1 = 1.7 and α2 = 1.9.

N tHODLR tBSS rankϵ qsrankϵ

512 0.11 0.73 18 10
1,024 0.2 1.37 19 10
2,048 0.4 2.17 20 11
4,096 0.92 4.59 21 11
8,192 2.28 9.31 22 11
16,384 4.51 16.89 22 11
32,768 11.33 33.19 23 12
65,536 26.71 64.73 24 12 103 104 105

10−1

100

101

102

N

T
im

e
(s
)

HODLR
BSS

Ð FD_Example_vc.m from § github.com/numpi/fme
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The tale of the matrix equation: the moral of the story.

Â There is an advantage with respect to using Toeplitz-based BLAS like operations,

m In (Massei, Mazza, and Robol 2019) they are solving the case(
1

2
INx − ∆tG̃Nx

)
W̃ (m+1)+W̃ (m+1)

(
1

2
INy − ∆tG̃Ny

)T

= W̃ (m)+∆tF (m+1), m = 0, . . . ,M−1.

here the spectrum is fictitiously independent from the discretization, i.e., all
matrix-equation solvers perform a number of iteration independent from the system
size: the cost is reduced to the extended Krylov subspace cost! But we still have
time-stepping to do.

® The case in which the matrix equation solver has a number of iterations dependent on
the problem size is not yet resolved:

⌣ Low-rank but Ò no preconditioner – VS – Ò Full memory but ⌣ preconditioners

, Still looking for a way to solve everything all-at-once compactly.
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Conclusion and summary

¥ We have seen how to work with matrices in HODLR format,

¥ We have discussed a couple of strategy to solve Sylvester equations with HODLR
coefficients,

¥ We have applied all the machinery to solve a time step of a 2D equation FDE.

Next up

Á Back to all-at-once solution with respect to both space and time,

Á Linear multistep formulas in boundary value form,

Á Structured preconditioner for LMFs,

Á Tensor-Train reformulation of the problem.
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All-at-once

We have seen that for a problem of the form
ut = L(u), u : Ω× [0,T ]→ Rd , Ω ⊆ Rd

u(x, 0) = u0(x),

B(u) = 0, x ∈ ∂Ω.

with

Ó L(·) a linear and autonomous differential operator (possibly involving fractional
derivatives),

� or changing ut with
CADα[0,t]u,

we can rewrite it as a single linear system/matrix equation.

To abstract the procedure let’s think about working the Method Of Line way!
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All-at-once: system of autonomous ODE

Following the MOL trail, we now have to solve a system of autonomous ODEs:

Mut(t) = Lu(t), M, L ∈ Rn×n,

� that could be a differential-algebraic system of equations (DAE) if det(M) = 0.

Ó To formulate the all-at-once procedure, one has to select a method to march in time
the solution:

å Linear multistep methods,
å Runge-Kutta methods,
å General linear methods (a mix of the two above strategies).
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Linear Multistep Methods
Given a general ODE of the form

u ′(t) = f (t, u(t)), u(t0) = u0,

a k-step LMM is a recursion of the form with step-size h = tn+k − tn+k−1 > 0

k∑
j=0

αjun+j =

k∑
j=0

hβj fn+j , fm ≜ f (tm, ym),

with coefficients αj ∈ R and βj ∈ R (j = 0, . . . , k), and we are interested only in implicit
methods, i.e., βk ̸= 0.

They can be analyzed by looking at the polynomials

ρ(ζ) =

k∑
j=0

αjζ
j = (ζ− 1)

k−1∑
j=0

γjζ
j = (ζ− 1) · ρR(ζ), σ(ζ) =

k∑
j=0

βjζ
j .
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Linear Multistep Methods

0-stable method

A method is 0-stable if all roots of ρ(ζ) = (ζ− 1) · ρR(ζ) = 0 lie inside or on the unit
circle, with no multiple unimodular roots.

� Zero stability is necessary for convergence,

å It is a condition on the extraneous operator ρR(ζ), i.e., a condition on the k
coefficients {γj }

k−1
j=0 .

A-stable method

The behavior of these methods can be analyzed by applying them on the test problem
y ′ = ky subject to the initial condition y(0) = 1 with k ∈ C. The solution of this equation
is y(t) = ekt . If the numerical method exhibits the same behavior of the solution for a
fixed step size, then the method is said to be A-stable.

Ó Usually one ends up with limitations involving the admissible h.
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Linear Multistep Methods: initial values

If we use a LMM with k > 1 we need more starting values than the one we have!

We are interested in diffusion dominated problems, thus Backward-Differentiation
Formulas are a common choice.

{αk }k , βk = 1, βj = 0, j ≤ k

BDF2 1/2 −2 3/2
BDF3 −1/3 3/2 −3 11/6
BDF4 1/4 −4/3 3 −4 25/12
BDF5 −1/5 5/4 −10/3 5 −5 137/60
BDF6 1/6 −6/5 15/4 −20/3 15/2 −6 147/60

� Methods with k > 6 are not zero-stable so they cannot be used.

å If we want to use BDF6 we need 5 initial conditions, and have only one.

� We can use lower order BDFs to generate the step we need.
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BDF5 −1/5 5/4 −10/3 5 −5 137/60
BDF6 1/6 −6/5 15/4 −20/3 15/2 −6 147/60

� Methods with k > 6 are not zero-stable so they cannot be used.

å If we want to use BDF6 we need 5 initial conditions, and have only one.

� We can use lower order BDFs to generate the step we need.
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Linear Multistep Methods

From what we have seen in the last lectures we can write down the problem as

(Am ⊗Mn − hBm ⊗ Ln)u = f ,
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Linear Multistep Methods

From what we have seen in the last lectures we can write down the problem as

(Am ⊗Mn − hBm ⊗ Ln)u = f ,

f =



u0 + f (t1)
−1/2u0 + f (t2)
1/3u0 + f (t3)
−1/4u0 + f (t4)
1/5u0 + f (t5)
−1/6u0 + f (t6)

f (t7)
...
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A simple example

L = [-2, 1; 0, -3]; % Problem

y0 = [1;1];

n = length(L);

% Discretize

m = 100;

T = linspace(0,10,m); h = T(2)-T(1);

r = zeros(m-1,1); c = zeros(m-1,1);

r(1:7)=[147/60,-6,15/2,-20/3,15/4,-6/5,1/6];

c(1) = 147/60;

A = toeplitz(r,c);

A(1,1) = 1; % Fix BCs

A(2,1) = -2; A(2,2) = 3/2;

A(3,1) = 3/2; A(3,2) = -3; A(3,3) = 11/6;

A(4,1) = -4/3; A(4,2) = 3; A(4,3) = -4;

A(4,4) = 25/12;↪→
A(5,1) = 5/4; A(5,2) = -10/3; A(5,3) = 5;

A(5,4) = -5; A(5,5) = 137/60;

In = speye(n,n);

Im = speye(m-1,m-1);

%% Build rhs:

b = zeros((m-1)*n,1);

b(1:2) = y0;

b(3:4) = -1/2*y0;

b(5:6) = 1/3*y0;

b(7:8) = -1/4*y0;

b(9:10) = 1/5*y0;

b(11:12) = -1/6*y0;

% SOLVE (Linear system)

M = kron(A,In)-h*kron(Im,L);

x = M\b;
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A simple example
We can compare the solution with ode15s, and visualize it

[tt,yy] = ode15s(@(t,y) L*y,T,y0);

X = reshape(x,n,m-1);

X = [y0,X];

% Plot

plot(T,X(1,:),'r-',T,X(2,:),'b-',...

T,yy(:,1),'ro',...

T,yy(:,2),'bo');

O We could solve everything using a
matrix-equation based solver,

� but we are looking at a case in which
m = 2 with a “non refinable” space
operator.

0 2 4 6 8 10

0

0.5

1

� What can we say about the Am matrix?
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Matrix properties
Am is a banded Toeplitz matrix plus a rank correction.

Am =



1
−2 3/2
3/2 −3 11/6

−4/3 3 −4 25/12
5/4 −10/3 5 −5 137/60

−6/5 15/4 −20/3 15/2 −6 147/60
1/6 −6/5 15/4 −20/3 15/2 −6 147/60
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .


Ó We know the eigenvalues in closed form: it’s lower triangular!

Ó The Field-Of-Values contains the origin. . . bad for bounds!

Ò Its clearly non diagonalizable, if we try and look at the condition number of the
eigenvector matrix κ2(X100) = 7.30× 10111.
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Matrix properties

Indeed, already for the BDF1 (a.k.a. the implicit Euler method) we have

Am =


1
−1 1

. . .
. . .

−1 1


(m−1)×(m−1)

Ó It is a Jordan block, so no diagonalization,

® What do we expect for the matrix equation
solver?

Nothing good!
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Linear Multistep Methods in Boundary Value Form

® Part of the problem, are those triangular matrices. Can we do something?

� If we use more than one step, we still need auxiliary formulas to close the iteration.

� We could distribute the conditions differently, that is, not all on the initial data.

µ−ν∑
j=−ν

αj+νun+j = h

µ−ν∑
j=−ν

βj+νfn+j , n = ν, . . . ,m − k + ν.

j k steps,

j ν initial conditions, and

j µ− ν final conditions,

j Described by ρ(z) = zν
∑k−ν

j=−ν αj+νz
j , and σ(z) = zν

∑k−ν
j=−ν βj+νz

j .

® How does this change matrices and stability?

11 / 46



Linear Multistep Methods in Boundary Value Form

® Part of the problem, are those triangular matrices. Can we do something?

� If we use more than one step, we still need auxiliary formulas to close the iteration.

� We could distribute the conditions differently, that is, not all on the initial data.

µ−ν∑
j=−ν

αj+νun+j = h

µ−ν∑
j=−ν

βj+νfn+j , n = ν, . . . ,m − k + ν.

j k steps,

j ν initial conditions, and

j µ− ν final conditions,

j Described by ρ(z) = zν
∑k−ν

j=−ν αj+νz
j , and σ(z) = zν

∑k−ν
j=−ν βj+νz

j .

® How does this change matrices and stability?

11 / 46



Linear Multistep Methods in Boundary Value Form

® Part of the problem, are those triangular matrices. Can we do something?

� If we use more than one step, we still need auxiliary formulas to close the iteration.

� We could distribute the conditions differently, that is, not all on the initial data.

µ−ν∑
j=−ν

αj+νun+j = h

µ−ν∑
j=−ν

βj+νfn+j , n = ν, . . . ,m − k + ν.

j k steps,

j ν initial conditions, and

j µ− ν final conditions,

j Described by ρ(z) = zν
∑k−ν

j=−ν αj+νz
j , and σ(z) = zν

∑k−ν
j=−ν βj+νz

j .

® How does this change matrices and stability?

11 / 46



Linear Multistep Methods in Boundary Value Form

® Part of the problem, are those triangular matrices. Can we do something?

� If we use more than one step, we still need auxiliary formulas to close the iteration.

� We could distribute the conditions differently, that is, not all on the initial data.

µ−ν∑
j=−ν

αj+νun+j = h

µ−ν∑
j=−ν

βj+νfn+j , n = ν, . . . ,m − k + ν.

j k steps,

j ν initial conditions, and

j µ− ν final conditions,

j Described by ρ(z) = zν
∑k−ν

j=−ν αj+νz
j , and σ(z) = zν

∑k−ν
j=−ν βj+νz

j .

® How does this change matrices and stability?

11 / 46



Linear Multistep Methods in Boundary Value Form

If we collect the matrices for the inner steps of a scalar ODE, we get

Am =



αν · · · αk
...

. . .
. . .

α0
. . .

. . .
. . .

. . . αk

. . .
. . .

...
α0 · · · αν


(m−ν)×(m−ν)

,Bm =



βν · · · βk
...

. . .
. . .

β0
. . .

. . .
. . .

. . . βk

. . .
. . .

...
β0 · · · βν


(m−ν)×(m−ν)

and the vectors
u = (uν, · · · , um−1)

T , f = (fν, · · · , fm−1)
T .
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Linear Multistep Methods in Boundary Value Form
If we collect the matrices for the inner steps of a scalar ODE, we get Am, Bm, and the
vectors

u = (uν, · · · , um−1)
T , f = (fν, · · · , fm−1)

T .

Finding the system

Amu− hBmf = −



∑ν−1
j=0 (αjyj − hβj fj)

...
a0yν−1 − hβ0fν−1

0
...
0

αkym − hβk fm
...∑µ

j=1(αν+jym−1+j − hβν1+j fm−1+j).



4 Am and Bm are Toeplitz
matrices with lower
bandwidth ν and upper
bandwidth µ.

� We still need auxiliary
formulas to fix the
ν+ µ− 1 starting/ending
values.
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Convergence and stability
Before concluding the construction, let’s focus on convergence and stability.

® Did we gain anything by moving on to a more difficult problem?

Sν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.2)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| < 1 < |zν+1| ≤ · · · ≤ |zν|.

Nν,µ-polynomial (Brugnano and Trigiante 1998, Definition 4.4.3)

A polynomial p(z) of degree k = ν+ µ is an Sν,µ-polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zν| ≤ 1 < |zν+1| ≤ · · · ≤ |zν|.

being simple the roots of unit modulus.

4 If ν = k (µ = 0), these are the conditions for LMF 0-stability!
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Convergence and stability
Let a−νaµ ̸= 0 and

Tn =



a0 · · · aµ
...

. . .
. . .

a−ν
. . .

. . .
. . .

. . . aµ
. . .

. . .
...

a−ν · · · a0


,

we consider the polynomial

p(z) =

µ∑
i=−ν

aiz
ν+i .

Lemma (Brugnano and Trigiante 1998,
Lemma 4.4.4)

If the polynomial p(z) associated with the
matrix Tn is an Nν,µ-polynomial, then T−1

n

has entries t
(−1)
i ,j such that

1. |t(−1)
i ,j | ≤ γ independent of N, for i ≥ j ,

2. |t(−1)
i ,j | ≤ ηξj−i for i < j , where η > 0

and 0 < ξ < 1 are independent of N.
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Convergence and stability

Theorem (Brugnano and Trigiante 1998, Theorem 4.4.3)

Ignoring the effect of round-off errors, a BVM with (ν, µ)-boundary conditions is
convergent if it is consistent and the polynomial ρ(z) is an Nν,µ-polynomial.

To reproduce the “0-stable + consistent ⇒ convergence” framework, we define:

0ν,µ-stability (Brugnano and Trigiante 1998, Definition 4.5.1)

A BVM with (ν, µ)-boundary conditions is 0ν,µ-stable if the corresponding polynomial ρ(z)
is an Nν,µ-polynomial.

(ν, µ)-Absolute stability (Brugnano and Trigiante 1998, Definition 4.7.1)

A BVM with (ν, µ)-boundary conditions is ν, µ-Absolutely stable for a given complex
number q it the polynomial π(z , q) = ρ(z) − qσ(z), is an Sν,µ-polynomial.
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Convergence and stability

We have a degree of arbitrariness in deciding how and how many initial / final conditions
to set. Clearly ν has to be at least one (we do have an initial condition of our IVP), then
for the remaining we have to let (ν, µ)-Absolute stability guide us.

Correct use a consistent LMF is correctly used in q ∈ C−, where π(z , q) is an
Sν,µ-polynomial, if ν conditions are imposed at the initial points, and µ
conditions are posed at the end of the interval.

To have a livable life, one always consider family of methods for which the boundary of the
(ν, µ)-Absolutely stability region is a regular Jordan curve. More specifically, having that

Aν,µ = {q ∈ C : π(z , q) is an Sν,µ-polynomial},

has the origin on its boundary and is possibly equal to the whole C−.
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A gallery of formulas
It is possible to reformulate many LMFs in this new format

Ó BDF ⇒ Generalized-BDF (GBDF):
∑k

i=0 αiun+i = hfn+j , j ∈ {0, 1, . . . , k}

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+2
2 , for even k ,

k+1
2 , for odd k.⇒ with this choice we no longer have the constraint of having at most k = 6

steps of the standard BDF!

Ó Adams-Moulton Methods ⇒ GAMM un+j − un+j−1 = h
∑k

i=0 βi fn+i

- A method of this form is 0ν,k−ν-stable and Aν,k−ν-stable for

ν =

{
k+1
2 , for odd k,

k
2 , for even k .

[ See the book (Brugnano and Trigiante 1998) for other possible generalizations.
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Additional formulas

� We need additional formulas for the k − 1 = ν+ µ− 1 boundary values.
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1 . . . 0

α
(1)
0 . . . α

(1)
k ,

...
...

α
(ν−1)
0 . . . α

(ν−1)
k

α0 . . . αk

α0 . . . αk

. . .
. . .

. . .

α0 . . . αk

α
(m−k+ν+1)
0 . . . α

(m−k+ν+1)
k

...
...

α
(m)
0 . . . α
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Additional formulas
� We need additional formulas for the k − 1 = ν+ µ− 1 boundary values.

Bm =



0 . . . 0

β
(1)
0 . . . β

(1)
k ,

...
...

β
(ν−1)
0 . . . β

(ν−1)
k

β0 . . . βk

β0 . . . βk

. . .
. . .

. . .

β0 . . . βk

β
(m−k+ν+1)
0 . . . β

(m−k+ν+1)
k ,

...
...

β
(m)
0 . . . β
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k
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Additional formulas

� We need additional formulas for the k − 1 = ν+ µ− 1 boundary values.

Ó If we know how to compute them, then we end up having to solve the matrix
equation

MnUA
T
m − hLnUB

T
m = F ,

or the linear system

(Am ⊗Mn − hBm ⊗ Ln)u = f , where vec(U) = u, vec(F ) = f .

� Let us build everything for using GBDFs and our fractional-in-space problem.
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Generalized BDF

First we need to compute ρ(z) and σ(z)

function [ro,si] = rosi_bdf( k, j )

b = zeros(k+1,1); b(2) = 1;

ro = vsolve( -j:k-j, b(:) );

si = zeros( k+1, 1 ); si( j+1 ) = 1;

end

å Coefficients are computed by imposing
consistency of maximal order p:

k∑
j=0

(j sαj − sj s−1βj) = 0,

s = 0, 1, . . . , p.

19 / 46



Generalized BDF

First we need to compute ρ(z) and σ(z)

function [ro,si] = rosi_bdf( k, j )

b = zeros(k+1,1); b(2) = 1;

ro = vsolve( -j:k-j, b(:) );

si = zeros( k+1, 1 ); si( j+1 ) = 1;

end

å Coefficients are computed by imposing
consistency of maximal order p:

k∑
j=0

(j sαj − sj s−1βj) = 0,

s = 0, 1, . . . , p.

function f = vsolve( x, b )

f = b;

n = length( x )-1;

for k = 1:n

for i = n+1:-1:k+1

f(i) = f(i) - x(k)*f(i-1);

end

end

for k = n:-1:1

for i = k+1:n+1

f(i) = f(i)/( x(i) - x(i-k) );

end

for i = k:n

f(i) = f(i) - f(i+1);

end

end

end
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Generalized BDF

Then we use the ro_si routine to build the Am and Bm matrices

function [a,b] = mab( k, n )

nu = fix( (k+2)/2 );

a = spalloc( n, n+1, (k+1)*n );

b = a;

for i = 1:nu

[ro,si] = rosi_bdf( k, i );

a(i,1:k+1) = ro.';

b(i,1:k+1) = si.';

end

for i = nu+1:n-(k-nu)

a(i,i+1+(-nu:k-nu)) = ro.';

b(i,i+1+(-nu:k-nu)) = si.';

end

j = nu;

for i = n-(k-nu)+1:n

j = j + 1;

[ro,si] = rosi_bdf( k, j );

a(i,n+1+(-k:0)) = ro.';

b(i,n+1+(-k:0)) = si.';

end

end

Ð for i = 1:nu; end, initial conditions,

Ð for i = nu+1:n-(k-nu); end,
Toepltiz part,

Ð for i = n-(k-nu)+1:n; end, final
conditions.
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Generalized BDF
We can use the routine to generate

[Alpha,Beta] = mab(k,m); A = Alpha(:,2:m+1); B = Beta(:,2:m+1);

and visualize them

0 5 10 15 20

nz = 136

0

5

10

15

20

0 5 10 15 20

nz = 20

0

5

10

15

20

4 The first column contains the coefficients needed to compute the right-hand-side.
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Generalized BDF
We now need to build the right-hand-side

nk=n*(m+1);

b=zeros(nk,1); % Allocate the space for one more than needed

for j=1:m % Use the source to build the rhs:

b(1+j*n:(j+1)*n)=f(x,t0+j*h);

end

b(n+1:n*(m+1))=h*kron(Beta,speye(n))*b; % Correct with the betas coeff.s

b(1:n)=u0; % First block as the initial condition

% Correction coefficients:

Am = kron(Alpha(:,1),speye(n))-h*kron(Beta(:,1),L);

b(n+1:nk)=b(n+1:nk)-Am*u0; % Finish building RHS

And then we can solve the linear system

Mat = kron(A,M) - h*kron(B,L); rhs = b(n+1:nk);

u = Mat\rhs;
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Generalized BDF

We can compare the solution with ode15s:

U = [u0,reshape(u,n,m)]; t = t0:h:tf;

[TT,UU] = ode15s(@(t,y) L*y +

f(x.',t),t,u0);↪→
E = abs(U-reshape(UU,m+1,n).');

figure(2)

subplot(1,3,1)

mesh(t,x,U);

xlabel('t');

ylabel('x');

title('GBDF(6,100) on 100')

subplot(1,3,2)

mesh(t,x,reshape(UU,m+1,n).')

xlabel('t');

ylabel('x');

title('ode15s')

subplot(1,3,3)

mesh(t,x,log10())

xlabel('t');

ylabel('x');

title('Error')
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Generalized BDF

We can compare the solution with ode15s:

0

2

2

1

4

GBDF(6,100) on 100

x

1

t

6

0.5

0 0

0

2

2

1

4

ode15s

x

1

t

6

0.5

0 0

-6

2

-5

1

-4

Error

x

-3

1

t

-2

0.5

0 0

® What happens if we attempt solution via our matrix-equation solver?
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Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.
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[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

2 32 64 16 1.08e-15
2 64 128 23 2.16e-10
2 128 256 30 4.72e-10
2 256 512 38 9.20e-10
2 512 1024 49 7.31e-10
2 1024 2048 62 7.82e-10
2 2048 4096 78 8.06e-10
2 4096 8192 97 9.24e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.
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tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

3 32 64 15 7.18e-10
3 64 128 20 9.80e-10
3 128 256 26 7.77e-10
3 256 512 34 4.21e-10
3 512 1024 43 5.75e-10
3 1024 2048 54 8.05e-10
3 2048 4096 68 8.84e-10
3 4096 8192 85 9.87e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.
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Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

4 32 64 16 1.19e-14
4 64 128 24 3.22e-10
4 128 256 31 4.05e-10
4 256 512 39 6.97e-10
4 512 1024 50 6.20e-10
4 1024 2048 63 7.70e-10
4 2048 4096 79 9.05e-10
4 4096 8192 99 9.05e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.
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Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

5 32 64 16 1.72e-14
5 64 128 22 2.96e-10
5 128 256 28 4.90e-10
5 256 512 36 5.56e-10
5 512 1024 46 5.53e-10
5 1024 2048 58 7.10e-10
5 2048 4096 73 8.04e-10
5 4096 8192 91 9.75e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.
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Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

6 32 64 16 3.46e-14
6 64 128 24 4.70e-10
6 128 256 31 5.73e-10
6 256 512 40 4.78e-10
6 512 1024 50 9.39e-10
6 1024 2048 64 7.69e-10
6 2048 4096 81 7.31e-10
6 4096 8192 100 1.10e-09

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.
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Generalized BDF

We can solve it by doing:

maxit = 100;

tol = 1e-9;

[LL,UL] = lu(-h*L);

[LA,UA] = lu(A);

[X1,X2,res]=kpik_sylv(-h*L,LL,UL,A,

LA,UA,C1,C2,maxit,tol);↪→
Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

7 32 64 16 6.13e-15
7 64 128 22 6.60e-10
7 128 256 29 4.78e-10
7 256 512 37 7.04e-10
7 512 1024 47 8.47e-10
7 1024 2048 60 7.66e-10
7 2048 4096 76 7.36e-10
7 4096 8192 95 8.46e-10

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.
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Generalized BDF

We can solve it by doing:
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[LL,UL] = lu(-h*L);
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Using our non-symmetric test problem with
variable coefficients and fractional order α.

k m n IT Res.

8 32 64 16 2.46e-14
8 64 128 24 5.41e-10
8 128 256 31 7.57e-10
8 256 512 40 6.53e-10
8 512 1024 51 7.34e-10
8 1024 2048 65 6.98e-10
8 2048 4096 82 7.42e-10
8 4096 8192 100 1.56e-09

4 The solution seems to be robust with respect to k,

4 We still have a small increase with n and m.
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Structured preconditioner

Let’s now look for a different approach.

9 We can do matrix vector products with the system matrix without assembling the
matrix:

function [y] = Mprod(A,B,L,h,x)

[sp1,~] = size(A);

[m,~] = size(L);

X = reshape(x,m,sp1);

Y = X*A' - h*(L*X*B');

y = reshape(Y,m*sp1,1);

end

å The linear system is not symmetric: we can use either GMRES or Flexible-GMRES to
solve it.

� We just need to figure out a preconditioner.
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solve it.

� We just need to figure out a preconditioner.
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Structured preconditioner

The ø idea is again using a preconditioner that has the same structure:

P = Ăm ⊗Mn − hB̆m ⊗ L̃n,

[ This idea comes from (Bertaccini 2000, 2001; Bertaccini and Ng 2001),

� How do we select the approximations Ăm, B̆m and L̃n?

Ó Am, Bm are Toeplitz + low-rank ⇒ Circulant or Fast-Transform preconditioners,
Ó L̃n has the quasi-Toeplitz structure we have seen, so we can use some of the

techniques we had already seen for this; (Bertaccini and Durastante 2018).

� It would be good to also have a parallel way of applying the preconditioner.
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Structured preconditioner

� If Ăm and B̆m are circulant–like approximations of the Toeplitz (+ “low rank”)
matrices Am and Bm, and the mass matrix is the identity, then we can express the
eigenvalues of P as

ϕi − hψiλj , i = 1, . . . ,m, j = 1, . . . , n,

where

å {ϕi } are the eigenvalues of the circulant–like approximation Ă,
å {ψi } are the eigenvalues of the circulant–like approximation B̆,
å {λj } are the eigenvalues of the selected approximation of Jn.

® What circulant-like approximation do we want?

Ó An idea could be using Strang approximation (Gu et al. 2015)

Ps = s(Am)⊗ Im − hs(Bm)⊗ Ln,
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Structured preconditioner

Ps = s(Am)⊗ Im − hs(Bm)⊗ Ln,

s(A) =



αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν



,

Ó s(B) can be built
analogously.

Ó s(A) is singular due to
the consistency
condition.

� It is a single 0
eigenvalue, so we can
move it by a rank 1
perturbation: s̃(·).

28 / 46



Structured preconditioner

Ps = s(Am)⊗ Im − hs(Bm)⊗ Ln,

s(A) =



αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν



,

Ó s(B) can be built
analogously.

Ó s(A) is singular due to
the consistency
condition.

� It is a single 0
eigenvalue, so we can
move it by a rank 1
perturbation: s̃(·).

28 / 46



Structured preconditioner

Ps̃ = s̃(A)m ⊗ In − hs̃(B)m ⊗ Ln.

s(A) =



αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν



,

Ó s(B) can be built
analogously.

Ó s(A) is singular due to
the consistency
condition.

� It is a single 0
eigenvalue, so we can
move it by a rank 1
perturbation: s̃(·).

28 / 46



Structured preconditioner

Ps̃ = s̃(A)m ⊗ In − hs̃(B)m ⊗ Ln.

s(A) =



αν · · · αk α0 · · · αν−1
...

. . .
. . .

. . .
...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αk
. . .

. . . αk
...

. . .
. . .

. . .
...

αν+1 · · · αk α0 · · · αν



,

Proposition (Bertaccini
2001, Proposition 4.1)

If L has eigenvalues µr
such that ℜ(µr ) < −δ < 0,
r = 1, . . . ,m. Then the
preconditioner Ps̃ is
invertible for Aν,k−ν-stable
formulae.
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Structured preconditioner

® What can we say about the clustering properties of this preconditioner?

Theorem (Bertaccini 2000, Theorem 4.1)

Let M = Am ⊗ In − hBm ⊗ Ln for an Aν,k−ν-stable formulae with k steps. Let P be the
block circulant preconditioner

P = Ăm ⊗Mn − hB̆m ⊗ Ln.

Then, for fixed δ > 0, there exists Cδ ≥ 0, mδ ≥ k such that, for all m ≥ mδ (m + 1 is the
size of A and B),

P−1M = I +M
(1)
δ +M

(2)
δ ,

where rank(M
(2)
δ ) ≤ n[2(k + 1) + Cδ] and ∥M(1)

δ ∥2 ≤ δcL does not depend on m. If P is

defined as Strang’s circulant preconditioner, then Cδ = ∥M(1)
δ ∥ = 0.
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Structured preconditioner
Another available choice is using instead {ω}-Circulant matrices, i.e.,

Pω = ω(Am)⊗ In − hω(Bm)⊗ Ln,

ω(Am) =



αν · · · αk ωα0 · · · ωαν−1

...
. . .

. . .
. . .

...

α0
. . .

. . . ωα0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

ωαk
. . .

. . . αk

...
. . .

. . .
. . .

...
ωαν+1 · · · ωαk α0 · · · αν



,

Ó ω(Bm) is defined
similarly.

� The usual choice is
setting ω = −1, i.e.,
the skew-circulant
preconditioner.
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Stuctured preconditioner: application
To apply

P−1
ω v = (ω(Am)⊗ In − hω(Bm)⊗ Ln)

−1v,

We can use the diagonalization of ω(Am) and ω(Bm), i.e.,

P−1
ω v = (FΩ⊗ In)

−1(ΛA ⊗ In − hΛB ⊗ Ln)
−1(ΩHFH ⊗ In)

−1v.

1. Compute w = (Ω∗F ∗ ⊗ Im)
−1v = −VΩ−HF ,

2. Solve (ΛA ⊗ In − hΛB ⊗ Ln)
−1w by solving

(λi (A)In − hλi (B)Ln)zi = wi , i = 1, . . . ,m

with vec([w1, . . . ,wm]) = w, and similarly for z,

3. Compute y = (FΩ⊗ In)
−1z = −ZFHΩ−1.

- This step is embarrassingly parallel!
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Numerical example

We use our favorite test problem with the space variant, nonsymmetric fractional operator
in space and α = 1.5, using GMRES(20) with a tolerance of 1e-9 using the P−1

preconditioner.

k = 2

n m It

64 32 30
128 64 31
256 128 31
512 256 31
1024 512 30

k = 3

n m It

64 32 32
128 64 33
256 128 34
512 256 34
1024 512 33

k = 4

n m It

64 32 35
128 64 38
256 128 39
512 256 39
1024 512 37

k = 5

n m It

64 32 38
128 64 45
256 128 48
512 256 50
1024 512 49

k = 6

n m It

64 32 46
128 64 53
256 128 58
512 256 62

1024 512 60

4 Reduced ⌣ iteration dependence, but paid with Ó full memory price!
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Further modifications
We can further approximate the preconditioner by selecting instead of Ln in

P−1
ω v = (ω(Am)⊗ In − hω(Bm)⊗ Ln)

−1v,

a suitable approximation, e.g.,

Ó gk(Ln) a bandwidth k approximation of the dense Ln matrix, i.e., using the
information on the decay of the coefficients (Bertaccini and Durastante 2018).

Ó A structured preconditioner based on GLT theory.

O Open areas of research

Ó Efficient solution strategies for the λi (A)In − hλi (B)Ln systems,

Ó Load-balancing issues for parallelism,

Ó Optimal poles selection for the matrix-equation based solvers,

Ó Multigrid solvers/preconditioners for (Am ⊗Mn − hBm ⊗ Ln)u = f .
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á Tensor Equations

� A different approach that can be of interest is to use another structure.

� Let us suppose that Ln is obtained as the discretization of a multidimensional fractional
operator, i.e.,

Ln =

ℓ∑
i=1

K−
m,ℓ

i−1⊗
p=1

I ⊗ G
(ℓ)

n1/ℓ
⊗

ℓ−1⊗
p=1

I + K+
n,ℓ

i−1⊗
p=1

I ⊗ G
(ℓ)

n1/ℓ

T
⊗

ℓ−1⊗
p=1

I


where K±

m,ℓ have also a Kronecker tensor structure whenever the functions {κj }
ℓ
j=1 are

separable in the xj variables.

The matrix: M = Am ⊗ In − hBm ⊗ Ln has now a lot of redundant information!
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á Tensor Equations: thou shalt compress!

As we have done for the hierarchical formats, we want

v A compressed representation of M, possibly with a number of parameters that
grows poly-logarithmically with the overall size. . .

z A fast BLAS-like toolbox to solve our problem in this format.

There exists many formats for which this is possible, e.g., the CANDECOMP/PARAFAC
(CP) decomposition, the Tucker format, the Tensor Train (TT), the TT-Tucker, etc.; see
(Kolda and Bader 2009).

We focus on the � Tensor-Train format, since it has a simple enough toolbox to work
with: § TT-Toolbox.
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� Tensor-Train

® But what is a tensor?

[ A tensor is a multidimensional array, a ∈ R is a 0-tensor, v ∈ Rn1 is a 1-tensor,
A ∈ Rn1×n2 is a 2-tensor, A ∈ Rn1×n2×n3 is a 3-tensor, . . .

[ A tensor is a multilinear maps with respect to a fixed finite-dimensional R vector
space V

A : V ∗ × · · · × V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

→ R,

[ A tensor is an element of the tensor product of vector spaces

A ∈ V × · · · × V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

.

The definition we select depends on the operations we want to perform.
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� Tensor-Train1

Let us start from trying to describe a vector associated with our discretization matrix M.

� A rank-k matrix A = U1U
T
2 each entry is a dot product of vectors of length k

A =
i1

i2

A(i1, i2) = U1(i1, :) · U2(:, i2),

where the two indices select the left and right vectors. In a tensor of order d we insert
d − 2 matrices between the two vectors:

T (i1, . . . , id) = U1(i1, :) · U2(:, :, i2) · . . . · Ud−1(:, :, id−1) · Ud(:, id)

. . .
nj

kj

kj−1

T (i1, . . . , id) =

1For part of this material, a sincere thanks to Stefano Massei.
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2 each entry is a dot product of vectors of length k

A =
i1

i2

A(i1, i2) = U1(i1, :) · U2(:, i2),

where the two indices select the left and right vectors. In a tensor of order d we insert
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� Tensor-Train
More formally, a tensor T is in TT decomposition if it can be written as

. . .T (i1, . . . , id) =

• Smallest possible tuple (k1, . . . , kd−1) is called the TT-rank of T .

• Uj ∈ Ckj−1×nj×kj are called the TT cores of T (with k0 = kd = 1).

• If TT ranks are not large ⇝ high compression ratio as d grows.

• TT decomposition multilinear with respect to the cores.

If for any 1 ≤ µ ≤ d − 1 we group the first µ factors and last d − µ factors then

T (i1, . . . , iµ, iµ+1, . . . , id),

is the matrix-matrix product of two (large) matrices.
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� TT decomposition and matrix factorizations
The µth unfolding of T ∈ Cn1×···×nd is obtained by arranging the entries in a matrix

T<µ> ∈ C(n1···nµ)×(nµ+1···nd )

where the corresponding index map is given by

ind : Nn1×···×nd → N(n1···nµ)×(nµ+1···nd )

ind(i1, . . . , id) = (irow , icol),

where

irow = 1+

µ∑
s=1

(is − 1)
s−1∏
t=1

nt ,

icol = 1+
d∑

s=µ+1

(is − 1)
s−1∏

t=µ+1

nt
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� TT decomposition and matrix factorizations
We can compute the compression of the tensor by computing the SVD of the unfoldings.

Lemma (Oseledets 2011)

The TT rank of a tensor T is given by
tt-rank(T ) = (rank(T<1>), . . . , rank(T<d−1>)).

Input: Tensor T , ranks k1, . . . , kd)
Output: U1, . . . ,Ud .
k0 = kd = 1;
for µ = 1, . . . , d − 1 do

Reshape T into T<2> ∈ Ckµ−1nµ×(nµ+1...nd);

Compute rank-kµ approximation T<2> ≈ UΣV T (e.g. via SVD);

Reshape U into Uµ ∈ Ckµ−1×nµ×kµ ;

Update T via T<2> ← UTX<2> = ΣV T ;

end
Set Ud = T ;

Algorithm 1: TT-SVD(T , k1, . . . , kd)

[ The proof is
obtained by simply
following the steps of
the algorithm.
� We can use
tolerances instead of
fixed ranks.
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� TT decomposition and matrix factorizations

And we can estimate the resulting error using the best approximation properties of the SVD.

Theorem (Oseledets 2011)

Let TSVD denote the tensor in TT decomposition obtained from TT-SVD. Then

∥T − TSVD∥ ≤
√
ϵ21 + · · ·+ ϵ2d

where
ϵ2µ = ∥T<µ> − UΣV T∥2F = σ2kµ+1 + σ

2
kµ+2 + . . . .

Ó We can modify the algorithm to accommodate different compression algorithms than
the SVD,

Ó We can also compute the approximation via sketching algorithms, and avoiding using
all the entries of T .
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� TT-Matrices and matrix-vector products
If a vector of length N = n1 × . . .× nd is treated as a d–dimensional tensor with mode
sizes nk , and represented in TT–format, the matrices acting on it have the form

M(i1, . . . , id , j1, . . . , jd) = M1(i1, j1) . . .M(id , jd), Mk(ik , jk) ∈ Rrk−1×rk ,

Ô the first block indexes i1, . . . , id enumerate the rows,

Ô the second block indexes j1, . . . , jd enumerate the columns.

Given M in TT–format, and a vector X in TT–format with cores Xk , and entries
X (j1, . . . , jd) then the matrix–vector multiplication amounts to the following sum

Y(i1, . . . , id) =
∑
j1,...,jd

M(i1, . . . , id , j1, . . . , jd)X (j1, . . . , jd) = Y1(i1) . . .Yd(id),

where Yk(ik) =
∑

jk
Mk(ik , jk)⊗ Xk(jk)

.The ranks of Y are the product of the ranks of
the matrix and of the vector! So we need to recompress after every matrix-vector product.
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� TT-representation for our case

Ó We can use the same routine as before
to represent the two BVM matrices,

Ó We build a tensor in which all the modes
have size 2, this is usually called a
Quantized-TT (QTT) formulation:

� If we look at the values of k and
maximal tt-rank we find:

k 2 3 4 5 6 7 8

max(tt-rank(A)) 3 5 6 7 7 7 9

%% Time-dependent operator

kval = 5; % Grid power

m = 2^kval; % Number of time

steps↪→
k = 2;

[Alpha,Beta] = mab(k,m);

A = Alpha(:,2:m+1);

B = Beta(:,2:m+1);

t0 = 0;

tf = 1;

h = (tf-t0)/m;

tA = tt_matrix(full(A),1e-14);

tA = tt_reshape(tA,2*ones(kval,2));

tB = tt_eye(2,kval);
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� TT-representation for our case

� We can act similarly also for the space
operator.

. We could be way more clever in the
representation of these matrices, these
are diagonal times Toeplitz, and we
could do something specialized, e.g.,
(Kazeev, Khoromskij, and Tyrtyshnikov
2013).

%% Compression of the space part

tL = tt_matrix(L,1e-14);

tL = tt_reshape(tL,2*ones(kval+1,2));

tM = tt_eye(2,kval+1);

%% Final assembly

tMat = tkron(tA,tM)-h*tkron(tB,tL);

® Now that we have everything in this format, how can we solve our problem?

TT-GMRES An option is to rephrase our favorite Krylov method using the TT arithmetic,
(Dolgov 2013) and adapt what we know to build a preconditioner (Bertaccini
and Durastante 2019).

AMEn Use a specialized solver for linear systems in TT format (Dolgov and
Savostyanov 2014).
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í Concluding with an AMEn

Using AMEn (Dolgov and Savostyanov 2014) as

tx = amen_solve2(tMat,ttb,1e-6);

4 Behavior is similar to the matrix-equation solver,

� We could play around with different settings and options of the AMEn solver.

O Studying the right combination of parameters, representation, setups is still an open
problem for the BVM all-at-once approaches.
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k m n IT Residual max(tt-rank(A))
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2 1024 2048 35 6.034e-07 37
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Conclusion and summary

¥ We have seen how to work with linear multistep methods in boundary value form,

¥ We have discussed some structured preconditioning strategy for the resulting linear
systems,

¥ We have introduced the machinery for working with tensor equations in the Tensor
Train format.

O There are many open problems and possibilities to do better here.

Next up

Á Fractional Laplacians,

Á Rational approximations and matrix functions,

Á A couple of applications to complex network theory.
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Nonlocal operators (Andreu-Vaillo et al. 2010)
Let Ω ⊂ Rn denote a bounded and open domain.
The action of a nonlocal diffusion operator L on u(x) : Ω→ R is defined as

Lu(x) = 2

∫
Rn

(u(y) − u(x))γ(x, y)dy, ∀ x ∈ Ω ⊆ Rn.

Ó the volume Ω is non-zero,

Ó the kernel γ(x, y) : Ω×Ω→ R is nonnegative and symmetric.

The first interesting equation is the nonlocal steady-state{
−Lu = f , on Ω,

u = 0, on ΩI ,

4 the equality constraint should be defined in general on an interaction volume ΩI that
is disjoint from Ω; typically ΩI = Rn \Ω ≡ Ωc .
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Fractional Laplacian

We are interested in a particular nonlocal operator L called the Fractional Laplacian.

Fractional Laplacian

The fractional Laplacian is the pseudo-differential operator with Fourier symbol F satisfying

(−∆)αu(ξ) = |ξ|2αû(ξ), 0 < α ≤ 1,

where û denotes the Fourier transform of u.

Fractional Laplacian: integral formulation

An equivalent characterization of the fractional Laplacian is given by

� We can play around with the definitions. . .
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(−∆)αu = cn,α

∫
Rn
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Fractional Laplacian (10 equivalent definitions)
[We denote by Lp (p ∈ [1,∞)) the Lebesgue spaces, C0 the space of continuous functions
vanishing at infinity, and with Cbu the space of bounded uniformly continuous functions.

Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(a) Fourier definition:
F(Lf )(ξ) = −|ξ|βFf (ξ)

(if X = Lp, p ∈ [1, 2]);

(b) distributional definition:∫
Rd

Lf (y)φ(y)dy =

∫
Rd

f (x)Lφ(x)dx

for all Schwartz functions φ, with Lφ defined, for example, as in (a);
3 / 47
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vanishing at infinity, and with Cbu the space of bounded uniformly continuous functions.

Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(c) Bochner’s1definition:

Lf =
1

|Γ(−β
2 )|

∫∞
0
(et∆f − f )t−1−β/2dt,

with the Bochner’s integral of an X-valued function;

1Bochner’s integral extends the definition of Lebesgue integral to functions that take values in a Banach
space, as the limit of integrals of simple functions.
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Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(d) Balakrishnan’s definition:

Lf =
sin βπ

2

π

∫∞
0
∆(sI − ∆)−1f sβ/2−1ds,

(e) singular integral definition:

Lf = lim
r→0+

2βΓ(d+β2 )

πd/2|Γ(−β
2 )|

∫
Rd\B(x ,r)

f (·+ z) − f (·)
|z |d+β

dz ,

with the limit in X; 3 / 47
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following definitions of Lf ∈ X are equivalent:

(g) quadratic form definition: ⟨Lf , φ⟩ = E(f , φ) for all φ in the Sobolev space Hβ/2,
where

E(f , g) =
2βΓ(d+β2 )

2πd/2|Γ(−β
2 )|

∫
Rd

∫
Rd

(f (y) − f (x))(g(y) − g(x))

|x − y |d+β
dxdy

(if X = L2);
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Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(h) semigroup definition:
Lf = lim

t→0+

Pt f − f

t
,

where Pt f = f ∗ pt and Fpt(ξ) = e−t |ξ|β ;

(i) definition as the inverse of the Riesz potential:

Γ(d−β2 )

2βπd/2Γ(β2 )

∫
Rd

Lf (·+ z)

|z |d−β
dz = −f (·)

(if β < d and X = Lp, p ∈ [1, dβ)); 3 / 47
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[We denote by Lp (p ∈ [1,∞)) the Lebesgue spaces, C0 the space of continuous functions
vanishing at infinity, and with Cbu the space of bounded uniformly continuous functions.

Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent:

(j) definition through harmonic extensions:
∆xu(x , y) + β

2c
2/β
β y2−2/β∂2yu(x , y) = 0 for y > 0,

u(x , 0) = f (x),

∂yu(x , 0) = Lf (x),

where cβ = 2−β|Γ(−β
2 )|/Γ(

β
2 ) and where u(·, y) is a function of class X which

depends continuously on y ∈ [0,∞) and ∥u(·, y)∥X is bounded in y ∈ [0,∞).
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Fractional Laplacian (10 equivalent definitions)

[We denote by Lp (p ∈ [1,∞)) the Lebesgue spaces, C0 the space of continuous functions
vanishing at infinity, and with Cbu the space of bounded uniformly continuous functions.

Theorem (Kwaśnicki 2017, Theorem 1.1)

Let X be any of the spaces Lp, p ∈ [1,∞), C0 or Cbu, and let f ∈ X, β = 2α. The
following definitions of Lf ∈ X are equivalent.
In addition, in (c), (e), (f), (h) and (j), convergence in the uniform norm can be relaxed to
pointwise convergence to a function in X when X = C0 or X = Cbu. Finally, for X = Lp

with p ∈ [1,∞), norm convergence in (e), (f), (h) or (j) implies pointwise convergence for
almost all x .

Ó Convergence properties described here are for the full-space definitions of the
fractional Laplace operator L.

� We can invent numerical methods starting from each of these definitions.
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Fractional Laplacian: equations on bounded domains
If Ω is bounded we can modify our first definition as follows.

å Take u : Ω→ R and extend it to zero outside of Ω:

(−∆)αũ = f in Ω, ũ = 0 in Ωc = Rn \Ω.

where

(−∆)αũ = cn,α

∫
Rn

ũ(x) − ũ(y)

|x− y|n+2s
dy

and thus ũ is the extension by zero to Rn of a function u : Ω→ R in L2(Ω).

Ó Stochastic interpretation.

As we have seen when discussing the other derivatives, we can interpret also the Fractional
Laplacian in a stochastic way. Indeed, one can prove that it is the infinitesimal generator of
a 2α-stable Lévy process. The boundary conditions means that the particles are killed
upon reaching Ωc .
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Fractional Laplacian: equations on bounded domains
The second definition relies instead on spectral theory.

Ó Recall that −∆ : D(−∆) ⊂ L2(Ω)→ L2(Ω) is an unbounded, positive and closed
operator with dense domain D(−∆) = H1

0(Ω) ∩H2(Ω) with a compact inverse.

[ There is a countable collection of eigenpairs {λk , φk }k∈N ⊂ R+ ×H1
0(Ω) such that

{φk }k∈N is an orthonormal basis of L2(Ω) (and of H1
0(Ω)).

å The fractional power of the Dirichlet Laplacian can thus be defined ∀ u ∈ C∞
0 as

(−∆)αu =

+∞∑
k=1

λαkukφk , uk = ⟨w , φk⟩L2(Ω) =

∫
Ω

wφk dx , k ∈ N

Extension

This definition of (−∆)α can be extended by density to

Hα(Ω) =

{
w =

+∞∑
k=1

wkφk :

+∞∑
k=1

λskw
2
k < +∞} .
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Ó definitions on bounded domains aren’t equivalent!
The integral definition of the Fractional Laplacian in

(−∆)αũ = f in Ω, ũ = 0 in Ωc = Rn \Ω,

and the spectral definition

(−∆)αu =

+∞∑
k=1

λαkukφk , uk = ⟨w , φk⟩L2(Ω) =

∫
Ω

wφk dx , k ∈ N,

are NOT EQUIVALENT!

Differences

Their difference is positive and positivity preserving (Musina and Nazarov 2014, Theorems 1 and
2). Furthermore, if we call d(x , ∂Ω) the distance for x ∈ Ω to the boundary ∂Ω we find

(integral) u(x) ≈ d(x , ∂Ω)α + v(x), (spectral) u(x) ≈

{
d(x , ∂Ω)2α + v(x), α ∈ (0, 1/2),

d(x , ∂Ω) + v(x), α ∈ (1/2, 1),

for a smooth v(x).
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[Equations of interest

Selecting the right definition for the problem the setting one has in mind (finite domain,
infinite domain, . . .) we can formulate several PDE with this new operator.

Diffusion-reaction ∂tu + (−∆)αu + c(t, x)u = 0, Domain (0,+∞)× Rn,

Quasi-geostrophic ∂tθ+ u · ∇θ+ κ(−∆)αθ = f , Domain [0,T ]× R2,

Cahn-Hilliard ∂tu + (−∆)α(−ε2∆u + f (u)) = 0, Domain (O,T ]× (0, 2π)2,

Porous medium ∂tu + (−∆)α(|u|m−1 sign(u)) = 0, Domain (0,+∞)× Rn,

Schrödinger iℏ∂tψ = Dα(−ℏ2∆)αψ+ V (r , t)ψ, Domain (r , t) ∈ R3 × (0,+∞),

Ultrasound c−2
0 ∂2tp = ∇2p − {τ∂t(−∆)

α + η(−∆)α+1/2}p, Domain (−∞,+∞)× Rn.

4 See the review (Lischke et al. 2020) for an updated list of references.
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The Spectral Fractional Laplacian
Let us focus on problem using the spectral Fractional Laplacian

(−∆)αu =

+∞∑
k=1

λαkukφk , uk = ⟨w , φk⟩L2(Ω) =

∫
Ω

wφk dx , k ∈ N.

® How can we obtain reliable numerical methods?

� The Matrix-Transfer Technique

The idea from (Ilic et al. 2005, 2006) goes as follows, suppose that we have a discretization
scheme for −∆ on Ω. That is, we can build An = −∆h ≈ −∆ on a discrete Ωh (h→ 0 for
n→ +∞), then:

(−∆)α ≈ (−∆h)
α = Aαn ,

i.e., we have to compute a matrix function of (sparse) matrix discretizing the ordinary
Laplacian on the domain of interest.
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The Finite Difference Example

The simplest example we can think of is using finite differences on Ω = [0, 1] to solve for{
(−∆)αu = f (x), x ∈ (0, 1),

u(0) = u(1) = 0.

This can be rewritten as

An =
1

h2
Tn−2(2− 2 cos(θ)), h =

1

n − 1
,

on the grid {xj = jh}nj=0, and solved on the
inner nodes

un(2 : n − 1) = A−α
n f(2 : n − 1),

via diagonalization.
9 / 47
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Tn−2(2− 2 cos(θ)), h =

1

n − 1
,

on the grid {xj = jh}nj=0, and solved on the
inner nodes

un(2 : n − 1) = A−α
n f(2 : n − 1),

via diagonalization.

n = 100; h = 1/(n-1);

x = linspace(0,1,n).';

e = ones(n-2,1);

An = spdiags([-e,2*e,-e]/h^2,-1:1,

n-2,n-2);↪→
f = sin(pi*x);

u = [0;An\f(2:n-1);0];

[U,L,V] = eig(full(An));

ualpha = @(alpha)

[0;V'\(L.^alpha\(U\f(2:n-1)));0];↪→
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The Finite Difference Example
The simplest example we can think of is using finite differences on Ω = [0, 1] to solve for{

(−∆)αu = f (x), x ∈ (0, 1),

u(0) = u(1) = 0.

This can be rewritten as

An =
1

h2
Tn−2(2− 2 cos(θ)), h =

1

n − 1
,

on the grid {xj = jh}nj=0, and solved on the
inner nodes

un(2 : n − 1) = A−α
n f(2 : n − 1),

via diagonalization. 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
f (x) Laplacian α = 0.1
α = 0.5 α = 0.9
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The general case

� Somebody usually gets angry if we start diagonalizing stuff. . .

so the right way to do is
going for a matrix function times vector computation.

Ó We need to compute g(z) = z−α for α ∈ (0, 1),

Ó on a matrix An that is either symmetric and positive definite, or of a matrix that is
similar to an SPD matrix,

Ó An has also a condition number that grows (at least quadratically) with its size, i.e., is
ill-conditioned.

® What method do we select?

å An is sparse and, if we deal with a regular uniform grid maybe also Toeplitz, a Lanczos
polynomial Krylov with fast convergence would be perfect if it reaches convergence
with a number of iteration independent of the size n.

® Is this the case?
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The Polynomial Krylov Method
If we use a polynomial Krylov subspace

Kℓ(An, v) = Span{v,Anv, . . . ,A
ℓ−1
n v}

to solve the problem, then the behavior is controlled by the approximation property

∥x− xℓ∥ ≤ C · min
p(z)∈Pℓ−1

max
z∈Λ(An)

|p(z) − z−α|

for Pℓ−1 the set of polynomial of degree ≤ ℓ, and C a constant independent of A and ℓ.

ytrue = mpower(full(An),-alpha)*b;

[Q,H] = arnoldi(An,b,l);

for j=1:l

y = Q(:,1:j)*(mpower(H(1:j,1:j),

-alpha)*(Q(:,1:j)'*b));↪→
err(j) = norm(y-ytrue)./norm(ytrue);

end
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Rational Krylov Method
We need better functions for our approximation problem, i.e., rational functions!

A general framework

Given a set of scalars {σ1, . . . , σk−1} ⊂ C (the extended complex plane), that are not
eigenvalues of A, let

qk−1(z) =
∏k−1

j=1
(σj − z).

The rational Krylov subspace of order k associated with A, v and qk−1 is defined by

Qk(A, v) = [qk−1(A)]
−1Kk(A, v), Kk(A, v) = Span{v,Av, . . . ,Ak−1v}.

A matrix expression

Given {µ1, . . . , µk−1} ⊂ C such that σj ̸= µ−2
j , we define the matrices

Cj = (µjσjA− I ) (σj I − A)−1, and Qk(A, v) = Span{v,C1v, . . . ,Ck−1 · · ·C2C1v}.
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Rational Krylov Method

A matrix expression

Given {µ1, . . . , µk−1} ⊂ C such that σj ̸= µ−2
j , we define the matrices

Cj = (µjσjA− I ) (σj I − A)−1, and Qk(A, v) = Span{v,C1v, . . . ,Ck−1 · · ·C2C1v}.

Polynomial Krylov Wk(A, v) = Kk(A, v) set µj = 1 and σj =∞ for each j ,

Extended Krylov W2k−1(A, v) = Span{v,A−1v,Av, . . . ,A−(k−1)v,Ak−1v}, set

(µj , σj) =

{
(1,∞), for j even,
(0, 0), for j odd.

Shift-And-Invert Wk(A, v) = Span{v, (σI − A)−1v, . . . , (σI − A)−(k−1)v}, take µj = 0 and
σj = σ for each j ,

� We are left our usual problem: how do we select the poles?
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Pole Selection Strategies

� Given a function g(z) we find an
explicit (minimal) rational approximation:

g(z) =
Pℓ(z)

Qq(z)
, Pℓ ∈ Pℓ[x ], Qq ∈ Pq[x ],

and use its poles for the RK-Method.

¥ Reasonably easy to get worst case
scenario bounds;

q If we want an approximation of the same
class with more poles we usually need to
redo everything from scratch;

� There exist brute force algorithm to get
such approximations.

X Direct rational approximations

Sometimes it may be worth our while to use
directly g(An)v = Qq(An)

−1Pℓ(An)v.
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Best Uniform Rational Approximation (BURA)

We try to find the poles by solving the min-max problem

max
t∈[0,1]

|tα − rα,k(t)| = min
rk (t)∈Rk,k

max
t∈[0,1]

|tα − rk(t)|, α ∈ (0, 1),

for rk(t) a (k , k)-rational function.

Theorem (Stahl 2003, Theorem 1)

Eα,k = max
t∈[0,1]

|tα − rα,k(t)| = 4α+1| sin(απ)|e−2π
√
αk .

å The matrix is approximated as A−α ≈ λ−α1,hrα,k(λ1,hA
−1).

® But how do we compute rα,k(t) in practice?

� There is no explicit solution, thus we need to use a numerical method.
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Best Uniform Rational Approximation (BURA)
The workhorse for computing BURA is the Remez algorithm (Braess 1986, § 6.B)

� Determine the points at which
the error of the BURA
equioscillates.

� Starting with a suitable initial
guess, it iteratively determines a
rational approximation passing
through these points while
shifting one or more toward a
nearby local maximum.

# Implementation is delicate
matter, observe we want both
stability and possibly quadratic
convergence.

Chose P(0)/Q(0) ∈ Rm,n and l points {x1i }
l
i=1;

k ← 1;
while not satisfied do

Determine P(k)/Q(k) ∈ Rm,n and ηk ∈ R such
that for i = 1, 2, . . . , l

f (xki ) − P(k)(xki )/Q
(k)(xki ) = (−1)iηk

Determine xk+1
1 < xk+1

2 < · · · < xk+1
l such

that for i = 1, 2, . . . , l

s(−1)i (f − P(k)/Q(k))(xk+1
i ) ≥ |ηk |,

and that for one i ∈ {1, 2, . . . , l} the left-hand
side equals ∥f − P(k)/Q(k)∥, s = ±1;

k ← k + 1;

end
16 / 47



Best Uniform Rational Approximation (BURA)

A recent and available implementation is given in the 3 Python baryrat package,
see (Hofreither 2021).

import numpy as np

import baryrat

alpha = 0.5

def f(x): return x**alpha

r = baryrat.brasil(f, [0,1], 5)

That gives us the r.poles(0):

σ = {−3.21294874e + 00,−1.62633499e − 01,

−1.27958136e − 02,−6.62129541e − 04,

−1.22326563e − 05}.

0.0 0.2 0.4 0.6 0.8 1.0
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0.0001

0.0000
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k = 5, α = 1/2
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Best Uniform Rational Approximation (BURA)
One can couple the error analysis with the one coming from the discretization of the
Laplacian to get overall results (Harizanov et al. 2020).

Theorem (Harizanov et al. 2020, Theorem 4.2).

Let Ω ⊂ R2 and suppose that the solution is in H2(Ω) ∪H1
0(Ω) and satisfies

∥(−∆)−αf ∥H2(Ω) ≤ c∥f ∥. Then for f ∈ H1+γ(Ω), γ > 0, the solution uh given by

uh = λ−α1,h(λ1,hA
−1)αIhf , A = M−1

n An, Ih Interpolation,

satisfies
∥(−∆)−αf − uh∥ ≤ C (h2α + h1+γ)∥f ∥H1+γ(Ω).

� Using lumped FEM, it is possible to have the error of the fully discrete scheme
(Harizanov et al. 2020, Corollary 4.3), and then balance the discretization and the BURA
error.
å The intend usage of these scheme is outside of a Krylov method.
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Quadrature-based approaches

Another viable approach is to use a rational approximation based on a quadrature formula.

[ There is more than a connection between quadrature formulas
and rational approximations.

@ Padé approximants can be viewed as formal Gaussian
quadrature methods (Brezinski 1980, Page 34).

Î This connection was already know to Gauß
C. F. Gauss, Methodus nova integralium valores per ap-
proximationem inveniendi, Comment. Soc. Reg. Scient.
Gotting. Recent., 1814

C.F.Gauß
(1777-1855)

� The idea is always the same 1. Find an integral representation of the function of interest.
2. Find a change of variables that makes a Gauss-type weight appears. 3. Rational
approximation is obtained by the Gauss quadrature formula. 4. The error analysis relies on
the analysis for the formula.
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The Gauss-Jacobi approach

This is an idea from (Aceto, Bertaccini, et al. 2019; Aceto and Novati 2018).

We do step 1 by looking through a book:

Proposition (Bhatia 1997, example V.1.10, 21, section 5.5.5)

Let A ∈ Rn×n be such that Λ(A) ⊂ C \ (−∞, 0]. For α ∈ (0, 1) the following
representation holds

Aα =
sin(απ)

απ
A

∫∞
0

(
ρ

1/αI + A
)−1

dρ.

Now do step 2, i.e., a change of variables:

ρ
1/α = τ

1− t

1+ t
, τ > 0.
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The Gauss-Jacobi approach
By plugging the change of variables in the integral, we find

Aα =
2 sin(απ)τα

π
A

∫1
−1
(1− t)α−1(1+ t)−α (τ(1− t)I + (1+ t)A)−1 dt.

We made the weights of the Gauss-Jacobi quadrature appear, thus(
1

τ
A

)ℵ

≈ 1

τ
A

k∑
j=1

2 sin(απ)

π

ωj

1+ θj

(
1− θj
1+ θj

+
1

τ
A

)−1

,

Ó ωj and θj are, respectively, the weights and nodes of the Gauss–Jacobi quadrature
formula with weight function (1− t)α−1(1+ t)−α,

� we should use error analysis to fix the τ parameter.

@ From (Frommer, Güttel, and Schweitzer 2014, Lemma 4.4) we know that the k-point
Gauss-Jacobi quadrature corresponds to the (k − 1, k)-Padé approximant of (z/τ)α−1

centered at 1.
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The Gauss-Jacobi approach
As we have seen from the BURA example, we may be interested in g(z) = z−α, α ∈ (0, 1),
but it is easy to rewrite the approximation as

z−α/2 ≈
k∑

j=1

2 sin(απ)τ1−α/2

π

ωj

1+ θj

(
τ(1− θj)

1+ θj
+ z

)−1

≜ Rk−1,k (z) , τ > 0

Ó ωj and θj are the weights and nodes of the Gauss–Jacobi quadrature formula with
weight (1− x)−α(1+ x)α−1.

� If we rearrange the expression we then find

Rk−1,k(z) =
pk−1(z)

qk(z)
=
χ
∏k−1

r=1 (z + ϵr )∏k
j=1(z + ηj)

, χ =
ηk
τα

(k+α/2−1
k−1

)(k−α
k

) k−1∏
j=1

ηj

ϵj
.

for

ϵr = τ
1− ζr
1+ ζr

, r = 1, 2, . . . , k − 1, ηj =
τ(1− θj)

1+ θj
, j = 1, 2, . . . , k .
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The Gauss-Jacobi approach
To fix the τ > 0 parameter we need the error analysis from (Aceto and Novati 2019) to
bound the truncation error:

Ek−1,k(λ/τ) ≜ (λ/τ)−α − Rk−1,k(λ/τ).

X When working with these expression, usually one can manipulate and express them in
terms of Gauss-Hypergeometric functions, then use their asymptotic to produce the
bound, e.g., in this case

z = 1−
λ

t
, (1− z)−α = 2F 1

(
1, α
1

; z

)
, | arg(1− z)| < π.

Proposition (Aceto and Novati 2019, Proposition 2)

For large values of k, the following representation for the truncation error holds

Ek−1,k(λ/τ) = 2 sin(απ)(λ/τ)−α

[√
λ−

√
τ√

λ+
√
τ

]2k
(1+ O(1/k)) .
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The Gauss-Jacobi approach

Theorem (Aceto and Novati 2019, Theorem 2)

If L is a self-adjoint positive operator on a separable Hilbert space H with spectrum
Λ(L) ⊂ [c ,+∞), c > 0 having a compact inverse, then∥∥∥∥L−α − τ−αk Rk−1,k

(
1

τk
L
)∥∥∥∥

H→H
≤2 sin(απ)c−α

(
2k

√
e

α

)−4α

[
2 ln

(
2k

α

)
+ 1

]2α (
1+ O(k−2)

)
,

for

τk = c
( α
2ke

)2
exp

(
2W

(
4k2e

α2

))
,

where W denotes the Lambert W -function.

4 It becomes increasingly difficult if the spectrum is close to the branch point of z−α.
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The Gauss-Jacobi approach (bounded operators)

If LN is a bounded operator, i.e., Λ(LN) ∈ [c , λN ] then the min-max problem for
|Ek−1,k(λ/τ)| have two different solutions for small and large values of k .
We call λ = τ

α2 (k +
√
k2 + 1)2

λ < λN (k smalll) The previous estimate is still good, i.e.,

τk = c
( α
2ke

)2
exp

(
2W

(
4k2e

α2

))
,

λ > λN (k large) then

τ̂k =

−
α
√
(λN)

8k
ln

(
λN
c

)
+

√(
α
√
λN

8k
ln

(
λN
c

))2

+
√
cλN

2

.
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The Gauss-Jacobi approach (bounded operators)

Theorem (Aceto and Novati 2019, Theorem 3)

Let k be such that for each k ≥ k we have λ = λ(k) > λN . Then for each k ≥ k , taking
τ = τ̂k , the following bound holds∥∥∥∥L−α

N − τ̂−αk Rk−1,k

(
1

τ̂k
LN

)∥∥∥∥
2

≤ 2 sin(απ)(cλN)
−α/2 exp

(
−4k

(
c

λN

)1/4
)
(1+O(k−1)).

4 The bound gets worse when we refine the discretization of the differential operator!

� The choice of τ is better than the asymptotically selected value τ∞ =
√
cΛN .

The choice is made as

τk,N =

{
τk , k < k,

τ̂k , k ≥ k ,
for k =

⌈
α

2
√
2

√
ln

(
λN
c
e2
)(

λN
c

) 1
4

⌉
.
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A Gauss-Laguerre approach (Aceto and Novati 2022)

We start again from an integral representation (Bonito and Pasciak 2015)

L−α =
2 sin(απ)

π

∫+∞
0

t2α−1(I + t2L)−1dt, α ∈ (0, 1).

Then, we go for the change of variables y = ln t we obtain

L−α =
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Then, we go for the change of variables y = ln t we obtain

L−α =
2 sin(απ)

π

∫+∞
−∞ e2αy (I + e2yL)−1dy , α ∈ (0, 1).

=

∫0
−∞ e2αy (I + e2yL)−1dy +

∫+∞
0

e2αy (I + e2yL)−1dy

2αy = −x
2(1− α)y = x

→=
1

2α

∫+∞
0

e−x(I + e−x/αL)−1dx +
1

2(1− α)

∫+∞
0

e−x(e−x/(1−α)I + L)−1dx .
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for

I (1)(λ) =

∫+∞
0

e−x(1+ e−x/αλ)−1dx , I (2)(λ) =

∫+∞
0

e−x(e−x/(1−α) + λ)−1dx .

The weight ω(x) = e−x , is the weight of Gauss-Laguerre formulas.
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A Gauss-Laguerre approach (Aceto and Novati 2022)

If we call the weights w
(n)
j and nodes ϑ

(n)
j (in ascending order) of the Gauss-Laguerre

formula, then we obtain the following (2n − 1, 2n) rational approximation:

L−α ≈ sin(απ)

απ
R
(1)
n−1,n(L) +

sin(απ)

(1− α)π
R
(2)
n−1,n(L) ≜ R2n−1,2n(L),

where

R
(1)
n−1,n(λ) =

n∑
j=1

w
(n)
j

(
1+ e−ϑ

(n)
j /αλ

)−1

,

R
(2)
n−1,n(λ) =

n∑
j=1

w
(n)
j

(
e−ϑ

(n)
j /(1−α) + λ

)−1

.

� Third step is using error estimate for Gauss-Laguerre formulas to get the bound.
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A Gauss-Laguerre approach (Aceto and Novati 2022)

The analysis treats separately the two integrals and requires expressing the error as a
contour integral:

En(f ) =
1

2πi

∫
Γ

qn(z)

Ln(z)
f (z)dz ,

here Ln(z) is the Laguerre polynomial, qn(z) is the so-called associated function defined by

qn(z) =

∫+∞
0

e−xLn(x)

z − x
dx , z /∈ [0,+∞),

and Γ is a contour containing [0,+∞) with the additional property that no singularity of
f (z) lies on or within this contour; see (Davis and Rabinowitz 1984, §4.6).
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A Gauss-Laguerre approach (Aceto and Novati 2022)

C
1

C
2

Γ
R

Denote with C1 and C2 two arbitrary small
circles surrounding the two poles and define

Γ = ΓR ∪ C1 ∪ C2.

The error can be written as

En(f ) =
1

2πi

{∫
ΓR

−

∫
C1

−

∫
C2

}
qn(z)

Ln(z)
f (z)dz .
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1

2πi

{∫
ΓR

−

∫
C1

−

∫
C2

}
qn(z)

Ln(z)
f (z)dz .

Then using:

qn(z)

Ln(z)
=2πe−z

[
exp

(√
−z
)]−2

√
n̄ ×

×
(
1+ O

(
1

n

))
, z /∈ [0,+∞),
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1

2πi

{∫
ΓR

−

∫
C1

−

∫
C2

}
qn(z)

Ln(z)
f (z)dz .

One arrives at

|En(f )| ≤4π
∣∣Res (f (z), z0) e−z0

∣∣×
×
[
exp

(
Re
(√

−z0
))]−2

√
n̄ ×

×
(
1+ O

(
1

n

))
.
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×
[
exp

(
Re
(√

−z0
))]−2

√
n̄ ×

×
(
1+ O

(
1

n

))
.

Ô Procedure

Apply the idea at f (z) = (1+ e−z/αλ)−1, and
f (z) = (e−z/(1−α) + λ)−1. For the two integrals.
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A Gauss-Laguerre approach (Aceto and Novati 2022)

Theorem (Aceto and Novati 2022, Proposition 5.3)

Let R2n−1,2n(L) be the Gauss-Laguerre rational approximation. Then, with respect to the
operator norm in H we have for n large enough∥∥L−α − R2n−1,2n(L)

∥∥ ≤ 4 sin(απ) exp
(
−3
(
nα2π2

)1/3)(
1+ O

(
n−1/3

))
.

⌣ The convergence is now independent of the spectral information of the matrix,
we just need to scale A to have spectrum in [1,+∞).

� Truncation and balancing strategies can be applied to the quadratures observing that
nodes and weights decay exponentially, i.e., apply

L−α ≈ sin(απ)

απ
R
(1)
kn1−1,kn1

(L) + sin(απ)

(1− α)π
R
(2)
kn2−1,kn2

(L).
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Laplace-Stieltjes and Cauchy-Stieltjes functions
Functions expressed as Stieltjes integrals admit a representation of the form:

f (z) =

∫∞
0

g(t, z)µ(t) dt,

where
• µ(t)dt is a (non-negative) on [0,∞], measure,
• g(t, z) is integrable with respect to that measure.

Cauchy-Stieltjes

Let f (z) be a function defined on C \ R−.
Then, f (z) is a Cauchy-Stieltjes function if
there is a positive measure µ(t)dt on R+

such that

f (z) =

∫∞
0

µ(t)

t + z
dt.
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Let f (z) be a function defined on C \ R−.
Then, f (z) is a Cauchy-Stieltjes function if
there is a positive measure µ(t)dt on R+

such that

f (z) =

∫∞
0

µ(t)

t + z
dt.

The function we are interested in is of this
class for α ∈ (0, 1):

f (z) = z−α =
sin(απ)

π

∫∞
0

t−α

t + z
dt.

In (Massei and Robol 2021) is given a general
bound for the whole class of functions.
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3Back to Zolotarev
To obtain the poles we consider the approach of minimizing the expression of the error
within the Krylov space for the entire class of functions: we return to Zolotarev.

å Let us write compactly: W = K(A, v, Ψ) for the rational Krylov subspace with poles Ψ.
Then we can write the approximation error as:

∥xW − x∥2 ≤ 2 · ∥v∥2 · min
r(z)∈ Pℓ

Ψ

max
z∈[a,b]

|f (z) − r(z)|.

where xW = Uf (UHAU)UHv for U an orthonormal basis of W, and x = f (A)v.
4 Now comes the clever observation, the function we want to approximate is of the form

f (A)v =

∫∞
0

g(t,A)µ(t) dt, g(t,A) ∈ {e−tA, (tI + A)−1}

⇒ Since the projection is linear we need poles to approximate uniformly well (in t) the
matrix exponentials and resolvents.
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Cauchy-Stieltjes functions
For Cauchy-Stieltjes function, we just need the result for the resolvent function.

Theorem (Massei and Robol 2021, Theorem 1)

Let A be Hermitian positive definite with spectrum contained in [a, b] and U be an
orthonormal basis of UR = Kℓ(A, v , Ψ). Then, ∀t ∈ [0,∞), we have the following
inequality:

∥(tI + A)−1v − U(tI + Aℓ)
−1vℓ∥2 ≤

2

t + a
∥v∥2 min

r(z)∈Pℓ
Ψ

maxz∈[a,b] |r(z)|

minz∈(−∞,0] |r(z)|
where Aℓ = UHAU and vℓ = UHv .

# We got back to our favorite 4th problem of Zolotarev! Than we do not know how to
solve in close form in general. . .

- this is not the general case, this is the case of two intervals [a, b] and (−∞, 0] ⌣
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� Solving this particular Zolotarev instance

The Zolotarev constant

Let Ψ = {ψ1, . . . , ψℓ} ⊂ C be a finite set, and I1, I2 closed subsets of C. Then, we define

θℓ(I1, I2, Ψ) = min
r(z)∈Pℓ

Ψ

maxI1 |r(z)|

minI2 |r(z)|
.

. This solution is for I1 = [a, b] and I2 = [−b,−a]: we had [a, b] and (−∞, 0]!
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Theorem (Zolotarev)

Let I = [a, b], with 0 < a < b. Then

min
Ψ⊂C, |Ψ|=ℓ

θℓ(I ,−I , Ψ) ≤ 4ρℓ[a,b], ρ[a,b] = exp

(
−

π2

log (4κ)

)
, κ =

b

a
.

In addition, the optimal rational function r
[a,b]
ℓ (z) that realizes the minimum has the form

r
[a,b]
ℓ (z) =

p
[a,b]
ℓ (z)

p
[a,b]
ℓ (−z)

, p
[a,b]
ℓ (z) =

ℓ∏
j=1

(z +ψ
[a,b]
j ,ℓ ), ψ

[a,b]
j ,ℓ ∈ −I .

We denote by Ψ
[a,b]
ℓ = {ψ

[a,b]
1,ℓ , . . . , ψ

[a,b]
ℓ,ℓ } the set of poles of r

[a,b]
ℓ (z).
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θℓ(I1, I2, Ψ) = min
r(z)∈Pℓ

Ψ

maxI1 |r(z)|

minI2 |r(z)|
.

For any I1, I2 be subsets of the complex plane, and Ψ ⊂ C we have

shift invariance For any t ∈ C, it holds θℓ(I1 + t, I2 + t, Ψ+ t) = θ(I1, I2, Ψ).
monotonicity θℓ(I1, I2, Ψ) is monotonic with respect to the inclusion on the parameters I1

and I2: I1 ⊆ I ′1 , I2 ⊆ I ′2 =⇒ θℓ(I1, I2, Ψ) ≤ θℓ(I ′1 , I ′2 , Ψ).
Möbius invariance If M(z) is a Möbius transform, that is a rational function

M(z) = (αz + β)/(γz + δ) with αδ ̸= βγ, then
θℓ(I1, I2, Ψ) = θℓ(M(I1),M(I2),M(Ψ)).

. This solution is for I1 = [a, b] and I2 = [−b,−a]: we had [a, b] and (−∞, 0]!
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� Solving this particular Zolotarev instance
We just need to build the right Möbius transform to map

(−∞, 0] ∪ [a, b] 7→ −I ∪ I , I = [a ′, b ′], 0 < a ′ < b ′.

Lemma (Massei and Robol 2021, Lemma 4)

The Möbius transformation

TC (z) =
∆+ z − b

∆− z + b
, ∆ =

√
b2 − ab,

maps [−∞, 0] ∪ [a, b] into [−1,−â] ∪ [â, 1], with â = ∆+a−b
∆−a+b = b−∆

∆+b . The inverse map

TC (z)
−1 is given by:

T−1
C (z) =

(b + ∆)z + b − ∆

1+ z
.

Moreover, for any 0 < a < b it holds â−1 ≤ 4b
a , and therefore ρ[â,1] ≤ ρ[a,4b].
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Cauchy-Stieltjes functions

Ó We map the interval [a, b] to [â, 1],

å solve explicitly the Zolotarev problem there,

` read the poles for our problem.

Proposition (Massei and Robol 2021, Corollary 4)

Let f (z) be a Cauchy-Stieltjes function, A be Hermitian positive definite with spectrum

contained in [a, b], U be an orthonormal basis of Kℓ(A, v , Ψ
[a,b]
C ,ℓ ) with Ψ

[a,b]
C ,ℓ given by

Ψ
[a,b]
C ,ℓ = T−1

C (Ψ
[â,1]
ℓ )

and xℓ = Uf (Aℓ)vℓ with Aℓ = UHAU and vℓ = UHv. Then

∥f (A)v − xℓ∥2 ≤ 8f (a)∥v∥2ρℓ[a,4b] = 8f (a) exp

(
−ℓ

π2

log (16b/a)

)
.
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Nesting the poles
The poles built this way are still not nested. In (Massei and Robol 2021) a technique
called method of equidistributed sequences (EDS) is proposed to generate them:

1. Select ζ ∈ R+ \Q and generate the sequence
{sj }j∈N = {0, ζ− ⌊ζ⌋, 2ζ− ⌊2ζ⌋, 3ζ− ⌊3ζ⌋, . . . }, where ⌊·⌋ indicates the greatest
integer less than or equal to the argument; this sequence has as asymptotic
distribution (in the sense of EDS) the Lebesgue measure on [0, 1].

2. Compute the sequence {tj }j∈N such that g(tj) = sj where

g(t) =
1

2M

∫ t
a2

dy√
(y − a2)y(1− y)

, M =

∫1
0

dy√
(1− y2)(1− (1− a2)y2)

,

3. Define σ̃j =
√
tj .

�The EDS associated with Ψ
[a,b]
ℓ , Ψ

[a,b]
C ,ℓ are obtained by applying either a scaling or the

Möbius transformation to the EDS for Ψ
[a,1]
ℓ .
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XBrute force approaches

It is also possible to try and solve numerically rational approximation problems.

RKFIT (Berljafa and Güttel 2017) Is an iterative method for solving rational
Least-Square problems, {A,F } ∈ Cn×n and b ∈ Cn find a ration function r
such that

∥Fb− r(A)b∥22 → min .

AAA (Nakatsukasa, Sète, and Trefethen 2018) Find a representation of the rational
approximant in barycentric form with interpolation at certain support points
while performing a greedy selection of them to avoid exponential instabilities.

If we have an idea of where the approximation should work, these approaches deliver
reasonably good results.
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An Application to Complex Networks
The spectral definition makes the procedure ideal also in more exotic cases.

Ó A weighted directed graph (digraph) is a
pair G = (V ,E ,W ), where
V = {v1, . . . , vn} is a set of nodes (or
vertices), and E ⊆ V × V is a set of
ordered pairs of nodes called edges,
and W ∈ Rn×n such that (W )i ,j ̸= 0 iff
(vi , vj) ∈ E .

Ó We call in–degrees and out–degrees

d
(in)
i = degin(vi ) =

∑
j : (vj ,vi )∈E

wj ,i ,

d
(out)
i = degout(vi ) =

∑
j : (vi ,vj )∈E

wi ,j ,

In matrix language

å If all the weights are equal to one, the
adjacency matrix A ∈ Rn×n is

(A)i ,j = ai ,j =

{
1, if (vi , vj) ∈ E ,
0, otherwise.

otherwise, A ≡ W .

å Degree diagonal matrices

Din =diag(degin(v1), . . . ,degin(vn))

= diag(d
(in)
1 , . . . , d

(in)
n ),

Dout = diag(degout(v1), . . . ,degout(vn))

= diag(d
(out)
1 , . . . , d

(out)
n ).
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Laplacians on Graphs

Undirected case

Let G = (V ,E ) be a weighted undirected graph with weight matrix W , weighted degree
matrix D and weighted incidence matrix B. Then the graph Laplacian L of G is

L = D −W .

The normalized random walk version of the graph Laplacian is

D−1L = I − D−1W ,

where I is the identity matrix. Observe that D−1W is a row–stochastic matrix, i.e. it is
nonnegative with row sums equal to 1. The normalized symmetric version is

D− 1
2LD− 1

2 = I − D− 1
2WD− 1

2 .

If G is unweighted then W = A in the above definitions. Here we assume that every vertex
has nonzero degree.
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Laplacians on Graphs

Directed case

Let G = (V ,E ,W ) be a weighted directed graph, with degree matrices Dout and Din The
nonnormalized directed graph Laplacian Lout and Lin of G are

Lout = Dout −W , Lin = Din −W .

. To define the normalized versions, we need to invert either the Din or the Dout

matrices, but the absence of isolated vertices is no longer sufficient to ensure this!

It is interesting to look at diffusion on graphs:

find u : [0,T ] −→ Rn

s.t.

{
d

dt
u(t) = −κL·/in/outu(t), t ∈ (0,T ],

u(0) = u0, prescribed,

⇒ it could be interesting to look at fractional diffusion on graphs.
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nonnormalized directed graph Laplacian Lout and Lin of G are

Lout = Dout −W , Lin = Din −W .

. To define the normalized versions, we need to invert either the Din or the Dout

matrices, but the absence of isolated vertices is no longer sufficient to ensure this!

It is interesting to look at diffusion on graphs:

find u : [0,T ] −→ Rn

s.t.

{
d

dt
u(t) = −κLα·/in/outu(t), t ∈ (0,T ],

u(0) = u0, prescribed,
α ∈ (0, 1],

⇒ it could be interesting to look at fractional diffusion on graphs.
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Laplacians on Graphs

If G is undirected, i.e., L = LT , everything follows by diagonalization, see, e.g., (Riascos
and Mateos 2014).

If L is either Lout or Lin this needs more care.

ÿ Lout is a singular M-matrix,

ÿ Lout1 = 0,

ÿ 0 is a semisimple eigenvalue of Lout.

8 We need to prove that Lαout can be defined and respect all the properties.

O We could also investigate the the decay of the entries of the fractional power, but
leave the subject aside and refer to (Benzi, Bertaccini, et al. 2020).
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ÿ Lout is a singular M-matrix,
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ÿ 0 is a semisimple eigenvalue of Lout.

8 We need to prove that Lαout can be defined and respect all the properties.

Proposition (Benzi, Bertaccini, et al. 2020)

Given a weighted graph G = (V ,E ,W ) and its Laplacian with respect to the out degree
Lout, the function f (x) = xα is defined on the spectrum of Lout and induces a matrix
function for all α ∈ (0, 1].
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Laplacian on Graphs: computation

. For the computation of the products Lαoutv it is necessary to modify the strategies we
have seen: all the bounds and constructions required that 0 was not in the spectrum.

� In (Benzi and Simunec 2022) different strategies for accommodating this feature of Lout
are investigated:

� Use a rank-one shift, since the right and left eigenvectors 1 and z⃗ of Lout can be
easily computed, we compute

f (LT )b = f (LT + θz1T )b+ [f (0) − f (θ)]z, for any θ > 0
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easily computed, we compute

f (LT )b = f (LT + θz1T )b+ [f (0) − f (θ)]z, for any θ > 0,

and in the rational Krylov subspace we solve the linear system at the same cost at
which we solve the ones for LT via Sherman-Morrison:

(LT + θz1T − ξI )−1 = (LT − ξI )−1 +
θ

ξ(θ− ξ)
z1T .
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Laplacian on Graphs: computation
. For the computation of the products Lαoutv it is necessary to modify the strategies we
have seen: all the bounds and constructions required that 0 was not in the spectrum.
� In (Benzi and Simunec 2022) different strategies for accommodating this feature of Lout
are investigated:

� Use a rank-one shift, since the right and left eigenvectors 1 and z⃗ of Lout can be
easily computed, we compute

f (LT )b = f (LT + θz1T )b+ [f (0) − f (θ)]z, for any θ > 0,

and in the rational Krylov subspace we solve the linear system at the same cost at
which we solve the ones for LT by doing

(LT + θz1T − ξI )−1w = ψ+
1Tw

θ− ξ
z and (LT − ξI )ψ = w − (1Tw)z,

to avoid cancellation for ξ ≈ 0.
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Laplacian on Graphs: computation
. For the computation of the products Lαoutv it is necessary to modify the strategies we
have seen: all the bounds and constructions required that 0 was not in the spectrum.
� In (Benzi and Simunec 2022) different strategies for accommodating this feature of Lout
are investigated:

� Use a rank-one shift, since the right and left eigenvectors 1 and z⃗ of Lout can be
easily computed, we compute

f (LT )b = f (LT + θz1T )b+ [f (0) − f (θ)]z, for any θ > 0.

� Project L on the n− 1 dimensional subspace S = Span{1}⊥ = Range(Q̃) and compute

f (LT )b = f (LT )v + βf (LT )z ←0 ̸= β = 1Tb and b = v + βz for v ⊥ 1

= Qf (QTLTQ)QTv + βf (0)z ←QQT = I − 11T/n, Q = [Q̃, 1/
√
n].

- Q can be built so that {Q,QT }v costs O(n).
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O A gallery of open problems

“When sorrows come, they come
not single spies, but in battalions”

Hamlet, Act IV, Scene V.

O Of the many problems we have discussed along the way, one that came back many
times was the selection of optimal poles for the different matrix-equation/Rational
Krylov based solvers (e.g., all-at-once, multi-dimensional approaches);

O Inventing reduced memory methods for the integration of fractional partial
differential equations in time and space, i.e.,

CADαt u = L(u; t), L non linear, and fractional;

O Error analysis entangling convergence of the Rational Krylov method and Finite
Element (Isogeometric) Discretizations for FPDEs;

O Solving FPDEs on unlimited spatial domains.
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Fractional Schrödinger equation

As we have discussed at the beginning of the lecture, there are several formulations of the
Fractional Laplacian that should be naturally considered on the whole space.

An example is the Schrödinger equation

iℏβ CADβψ = −Dα(−ℏ2∆)α/2ψ+ V (x, t)ψ,

that is naturally defined on the whole space.

To treat it numerically, the usual procedure is to couple it with artificial boundary
conditions of absorbing type. It might be of interest to have numerical methods that
can work with infinite or semi-infinite matrices that do not need this artificial correction.
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Conclusions

Ó We focused on few discretization, there
are many other viable approaches
(collocation, finite elements, IgA,. . . ).
Most of the reasoning we did can be
adapted to these other cases.

� There are other classical problems that
admits a fractional extension, e.g.,
optimal control, model order reduction,
eigenvalue problems,. . .

“The universe (which others call the Library)
is composed of an indefinite and perhaps

infinite number of hexagonal galleries, with
vast air shafts between, surrounded by very
low railings. From any of the hexagons one
can see, interminably, the upper and lower
floors. The distribution of the galleries is

invariable.”

Jorge Luis Borges, The Library of Babel.
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Frommer, A., S. Güttel, and M. Schweitzer (2014). “Efficient and stable Arnoldi restarts for
matrix functions based on quadrature”. In: SIAM J. Matrix Anal. Appl. 35.2, pp. 661–683. issn:
0895-4798. doi: 10.1137/13093491X. url: https://doi.org/10.1137/13093491X.

Harizanov, S. et al. (2020). “Analysis of numerical methods for spectral fractional elliptic
equations based on the best uniform rational approximation”. In: J. Comput. Phys. 408,
pp. 109285, 21. issn: 0021-9991. doi: 10.1016/j.jcp.2020.109285. url:
https://doi.org/10.1016/j.jcp.2020.109285.

Hofreither, C. (2021). “An algorithm for best rational approximation based on barycentric
rational interpolation”. In: Numer. Algorithms 88.1, pp. 365–388. issn: 1017-1398. doi:
10.1007/s11075-020-01042-0. url: https://doi.org/10.1007/s11075-020-01042-0.

Ilic, M. et al. (2005). “Numerical approximation of a fractional-in-space diffusion equation. I”.
In: Fract. Calc. Appl. Anal. 8.3, pp. 323–341. issn: 1311-0454.

https://doi.org/10.1137/13093491X
https://doi.org/10.1137/13093491X
https://doi.org/10.1016/j.jcp.2020.109285
https://doi.org/10.1016/j.jcp.2020.109285
https://doi.org/10.1007/s11075-020-01042-0
https://doi.org/10.1007/s11075-020-01042-0


Bibliography V

Ilic, M. et al. (2006). “Numerical approximation of a fractional-in-space diffusion equation. II.
With nonhomogeneous boundary conditions”. In: Fract. Calc. Appl. Anal. 9.4, pp. 333–349.
issn: 1311-0454.
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Nakatsukasa, Y., O. Sète, and L. N. Trefethen (2018). “The AAA algorithm for rational
approximation”. In: SIAM J. Sci. Comput. 40.3, A1494–A1522. issn: 1064-8275. doi:
10.1137/16M1106122. url: https://doi.org/10.1137/16M1106122.

Riascos, A. and J. Mateos (2014). “Fractional dynamics on networks: Emergence of anomalous
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