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Collective Communications
Ŵ Collective Communications

A collective communication is a communication that involves a group (or groups) of
processes.

• the group of processes is represented as always as a communicator that provides a
context for the operation,

• Syntax and semantics of the collective operations are consistent with the syntax and
semantics of the point-to-point operations,

• For collective operations, the amount of data sent must exactly match the amount of
data specified by the receiver.

Mixing type of calls
Collective communication calls may use the same communicators as point-to-point
communication; Any (conforming) implementation of MPI messages guarantees that calls
generated on behalf of collective communication calls will not be confused with messages
generated by point-to-point communication.

Ŷ/Ŷŵ



Collective Communications
Ŵ Collective Communications

A collective communication is a communication that involves a group (or groups) of
processes.

• the group of processes is represented as always as a communicator that provides a
context for the operation,

• Syntax and semantics of the collective operations are consistent with the syntax and
semantics of the point-to-point operations,

• For collective operations, the amount of data sent must exactly match the amount of
data specified by the receiver.

Mixing type of calls
Collective communication calls may use the same communicators as point-to-point
communication; Any (conforming) implementation of MPI messages guarantees that calls
generated on behalf of collective communication calls will not be confused with messages
generated by point-to-point communication.
Ŷ/Ŷŵ



Taxonomy of collective communications
Ŵ Collective Communications

• The broadcast operation

a0 a0

a0

a0

a0

data

processes

In the broadcast, initially just the first process contains the data a0, but after the
broadcast all processes contain it.

• This is an example of a one-to-all communication, i.e., only one process contributes
to the result, while all processes receive the result.
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Taxonomy of collective communications: Broadcast
Ŵ Collective Communications

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

Broadcasts a message from the process with rank root to all processes of the group, itself
included.
void* buffer on return, the content of root’s buffer is copied to all other processes.
int count size of the message
MPI_Datatype datatype type of the buffer

int root rank of the process broadcasting the message
MPI_Comm comm communicator grouping the processes involved in the broadcast

operation
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Taxonomy of collective comm‘s: Scatter and Gather
Ŵ Collective Communications

• The scatter and gather operations

a0 a1 a2 a3 a0
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• In the scatter, initially just the first process contains the data a0, . . . , a3, but after the
scatter the jth process contains the aj data.

• In the gather, initially the jth process contains the aj data, but after the gather the
first process contains the data a0, . . . , a3
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Taxonomy of collective communications: Gather
Ŵ Collective Communications

Each process (root process included) sends the contents of its send buffer to the root process. The
latter receives the messages and stores them in rank order.

int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

const void* sendbuf starting address of send buffer

int sendcount number of elements in send buffer

MPI_Datatype sendtype data type of send buffer elements

void* recvbuf address of receive buffer

int recvcount number of elements for any single receive (and not the total number of items!)

MPI_Datatype recvtype data type of received buffer elements

int root rank of receiving process

MPI_Comm comm communicator

These are significant only at root!
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Taxonomy of collective communications: Gather
Ŵ Collective Communications

Observe that

• The type signature of sendcount, sendtype on each process must be equal to the type
signature of recvcount, recvtype at all the processes.

• The amount of data sent must be equal to the amount of data received, pairwise between
each process and the root.
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Taxonomy of collective communications: Gather
Ŵ Collective Communications

Observe that

• The type signature of sendcount, sendtype on each process must be equal to the type
signature of recvcount, recvtype at all the processes.

• The amount of data sent must be equal to the amount of data received, pairwise between
each process and the root.

Therefore, if we need to have a varying count of data from each process, we need to use instead

int MPI_Gatherv(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, const int recvcounts[], const int displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm)

where

const int recvcounts[] is an array (of length group size) containing the number of elements
that are received from each process,

const int displs[] is an array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from process i.Ż/Ŷŵ



Taxonomy of collective communications: Gather
Ŵ Collective Communications

If we need to have the result of the gather operation on every process involved in the
communicator we can use the variant

int MPI_Allgather(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

• All processes in the communicator comm receive the result. The block of data sent from the
jth process is received by every process and placed in the jth block of the buffer recvbuf.

• The type signature associated with sendcount, sendtype, at a process must be equal to the
type signature associated with recvcount, recvtype at any other process.
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Taxonomy of collective communications: Gather
Ŵ Collective Communications

If we need to have the result of the gather operation on every process involved in the
communicator we can use the variant

int MPI_Allgather(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)
• All processes in the communicator comm receive the result. The block of data sent from the

jth process is received by every process and placed in the jth block of the buffer recvbuf.
• The type signature associated with sendcount, sendtype, at a process must be equal to the

type signature associated with recvcount, recvtype at any other process.

This function has also the version for gathering messages with different sizes:
int MPI_Allgatherv(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],
const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

and works in a way analogous to the MPI_Gatherv.
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Taxonomy of collective communications: Scatter
Ŵ Collective Communications

This is simply the inverse operation of MPI_Gather
int MPI_Scatter(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

const void* sendbuf address of send buffer
int sendcount number of elements sent to each process
MPI_Datatype sendtype type of send buffer elements
void* recvbuf address of receive buffer
int recvcount number of elements in receive buffer
MPI_Datatype recvtype data type of receive buffer elements

int root rank of sending process
MPI_Comm comm communicator

These choices are significant only at root!
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Taxonomy of collective communications: Scatter
Ŵ Collective Communications

Observe that
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Modifying the Ŵst derivative code
Ŵ Collective Communications

Let us perform the following modification to our first derivative code:
Ŵ. Taking from input the number of points to use in each interval,
ŵ. Collecting the whole result on one process and print it on file.

For the first step we use the MPI_Bcast function,

if(mynode == 0){
if(argc != 2){
n = 20;
}else{
n = atoi(argv[1]);
}
}
MPI_Bcast(&n,1,MPI_INT,
0,MPI_COMM_WORLD);

• We read on rank 0 the number n from
command line,

• Then we broadcast it with MPI_Bcast,
pay attention to the fact that the
broadcast operations happens on all
the processes!
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Modifying the Ŵst derivative code
Ŵ Collective Communications

Then we gather all the derivatives from the various processes and collect them on process
0.

if(mynode == 0)
globalderiv = (double *)
malloc(sizeof(double)
*(n*totalnodes));
MPI_Gather(fx,n,MPI_DOUBLE,
globalderiv,n,MPI_DOUBLE,
0,MPI_COMM_WORLD);

• we allocate on rank 0 the memory that is necessary
to store the whole derivative array,

• then we use the
MPI_Gather
to gather all the array fx (of double) inside the
globalderiv array.
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Modifying the Ŵst derivative code
Ŵ Collective Communications

At last we print it out on file on rank 0
if(mynode == 0){
FILE *fptr;
fptr = fopen("derivative", "w");
for(int i = 0; i < n*totalnodes; i++)
fprintf(fptr,"%f %f\n",globala+i*dx,globalderiv[i]);

fclose(fptr);
free(globalderiv);
}
File is now formatted in such a way that you can use MATLAB/Octave or Gnuplot to get a
figure.
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All-to-All
Ŵ Collective Communications

Extension of MPI_ALLGATHER where each process sends distinct data to each of the receivers.

a0 a1 … ad

b0 b1 … cd

...
... …

...

z0 z1 … zd

a0 b0 … z1

a1 b1 … z2

...
... …

...

ad bd … zd

data data

processes

int MPI_Alltoall(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

• The jth block sent from process i is received by process j and is placed in the ith block of
recvbuf.

• The type signature for sendcount, sendtype, at a process must be equal to the type
signature for recvcount, recvtype at any other process.ŴŸ/Ŷŵ



All-to-All different data size
Ŵ Collective Communications

If we need to send data of different size between the processes

int MPI_Alltoallv(const void* sendbuf, const int sendcounts[],
const int sdispls[], MPI_Datatype sendtype, void* recvbuf,
const int recvcounts[], const int rdispls[],
MPI_Datatype recvtype, MPI_Comm comm);

const void* sendbuf starting address of send buffer

const int sendcounts[] array specifying the number of elements to send to each rank

const int sdispls[] entry j specifies the displacement (relative to sendbuf) from which to
take the outgoing data destined for process j

void* recvbuf array specifying the number of elements that can be received from each rank

const int recvcounts[] integer array. Entry i specifies the displacement (relative to
recvbuf) at which to place the incoming data from process i

const int rdispls[] entry i specifies the displacement (relative to recvbuf) at which to
place the incoming data from process i
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The reduce operation
Ŵ Collective Communications

The reduce operation for a given operator takes a data buffer from each of the processes
in the communicator group and combines it according to operator rules.
int MPI_Reduce(const void* sendbuf, void* recvbuf,
int count, MPI_Datatype datatype, MPI_Op op,
int root, MPI_Comm comm);

const void* sendbuf address of send buffer
void* recvbuf address of receive buffer
int count number of elements in send buffer
MPI_Datatype datatype data type of elements of send buffer
MPI_Op op reduce operation
int root rank of root process

MPI_Comm comm communicator
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The reduce operation
Ŵ Collective Communications

The value of MPI_Op op for the reduce operation can be taken from any of the following
operators.
MPI_MAX Maximum MPI_MAXLOC Max value and location
MPI_MIN Minimum MPI_MINLOC Minimum value and location
MPI_SUM Sum MPI_LOR Logical or
MPI_PROD Product MPI_BOR Bit-wise or
MPI_LAND Logical and MPI_LXOR Logical exclusive or
MPI_BAND Bit-wise and MPI_BXOR Bit-wise exclusive or
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The reduce operation
Ŵ Collective Communications

Moreover, if a different operator is needed, it is possible to create it by means of the
function
int MPI_Op_create(MPI_User_function* user_fn, int commute,
MPI_Op* op)

In C the prototype for a MPI_User_function is
typedef void MPI_User_function(void* invec, void* inoutvec,
int *len, MPI_Datatype *datatype);
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Global reduce operation – All-Reduce
Ŵ Collective Communications

As for other collective operations we may want to have the result of the reduction available on
every process in a group.
The routine for obtaining such result is

int MPI_Allreduce(const void* sendbuf, void* recvbuf,
int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

const void* sendbuf address of send buffer

void* recvbuf address of receive buffer

int count number of elements in send buffer

MPI_Datatype datatype data type of elements of send buffer

MPI_Op op reduce operation

MPI_Comm comm communicator

This instruction behaves like a combination of a reduction and broadcast operation.
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Global reduce operation – All-Reduce-Scatter
Ŵ Collective Communications

This is another variant of the reduction operation in which the result is scattered to all
processes in a group on return.
int MPI_Reduce_scatter_block(const void* sendbuf,
void* recvbuf, int recvcount, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm);

• The routine is called by all group members using the same arguments for
recvcount, datatype, op and comm.

• The resulting vector is treated as n consecutive blocks of recvcount elements that
are scattered to the processes of the group comm.

• The ith block is sent to process i and stored in the receive buffer defined by
recvbuf, recvcount, and datatype.
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Global reduce operation – All-Reduce-Scatter
Ŵ Collective Communications

Of this function also a variant with variable block–size is available
int MPI_Reduce_scatter(const void* sendbuf, void* recvbuf,
const int recvcounts[], MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm);
• This routine first performs a global element-wise reduction on vectors of
count =

∑n−1
i=0 recevcounts[i] elements in the send buffers defined by sendbuf,

count and datatype, using the operation op, where n is the size of the
communicator.

• The routine is called by all group members using the same arguments for
recvcounts, datatype, op and comm.

• The resulting vector is treated as n consecutive blocks where the number of
elements of the ith block is recvcounts[i].

• The ith block is sent to process i and stored in the receive buffer defined by
recvbuf, recvcounts[i] and datatype.
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Integrals with parallel midpoint quadrature rule
ŵ Some computations using collective communications

Given f : [a, b] → R themidpoint rule (sometimes rectangle rule) is given by∫ b

a
f(x)dx ≈ I1 = (b− a)f

(
a+ b
2

)
,

This is a very crude approximation, to make it more
accurate we may break up the interval [a, b] into a
number n of non-overlapping subintervals [ak, bk]
such that [a, b] = ∪k[ak, bk],

In =

n∑
k=0

(bk − ak)f
(
ak + bk

2

)
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Integrals with parallel midpoint quadrature rule
ŵ Some computations using collective communications

If we want to transform this computation in a parallel computation we can adopt the
following sketch:
Ŵ. if (mynode == 0) get number of intervals for quadrature
ŵ. broadcast number of intervals to all the processes
Ŷ. assign the non-overlapping intervals to the processes
ŷ. sum function values in the center of each interval
Ÿ. reduce with operator sum the integral on process ų.

As a test function for the parallel integration routine we can use

f(x) =
4

1 + x2
; I =

∫ 1

0

4

1 + x2
dx = π.

To evaluate the error we can use the value :
double PI25DT = 3.141592653589793238462643;
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Computing integrals with parallel midpoint quadrature
rule
ŵ Some computations using collective communications

h = 1.0 / ((double) n*totalnodes);
sum = 0.0;
for (i = 1+mynode*n;
i <= n*(mynode+1);
i++){
x = h * ((double)i - 0.5);
sum += f(x);
}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1,
MPI_DOUBLE,
MPI_SUM, 0,
MPI_COMM_WORLD);

• We assume that all the intervals have the same size,
thus the scaling h = 1.0 / (double) n,

• We compute all the value x that are in the local
process and increment the local sum,

• in conclusion we perform an MPI_Reduce to sum
together all the local sums.
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Computing integrals with parallel midpoint quadrature
rule
ŵ Some computations using collective communications

You can then print out the obtained value of π and the error with respect to PI25DT as
if (mynode == 0){
printf("pi is approximately %.16f, Error is %e\n",
pi, fabs(pi - PI25DT));

}
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Timers and Synchronization
Ŷ Timers and Synchronization

• A timer is specified even though it is not an instruction based on “message-passing”:
timing parallel programs is important for inquiring on the “performances” of your
code.

• the timer returns a floating-point number of seconds, representing elapsed
wall-clock time since some time in the past:
double MPI_Wtime(void);

the time in the past is guaranteed not to change during the life of the process.

• There exists a tag MPI_WTIME_IS_GLOBAL that is Ŵ if clocks at all processes in
MPI_COMM_WORLD are synchronized, ų otherwise.
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Timers and Synchronization
Ŷ Timers and Synchronization

• A timer is specified even though it is not an instruction based on “message-passing”:
timing parallel programs is important for inquiring on the “performances” of your
code.

• the timer returns a floating-point number of seconds, representing elapsed
wall-clock time since some time in the past:
double MPI_Wtime(void);

the time in the past is guaranteed not to change during the life of the process.
• the usual application of a timer is something of the form:

double starttime, endtime;
starttime = MPI_Wtime();
< --- foolish things happen here --- >
endtime = MPI_Wtime();
printf("That took %f seconds\n",endtime-starttime);

• There exists a tag MPI_WTIME_IS_GLOBAL that is Ŵ if clocks at all processes in
MPI_COMM_WORLD are synchronized, ų otherwise.
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Timers and Synchronization
Ŷ Timers and Synchronization

• MPI offers a barrier function that blocks the caller until all processes in the communicator
have called it
int MPI_Barrier(MPI_Comm comm)
that is, the call returns at any process only after all members of the communicator have
entered the call.

• It can be used together with the MPI_Wait function to force a synchronization point in the
program.

• It can be used to regulate the access to an external resource (e.g., a file) in such a way that
every processor accesses it in an order way: if you are interested in writing file in parallel you
can look at Chapter ŴŶ of the MPI guideŴ

ŴMessage Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version Ŷ.Ŵ.
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, High Performance Computing
Center Stuttgart (HLRS).
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Evaluating performances
Ŷ Timers and Synchronization

You can use the MPI_Wtime() to give a simple evalaution of the performances of your
program.

Consider, e.g., the two programs for the computation of the π constant. You can evaluate
the weak scalability of your code by looking at the time spent in doing the whole
computation for growing size of processor numbers and samples.

We can compute the efficiency of the code by measuring:

E = t(1)/t(N) ∈ [0, 1]

where
• t(1) is the amount of time to complete a work unit with Ŵ processing element,
• t(N) is the amount of time to complete N of the same work units with N processing

elements.
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Further modifications
Ŷ Timers and Synchronization

For the derivative program:
• In every case the function void firstderiv1Dp_vec wants to exchange

information between two adjacent processes, i.e., every process wants to “swap” is
halo with its adjacent process. We can rewrite the whole function by using the
MPI_Sendrecv_replace point-to-point communication routine.

• We can rewrite the entire program in an “embarrassing parallel” way, if every process
has access to f, and are assuming that all the interval are partitioned the same way,
by using the knowledge of our rank we can compute what are the boundary
elements at the previous and following process. Thus, no communication at all!

For the π programs,
• Make a graph of the timings to evaluate the weak scaling efficiency.

– Try this at home! (Maybe here, if there is still time…) –
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