
High-Performance Mathematics
Beware, we are doing science!
Progetto Speciale per la Didattica /
Fabio Durastante (L)

May ,

/

mailto:fabio.durastante@unipi.it

Table of Contents
Queue manager

▶ Queue manager
SLURM
Interactive jobs
Batched jobs

▶ An example with PSCToolkit

▶ Libraries with support for parallelism

/

Queue Management on Clusters
Queue manager

• Resource Allocation:
— Efficiently allocate computational resources (CPUs, memory, etc.)

amongmultiple users and jobs.
• Job Scheduling:

— Prioritize and schedule jobs to optimize cluster utilization and
minimize wait times.

• User Fairness:
— Ensure fair distribution of resources among users, preventing

monopolization.
• Job Management:

— Handle job submission, monitoring, and termination.
• Scalability:

— Manage a large number of jobs and resources in a scalable manner.
/

Queue Management on Clusters
Queue manager

• Resource Allocation:
— Efficiently allocate computational resources (CPUs, memory, etc.)

amongmultiple users and jobs.
• Job Scheduling:

— Prioritize and schedule jobs to optimize cluster utilization and
minimize wait times.

• User Fairness:
— Ensure fair distribution of resources among users, preventing

monopolization.
• Job Management:

— Handle job submission, monitoring, and termination.
• Scalability:

— Manage a large number of jobs and resources in a scalable manner.
/

Challenges Addressed by Queue Managers
Queue manager

A good queue managermust be able to solve a certain number of problems:
• Resource Contention:

— Multiple users competing for limited resources.
• Job Dependencies:

— Managing jobs that depend on the completion of others.
• Load Balancing:

— Distributing jobs evenly to prevent some nodes from being overburdened while others
are idle.

• Fault Tolerance:
— Ensuring job completion despite hardware failures or interruptions.

• Policy Enforcement:
— Implementing organizational policies regarding resource usage and job priorities.

Models based onMarkov chains are usually used.

/

SLURM
Queue manager

Of the various managers available we—and many super computing centers around the
world—make use of SLURM.

• What is SLURM?
— Simple Linux Utility for ResourceManagement (SLURM)
— An open-source job scheduler designed for Linux clusters.

• Components:
— Slurmctld: Central management daemon.
— Slurmd: Daemon running on each compute node.
— Slurmdbd: Optional database daemon for job accounting.

The basic principles regarding the use of a queue manager are always the same, so
the information we will see is portable—as long as you change the name of some
commands—even on other systems.

/

SLURM
Queue manager

Of the various managers available we—and many super computing centers around the
world—make use of SLURM.

• What is SLURM?
— Simple Linux Utility for ResourceManagement (SLURM)
— An open-source job scheduler designed for Linux clusters.

• Components:
— Slurmctld: Central management daemon.
— Slurmd: Daemon running on each compute node.
— Slurmdbd: Optional database daemon for job accounting.

The basic principles regarding the use of a queue manager are always the same, so
the information we will see is portable—as long as you change the name of some
commands—even on other systems.
/

How SLURMWorks: the architecture
Queue manager

• Resource Allocation:

— Nodes are divided into partitions, each
potentially with different characteristics and
purposes.

• Job Submission:

— Users submit jobs using sbatch, srun, or
salloc commands.

• Scheduling:

— SLURM schedules jobs based on priorities,
resource requirements, and availability.

• Job Execution:

— Allocates resources and starts jobs on the
appropriate compute nodes.

• Monitoring and Management:

— Provides tools to monitor
job status (squeue,
scontrol) and manage
jobs (scancel).

/

SLURM Interactive Jobs
Queue manager

What are Interactive Jobs?
• Interactive jobs allow users to interact with the job in real-time.
• Useful for debugging, development, and interactive data analysis.

Submitting an Interactive Job
• Use the srun command to start an interactive session:

— srun --pty bash -i
• Specify resource requirements as needed:

— srun --pty -N1 -n4 --mem=4G --time=01:00:00 bash -i
Benefits of Interactive Jobs
• Immediate feedback and interaction with the job.
• Easier to troubleshoot and test code on the cluster.
• Allows running exploratory data analysis interactively.

/

SLURM flags and options
Queue manager

-J --job-name=<jobname> Specify a name for the job allocation. The specified
name will appear along with the job id number when
querying running jobs on the system.

-N --nodes=<minnodes> Request that a minimum of minnodes nodes be allo-
cated to this job. A maximum node count may also be
specified with maxnodes. If only one number is spec-
ified, this is used as both the minimum and maximum
node count.

-n --ntasks=<number> Number ofMPI tasks to be allocated.
-t --time=<time> Set a minimum time limit on the job allocation, format

is: d-hh:mm:ss.
--mem=<size>[units] Specify the real memory required per node. Default

units are megabytes. Different units can be specified
using the suffix [K|M|G|T].

/

An example on steffe
Queue manager

Let’s take an example where we use an interactive job to compile some code.

Connect via ssh to steffe:
Load the relevant modules:
module avail
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0
Clone the example
git clone git@git.phc.dm.unipi.it:HighPerfor ⌋

manceMathematics/HPM-Lezioni2024.git↪→

cd HPM-Lezioni2024/scripttest
ls

/

An example on steffe
Queue manager

Let’s take an example where we use an interactive job to compile some code.

Connect via ssh to steffe:
ssh fdurastante@steffe.cs.dm.unipi.it

Load the relevant modules:
module avail
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0
Clone the example
git clone git@git.phc.dm.unipi.it:HighPerfor ⌋

manceMathematics/HPM-Lezioni2024.git↪→

cd HPM-Lezioni2024/scripttest
ls

/

An example on steffe
Queue manager

Let’s take an example where we use an interactive job to compile some code.

Connect via ssh to steffe:
ssh fdurastante@steffe.cs.dm.unipi.it
Load the relevant modules:
module avail
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0

Clone the example
git clone git@git.phc.dm.unipi.it:HighPerfor ⌋

manceMathematics/HPM-Lezioni2024.git↪→

cd HPM-Lezioni2024/scripttest
ls

/

An example on steffe
Queue manager

Let’s take an example where we use an interactive job to compile some code.

Connect via ssh to steffe:
ssh fdurastante@steffe.cs.dm.unipi.it
Load the relevant modules:
module avail
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0
Clone the example
git clone git@git.phc.dm.unipi.it:HighPerfor ⌋

manceMathematics/HPM-Lezioni2024.git↪→

cd HPM-Lezioni2024/scripttest
ls

/

An example on steffe
Queue manager

We can now take a node to compile our code
srun --job-name=compile -N1 --time=00:10:00 --pty bash -i
by doing so we requested a node, -N1 , for minutes with an interactive shell.

We can then use the Makefile to compile our example code (which computes an
integral using the trapezoid formula):
make
If everything went well, we should read:
mpicc integral.c -o integral -lm
that has created the executable file integral
ls
integral integral.c Makefile

/

An example on steffe
Queue manager

We can now take a node to compile our code
srun --job-name=compile -N1 --time=00:10:00 --pty bash -i
by doing so we requested a node, -N1 , for minutes with an interactive shell.
We can then use the Makefile to compile our example code (which computes an
integral using the trapezoid formula):
make
If everything went well, we should read:
mpicc integral.c -o integral -lm
that has created the executable file integral
ls
integral integral.c Makefile

/

Batched jobs
Queue manager

In general a simulation that requires the use of a cluster will be something that will run
for quite some time and we don’t want to stay connected and watch the execution,
especially running the risk of our connection dropping causing the job to fail…

To this end we want to have a way to queue a job and have any outputs saved to a file.

/

Batched jobs
Queue manager

In general a simulation that requires the use of a cluster will be something that will run
for quite some time and we don’t want to stay connected and watch the execution,
especially running the risk of our connection dropping causing the job to fail…

To this end we want to have a way to queue a job and have any outputs saved to a file.

This is achieved in steps:
. Create a sh script containing the instruction to be executed, e.g., run.sh,
. Pass the script to slurm with the sbatch command:

sbatch run.sh

/

An example
Queue manager

File run.sh
#!/bin/bash
#SBATCH --partition=production
#SBATCH -N 1
#SBATCH -n 6
#SBATCH -o integral.out

module load gcc/12.3.0
openmpi/4.1.6-gcc-12.3.0↪→

srun ./integral 6000
That can then be put into the queue with the
command
sbatch run.sh

lines beginning with with #SBATCH are
commands that we need to pass to
slurm,
we always take care to reload the
environment with the command
module,
the srun command is used to launch
the executable and takes as task
number all those made available by the
-n option.

And we can see what is queued with the
command
squeue

/

Options
Queue manager

We can use all the options we have seen for the interactive jobs.

-o --output Specifies the file where standard output is di-
rected.

-e --error Specifies the file where standard error is directed.
-N --nodes Requests a specific number of nodes.
-n --ntasks Specifies the number of tasks to run.
-c --cpus-per-task Defines the number of CPUs to allocate per task.
-p --partition Specifies the partition or queue where the job will

be submitted.
--ntasks-per-node Specifies the number of MPI tasks to run on each

node.

Further information are available at: slurm.schedmd.com/sbatch.html.
/

https://slurm.schedmd.com/sbatch.html

Exercise
Queue manager

Do a weak and strong scalability test of the code for computing the integral.
Weak scaling how the solution time varies with the number of processors for a fixed

problem size per processor.
Strong scaling how the solution time varies with the number of processors for a fixed

total problem size.

Some useful tools:
Syntax for for loops in bash:
for i in {1..5}
do

echo "Welcome $i times"
done

Output redirect in bash:
./command 2>&1 >> output.txt
Input from fictitious file bash:
./command << EOF
file line 1
file line 2
EOF

/

Table of Contents
An example with PSCToolkit

▶ Queue manager
SLURM
Interactive jobs
Batched jobs

▶ An example with PSCToolkit

▶ Libraries with support for parallelism

/

Scalable sparse matrix-vector products
An example with PSCToolkit

The next example I want to show you is a test of the sparse matrix-vector product using
PSCToolkit.

/

Scalable sparse matrix-vector products
An example with PSCToolkit

The next example I want to show you is a test of the sparse matrix-vector product using
PSCToolkit.

The Compressed Sparse Row (CSR) format stores a sparsem× nmatrixM in row form
using three (one-dimensional) arrays (V, COL_INDEX, ROW_INDEX). If we let NNZ denote
the number of nonzero entries inM.
• The arrays V and COL_INDEX are of length NNZ, and contain the non-zero values and
the column indices of those values respectively

• COL_INDEX contains the column in which the corresponding entry V is located.
• The array ROW_INDEX is of lengthm+ 1 and encodes the index in V and COL_INDEX
where the given row starts. This is equivalent to ROW_INDEX[j] encoding the total
number of nonzeros above row j. The last element is NNZ,i.e., the fictitious index in
V immediately after the last valid index NNZ - 1.

/

Scalable sparse matrix-vector products
An example with PSCToolkit

The next example I want to show you is a test of the sparse matrix-vector product using
PSCToolkit.

/

Scalable sparse matrix-vector products
An example with PSCToolkit

In the HPM-Lezioni2024 folder the folder psctoolkitest contains an example from
the PSBLAS library doing repeated matrix-vector products to measure performances.

First thing we have to load the right modules:
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0

openblas/0.3.24-gcc-12.3.0 metis/5.1.0-gcc-12.3.0↪→

Then we can compile the example by typing make.
Now the folder runs contains the executable pdgenspmv.
The folder contains a batch file called run.sh that can be used to test the program.

/

Scalable sparse matrix-vector products
An example with PSCToolkit

In the HPM-Lezioni2024 folder the folder psctoolkitest contains an example from
the PSBLAS library doing repeated matrix-vector products to measure performances.

First thing we have to load the right modules:
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0

openblas/0.3.24-gcc-12.3.0 metis/5.1.0-gcc-12.3.0↪→

Then we can compile the example by typing make.
Now the folder runs contains the executable pdgenspmv.
The folder contains a batch file called run.sh that can be used to test the program.

/

Scalable sparse matrix-vector products
An example with PSCToolkit

In the HPM-Lezioni2024 folder the folder psctoolkitest contains an example from
the PSBLAS library doing repeated matrix-vector products to measure performances.

First thing we have to load the right modules:
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0

openblas/0.3.24-gcc-12.3.0 metis/5.1.0-gcc-12.3.0↪→

Then we can compile the example by typing make.

Now the folder runs contains the executable pdgenspmv.
The folder contains a batch file called run.sh that can be used to test the program.

/

Scalable sparse matrix-vector products
An example with PSCToolkit

In the HPM-Lezioni2024 folder the folder psctoolkitest contains an example from
the PSBLAS library doing repeated matrix-vector products to measure performances.

First thing we have to load the right modules:
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0

openblas/0.3.24-gcc-12.3.0 metis/5.1.0-gcc-12.3.0↪→

Then we can compile the example by typing make.
Now the folder runs contains the executable pdgenspmv.

The folder contains a batch file called run.sh that can be used to test the program.

/

Scalable sparse matrix-vector products
An example with PSCToolkit

In the HPM-Lezioni2024 folder the folder psctoolkitest contains an example from
the PSBLAS library doing repeated matrix-vector products to measure performances.

First thing we have to load the right modules:
module load gcc/12.3.0 openmpi/4.1.6-gcc-12.3.0

openblas/0.3.24-gcc-12.3.0 metis/5.1.0-gcc-12.3.0↪→

Then we can compile the example by typing make.
Now the folder runs contains the executable pdgenspmv.
The folder contains a batch file called run.sh that can be used to test the program.

/

Scalable sparse matrix-vector products
An example with PSCToolkit

In the HPM-Lezioni2024 folder the folder psctoolkitest contains an example from
the PSBLAS library doing repeated matrix-vector products to measure performances.
#!/bin/bash
#SBATCH --ntasks=30
#SBATCH --partition=production
#SBATCH --time 10:00:00
#SBATCH --job-name=psct

srun ./pdgenspmv 2>&1 >> logfiles.txt <<EOF
CSR
200
EOF
The script takes two inputs, the matrix format CSR and the size of the test matrix 200 (size
is actually n3).

/

Scalable sparse matrix-vector products
An example with PSCToolkit

The output looks something like this:
Test on : 30 processors
Size of matrix : 8000000
Number of nonzeros : 55760000
Memory occupation : 701120360
Number of flops (20 prod) : 2230400000.
Time for 20 products (s) : 1.531
Time per product (ms) : 76.555
MFLOPS : 1456.722
Time for 20 products (s) (trans.): 2.035
Time per product (ms) (trans.): 101.769
MFLOPS (trans.): 1095.814

MBYTES/S : 10830.318
MBYTES/S (trans): 8147.072
Storage type for DESC_A: HASH
Total memory occupation for DESC_A: 190555968
/

Table of Contents
Libraries with support for parallelism

▶ Queue manager
SLURM
Interactive jobs
Batched jobs

▶ An example with PSCToolkit

▶ Libraries with support for parallelism

/

Libraries with support for parallelism
Libraries with support for parallelism

MPI GPU OpenMP
PETSc PETSc, the Portable, Extensible Toolkit for Scientific Com-

putation, pronounced PET-see (/ˈpɛt-siː/), is for the scalable
(parallel) solution of scientific applicationsmodeled by par-
tial differential equations (PDEs). It has bindings for C, For-
tran, and Python (via petsc py).

part.

FEniCS FEniCS is a popular open-source computing platform for
solving partial differential equations (PDEs) with the finite
element method (FEM). FEniCS enables users to quickly
translate scientific models into efficient finite element
code.

part. part.

deal.II A C++ software library supporting the creation of finite ele-
ment codes and an open community of users and develop-
ers.

/

https://petsc.org/release/
https://fenicsproject.org/
https://www.dealii.org/

Libraries with support for parallelism
Libraries with support for parallelism

MPI GPU OpenMP
MFEM MFEM is a free, lightweight, scalable C++ library for

finite element methods.
GADGET- Is a parallel cosmological N-body and SPH code

meant for simulations of cosmic structure formation
and calculations relevant for galaxy evolution and
galactic dynamics.

Quantum
ESPRESSO

Quantum ESPRESSO is an integrated suite of Open-
Source computer codes for electronic-structure cal-
culations andmaterialsmodeling at the nanoscale. It
is based on density-functional theory, plane waves,
and pseudopotentials.

/

https://mfem.org/
https://wwwmpa.mpa-garching.mpg.de/gadget4/
https://www.quantum-espresso.org/
https://www.quantum-espresso.org/

Libraries with support for parallelism
Libraries with support for parallelism

MPI GPU OpenMP
ParFlow ParFlow is a numerical model that simulates the

hydrologic cycle from the bedrock to the top of
the plant canopy. It integrates three-dimensional
groundwater flow with overland flow and plant pro-
cesses using physically-based equations to rigorously
simulate fluxes of water and energy in complex real-
world systems.

SUNDIALS SUNDIALS is a SUite of Nonlinear and DIfferen-
tial/ALgebraic equation Solvers.

FFTW FFTW is a C subroutine library for computing the dis-
crete Fourier transform (DFT) in one or more dimen-
sions, of arbitrary input size, and of both real and
complex data (as well as of even/odd data).

/

https://parflow.org/
https://computing.llnl.gov/projects/sundials
http://www.fftw.org/

Libraries with support for parallelism
Libraries with support for parallelism

MPI GPU OpenMP
KRATOS KRATOS Multiphysics (”Kratos”) is a framework for

building parallel, multi-disciplinary simulation soft-
ware, aiming at modularity, extensibility, and high
performance. Kratos is written in C++, and counts
with an extensive Python interface.

To find other interesting projects:
The GitHub MPI Topic list and CUDA Topic list.

/

https://github.com/KratosMultiphysics/Kratos
https://github.com/topics/mpi
https://github.com/topics/cuda

	Queue manager
	SLURM
	Interactive jobs
	Batched jobs

	An example with PSCToolkit
	Libraries with support for parallelism

