
High Performance Linear Algebra
Lecture ŴŴ: Distributed BLAS level ŵ
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

January ŵŹ, ŵųŵŹ — Ŵŷ.ųų:ŴŹ.ųų

Ŵ/Ÿż

mailto:fabio.durastante@unipi.it

Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

We have
Described the Message Passing Interface (MPI) programming model,
Implemented Level-Ŵ BLAS operations for distributed vectors using MPI,
Analyzed performance characteristics for axpy, dot product, and norm,
Identified scaling limits due to communication overhead in reduction operations

Next steps:
• Discuss data distribution strategies for distributed matrices,
• Implement Level-ŵ BLAS operations for distributed matrices and vectors,
• Explore the Level-ŵ and Level-Ŷ BLAS operations in distributed settings.

ŵ/Ÿż

Table of Contents
ŵ Distributed matrices

▶ Distributed matrices
Data layout strategies
ŵD-Block Cyclic Implementation
A distributed matrix defined on a descriptor
The distributed GEMV operation

Ŷ/Ÿż

Distributed matrices
ŵ Distributed matrices

When dealing with large matrices that cannot fit into the memory of a single node, we
need to distribute the matrix across multiple nodes of our distributed-memory
environment.

How can we do that?
we have already partially addressed this question when discussing the construction
of matrix-vector products and matrix-matrix products in a shared-memory context;
we have discussed this for the case of distributed vectors last time.

ŷ/Ÿż

Key concerns in data layout
ŵ Distributed matrices

When choosing a data layout for dense matrix computations on distributed-memory
systems, we must consider:

Load Balance
• Split work evenly among processors
• Avoid idle processors during

computation

Computational Efficiency
• Utilize Level Ŷ BLAS on local data
• Leverage memory hierarchy

These requirements often conflict and require careful trade-offs!

Ÿ/Ÿż

ŴD Block Column Distribution
ŵ Distributed matrices

Pų PŴ Pŵ PŶ

Characteristics:
• Each process stores one block of

contiguous columns
• Column k goes to process ⌊(k− 1)/nc⌋
mod P

Problems:
• Poor load balance: once columns are

completed, processes become idle
• Not suitable for matrix operations like

Gaussian elimination

Ź/Ÿż

ŴD Cyclic Column Distribution
ŵ Distributed matrices

Pų PŴ Pŵ PŶ Pų PŴ Pŵ PŶ

Characteristics:
• Column k assigned to process (k− 1)
mod P

• Single columns are interleaved across
processes

Advantages:
• Better load balance
• Good work distribution

Problems:
• Cannot use Level ŵ/Ŷ BLAS efficiently

(only single columns)
• Poor memory hierarchy utilization

ź/Ÿż

ŴD Block-Cyclic Column Distribution
ŵ Distributed matrices

Pų Pų PŴ PŴ Pŵ Pŵ PŶ PŶ

Characteristics:
• Choose block size NB
• Column block k assigned to process
⌊(k− 1)/NB⌋ mod P

Advantages:
• Reasonable load balance
• Can use Level ŵ/Ŷ BLAS locally

Problems:
• Serial bottleneck: factorization occurs

on one process
• Limited parallelism in factorization step

Ż/Ÿż

ŵD Block-Cyclic Distribution
ŵ Distributed matrices

(ų,ų) (ų,Ŵ)

(Ŵ,ų) (Ŵ,Ŵ)

Processors in Pr × Pc grid

Characteristics:
• Arrange P processes in Pr × Pc

rectangular grid
• Block size parameters: MB× NB

• Block (i, j) goes to process
(i mod Pr, j mod Pc)

Advantages:
• Excellent load balance
• Allows Pc-fold parallelism in columns
• Can use Level ŵ/Ŷ BLAS
• Good scalability

This is the standard layout used by ScaLAPACK! But how do we implement it?

ż/Ÿż

Comparison of Distribution Strategies
ŵ Distributed matrices

Strategy Load Balance BLAS Use Scalability Complexity

ŴD Block Poor Good Bad Simple
ŴD Cyclic Good Poor Fair Simple
ŴD Block-Cyclic Fair Fair Fair Moderate
ŵD Block-Cyclic Excellent Good Excellent Complex

Key Trade-offs:
• Load balance vs. computational efficiency
• Simple schemes vs. scalability
• The ŵD block-cyclic strategy achieves the best overall balance

Ŵų/Ÿż

Implementing the ŵD Block-Cyclic Distribution
ŵ Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (ŵD block-cyclic):
• Communicator with P = Pr × Pc processes
• Global matrix of sizeM× N
• Process grid of size Pr × Pc
• Block sizeMB× NB
• Source process (Rsrc, Csrc)
• Use ų-based global indices: i0 = i− 1, j0 = j− 1

• Global block indices:
br =

⌊
i0
MB

⌋
, bc =

⌊
j0
NB

⌋
ŴŴ/Ÿż

Implementing the ŵD Block-Cyclic Distribution
ŵ Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (ŵD block-cyclic):
• Communicator with P = Pr × Pc processes
• Global matrix of sizeM× N
• Process grid of size Pr × Pc
• Block sizeMB× NB
• Source process (Rsrc, Csrc)
• Use ų-based global indices: i0 = i− 1, j0 = j− 1

• Owning process:

pr = (br − Rsrc) mod Pr, pc = (bc − Csrc) mod Pc

ŴŴ/Ÿż

Implementing the ŵD Block-Cyclic Distribution
ŵ Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (ŵD block-cyclic):
• Communicator with P = Pr × Pc processes
• Global matrix of sizeM× N
• Process grid of size Pr × Pc
• Block sizeMB× NB
• Source process (Rsrc, Csrc)
• Use ų-based global indices: i0 = i− 1, j0 = j− 1

• Local block indices:

ℓr =

⌊
br − Rsrc

Pr

⌋
, ℓc =

⌊
bc − Csrc

Pc

⌋

ŴŴ/Ÿż

Implementing the ŵD Block-Cyclic Distribution
ŵ Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (ŵD block-cyclic):
• Communicator with P = Pr × Pc processes
• Global matrix of sizeM× N
• Process grid of size Pr × Pc
• Block sizeMB× NB
• Source process (Rsrc, Csrc)
• Use ų-based global indices: i0 = i− 1, j0 = j− 1

• Local indices (Ŵ-based, Fortran):

local_row = ℓr ·MB+ (i0 mod MB) + 1

local_col = ℓc · NB+ (j0 mod NB) + 1

ŴŴ/Ÿż

Building a descriptor for the ŵD process grid
ŵ Distributed matrices

To implement the ŵD block-cyclic distribution, we need a descriptor that contains:

• Global matrix dimensions M, N
• Block sizes MB, NB
• Process grid dimensions P_r, P_c
• Leading dimension of local arrays
• Starting indices for submatrices, they are usually called RSRC and CSRC parameters

specify the starting process coordinates for the distribution, and are typically set to 0.

This descriptor will be used in all distributed matrix operations to correctly map global
indices to local storage. We can build it as a Fortran derived type.

Ŵŵ/Ÿż

Fortran Descriptor Type
ŵ Distributed matrices

type :: descriptor
integer :: comm ! MPI communicator
integer :: M ! Global number of rows
integer :: N ! Global number of columns
integer :: MB ! Block size in rows
integer :: NB ! Block size in columns
integer :: P_r ! Number of process rows
integer :: P_c ! Number of process columns
integer :: LLD ! Leading dimension of local array
integer :: RSRC ! Row source process
integer :: CSRC ! Column source process

end type descriptor
This structure encapsulates all necessary information for managing the ŵD block-cyclic
distribution of matrices across a process grid.

ŴŶ/Ÿż

But how do we init the descriptor?
ŵ Distributed matrices

To initialize the descriptor, we can create an initialization procedure that sets all the fields
based on the global matrix size, block sizes, and process grid dimensions.

• This procedure will be called once at the beginning of the program to set up the
descriptor.

• It will compute the leading dimension of the local arrays based on the block sizes and
process grid.

• The process coordinates (pr, pc)must be provided to correctly map back to global
indices, they can be retrieved from the MPI rank.

Ŵŷ/Ÿż

But how do we init the descriptor?
ŵ Distributed matrices

subroutine init(desc, comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC)
class(descriptor), intent(out) :: desc
integer, intent(in) :: comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC
desc%comm = comm
desc%M = M
desc%N = N
desc%MB = MB
desc%NB = NB
desc%P_r = P_r
desc%P_c = P_c
desc%RSRC = RSRC
desc%CSRC = CSRC
desc%LLD = ((M + P_r * MB - 1) / (P_r * MB)) * MB

end subroutine init

ŴŸ/Ÿż

A distributed matrix type
ŵ Distributed matrices

We now need to build a distributed matrix type that uses the descriptor to manage its
data.

This can be done by defining a Fortran derived type that contains:

• The local array to store the matrix data,
• The descriptor for the matrix distribution,
• Type-bound procedures for the BLAS matrix operations.

ŴŹ/Ÿż

Distributed Matrix Type Definition
ŵ Distributed matrices

We can define the distributed matrix type as follows:
type :: distributed_matrix

real, allocatable :: local_data(:,:) ! Local matrix storage
type(descriptor) :: desc ! Descriptor for distribution

contains
<Type bound procedures for matrix operations go here>

end type distributed_matrix

We don’t need to add more fields, as the descriptor contains all necessary information
about the global matrix, and the size of the local is in the desc%NB and desc%MB fields.

Ŵź/Ÿż

The distributed GEMV operation
ŵ Distributed matrices

The first Level-ŵ BLAS operation we can implement is the distributed matrix-vector
product (GEMV):

y← αAx+ βy

where A is a distributed matrix, and x and y are distributed vectors.

Key Steps:
• Each process computes its local contribution to the matrix-vector product.
• A global reduction is performed to combine the local results into the final vector y.

But how do we distribute the vectors x and y?

We can use a ŴD block distribution for the vectors to align with the matrix
distribution.

ŴŻ/Ÿż

The distributed GEMV operation
ŵ Distributed matrices

The first Level-ŵ BLAS operation we can implement is the distributed matrix-vector
product (GEMV):

y← αAx+ βy

where A is a distributed matrix, and x and y are distributed vectors.

Key Steps:
• Each process computes its local contribution to the matrix-vector product.
• A global reduction is performed to combine the local results into the final vector y.

But how do we distribute the vectors x and y?
We can use a ŴD block distribution for the vectors to align with the matrix
distribution.

ŴŻ/Ÿż

Distributed GEMV Implementation
ŵ Distributed matrices

We can visualize the distributed GEMV operation with a block cyclic distributed matrix,
and a ŴD block distributed vector as in the following diagram:

A x y

=

y = Ax, A ∈ RN×N, x, y ∈ RN×1

Ŵż/Ÿż

Vector Distribution
ŵ Distributed matrices

• Column vector: x ∈ RN×1

• Descriptor parameters:
— M = N
— N = 1
— NB = 1

• Block-cyclic distribution in rows only
• Only process column 0 stores vector data x

(0, 0)

(1, 0)

ŵų/Ÿż

What communications are needed for GEMV?
ŵ Distributed matrices

We can represent the distributed GEMV operation as follows:
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33



x0
x1
x2
x3

 =


A00x0 + A01x1 + A02x2 + A03x3
A10x0 + A11x1 + A12x2 + A13x3
A20x0 + A21x1 + A22x2 + A23x3
A30x0 + A31x1 + A32x2 + A33x3


This means that:

• All processes with processo column 0 need x0
• All processes with processo column 1 need x1
• All processes with processo column 2 need x2
• All processes with processo column 3 need x3

• Each process computes its local contribution to y and then reduce along the column.

ŵŴ/Ÿż

What communications are needed for GEMV?
ŵ Distributed matrices

We can represent the distributed GEMV operation as follows:
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33



x0
x1
x2
x3

 =


A00x0 + A01x1 + A02x2 + A03x3
A10x0 + A11x1 + A12x2 + A13x3
A20x0 + A21x1 + A22x2 + A23x3
A30x0 + A31x1 + A32x2 + A33x3


This means that:

• All processes with processo column 0 need x0
• All processes with processo column 1 need x1
• All processes with processo column 2 need x2
• All processes with processo column 3 need x3

• Each process computes its local contribution to y and then reduce along the column.

ŵŴ/Ÿż

What communications are needed for GEMV?
ŵ Distributed matrices

We can represent the distributed GEMV operation as follows:
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33



x0
x1
x2
x3

 =


A00x0 + A01x1 + A02x2 + A03x3
A10x0 + A11x1 + A12x2 + A13x3
A20x0 + A21x1 + A22x2 + A23x3
A30x0 + A31x1 + A32x2 + A33x3


This means that:

• All processes with processo column 0 need x0
• All processes with processo column 1 need x1
• All processes with processo column 2 need x2
• All processes with processo column 3 need x3

• Each process computes its local contribution to y and then reduce along the column.

ŵŴ/Ÿż

What communications are needed for GEMV?
ŵ Distributed matrices

We can represent the distributed GEMV operation as follows:
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33



x0
x1
x2
x3

 =


A00x0 + A01x1 + A02x2 + A03x3
A10x0 + A11x1 + A12x2 + A13x3
A20x0 + A21x1 + A22x2 + A23x3
A30x0 + A31x1 + A32x2 + A33x3


This means that:

• All processes with processo column 0 need x0
• All processes with processo column 1 need x1
• All processes with processo column 2 need x2
• All processes with processo column 3 need x3

• Each process computes its local contribution to y and then reduce along the column.

ŵŴ/Ÿż

What communications are needed for GEMV?
ŵ Distributed matrices

We can represent the distributed GEMV operation as follows:
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33



x0
x1
x2
x3

 =


A00x0 + A01x1 + A02x2 + A03x3
A10x0 + A11x1 + A12x2 + A13x3
A20x0 + A21x1 + A22x2 + A23x3
A30x0 + A31x1 + A32x2 + A33x3


This means that:

• All processes with processo column 0 need x0
• All processes with processo column 1 need x1
• All processes with processo column 2 need x2
• All processes with processo column 3 need x3
• Each process computes its local contribution to y and then reduce along the column.

ŵŴ/Ÿż

What is the right communication function?
ŵ Distributed matrices

To implement the required communication pattern, we can use:

• We need to broadcast the vector segments x0, x1, x2, x3 along the process columns.

x0 → (0, 0), (1, 0), (2, 0), (3, 0)

x1 → (0, 1), (1, 1), (2, 1), (3, 1)

x2 → (0, 2), (1, 2), (2, 2), (3, 2)

x3 → (0, 3), (1, 3), (2, 3), (3, 3)

• We need a communicator for each process column to perform these broadcasts.

ŵŵ/Ÿż

Building communicators for GEMV
ŵ Distributed matrices

We need to create communicators for the process rows and columns:
dims(1) = P_r ! Define process grid dimensions
dims(2) = P_c
periods(1) = .false.
periods(2) = .false.
! Create Cartesian communicator
call MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, .true., cart_comm,

ierr)↪→

! Split into row and column communicators
call MPI_Comm_rank(cart_comm, cart_rank, ierr)
call MPI_Cart_coords(cart_comm, cart_rank, 2, coords, ierr)
call MPI_Comm_split(cart_comm, coords(1), coords(2), row_comm, ierr)
call MPI_Comm_split(cart_comm, coords(2), coords(1), col_comm, ierr)

These communicators allow us to perform broadcasts and reductions efficiently along the
rows and columns of the processŵŶ/Ÿż

Details and signature of the new MPI functions
ŵ Distributed matrices

The subroutine MPI_Cart_create has signature:
call MPI_Cart_create(comm_old, ndims, dims, periods, reorder,

comm_cart, ierr)↪→

where:
• comm_old: input communicator (e.g., MPI_COMM_WORLD)
• ndims: number of dimensions (ŵ for a ŵD grid)
• dims: array specifying the size of each dimension
• periods: array specifying whether each dimension is periodic
• reorder: logical flag to allow process rank reordering
• comm_cart: output Cartesian communicator
• ierr: error code

ŵŷ/Ÿż

Details and signature of the new MPI functions
ŵ Distributed matrices

The subroutine MPI_Cart_create has signature:
call MPI_Cart_create(comm_old, ndims, dims, periods, reorder,

comm_cart, ierr)↪→

This subroutine creates a Cartesian communicator based on the specified dimensions and
periodicity, i.e., a ŵD grid of processes.

Pų

PŴ

Pŵ

PŶ

Original
ranks

(1, 0)

(0, 0)

(1, 1)

(0, 1)

Cartesian ranks

ŵŷ/Ÿż

Details and signature of the new MPI functions
ŵ Distributed matrices

The subroutine MPI_Comm_split has signature:
call MPI_Comm_split(comm, color, key, newcomm, ierr)
where:

• comm: input communicator
• color: integer that determines the new communicator grouping
• key: integer that determines the rank ordering in the new communicator
• newcomm: output new communicator
• ierr: error code

ŵŸ/Ÿż

Details and signature of the new MPI functions
ŵ Distributed matrices

The subroutine MPI_Comm_split has signature:
call MPI_Comm_split(comm, color, key, newcomm, ierr)
This subroutine splits an existing communicator into multiple new communicators based
on the color parameter, allowing for the creation of row and column communicators
from the Cartesian grid.

Pų

PŴ

Pŵ

PŶ

Original
ranks

(1, 0)

(0, 0)

(1, 1)

(0, 1)

Cartesian ranks

ų

Ŵ

Row
communicatorų Ŵ

Column
communicator

ŵŸ/Ÿż

An example of communicator creation and splitting
ŵ Distributed matrices

program communicator_example
use mpi
use iso_fortran_env, only: output_unit
implicit none
integer :: ierr, rank, size
integer :: cart_comm, row_comm, col_comm
integer :: dims(2), coords(2)
logical :: periods(2)
integer :: myx, myy
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

ŵŹ/Ÿż

An example of communicator creation and splitting
ŵ Distributed matrices

! Define process grid dimensions
dims(1) = 2 ! Number of process rows
dims(2) = size / 2 ! Number of process columns
periods(1) = .false.
periods(2) = .false.

! Create Cartesian communicator
call MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, .true.,

cart_comm, ierr)↪→

call MPI_Cart_coords(cart_comm, rank, 2, coords, ierr)

ŵź/Ÿż

An example of communicator creation and splitting
ŵ Distributed matrices

! Split into row and column communicators
call MPI_Comm_split(cart_comm, coords(1), coords(2), row_comm,

ierr)↪→

call MPI_Comm_split(cart_comm, coords(2), coords(1), col_comm,
ierr)↪→

! Print ranks in each communicator for verification
call MPI_Comm_rank(row_comm, myx, ierr)
call MPI_Comm_rank(col_comm, myy, ierr)
write(output_unit, *) 'Global Rank:', rank, 'Row Comm Rank:', myx,

'Col Comm Rank:', myy↪→

call MPI_Finalize(ierr)
end program communicator_example

ŵŻ/Ÿż

An example of communicator creation and splitting
ŵ Distributed matrices

We can compile and run this program with ŷ processes:

mpifort -o communicator_example communicator_example.f90
mpirun -np 4 ./communicator_example
The result will be something like:

Global Rank: 3 Row Comm Rank: 1 Col Comm Rank: 1
Global Rank: 0 Row Comm Rank: 0 Col Comm Rank: 0
Global Rank: 1 Row Comm Rank: 1 Col Comm Rank: 0
Global Rank: 2 Row Comm Rank: 0 Col Comm Rank: 1

ŵż/Ÿż

Packaging these communicators in our descriptor
ŵ Distributed matrices

To facilitate the use of these communicators in our distributed matrix operations, we can
add them as fields in our descriptor type:
type :: descriptor

integer :: comm ! MPI communicator
integer :: M, N ! Global number of rows/columns
integer :: MB, NB ! Block size in rows/columns
integer :: P_r, P_c ! Number of process rows/columns
integer :: LLD ! Leading dimension of local array
integer :: RSRC, CSRC ! Row, Column source process
integer :: cart_comm, row_comm, col_comm ! Cached communicators
integer :: myrow, mycol

end type descriptor
And modify the initialization routine to set these fields accordingly.

Ŷų/Ÿż

Modifying the descriptor init to include communicators
ŵ Distributed matrices

We can modify the init subroutine to create and store the communicators in the
descriptor:
subroutine init(desc, comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC)

implicit none
class(descriptor), intent(out) :: desc
integer, intent(in) :: comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC
! Local variables
integer :: ierr, dims(2), coords(2)
integer :: size
logical :: periods(2)

ŶŴ/Ÿż

Modifying the descriptor init to include communicators
ŵ Distributed matrices

! standard initialization (same as before)
desc%comm = comm
desc%M = M
desc%N = N
desc%MB = MB
desc%NB = NB
desc%P_r = P_r
desc%P_c = P_c
desc%RSRC = RSRC
desc%CSRC = CSRC
desc%LLD = ((M + P_r * MB - 1) / (P_r * MB)) * MB

Ŷŵ/Ÿż

Modifying the descriptor init to include communicators
ŵ Distributed matrices

To create the Cartesian, row, and column communicators, we need to check if the
distribution is really of a ŵD nature (i.e., Pr > 1 or Pc > 1):
! Create Cartesian communicators: created for any 2D/1D distribution
if (P_r > 1 .or. P_c > 1) then

! Define process grid dimensions
dims(1) = P_r
dims(2) = P_c
periods(1) = .false.
periods(2) = .false.
call MPI_Cart_create(comm, 2, dims, periods, .true.,

desc%cart_comm, ierr)↪→

if (ierr /= MPI_SUCCESS) then

ŶŶ/Ÿż

Modifying the descriptor init to include communicators
ŵ Distributed matrices

print *, 'Error creating Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if
if (desc%cart_comm == MPI_COMM_NULL) then
desc%row_comm = MPI_COMM_NULL
desc%col_comm = MPI_COMM_NULL
desc%my_row = -1
desc%my_col = -1
return

end if
call MPI_Comm_rank(desc%cart_comm, rank, ierr)

Ŷŷ/Ÿż

Modifying the descriptor init to include communicators
ŵ Distributed matrices

if (ierr /= MPI_SUCCESS) then
print *, 'Error getting rank in Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if

call MPI_Cart_coords(desc%cart_comm, rank, 2, coords, ierr)
if (ierr /= MPI_SUCCESS) then

print *, 'Error getting coordinates in Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if

ŶŸ/Ÿż

Modifying the descriptor init to include communicators
ŵ Distributed matrices

desc%my_row = coords(1)
desc%my_col = coords(2)

! Split into row and column communicators
call MPI_Comm_split(desc%cart_comm, coords(1), coords(2),

desc%row_comm, ierr)↪→

call MPI_Comm_split(desc%cart_comm, coords(2), coords(1),
desc%col_comm, ierr)↪→

else
! For 1D distributions, use the original communicator
desc%cart_comm = comm
desc%row_comm = comm

ŶŹ/Ÿż

Modifying the descriptor init to include communicators
ŵ Distributed matrices

desc%col_comm = comm
desc%my_row = 0
desc%my_col = 0

end if
end subroutine init

• This modification ensures that each distributed matrix has access to the necessary
communicators for efficient parallel operations.

• The process coordinates myrow and mycol are also stored for easy reference.
• We have added error checks to ensure the communicator creation is successful.

Ŷź/Ÿż

Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

Now that we have the communicators set up, we also need to implement the global to
local and local to global index mapping functions.

These functions are useful to query and write specific elements of the distributed matrix.
subroutine global_to_local(desc, i_global, j_global, &
p_r, p_c, i_local, j_local)
implicit none
class(descriptor), intent(in) :: desc
integer, intent(in) :: i_global, j_global
integer, intent(out) :: p_r, p_c
integer, intent(out) :: i_local, j_local

integer :: ig, jg ! 0-based global element indices
integer :: ib, jb ! absolute block indices

ŶŻ/Ÿż

Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

integer :: off_i, off_j ! offset inside block (0-based)
integer :: first_b_r, first_b_c
integer :: lbr, lbc ! local block indices

! Convert to 0-based element indices
ig = i_global - 1
jg = j_global - 1
! Absolute block indices
ib = ig / desc%MB
jb = jg / desc%NB
! Offsets inside their blocks
off_i = mod(ig, desc%MB)
off_j = mod(jg, desc%NB)

Ŷż/Ÿż

Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

! Owning process coordinates (0..P_r-1, 0..P_c-1)
p_r = mod(ib - desc%RSRC, desc%P_r)
p_c = mod(jb - desc%CSRC, desc%P_c)
! First absolute block index assigned to that process
first_b_r = mod(desc%RSRC + p_r, desc%P_r)
first_b_c = mod(desc%CSRC + p_c, desc%P_c)
! Local block index on owning process (non-negative)
lbr = (ib - first_b_r) / desc%P_r
lbc = (jb - first_b_c) / desc%P_c
! Local 1-based indices in Fortran storage
i_local = lbr * desc%MB + off_i + 1
j_local = lbc * desc%NB + off_j + 1

end subroutine global_to_local

ŷų/Ÿż

Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

While the converse mapping is given by:
subroutine local_to_global(desc, p_r, p_c, &
i_local, j_local, &
i_global, j_global)
implicit none
class(descriptor), intent(in) :: desc
integer, intent(in) :: p_r, p_c
integer, intent(in) :: i_local, j_local
integer, intent(out) :: i_global, j_global

integer :: il, jl ! 0-based local indices
integer :: lbr, lbc ! local block indices
integer :: off_i, off_j ! offset inside local block

ŷŴ/Ÿż

Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

integer :: first_b_r, first_b_c
integer :: ib, jb ! absolute block indices

! Convert to 0-based local indices
il = i_local - 1
jl = j_local - 1
! Local block indices and offsets (0-based)
lbr = il / desc%MB
lbc = jl / desc%NB
off_i = mod(il, desc%MB)
off_j = mod(jl, desc%NB)
! First absolute block index assigned to (p_r,p_c)
first_b_r = mod(desc%RSRC + p_r, desc%P_r)
first_b_c = mod(desc%CSRC + p_c, desc%P_c)

ŷŵ/Ÿż

Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

! Reconstruct absolute block indices
ib = first_b_r + lbr * desc%P_r
jb = first_b_c + lbc * desc%P_c
! Convert back to 1-based global indices
i_global = ib * desc%MB + off_i + 1
j_global = jb * desc%NB + off_j + 1

end subroutine local_to_global

Which can be used as needed in our distributed matrix operations.

ŷŶ/Ÿż

The prototype of the distributed GEMV subroutine
ŵ Distributed matrices

We have now done all the necessary preparations to implement the distributed GEMV.
The prototype of the distributed GEMV subroutine can be defined as follows:
subroutine gemv_distributed(mat, x, alpha, y, beta)

class(distributed_matrix), intent(in) :: mat
class(distributed_matrix), intent(in) :: x
class(distributed_matrix), intent(inout) :: y
real(wp), intent(in) :: alpha, beta

end subroutine gemv_distributed
Where:

• mat is the distributed matrix A,
• x and y are the distributed input and output vectors, respectively,
• alpha and beta are scalars for the operation y = αAx+ βy.

ŷŷ/Ÿż

Temporary storage for the broadcasted vector
ŵ Distributed matrices

We need to create a temporary storage for the broadcasted vector segments, and to
reduce the code redundancy, we can define a local variable for the descriptor of the
matrix:
type(descriptor) :: desc
integer :: mloc, nloc, ierr, stat
real(wp), allocatable :: xbuf(:), y_partial(:), y_local(:)

desc = mat%desc
mloc = size(mat%local_data, 1)
nloc = size(mat%local_data, 2)

When do we need to allocate the temporary buffer xbuf?

ŷŸ/Ÿż

Temporary storage for the broadcasted vector
ŵ Distributed matrices

We need to allocate the temporary buffer xbuf on all processes:
allocate(xbuf(nloc), stat=stat)
if (stat /= 0) then

print *, 'Error allocating xbuf'
call MPI_Abort(mat%desc%comm, stat, ierr)

end if
However, only the processes in the source column of the vector need to copy their local
data into this buffer:
if (desc%my_row == desc%RSRC) then

xbuf = x%local_data(:,1)
end if
And now we are ready to perform the broadcast along the process rows.

ŷŹ/Ÿż

Executing the broadcast down the process columns
ŵ Distributed matrices

The call is
call MPI_Bcast(xbuf, nloc, MPI_REAL8, desc%RSRC, desc%col_comm, ierr)
where:

• xbuf is the temporary buffer for the broadcasted vector segment, it contains the
local portion of the vector on the source process and will be filled on all other
processes,

• nloc is the size of the local portion of the vector,
• MPI_REAL8 is the MPI datatype for double precision real numbers,
• desc%RSRC is the row source process for the vector—the process which owns the

local data to be broadcasted,
• desc%col_comm is the column communicator.
• ierr is the error code.

ŷź/Ÿż

Executing the local GEMV
ŵ Distributed matrices

We now have the necessary data to perform the local GEMV operation:

ypartial = αAlocalxbuf

allocate(y_partial(mloc), stat=stat)
if (stat /= 0) then

print *, 'Error allocating y_partial'
call MPI_Abort(mat%desc%comm, stat, ierr)

end if
call dgemv('N', mloc, nloc, alpha, mat%local_data, mloc, xbuf, 1,

0.0_wp, y_partial, 1)↪→

Now on each process we have the local contribution to the output vector y.

ŷŻ/Ÿż

Reducing the partial results along process columns
ŵ Distributed matrices

The last two step are
Ŵ. Reduce the partial results along the process columns,
ŵ. Scale and update the output vector y.

The reduction can be performed using:
if (desc%my_row == desc%RSRC) then
allocate(y_local(mloc), stat=stat)

if (stat /= 0) then
print *, 'Error allocating y_local'
call MPI_Abort(mat%desc%comm, stat, ierr)

end if
end if
call MPI_Reduce(y_partial, y_local, mloc, MPI_REAL8, MPI_SUM,

mat%desc%RSRC, mat%desc%col_comm, ierr)↪→

ŷż/Ÿż

Reducing the partial results along process columns
ŵ Distributed matrices

The last two step are
Ŵ. Reduce the partial results along the process columns,
ŵ. Scale and update the output vector y.

The scaling and update of the output vector can be done using:
if (desc%my_row == desc%RSRC) then

! Scale existing y by beta
y%local_data(:,1) = beta * y%local_data(:,1)
! Add the reduced result
y%local_data(:,1) = y%local_data(:,1) + y_local
deallocate(y_local)

end if

ŷż/Ÿż

Let’s summarize the distributed GEMV implementation
ŵ Distributed matrices

Ŵ. Create communicators for process rows and columns.
ŵ. In the distributed GEMV subroutine:

ŵ.Ŵ Allocate a temporary buffer for the broadcasted vector segment.
ŵ.ŵ Copy local vector data into the buffer on the source process.
ŵ.Ŷ Broadcast the vector segment along the process columns.
ŵ.ŷ Perform the local GEMV operation to compute the partial result.
ŵ.Ÿ Reduce the partial results along the process columns.
ŵ.Ź Scale and update the output vector on the source process.

As you can see, implementing distributed GEMV requires careful management of data
distribution and communication patterns to ensure efficiency and correctness in a parallel
computing environment.

Ÿų/Ÿż

Running a test
ŵ Distributed matrices

We can now run a test of our distributed GEMV implementation by computing:

y = 1.0Ax+ 0.0 y, with {(A)i,j = 1.0}ni,j=1, x = 1.

program test_distributed_gemv
use mpi
use distributed_gemv
use iso_fortran_env, only: wp => real64
implicit none
integer :: ierr, rank, world_size, colrank, rowrank
! Matrix size
integer, parameter :: M = 900, N = 900
! Matrix descriptor
type(descriptor) :: desc_matrix, desc_vector
type(distributed_matrix) :: mat, x, y

ŸŴ/Ÿż

Running a test
ŵ Distributed matrices

! Check variables
integer :: i
logical :: correct

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, world_size, ierr)

! Create a descriptor for a square matrix distributed over a 3x3 process grid
call desc_matrix%init(MPI_COMM_WORLD, M, N, M/3, N/3, 3, 3, 0, 0)
! Initialize distributed matrix
call mat%init_matrix(desc_matrix, 1.0_wp)

! Create a distributed vector (which is an M x 1 distributed matrix)
call desc_vector%init(MPI_COMM_WORLD, M, 1, M/3, 1, 3, 1, 0, 0)

Ÿŵ/Ÿż

Running a test
ŵ Distributed matrices

call x%init_matrix(desc_vector, 1.0_wp)
call y%init_matrix(desc_vector, 0.0_wp)

! Perform distributed matrix-vector multiplication
call mat%gemv_distributed(x, 1.0_wp, y, 0.0_wp)

! Check results: we are multiplying a matrix of ones by a vector of ones
! So the result should be a vector of size M with all entries equal to N
! we need to check only the local part of y only on the ranks that own data
correct = .true.
call MPI_Comm_rank(desc_matrix%col_comm, colrank, ierr)

if (colrank == 0) then
do i = 1, size(y%local_data, 1)

if (y%local_data(i,1) /= real(N, wp)) then

ŸŶ/Ÿż

Running a test
ŵ Distributed matrices

correct = .false.
exit

end if
end do
if (correct) then

print *, 'Test passed: Distributed GEMV result is correct on rank', rank,
'colrank', colrank↪→

else
print *, 'Test failed: Distributed GEMV result is incorrect on rank', rank,

'colrank', colrank↪→

end if
end if

call MPI_Finalize(ierr)
end program test_distributed_gemv

Ÿŷ/Ÿż

We compile and run the test
ŵ Distributed matrices

We can compile and run the test program using:
mpifort -o distributed_gemv distributed_gemv.f90 -lopenblas

And then run the program with ż processes (ŶxŶ grid):
mpirun -np 9 ./distributed_gemv

Which should output:
Test passed: Distributed GEMV result is correct on rank 2 colrank 0
Test passed: Distributed GEMV result is correct on rank 0 colrank 0
Test passed: Distributed GEMV result is correct on rank 1 colrank 0

ŸŸ/Ÿż

Run another test
ŵ Distributed matrices

We can run another test with a non unifor vector x:
if (colrank == 0) then
y%local_data(:,1) = 1.0_wp
! Reinitialize x to have values ((rank-1)*(N/3)+1):(rank)*(N/3)
do i = 1, size(x%local_data, 1)
x%local_data(i,1) = real((rowrank+1)*(N/3)+i, wp)
! write(*,*) 'Rank', rank, 'x local(', i, ') =', x%local_data(i,1)

end do
end if
And perform the distributed GEMV again:
call mat%gemv_distributed(x, 1.0_wp, y, 1.0_wp)
The expected result is now:

yi =
N∑
j=1

Ai,jxj + yi =
N∑
j=1

1.0 · xj + 1.0 =

N∑
j=1

xj =
N(N+ 1)

2
+ 1.0 = 405451.0

ŸŹ/Ÿż

Check the result of the second test
ŵ Distributed matrices

correct = .true.
if (colrank == 0) then

do i = 1, size(y%local_data, 1)
if (y%local_data(i,1) /= real(N*(N+1), wp)/2.0+1.0) then

correct = .false.
exit

end if
end do
if (correct) then

print *, 'Test passed: Distributed GEMV with beta=1.0 result is
correct on rank', rank, 'colrank', colrank↪→

else
print *, 'Test failed: Distributed GEMV with beta=1.0 result is

incorrect on rank', rank, 'colrank', colrank↪→

end if
end if
Ÿź/Ÿż

Run and check the second test
ŵ Distributed matrices

We can now run the modified test program again:
mpirun -np 9 ./distributed_gemv
Which should output:
Test passed: Distributed GEMV with beta=1.0 result is correct on rank 1

colrank 0↪→

Test passed: Distributed GEMV with beta=1.0 result is correct on rank 2
colrank 0↪→

Test passed: Distributed GEMV with beta=1.0 result is correct on rank 0
colrank 0↪→

ŸŻ/Ÿż

Summary, conclusions, and outlook
Ŷ Summary, conclusions, and outlook

We have seen:
How to implement a descriptor for distributed matrices,
How to create communicators for process rows and columns,
How to implement a distributed GEMV operation using MPI communication routines

Next steps are:
Explore the ScaLAPACK library for distributed linear algebra,
Implement distributed matrix-matrix multiplication (GEMM),
Investigate the performance of distributed operations.

Ÿż/Ÿż

	Last time on High Performance Linear Algebra
	Distributed matrices
	Data layout strategies
	2D-Block Cyclic Implementation
	A distributed matrix defined on a descriptor
	The distributed GEMV operation

	Summary, conclusions, and outlook

