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Last time on High Performance Linear Algebra

1 Last time on High Performance Linear Algebra

We have
Described the Message Passing Interface (MPI) programming model,

Implemented Level-1 BLAS operations for distributed vectors using MPI,

Analyzed performance characteristics for axpy, dot product, and norm,

[ (9 |8 3

Identified scaling limits due to communication overhead in reduction operations

Next steps:
e Discuss data distribution strategies for distributed matrices,
e Implement Level-2 BLAS operations for distributed matrices and vectors,
e Explore the Level-2 and Level-3 BLAS operations in distributed settings.
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Distributed matrices

2 Distributed matrices

When dealing with large matrices that cannot fit into the memory of a single node, we

need to distribute the matrix across multiple nodes of our distributed-memory
environment.

How can we do that?

@ we have already partially addressed this question when discussing the construction
of matrix-vector products and matrix-matrix products in a shared-memory context;

@ we have discussed this for the case of distributed vectors last time.
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Key concerns in data layout

2 Distributed matrices

When choosing a data layout for dense matrix computations on distributed-memory
systems, we must consider:

Load Balance Computational Efficiency
e Split work evenly among processors o Utilize Level 3 BLAS on local data
e Avoid idle processors during e Leverage memory hierarchy
computation

These requirements often conflict and require careful trade-offs!
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1D Block Column Distribution

2 Distributed matrices

Characteristics:

e Each process stores one block of
contiguous columns

e Column k goes to process |(k — 1)/n.]
mod P

v
-
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o
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N

Problems:

e Poor load balance: once columns are
completed, processes become idle

e Not suitable for matrix operations like
Gaussian elimination

6/59



1D Cyclic Column Distribution
2 Distributed matrices Characteristics:

e Column k assigned to process (k — 1)
mod P

e Single columns are interleaved across
processes

Advantages:

e Better load balance

e Good work distribution

Problems:

e Cannot use Level 2/3 BLAS efficiently
(only single columns)

e Poor memory hierarchy utilization
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1D Block-Cyclic Column Distribution

2 Distributed matrices
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Characteristics:

e Choose block size NB

e Column block k assigned to process

|(k—1)/NB| mod P

Advantages:

e Reasonable load balance

e Can use Level 2/3 BLAS locally
Problems:

e Serial bottleneck: factorization occurs
on one process

e Limited parallelism in factorization step



2 Distributed matrices

(0,0) (0,1)

(1,0) (1,1)

Processors in P, x P, grid

2D Block-Cyclic Distribution

Characteristics:

Arrange P processes in P, x P,
rectangular grid

Block size parameters: MB x NB

Block (i,j) goes to process
(i mod Py,j mod P,)

Advantages:

Excellent load balance

Allows P.-fold parallelism in columns
Can use Level 2/3 BLAS

Good scalability

This is the standard layout used by ScaLAPACK! But how do we implement it?

9/59



Comparison of Distribution Strategies

2 Distributed matrices

Strategy Load Balance BLAS Use Scalability Complexity
1D Block Poor Good Bad Simple
1D Cyclic Good Poor Fair Simple
1D Block-Cyclic Fair Fair Fair Moderate
2D Block-Cyclic Excellent Good Excellent Complex

Key Trade-offs:
e Load balance vs. computational efficiency
e Simple schemes vs. scalability
e The 2D block-cyclic strategy achieves the best overall balance
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Implementing the 2D Block-Cyclic Distribution

2 Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (2D block-cyclic):
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Communicator with P = P, x P, processes
Global matrix of size M x N

Process grid of size P, x P,

Block size MB x NB

Source process (Rsrc, Csrc)

Use 0-based global indices: ip =i— 1, jo=j— 1

_ | o _ | Jo
=) b= |3

Global block indices:



Implementing the 2D Block-Cyclic Distribution

2 Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (2D block-cyclic):
e Communicator with P = P, x P, processes
o Global matrix of size M x N
e Process grid of size P, x P,
e Block size MB x NB
e Source process (Rgc, Csrc)
e Use 0-based global indices: ip =i — 1, jo=j—1

e Owning process:

pr = (br - Rsrc) mod Pr, p.= (bc - Csrc) mod P,
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Implementing the 2D Block-Cyclic Distribution

2 Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (2D block-cyclic):
e Communicator with P = P, x P, processes
e Global matrix of size M x N
e Process grid of size P, x P,
e Block size MB x NB
e Source process (Rec, Csrc)
e Use 0-based global indices: ip =i — 1, jo=j—1

/. — br_Rsrc (. — bc_csrc
r Pr 9 c PC

e Local block indices:
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Implementing the 2D Block-Cyclic Distribution

2 Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (2D block-cyclic):
e Communicator with P = P, x P, processes
e Global matrix of size M x N
e Process grid of size P, x P,
e Block size MB x NB
e Source process (Rerc, Csrc)
e Use 0-based global indices: ip =i — 1, jo=j—1
e Local indices (1-based, Fortran):

local_row = ¢, - MB + (ip mod MB) + 1
local_col = /. - NB + (jo mod NB) + 1
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Building a descriptor for the 2D process grid

2 Distributed matrices

To implement the 2D block-cyclic distribution, we need a descriptor that contains:

e Global matrix dimensions M, N
e Block sizes MB, NB
Process grid dimensions P_r,P_c

Leading dimension of local arrays

Starting indices for submatrices, they are usually called RSRC and CSRC parameters
specify the starting process coordinates for the distribution, and are typically set to 0.

This descriptor will be used in all distributed matrix operations to correctly map global
indices to local storage. We can build it as a Fortran derived type.
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type :: des

integer ::
integer ::
integer ::
integer ::
integer ::
integer ::
integer ::
integer ::
integer ::
integer ::

end type de

Fortran Descriptor Type

criptor
comm
M

N

MB
NB
Pr
P c
LLD
RSRC
CSRC
scrlptor

L s T L S T N PG T

2 Distributed matrices

MPI communicator

Global number of rows

Global number of columns

Block size in Tows

Block size in columns

Number of process rows

Number of process columns
Leading dimension of local array
Row source process

Column source process

This structure encapsulates all necessary information for managing the 2D block-cyclic
distribution of matrices across a process grid.
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But how do we init the descriptor?

2 Distributed matrices

To initialize the descriptor, we can create an initialization procedure that sets all the fields
based on the global matrix size, block sizes, and process grid dimensions.

e This procedure will be called once at the beginning of the program to set up the
descriptor.

o It will compute the leading dimension of the local arrays based on the block sizes and
process grid.

e The process coordinates (p;, p.) must be provided to correctly map back to global
indices, they can be retrieved from the MPI rank.
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But how do we init the descriptor?

2 Distributed matrices

subroutine init(desc, comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC)
class(descriptor), intent(out) :: desc
integer, intent(in) :: comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC
descl,comm = comm
descyM = M
desc/%N = N
descyMB = MB
desc/NB = NB
desc)P_r = P_r
desc%P_c = P_c
desc%RSRC = RSRC
desc’CSRC = CSRC
desc}LLD = ((M + P_.r * MB - 1) / (P_r * MB)) * MB
end subroutine init
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ﬂl\w A distributed matrix type

2 Distributed matrices

We now need to build a distributed matrix type that uses the descriptor to manage its
data.

This can be done by defining a Fortran derived type that contains:

e The local array to store the matrix data,
e The descriptor for the matrix distribution,

e Type-bound procedures for the BLAS matrix operations.
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Distributed Matrix Type Definition

2 Distributed matrices

We can define the distributed matrix type as follows:
type :: distributed_matrix

real, allocatable :: local_data(:,:) ! Local matriz storage
type(descriptor) :: desc ! Descriptor for distribution
contains

<Type bound procedures for matrix operations go here>
end type distributed_matrix

We don't need to add more fields, as the descriptor contains all necessary information
about the global matrix, and the size of the local is in the desc’NB and descMB fields.
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The distributed GEMV operation

2 Distributed matrices

The first Level-2 BLAS operation we can implement is the distributed matrix-vector
product (GEMV):
y < aAX + fy

where A is a distributed matrix, and x and y are distributed vectors.
Key Steps:
e Each process computes its local contribution to the matrix-vector product.

o A global reduction is performed to combine the local results into the final vector y.

@ But how do we distribute the vectors x and y?
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The distributed GEMV operation

2 Distributed matrices

The first Level-2 BLAS operation we can implement is the distributed matrix-vector
product (GEMV):
y < aAX + fy

where A is a distributed matrix, and x and y are distributed vectors.
Key Steps:
e Each process computes its local contribution to the matrix-vector product.

o A global reduction is performed to combine the local results into the final vector y.

@ But how do we distribute the vectors x and y?

© We can use a 1D block distribution for the vectors to align with the matrix
distribution.
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Distributed GEMV Implementation

2 Distributed matrices

We can visualize the distributed GEMV operation with a block cyclic distributed matrix,
and a 1D block distributed vector as in the following diagram:

y = AXx, AecRVYN  xye RV
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NP

?/A\$ Vector Distribution

2 Distributed matrices

Column vector: x € RNx!
Descriptor parameters:

— M =N
— N =1
— NB =1

Block-cyclic distribution in rows only

Only process column 0 stores vector data
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4‘\\\ What communications are needed for GEMV?

2 Distributed matrices

We can represent the distributed GEMV operation as follows:

Ao A1 Aoz Aos| [Xo AgoXo + Ao1X1 + Ap2x2 + Agsxs
Ay Ay App Agz| (x| |AroXo + A11X1 + AjoXo + Ag3X3
Ay Agr Agy Ags| |x2|  |AooXo + Ag1xy + Axaxy + Agsxs
Asp As1 Asx Ass] [x3 A3pxo + Az1X1 + A3oxo + Agsxs

This means that:
e All processes with processo column 0 need x
e All processes with processo column 1 need x;
e All processes with processo column 2 need xo
o All processes with processo column 3 need x3
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4‘\\\ What communications are needed for GEMV?

2 Distributed matrices

We can represent the distributed GEMV operation as follows:

Ao Aor Aoz Aos| [Xo AgoXo + Ap1Xx1 + Ag2x2 + Apsxs
Ayp A App Agz| (x| |AroXo + A11X1 + AjoXo + Ag3X3
Ay A1 Agy Ags| |x2|  |AoXo + A21x1 + Axoxy + Agsxs
Asp Az1 Asx Ass] [x3 A3pXo + A31X1 + A3oxo + Agsxs

This means that:
e All processes with processo column 0 need x
e All processes with processo column 1 need x;
e All processes with processo column 2 need xo
o All processes with processo column 3 need x3
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4‘\\\ What communications are needed for GEMV?

2 Distributed matrices

We can represent the distributed GEMV operation as follows:

Ao Aor Aoz Aos| [Xo AgoXo + Ao1X1 + Ap2x2 + Apsxs
Ayp A Ay Agz| (x| |AoXo + A11X1 + Ajoxo + Ag3X3
Ay Agr Agy Ags| |x2|  |AoXo + Ag1xy + Axaxy + Agsxs
Asp Az1 Asx Ass] [x3 A3pXo + Az1X1 + A3oxo + Agsxs

This means that:
e All processes with processo column 0 need x
e All processes with processo column 1 need x;
e All processes with processo column 2 need xo
o All processes with processo column 3 need x3
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4‘\\\ What communications are needed for GEMV?

2 Distributed matrices

We can represent the distributed GEMV operation as follows:

Ao Aor A2 Aos| [Xo AgoXo + Ao1X1 + Ag2x2 + Apsxs
Ay A App Ags| (x| |AroXo + A11X1 + AjoXo + Ag3x3
Ay Ag1 Agy Ags| |x2|  |AooXo + A21xy + Axaxy + Agsxs
Asp As1 Asx Ass] [x3 A3pxo + Az1X1 + A3oxo + Agsxs

This means that:
e All processes with processo column 0 need x
e All processes with processo column 1 need x;
e All processes with processo column 2 need xo
e All processes with processo column 3 need x3
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4‘\\\ What communications are needed for GEMV?

2 Distributed matrices

We can represent the distributed GEMV operation as follows:

Ao Aor Aoz Aos| [Xo AgoXo + Ao1X1 + Ag2x2 + ApsXxs
Ay Ay App Agz| (x| |AoXo + A11X1 + AjoXo + Ag3X3
Ay Axi Agy Ags| |x2|  |AooXo + A21x1 + AxaXy + Agsxs
Asp As1 Asx Ass] [x3 A3pxo + Az1X1 + A3oxo + Agsxs

This means that:
e All processes with processo column 0 need x
e All processes with processo column 1 need x;
e All processes with processo column 2 need xo
o All processes with processo column 3 need x3
e Each process computes its local contribution to y and then reduce along the column.
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4‘\\\ What is the right communication function?

2 Distributed matrices

To implement the required communication pattern, we can use:

e We need to broadcast the vector segments x, X1, X2, X3 along the process columns.
x0 — (0,0),(1,0),(2,0),(3,0)
x1—(0,1),(1,1),(2,1),(3,1)
xp = (0,2),(1,2),(2,2),(3,2)
x3 = (0,3),(1,3),(2,3),(3,3)

e We need a communicator for each process column to perform these broadcasts.
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Building communicators for GEMV

2 Distributed matrices

We need to create communicators for the process rows and columns:

dims(1) = P_r ! Define process grid dimensions

dims(2) = P_c

periods(1l) = .false.

periods(2) = .false.

! Create Cartesian communicator

call MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, .true., cart_comm,
— iderr)

! Split into row and column communicators

call MPI_Comm_rank(cart_comm, cart_rank, ierr)

call MPI_Cart_coords(cart_comm, cart_rank, 2, coords, ierr)

call MPI_Comm_split(cart_comm, coords(l), coords(2), row_comm, ierr)
call MPI_Comm_split(cart_comm, coords(2), coords(l), col_comm, ierr)

These communicators allow us to perform broadcasts and reductions efficiently along the
rows and columns of the process
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Details and signature of the new MPI functions

2 Distributed matrices

The subroutine MPI_Cart_create has signature:

call MPI_Cart_create(comm_old, ndims, dims, periods, reorder,
< comm_cart, ierr)

where:
e comm_old: input communicator (e.g., MPI_COMM_WORLD)
e ndims: number of dimensions (2 for a 2D grid)
e dims: array specifying the size of each dimension
e periods: array specifying whether each dimension is periodic
e reorder: logical flag to allow process rank reordering
e comm_cart: output Cartesian communicator

e ierr: error code
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Details and signature of the new MPI functions

2 Distributed matrices

The subroutine MPI_Cart_create has signature:
call MPI_Cart_create(comm_old, ndims, dims, periods, reorder,
< comm_cart, ierr)

This subroutine creates a Cartesian communicator based on the specified dimensions and
periodicity, i.e., a 2D grid of processes.

Po Cartesian ranks
.. P1
Original . [(0,0) |(0,1)
ranks Po
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Details and signature of the new MPI functions

2 Distributed matrices

The subroutine MPI_Comm_split has signature:

call MPI_Comm_split(comm, color, key, newcomm, ierr)

where:

25/59

comm: input communicator

color: integer that determines the new communicator grouping

key: integer that determines the rank ordering in the new communicator
newcomm: output new communicator

ierr: error code



Details and signature of the new MPI functions

2 Distributed matrices

The subroutine MPI_Comm_split has signature:
call MPI_Comm_split(comm, color, key, newcomm, ierr)

This subroutine splits an existing communicator into multiple new communicators based
on the color parameter, allowing for the creation of row and column communicators
from the Cartesian grid.

Po Cartesian ranks (o] 1 ROV\{
communicator
Original i . (0,0) |(0,1) N
ranks ! .
P2 © Column
P3 (1; 0) (17 1) 1 communicator

25/59



\‘ '[,‘

ﬂk\V An example of communicator creation and splitting

2 Distributed matrices

program communicator_example
use mpi
use iso_fortran_env, only: output_unit
implicit none

integer :: ierr, rank, size

integer :: cart_comm, row_comm, col_comm
integer :: dims(2), coords(2)

logical :: periods(2)

integer :: myx, myy

call MPI Inlt(lerr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
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ﬂk\V An example of communicator creation and splitting

2 Distributed matrices

! Define process grid dimensions

dims(1) = 2 ! Number of process rows

dims(2) = size / 2 ! Number of process columns
periods(1l) = .false.

periods(2) = .false.

! Create Cartesian communicator

call MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, .true.,
— cart_comm, ierr)

call MPI_Cart_coords(cart_comm, rank, 2, coords, ierr)
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ﬂk\V An example of communicator creation and splitting

2 Distributed matrices

! Split into row and column communicators
call MPI_Comm_split(cart_comm, coords(l), coords(2), row_comm,

< ierr)
call MPI_Comm_split(cart_comm, coords(2), coords(1l), col_comm,
< ierr)

! Print ranks in each communicator for verification
call MPI_Comm_rank(row_comm, myx, ierr)
call MPI_Comm_rank(col_comm, myy, ierr)
write(output_unit, *) 'Global Rank:', rank, 'Row Comm Rank:', myx,
<« 'Col Comm Rank:', myy
call MPI Finalize(ierr)
end program communicator_example
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ﬂk\V An example of communicator creation and splitting

2 Distributed matrices

We can compile and run this program with 4 processes:

mpifort -o communicator_example communicator_example.f90
mpirun -np 4 ./communicator_example

The result will be something like:

Global Rank: 3 Row Comm Rank: 1 Col Comm Rank:
Global Rank: 0 Row Comm Rank: 0 Col Comm Rank:
Global Rank: 1 Row Comm Rank: 1 Col Comm Rank:
Global Rank: 2 Row Comm Rank: 0 Col Comm Rank:

29/59
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Packaging these communicators in our descriptor

2 Distributed matrices

To facilitate the use of these communicators in our distributed matrix operations, we can
add them as fields in our descriptor type:
type :: descriptor

integer :: comm ! MPI communicator

integer :: M, N ! Global number of rows/columns

integer :: MB, NB ! Block size in rows/columns

integer :: P_r, P_c ! Number of process rows/columns

integer :: LLD ! Leading dimension of local array

integer :: RSRC, CSRC ! Row, Column source process

integer :: cart_comm, row_comm, col_comm / Cached communicators
integer :: myrow, mycol

end type descriptor
And modify the initialization routine to set these fields accordingly.
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Modifying the descriptor init to include communicators

2 Distributed matrices

w,

We can modify the init subroutine to create and store the communicators in the
descriptor:
subroutine init(desc, comm, M, N, MB, NB, P_.r, P_c, RSRC, CSRC)
implicit none
class(descriptor), intent(out) :: desc
integer, intent(in) :: comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC
! Local wvartiables
integer :: ierr, dims(2), coords(2)
integer :: size
logical :: periods(2)
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Modifying the descriptor init to include communicators

2 Distributed matrices

w,

! standard initialization (same as before)
descl,comm = comm

desc/M = M
descN = N
desc%MB = MB
desc’NB = NB
desc/%P_r = P_r
deschP_c = P c

desc’%RSRC = RSRC
desc’%CSRC = CSRC
desc%LLD = ((M + P_.r *x MB - 1) / (P_r * MB)) * MB
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Modifying the descriptor init to include communicators

2 Distributed matrices

w,

To create the Cartesian, row, and column communicators, we need to check if the
distribution is really of a 2D nature (i.e., P, > 1 or P. > 1):

! Create Cartesian communicators: created for any 2D/1D distribution
if ( P_.r > 1 .or. P_.c > 1 ) then

! Define process grid dimensions

dims(1) = P_r

dims(2) = P_c

periods(1l) = .false.

periods(2) .false.

call MPI_Cart_create(comm, 2, dims, periods, .true.,

< desclcart_comm, ierr)

if ( ierr /= MPI_SUCCESS ) then
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w,
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Modifying the descriptor init to include communicators

2 Distributed matrices

print *, 'Error creating Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if

if ( desclcart_comm == MPI_COMM_NULL ) then
desclrow_comm = MPI_COMM_NULL
desclycol _comm = MPI_COMM_NULL

descYmy_row = -1
desc/my_col = -1
return

end if

call MPI_Comm_rank(descycart_comm, rank, ierr)



“%u‘
Modifying the descriptor init to include communicators

2 Distributed matrices

w,

if ( ierr /= MPI_SUCCESS ) then
print *, 'Error getting rank in Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if

call MPI Cart _coords(desclcart _comm, rank, 2, coords, ierr)

if ( ierr /= MPI_SUCCESS ) then
print *, 'Error getting coordinates in Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if
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Modifying the descriptor init to include communicators

2 Distributed matrices

w,

desclmy_row = coords(1l)

desc/my_col = coords(2)
I Split into row and column communicators
call MPI_Comm_split(descycart_comm, coords(l), coords(2),
< desclrow_comm, ierr)
call MPI_Comm_split(desclcart_comm, coords(2), coords(1l),
< desclcol_comm, ierr)

else
! For 1D distributions, use the original communicator
descl,cart_comm = comm
desclrow_comm = comm
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Modifying the descriptor init to include communicators

4‘\\\ 2 Distributed matrices

end
end

37/59

desc¥col_comm
desclmy_row
desc/my_col
if

subroutine init

]
O O

This modification ensures that each distributed matrix has access to the necessary
communicators for efficient parallel operations.

The process coordinates myrow and mycol are also stored for easy reference.

We have added error checks to ensure the communicator creation is successful.
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ﬂk\V Global to Local and Local to Global Index Mapping
2 Distributed matrices

Now that we have the communicators set up, we also need to implement the global to
local and local to global index mapping functions.

These functions are useful to query and write specific elements of the distributed matrix.
subroutine global_to_local(desc, i_global, j_global, &

p_r, p_c, i_local, j_local)

implicit none

class(descriptor), intent(in) :: desc

integer, intent(in) :: i_global, j_global

integer, intent(out) :: p_r, p_c

integer, intent(out) :: i_local, j_local

integer :: ig, jg ! O-based global element indices
integer :: ib, jb ! absolute block indices
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ﬂk\V Global to Local and Local to Global Index Mapping

2 Distributed matrices

integer :: off_i, off_j ! offset inside block (0-based)
integer :: first_b_r, first_b_c
integer :: 1lbr, lbc ! local block indices

! Convert to O-based element indices
ig = i_global - 1
jg = j_global - 1
! Absolute block indices
b = ig / desc/MB
= jg / descy\NB
! Offsets instde their blocks
off_i = mod(ig, desc%MB)
off_j = mod(jg, desc%NB)
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WK\V Global to Local and Local to Global Index Mapping

2 Distributed matrices

! Ouning process coordinates (0..P_r-1, 0..P_c-1)
p_r = mod(ib - desc%RSRC, desclP_r)
p_c = mod(jb - desc%CSRC, desclP_c)
! First absolute block index assigned to that process
first_b_r = mod(desc)RSRC + p_r, desc/P_r)
first_b_c = mod(desc)CSRC + p_c, desc%kP_c)
! Local block indexz on owning process (non-negative)
1br = (ib - first_b_r) / desclP_r
lbc = (jb - first_b_c) / desclP_c
! Local 1-based indices in Fortran storage
i_local = lbr * desc)MB + off_i + 1
j_local = 1bc * desc%4NB + off_j + 1
end subroutine global_to_local
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ﬂk\V Global to Local and Local to Global Index Mapping

2 Distributed matrices

While the converse mapping is given by:

subroutine local_to_global(desc, p_r, p_c, &
i_local, j_local, &
i_global, j_global)
implicit none

class(descriptor), intent(in) :: desc

integer, intent(in) :: p_r, p_c

integer, intent(in) :: i_local, j_local

integer, intent(out) :: i_global, j_global

integer :: il, jl ! O-based local indices
integer :: 1lbr, lbc ! local block indices
integer :: off_i, off_j ! offset inside local block
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ﬂk\V Global to Local and Local to Global Index Mapping

2 Distributed matrices

integer :: first_b_r, first_b_c
integer :: ib, jb ! absolute block indices

! Convert to O-based local indices

il = i _local - 1

jl = j_local - 1

! Local block indices and offsets (O-based)
lbr = il / desc%MB

lbc = j1 / desc%NB

off_i = mod(il, desc’MB)

off_j = mod(jl, desc’NB)

! First absolute block index assigned to (p_r,p_c)
first_b_r = mod(desc/RSRC + p_r, descP_r)
first_b_c = mod(desc’CSRC + p_c, desc%P_c)
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Global to Local and Local to Global Index Mapping

2 Distributed matrices

w,

! Reconstruct absolute block indices
= first_b_r + 1lbr * desc)P_r
jb = first_b_c + 1lbc * desc/P_c
! Convert back to 1-based global indices
i_global ib * desc)MB + off i + 1
j_global = jb * desc/NB + off_j + 1
end subroutine local_to_global

Which can be used as needed in our distributed matrix operations.
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The prototype of the distributed GEMV subroutine

2 Distributed matrices

We have now done all the necessary preparations to implement the distributed GEMV.
The prototype of the distributed GEMV subroutine can be defined as follows:
subroutine gemv_distributed(mat, x, alpha, y, beta)
class(distributed_matrix), intent(in) :: mat
class(distributed_matrix), intent(in) :: x
class(distributed_matrix), intent(inout) :: y
real(wp), intent(in) :: alpha, beta
end subroutine gemv_distributed
Where:
e mat is the distributed matrix A,
e x and y are the distributed input and output vectors, respectively,
e alpha and beta are scalars for the operation y = aAx + fy.
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Temporary storage for the broadcasted vector

2 Distributed matrices

We need to create a temporary storage for the broadcasted vector segments, and to
reduce the code redundancy, we can define a local variable for the descriptor of the
matrix:

type(descriptor) :: desc

integer :: mloc, nloc, ierr, stat

real(wp), allocatable :: xbuf(:), y_partial(:), y_local(:)

desc = mat¥%desc
mloc = size(mat%local_data, 1)
nloc = size(mat)local_data, 2)

When do we need to allocate the temporary buffer xbuf?
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Temporary storage for the broadcasted vector

2 Distributed matrices

We need to allocate the temporary buffer xbuf on all processes:
allocate (xbuf (nloc), stat=stat)
if (stat /= 0) then
print *, 'Error allocating xbuf'
call MPI_Abort(matdesc),comm, stat, ierr)
end if

However, only the processes in the source column of the vector need to copy their local
data into this buffer:

if (desclmy_row == desc%RSRC) then
xbuf = x%local_data(:,1)
end if

And now we are ready to perform the broadcast along the process rows.
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Executing the broadcast down the process columns

2 Distributed matrices

The call is
call MPI Bcast(xbuf, nloc, MPI_REALS, desc%RSRC, desclcol comm, ierr)
where:

47/59

xbuf is the temporary buffer for the broadcasted vector segment, it contains the
local portion of the vector on the source process and will be filled on all other
processes,

nloc is the size of the local portion of the vector,
MPI_REALS is the MPI datatype for double precision real numbers,

desc%RSRC is the row source process for the vector—the process which owns the
local data to be broadcasted,

descYcol_comm is the column communicator.
ierr is the error code.



Executing the local GEMV

2 Distributed matrices

We now have the necessary data to perform the local GEMV operation:

Vpartial = QAjocalXpuf

allocate(y_partial(mloc), stat=stat)
if (stat /= 0) then
print *, 'Error allocating y_partial'
call MPI_Abort(mat¥%desclicomm, stat, ierr)
end if
call dgemv('N', mloc, nloc, alpha, mat)local_data, mloc, xbuf, 1,
— 0.0_wp, y_partial, 1)
Now on each process we have the local contribution to the output vectory.
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Reducing the partial results along process columns

2 Distributed matrices

The last two step are
1. Reduce the partial results along the process columns,
2. Scale and update the output vectory.

The reduction can be performed using:
if (descl/my_row == desc’RSRC) then
allocate(y_local(mloc), stat=stat)
if (stat /= 0) then
print *, 'Error allocating y_local'
call MPI_Abort(mat’descl,comm, stat, ierr)
end if
end if
call MPI_Reduce(y_partial, y_local, mloc, MPI_REAL8, MPI_SUM,
— mat¥%desc)%RSRC, matldesccol_comm, ierr)
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Reducing the partial results along process columns

2 Distributed matrices

The last two step are
1. Reduce the partial results along the process columns,

2. Scale and update the output vectory.

The scaling and update of the output vector can be done using:

if (desclmy_row == desc%RSRC) then
! Scale existing y by beta
y%hlocal_data(:,1) = beta * yJlocal_data(:,1)
! Add the reduced result
yhlocal_data(:,1) = yllocal_data(:,1) + y_local
deallocate(y_local)
end if
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Let’s summarize the distributed GEMV implementation

2 Distributed matrices

1. Create communicators for process rows and columns.
2. Inthe distributed GEMYV subroutine:

2.1 Allocate a temporary buffer for the broadcasted vector segment.
2.2 Copy local vector data into the buffer on the source process.

2.3 Broadcast the vector segment along the process columns.

2.4 Perform the local GEMV operation to compute the partial result.
2.5 Reduce the partial results along the process columns.

2.6 Scale and update the output vector on the source process.

As you can see, implementing distributed GEMV requires careful management of data
distribution and communication patterns to ensure efficiency and correctness in a parallel
computing environment.
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Running a test

2 Distributed matrices

We can now run a test of our distributed GEMV implementation by computing:
y = 1.0Ax + 0.0y, with {(A);; = 1.0}{;—;, x=1.

program test_distributed_gemv
use mpi
use distributed_gemv
use iso_fortran_env, only: wp => real64
implicit none

integer :: ierr, rank, world_size, colrank, rowrank
I Matriz stize

integer, parameter :: M = 900, N = 900

! Matriz descriptor

type(descriptor) :: desc_matrix, desc_vector
type(distributed_matrix) :: mat, x, y
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Running a test

2 Distributed matrices

! Check wariables
integer :: i
logical :: correct

call MPI_Init(ierr)
call MPI_Comm_rank (MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, world_size, ierr)

! Create a descriptor for a square matriz distributed over a 3z3 process grid
call desc_matrix%init(MPI_COMM_WORLD, M, N, M/3, N/3, 3, 3, 0, 0)

! Initialize distributed matriz

call mat%init_matrix(desc_matrix, 1.0_wp)

! Create a distributed vector (which is an M =z 1 distributed matriz)
call desc_vector’%init(MPI_COMM_WORLD, M, 1, M/3, 1, 3, 1, 0, 0)
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Running a test

2 Distributed matrices

call x%init_matrix(desc_vector, 1.0_wp)
call y%init_matrix(desc_vector, 0.0_wp)

! Perform distributed matriz-vector multiplication
call mat’gemv_distributed(x, 1.0_wp, y, 0.0_wp)

! Check results: we are multiplying a matriz of ones by a wvector of ones

! So the result should be a vector of size M with all entries equal to N

! we need to check only the local part of y only on the ranks that own data
correct = .true.

call MPI_Comm_rank(desc_matrixjcol_comm, colrank, ierr)

if (colrank == 0) then

do i = 1, size(yklocal_data, 1)
if (y%local_data(i,1) /= real(N, wp)) then
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Running a test

2 Distributed matrices

correct = .false.
exit
end if
end do
if (correct) then
print *, 'Test passed: Distributed GEMV result is correct on rank', rank,
< 'colrank', colrank
else
print *, 'Test failed: Distributed GEMV result is incorrect on rank', rank,
< 'colrank', colrank
end if
end if

call MPI_Finalize(ierr)
end program test_distributed_gemv
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7[[\\ We compile and run the test

2 Distributed matrices

We can compile and run the test program using:

mpifort -o distributed_gemv distributed_gemv.£f90
And then run the program with 9 processes (3x3 grid):

mpirun -np 9 ./distributed_gemv
Which should output:

Test passed: Distributed GEMV result is correct on rank
Test passed: Distributed GEMV result is correct on rank
Test passed: Distributed GEMV result is correct on rank
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Run another test

2 Distributed matrices

We can run another test with a non unifor vector x:
if (colrank == 0) then
yhlocal_data(:,1) = 1.0_wp
! Reinitialize = to have wvalues ((rank-1)*(N/3)+1): (rank)*(N/3)
do i = 1, size(x%local_data, 1)
x%local_data(i,1) = real((rowrank+1)*(N/3)+i, wp)
! write(*,*) 'Rank', rank, 'z local(', 4, ') =', zj}local_data(i,1)
end do
end if
And perform the distributed GEMV again:
call mat%gemv_distributed(x, 1.0_wp, y, 1.0_wp)

The expected result is now:

N
N(N+1
vi= ) AiX+vi= 210 xj+10_2xj + NNED |~ 4054510
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Check the result of the second test

2 Distributed matrices

correct = .true.
if (colrank == 0) then
do i = 1, size(y%local_data, 1)
if (y%local_data(i,1) /= real (N*(N+1), wp)/2.0+1.0) then
correct = .false.
exit
end if
end do
if (correct) then
print *, 'Test passed: Distributed GEMV with beta=1.0 result is
< correct on rank', rank, 'colrank', colrank
else
print *, 'Test failed: Distributed GEMV with beta=1.0 result is
< incorrect on rank', rank, 'colrank', colrank
end if

end if
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Run and check the second test

2 Distributed matrices

We can now run the modified test program again:
mpirun -np 9 ./distributed_gemv
Which should output:

Test passed: Distributed GEMV with beta=1.0 result is correct on rank 1
— colrank O
Test passed: Distributed GEMV with beta=1.0 result is correct on rank 2
< colrank 0
Test passed: Distributed GEMV with beta=1.0 result is correct on rank O
— colrank O
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Summary, conclusions, and outlook

3 Summary, conclusions, and outlook

® We have seen:
v How to implement a descriptor for distributed matrices,
v How to create communicators for process rows and columns,
v/ How to implement a distributed GEMV operation using MPI communication routines

o Next steps are:

Explore the ScaLAPACK library for distributed linear algebra,
Implement distributed matrix-matrix multiplication (GEMM),
ol

Investigate the performance of distributed operations.
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