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Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

We have
We have implemented the basic routines for distributed matrices and vectors,
We have implemented Level-Ŵ BLAS operations for distributed matrices and vectors,
We have implemented the GEMV operation for distributed matrices and vectors.

The plan for today is to:
• Introduce ScaLAPACK,
• Implement the Level-Ŷ BLAS operation GEMM for distributed matrices.
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The PBLAS and ScaLAPACK libraries
ŵ PBLAS and ScaLAPACK

What we have done so far is to implement some of the routines of the PBLAS library,
which is the distributed memory version of the BLAS library.

• ScaLAPACK is designed to mirror LAPACK, relying on a Parallel BLAS (PBLAS) interface
that stays close to BLAS.

• Only one substantially new PBLAS routine is added: distributed matrix transposition.
Goal: Provide a distributed-memory standard like BLAS for shared memory.

ŵD block-cyclic layout
• PBLAS matrices use a ŵD block-cyclic distribution.
• Distribution parameters are stored in an array descriptor—instead than in the
modern object-oriented style we have used.
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Distributed matrix descriptors
ŵ PBLAS and ScaLAPACK

Descriptor fields
Ŵ. Number of rows
ŵ. Number of columns
Ŷ. Row block size (Section ŵ.Ÿ)
ŷ. Column block size (Section ŵ.Ÿ)
Ÿ. Process row of first row
Ź. Process column of first column
ź. BLACS context
Ż. Leading dimension of the local array
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BLACS contexts
ŵ PBLAS and ScaLAPACK

A BLACS context defines a communication universe.

• Each distributed matrix is associated with a BLACS context.
• Different contexts allow independent communication universes.
• All descriptors in a PBLAS call must share the same context.
• This allows modularity in programs using multiple distributed matrices.

In ourmodern implementation, we can think of the BLACS context as an object storing the
MPI communicator and the process grid information.
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BLAS vs PBLAS: DGEMM vs PDGEMM
ŵ PBLAS and ScaLAPACK

Comparing two routines for matrix-matrix multiplication

BLAS
CALL DGEMM(TRANSA, TRANSB, M, N, K,

ALPHA, A(IA, JA), LDA,
B(IB, JB), LDB, BETA,
C(IC, JC), LDC)

PBLAS
CALL PDGEMM(TRANSA, TRANSB, M, N, K,

ALPHA, A, IA, JA, DESC_A,
B, IB, JB, DESC_B, BETA,
C, IC, JC, DESC_C)

• DGEMM uses A(IA, JA) to specify the submatrix.
• PDGEMM requires IA, JA, and DESC_A to locate the global submatrix.
• The same applies to B and C with DESC_B and DESC_C.
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We still need an MPI communicator!
ŵ PBLAS and ScaLAPACK

In order to create a BLACS context, we first
need to create anMPI communicator.
call MPI_Init(ierr)
call MPI_Comm_size(MPI_COMM_WORLD,

nprocs, ierr)↪→

call MPI_Comm_rank(MPI_COMM_WORLD,
myrank, ierr)↪→

The generic structure of a BLACS application
is as follows:
Ŵ. Initialize MPI
ŵ. Initialize BLACS
Ŷ. Create a process grid
ŷ. Query process coordinates
Ÿ. Perform communication
Ź. Destroy grid and exit BLACS
ź. Finalize MPI
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We still need an MPI communicator!
ŵ PBLAS and ScaLAPACK

integer :: ictxt, nprow, npcol
call blacs_get(-1, 0, ictxt)
call blacs_gridinit(ictxt, 'R',

nprow, npcol)↪→

Where
• ictxt is the BLACS context identifier,
• blacs_get initializes the BLACS
system,

• blacs_gridinit creates a process
grid with nprow rows and npcol
columns.

The generic structure of a BLACS application
is as follows:
Ŵ. Initialize MPI
ŵ. Initialize BLACS
Ŷ. Create a process grid
ŷ. Query process coordinates
Ÿ. Perform communication
Ź. Destroy grid and exit BLACS
ź. Finalize MPI
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We still need an MPI communicator!
ŵ PBLAS and ScaLAPACK

We can then query the process coordinates
in the grid:
integer :: myrow, mycol
call blacs_gridinfo(ictxt, nprow,

npcol, myrow, mycol)↪→

Where
• myrow is the row coordinate of the
process,

• mycol is the column coordinate of the
process.

The generic structure of a BLACS application
is as follows:
Ŵ. Initialize MPI
ŵ. Initialize BLACS
Ŷ. Create a process grid
ŷ. Query process coordinates
Ÿ. Perform communication
Ź. Destroy grid and exit BLACS
ź. Finalize MPI
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Row major vs Column major
ŵ PBLAS and ScaLAPACK

The two common ways to map a ŴD array to a ŵD array are:

! Row major mapping
index = (i-1)*ncols + (j-1) + 1

ų Ŵ ŵ Ŷ

ŷ Ÿ Ź ź

Ż ż Ŵų ŴŴ

! Column major mapping
index = (j-1)*nrows + (i-1) + 1

ų Ŷ Ź ż
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ŵ Ÿ Ż ŴŴ

Row major:
call blacs_gridinit(ictxt, 'R', nprow, npcol)
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! Column major mapping
index = (j-1)*nrows + (i-1) + 1
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Column major:
call blacs_gridinit(ictxt, 'C', nprow, npcol)
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A complete example of initialization
ŵ PBLAS and ScaLAPACK

integer :: ierr, nprocs, myrank
integer :: ctxt, nrows, ncols, myrow, mycol
integer :: info
! Initialize MPI
call MPI_Init(ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
! Initialize BLACS
call blacs_get(-1, 0, ctxt)
! Create a process grid
nrows = int(sqrt(real(nprocs)))
ncols = nprocs / nrows
call blacs_gridinit(ctxt, 'C', nrows, ncols)
! Query process coordinates
call blacs_gridinfo(ctxt, nrows, ncols, myrow, mycol)
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If we compile and execute this code
ŵ PBLAS and ScaLAPACK

Compiling with
mpifort -o blacs_init blacs_init.f90 -lscalapack
And executing with
mpirun -np 4 ./blacs_init
We could obtain the following output:
BLACS grid: 2 x 2
Processor 3 is at (1,1)
Processor 0 is at (0,0)
Processor 1 is at (1,0)
Processor 2 is at (0,1)

(ų,ų) (ų,Ŵ)

(Ŵ,ų) (Ŵ,Ŵ)

ŴŴ/ŸŹ



Where to find BLACS, PBLAS, and ScaLAPACK
ŵ PBLAS and ScaLAPACK

• BLACS, PBLAS, and ScaLAPACK are usually provided as part of high-performance
linear algebra libraries such as
— Intel MKL,
— AMD ACML,
— Netlib ScaLAPACK.

• The latter can also be built from source code available from the Netlib repository:
— http://www.netlib.org/scalapack/

They can be installed via Spack as well:
spack install netlib-scalapack
or
spack install intel-oneapi-mkl
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PBLAS operations
ŵ PBLAS and ScaLAPACK

The PBLAS library provides distributed memory implementations of the Level-Ŵ, Level-ŵ,
and Level-Ŷ BLAS operations.

• Level-Ŵ PBLAS operations include vector-vector operations such as P?AXPY.
• Level-ŵ PBLAS operations include matrix-vector operations such as P?GEMV.
• Level-Ŷ PBLAS operations include matrix-matrix operations such as P?GEMM.

We can now try using the P?GEMV operation, and try to measure its performance.
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The P?GEMV operation
ŵ PBLAS and ScaLAPACK

The P?GEMV operation computes the matrix-vector product

y← αAx+ βy,

where A is a distributed matrix, and x and y are distributed vectors.

• The operation is called via the PDGEMV routine.
• The routine requires the descriptors of the distributed matrix and vectors.

The routine signature is as follows:
CALL PDGEMV(TRANS, M, N, ALPHA, A, IA, JA, DESC_A, X, IX, 1, DESC_X,

BETA, Y, IY, 1, DESC_Y)
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The P?GEMV operation: parameters
ŵ PBLAS and ScaLAPACK

CALL PDGEMV(TRANS, M, N, ALPHA, A, IA, JA, DESC_A, X, IX, 1, DESC_X,
BETA, Y, IY, 1, DESC_Y)

• TRANS specifies whether to use A or AT,
• M and N are the number of rows and columns of A,
• ALPHA and BETA are scalars,
• A is the local array containing the local pieces of A,
• IA and JA are the row and column indices of the first element of the submatrix of A,
• DESC_A is the descriptor of A,
• X is the local array containing the local pieces of x,
• IX is the index of the first element of the subvector of x,
• DESC_X is the descriptor of x,
• Y is the local array containing the local pieces of y,
• IY is the index of the first element of the subvector of y,
• DESC_Y is the descriptor of y.
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Testing PDGEMV
ŵ PBLAS and ScaLAPACK

To test the PDGEMV routine, we can write a simple Fortran program that:
Ŵ. Build the test program and link against ScaLAPACK.
ŵ. Run with a square number of MPI ranks.
Ŷ. Choosem, n, and block size nb via command-line arguments.

Then we can call PDGEMV to perform the matrix-vector multiplication.

The code to compile and run the test program is something on the lines of:
mpifort -O3 -o test_pdegemv test_pdegemv.f90 -lscalapack
mpirun -np 4 ./test_pdegemv 4000 4000 128

ŴŹ/ŸŹ



Reading command-line arguments
ŵ PBLAS and ScaLAPACK

We can read command-line arguments in Fortran as follows:
m = 4000
n = 4000
nb = 128
nreps = 10

arg_count = command_argument_count()
if (arg_count >= 1) then

call get_command_argument(1, arg)
read(arg, *) m

end if
if (arg_count >= 2) then

call get_command_argument(2, arg)
read(arg, *) n

end if

if (arg_count >= 3) then
call get_command_argument(3, arg)
read(arg, *) nb

end if
if (arg_count >= 4) then

call get_command_argument(4, arg)
read(arg, *) nreps

end if

Which allows us to setm, n, nb, and the
number of repetitions nreps for the
matrix-vector multiplication.
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Initializing distributed environment
ŵ PBLAS and ScaLAPACK

We use the init code shown before to initialize MPI and BLACS.
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, world_rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, world_size, ierr)
nprocs_per_dim = int(sqrt(dble(world_size)))
if (nprocs_per_dim * nprocs_per_dim /= world_size) then

if (world_rank == 0) then
print *, 'Error: number of processes must be a perfect square.'

end if
call MPI_Finalize(ierr)
stop 1

end if
and check that the number of processes is a perfect square.
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Initializing distributed environment
ŵ PBLAS and ScaLAPACK

Then the BLACS initialization follows:
call blacs_get(-1, 0, ictxt)
nprow = nprocs_per_dim
npcol = nprocs_per_dim
call blacs_gridinit(ictxt, 'R', nprow, npcol)
call blacs_gridinfo(ictxt, nprow, npcol, myrow, mycol)

if (myrow == -1 .or. mycol == -1) then
call blacs_exit(1)
call MPI_Finalize(ierr)
stop 1

end if
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Creating distributed matrices and vectors
ŵ PBLAS and ScaLAPACK

We can now create the distributed matrix A and vectors x and y:
mloc = numroc(m, nb, myrow, 0, nprow)
nloc = numroc(n, nb, mycol, 0, npcol)
lldA = max(1, mloc)

xloc = numroc(n, nb, myrow, 0, nprow)
yloc = numroc(m, nb, myrow, 0, nprow)
lldX = max(1, xloc)
lldY = max(1, yloc)
Where we use NUMROC to compute the local sizes of the distributed arrays.
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The NUMROC utility
ŵ PBLAS and ScaLAPACK

The NUMROC utility computes the number of rows or columns of a distributed matrix or
vector owned by a given process.
integer function numroc(n, nb, iproc, isrcproc, nprocs)
Where
• n is the global number of rows or columns,
• nb is the block size,
• iproc is the coordinate of the process in the grid,
• isrcproc is the coordinate of the process owning the first row or column,
• nprocs is the number of processes in the grid dimension.
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Creating the descriptors
ŵ PBLAS and ScaLAPACK

The descriptors for the distributed matrix and vectors for ScaLAPACK are variables of type
integer, defined as arrays of size ż.
integer :: descA(9), descX(9), descY(9)
We can initialize them as follows:
call descinit(descA, m, n, nb, nb, 0, 0, ictxt, lldA, info)
call descinit(descX, n, 1, nb, 1, 0, 0, ictxt, lldX, info)
call descinit(descY, m, 1, nb, 1, 0, 0, ictxt, lldY, info)

We should always check the value of info after each call to descinit, e.g.,
if (info /= 0) then

if (world_rank == 0) print *, 'descinit error: ', info
call MPI_Abort(MPI_COMM_WORLD, info, ierr)

end if
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Allocate and fill the local arrays
ŵ PBLAS and ScaLAPACK

Next, we allocate and fill the local arrays:
allocate(A(lldA, max(1, nloc)))
allocate(X(lldX, max(1, numroc(1, 1, mycol, 0, npcol))))
allocate(Y(lldY, max(1, numroc(1, 1, mycol, 0, npcol))))
Where we use again the numroc utility to compute the local sizes of the vectors.
We fill the matrix A with:
if (mloc > 0 .and. nloc > 0) then

do j = 1, nloc
col_global = indxl2g(j, nb, mycol, 0, npcol)
do i = 1, mloc

row_global = indxl2g(i, nb, myrow, 0, nprow)
A(i, j) = dble(row_global + col_global) / dble(m + n)

end do
end do

end if
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Allocate and fill the local arrays
ŵ PBLAS and ScaLAPACK

Next, we allocate and fill the local arrays:
allocate(A(lldA, max(1, nloc)))
allocate(X(lldX, max(1, numroc(1, 1, mycol, 0, npcol))))
allocate(Y(lldY, max(1, numroc(1, 1, mycol, 0, npcol))))
Where we use again the numroc utility to compute the local sizes of the vectors.
We fill the vectors x, and y with:
if (xloc > 0) then

do i = 1, xloc
row_global = indxl2g(i, nb, myrow, 0, nprow)
X(i, 1) = 1.0d0 + dble(row_global) / dble(n)

end do
end if
if (yloc > 0) Y(1:yloc, 1) = 0.0d0
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Timing and synchronization
ŵ PBLAS and ScaLAPACK

• Use MPI_Barrier to synchronize before and after PDGEMV.
• Measure elapsed time with MPI_Wtime.

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t0 = MPI_Wtime()
do i = 1, nreps

call pdgemv('N', m, n, alpha, A, 1, 1, descA, X, 1, 1, descX, 1, beta, Y,
1, 1, descY, 1)↪→

end do
call MPI_Barrier(MPI_COMM_WORLD, ierr)
t1 = MPI_Wtime()
elapsed_time = (t1 - t0)
As usual, this the elapsed_time contains the total time for nreps repetitions of the
matrix-vector multiplication on each process.
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Computing the performance
ŵ PBLAS and ScaLAPACK

We take the worst-case time across all processes:
call MPI_Reduce(elapsed_time, max_elapsed, 1, MPI_DOUBLE_PRECISION,

MPI_MAX, 0, MPI_COMM_WORLD, ierr)↪→

Then, on rank 0, we can compute the measurements:
if (myrow == 0 .and. mycol == 0) then
gflops = (2.0d0 * dble(m) * dble(n) * dble(nreps)) / max_elapsed / 1.0d9
avg_time = max_elapsed / dble(nreps)
avg_gflops = (2.0d0 * dble(m) * dble(n)) / avg_time / 1.0d9
print *, 'PDGEMV m=', m, ' n=', n, ' nb=', nb, ' procs=', world_size, '

reps=', nreps↪→

print *, 'Total time (s)=', max_elapsed, ' Total GFLOPS=', gflops
print *, 'Avg time (s)=', avg_time, ' Avg GFLOPS=', avg_gflops

end if
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GFLOPS calculation for PDGEMV
ŵ PBLAS and ScaLAPACK

We can compute the number of floating-point operations for the matrix-vector
multiplication as follows:

FLOPS = 2 ·m · n

Thus, the performance in GFLOPS can be computed as:

gflops = (2.0d0 * dble(m) * dble(n) * dble(nreps)) / max_elapsed / 1.0d9
Where nreps is the number of repetitions of the multiplication.

Similarly, the worst-case performance per repetition is:
avg_gflops = (2.0d0 * dble(m) * dble(n)) / avg_time / 1.0d9
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Finalizing the distributed environment
ŵ PBLAS and ScaLAPACK

Finally, we need to finalize BLACS and MPI:
if (allocated(A)) deallocate(A)
if (allocated(X)) deallocate(X)
if (allocated(Y)) deallocate(Y)
call blacs_gridexit(ictxt)
call blacs_exit(0)
We don’t need to call MPI_Finalize explicitly, as it is called inside the blacs_gridexit.

We are finally done, and we can compile and run our test program. As for the case in the
other lectures, we plan on running it on the Amelia cluster at IAC-CNR. Hence, we use the
Intel Oneapi compilers, and link against Intel MKL—which provides BLACS, PBLAS, and
ScaLAPACK.
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Running script
ŵ PBLAS and ScaLAPACK

The script to run the test program on Amelia is written as follows:
#!/usr/bin/env bash
#SBATCH --nodes=@NODES@
#SBATCH --ntasks=@TASKS@
#SBATCH --cpus-per-task=@THREADS@
#SBATCH --partition=prod-gn
#SBATCH --time=01:00:00
#SBATCH --mem=950Gb
#SBATCH --job-name=pdegemv_weak

export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
cd /ifs/hpc/home/fdurastante/scalapacktest/launchscripts/
mpirun -np @TASKS@ ./../build/test_pdegemv @N@ @N@ @NB@ 2>&1 >

../logfiles/pdegenmv/log_t@TASKS@.log↪→
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Running script explanation
ŵ PBLAS and ScaLAPACK

The script uses SLURM directives to request resource and has a number of placeholders:
• @NODES@: number of nodes to use,
• @TASKS@: number of MPI tasks to use,
• @THREADS@: number of threads per task,
• @N@: size of the matrix and vectors,
• @NB@: block size.

We use an auxiliary script to replace the placeholders and submit the job to SLURM:
./genscript.sh launch_pdegenmv.sh
Where genscript.sh replaces the placeholders and produces the launch files.
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The genscript.sh auxiliary script
ŵ PBLAS and ScaLAPACK

The auxiliary script genscript.sh is as follows:
#!/bin/sh
TEMPLATE="$1"
TASKS_PER_NODE=64
THREADS_PER_TASK=1
N_LOCAL=4000
NB=128
# Perfect-square task counts up to 20 nodes * 64 tasks/node = 1280 tasks
TASKS_LIST="64 144 256 400 576 900 1024 1156"
for TASKS in $TASKS_LIST; do

# Compute number of nodes (ceiling division)
NODES=$(( (TASKS + TASKS_PER_NODE - 1) / TASKS_PER_NODE ))
PROCS_PER_DIM=$(LC_NUMERIC=C echo "scale=0; sqrt($TASKS)" | bc -l)
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The genscript.sh auxiliary script
ŵ PBLAS and ScaLAPACK

N=$((N_LOCAL * PROCS_PER_DIM))
OUTFILE="outscript_t${TASKS}.sh"
sed \

-e "s/@NODES@/${NODES}/g" \
-e "s/@TASKS@/${TASKS}/g" \
-e "s/@THREADS@/${THREADS_PER_TASK}/g" \
-e "s/@N@/${N}/g" \
-e "s/@NB@/${NB}/g" \
"$TEMPLATE" > "$OUTFILE"

chmod +x "$OUTFILE"
echo "Generated $OUTFILE (tasks=$TASKS, nodes=$NODES,

threads=$THREADS_PER_TASK, N=$N, NB=$NB)"↪→

done
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The genscript.sh auxiliary script
ŵ PBLAS and ScaLAPACK

The script iterates over a list of perfect-square task counts

np = 64, 144, 256, 400, 576, 900, 1024, 1156,

computes the number of nodes required, the problem size N, and replaces the
placeholders in the template script using sed.

The sed command replaces each placeholder with the corresponding value, its general
form being:
sed -e "s/@PLACEHOLDER@/value/g" input_template > output_script

Where @PLACEHOLDER@ is replaced with value in the input_template, and the result is
saved in output_script.
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The genscript.sh auxiliary script
ŵ PBLAS and ScaLAPACK

We run the genscript.sh script as follows:
chmod +x genscript.sh
./genscript.sh launch_pdegemv.sh
Which produces the following output:
Generated outscript_t64.sh (tasks=64, nodes=1, threads=1, N=32000, NB=128)
Generated outscript_t144.sh (tasks=144, nodes=3, threads=1, N=48000, NB=128)
Generated outscript_t256.sh (tasks=256, nodes=4, threads=1, N=64000, NB=128)
Generated outscript_t400.sh (tasks=400, nodes=7, threads=1, N=80000, NB=128)
Generated outscript_t576.sh (tasks=576, nodes=9, threads=1, N=96000, NB=128)
Generated outscript_t900.sh (tasks=900, nodes=15, threads=1, N=120000, NB=128)
Generated outscript_t1024.sh (tasks=1024, nodes=16, threads=1, N=128000, NB=128)
Generated outscript_t1156.sh (tasks=1156, nodes=19, threads=1, N=136000, NB=128)

We can then submit each generated script to SLURM with:
sbatch outscript_t??.sh
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Analyzing the results
ŵ PBLAS and ScaLAPACK

Źŷ Ŵŷ
ŷ

ŵŸ
Ź

ŷų
ų

Ÿź
Ź

żų
ų

Ŵų
ŵŷ
ŴŴ
ŸŹ

0.26

0.28

0.3

Number of Processes

Ti
m
e
(s
)

Źŷ Ŵŷ
ŷ

ŵŸ
Ź

ŷų
ų

Ÿź
Ź

żų
ų

Ŵų
ŵŷ
ŴŴ
ŸŹ

102

103

Number of Processes

GF
LO
PS

We can see that the time remains roughly constant as we increase the number of
processes, while the performance increases accordingly N =, NB =.
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The distributed Matrix-Matrix multiplication
ŵ PBLAS and ScaLAPACK

• We will consider the formation of the matrix products

C = αAB+ βC

C = αABT + βC

C = αATB+ βC

C = αATBT + βC

• These are the special cases implemented in the sequential BLAS GEMM.
• Assume each matrix X has dimensionsmX × nX, with X ∈ {A, B, C}.
• Dimensions must be compatible; we take C ∈ Rm×n and the inner dimension k.
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Back on the data distribution
ŵ PBLAS and ScaLAPACK

• We consider ŵD data decompositions;
• The ŴD case is obtained by setting one grid dimension to Ŵ.
• Given X ∈ {A, B, C}m×n on an r× c process grid, we partition:

X =

 X00 · · · X0(c−1)
...

...
X(r−1)0 · · · X(r−1)(c−1)


• Submatrix Xij is assigned to process Pij.
• Xij has sizemX

i × nXj , with
∑

im
X
i = m and

∑
j n

X
j = n.

• Each algorithm variant enforces row/column compatibility in these dimensions: For
this operation to be well-defined, we requiremA = m, nA = mB = k, and nB = n.
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Forming C = αAB+ βC
ŵ PBLAS and ScaLAPACK

For simplicity, we take α = 1 and β = 0 in our description.
If aij, bij, and cij denote the (i, j) element of the matrices, respectively, then the elements
of C are given by

cij =
k∑

l=1

ailblj.

Notice that:
rows of C are computed from rows of A, and columns of C
We hence restrict our data decomposition so that rows of A and C are assigned to the
same row of nodes and columns of B and C are assigned to the same column of
nodes.
Hence,mC

i = mA
i and nCj = nBj .
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Basic parallel algorithm (as we have seen for the
OpenMP case)
ŵ PBLAS and ScaLAPACK

• Compute Cij as a sequence of rank-one updates.
• Assign block row Ãi to process row i.
• Assign block column B̃j to process column j.

Ãi =
(
a(0)i a(1)i · · · a(k−1)

i

)
, B̃j =


b(0)Tj

b(1)Tj
...

b(k−1)T
j


Cij =

k−1∑
t=0

a(t)i b(t)Tj
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Rank-one update view
ŵ PBLAS and ScaLAPACK

Each step t:
• broadcasts a(t)i along process row i.

• broadcasts b(t)j along process column j.
Perform
• Local update on Pij: Cij ← Cij + a(t)i b(t)Tj .

C(t+1)
ij = C(t)ij + a(t)i b(t)Tj

Ŵ: Cij ← 0
ŵ: for ℓ = 0, . . . , k− 1 do
Ŷ: broadcast a(ℓ)i within my row
ŷ: broadcast b(ℓ)j within my column

Ÿ: Cij ← Cij + a(ℓ)i b(ℓ)Tj
Ź: end for

Now we can analyze the cost of this algorithm, both in terms of computation and
communication.
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Algorithm cost: minimum spanning tree broadcast
ŵ PBLAS and ScaLAPACK

To analyze the cost of this basic algorithm, we make some simplifying assumptions:

mC
i = mA

i = m/r, nCj = nBj = n/c,

nAi = k/c, mB
j = k/r.

Since relatively little data is involved during each broadcast we assume a
minimum-spanning-tree broadcast.

Minimum-Spanning-Tree Broadcast
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A minimum-spanning-tree (MST) broadcast minimizes latency by organizing the broadcast
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Algorithm cost: minimum spanning tree broadcast
ŵ PBLAS and ScaLAPACK

To analyze the cost of this basic algorithm, we make some simplifying assumptions:

mC
i = mA

i = m/r, nCj = nBj = n/c,

nAi = k/c, mB
j = k/r.

Since relatively little data is involved during each broadcast we assume a
minimum-spanning-tree broadcast.

Minimum-Spanning-Tree Broadcast
Cost model for MST broadcast of data size S to p processes:

Tbcast = ⌈log2(p)⌉ · (α+ S · β)

Where:
• α and β are the latency and the inverse bandwidth (per unit data),
• Each stage involves one message transmission for= ⌈log2(p)⌉ total stages.ŷų/ŸŹ



Cost model (detailed)
ŵ PBLAS and ScaLAPACK

The cost of the algorithm (per panel) is therefore

k
[
2mn
p

γ + ⌈log(c)⌉
(
α+

m
r
β
)
+ ⌈log(r)⌉

(
α+

n
c
β
)]

.

The three terms inside the square brackets correspond to
• 2mn/p γ: local rank-one update,
• ⌈log(c)⌉ (α+ m/rβ): row broadcast of A,
• ⌈log(r)⌉ (α+ n/cβ): column broadcast of B.

Hence the total time is

T(m, n, k, p) =
2mnk
p

γ + k
(
⌈log(c)⌉+ ⌈log(r)⌉

)
α+ ⌈log(c)⌉mk

r
β + ⌈log(r)⌉nk

c
β
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Scalability analysis
ŵ PBLAS and ScaLAPACK

The cost T(m, n, k, p) compares to the sequential time 2mnk γ.

To study scalability, setm = n = k, r = c =
√
p (assume p power of two).

From T(m, n, k, p) the estimated speedup is

S(n, p) =
2n3γ

2n3
p γ + n log(p)α+ log(p) n2√

pβ
=

p

1 + p log(p)
2n2

α
γ +

√
p log(p)
2n

β
γ

.

The corresponding parallel efficiency is

E(n, p) =
S(n, p)

p
=

1

1 + p log(p)
2n2

α
γ +

√
p log(p)
2n

β
γ

=
1

1 + O
(
p log p
n2

)
+ O

(√
p log p
n

) .
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Scalability insight
ŵ PBLAS and ScaLAPACK

• Speedup improves with√p process grids.
• Efficiency degrades slowly with log(p) broadcast costs.
• Increasing n with√p keeps memory per process fixed.

E(n, p) =
1

1 + O
(
p log(p)

n2

)
+ O

(√
p log(p)
n

)
Scalability insight

Ignoring the log(p) term, which grows very slowly when p is reasonably large, we notice
the following: If we increase p and we wish to maintain efficiency, we must increase n
with√p. Sincememory requirements grow with n2, and physical memory grows linearly
with p as nodes are added.
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Scalability insight
ŵ PBLAS and ScaLAPACK

• Speedup improves with√p process grids.
• Efficiency degrades slowly with log(p) broadcast costs.
• Increasing n with√p keeps memory per process fixed.

E(n, p) =
1

1 + O
(
p log(p)

n2

)
+ O

(√
p log(p)
n

)
Scalability insight

We conclude that the method is scalable in the following sense:
“If we maintain memory use per node, this algorithm will maintain efficiency, if log(p) is
treated as a constant.”
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Moving to the pipelined algorithm
ŵ PBLAS and ScaLAPACK

We will present the benefits of pipelining computations and communications.

Let us consider implementing the broadcast as passing of a message around the logical
ring that forms the row or column.
subroutine RING_Bcast(data, count, type, root, comm)
implicit none
integer, intent(in) :: count, type, root, comm
real(kind=real64), intent(inout) :: data(*)
! Local variables
integer :: me, np, next, prev, ierr
call MPI_Comm_rank(comm, me, ierr)
call MPI_Comm_size(comm, np, ierr)
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Moving to the pipelined algorithm
ŵ PBLAS and ScaLAPACK

if ( me /= root ) then
prev = mod(me - 1 + np, np)
call MPI_Recv(data, count, type, prev, MPI_ANY_TAG, comm,

MPI_STATUS_IGNORE, ierr)↪→

end if
if ( mod(me + 1, np) /= root ) then
next = mod(me + 1, np)
call MPI_Send(data, count, type, next, 0, comm, ierr)

end if
end subroutine RING_Bcast
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Moving to the pipelined algorithm
ŵ PBLAS and ScaLAPACK

In this case, the time complexity becomes:
The time required for both the first column of Ar−1 and the first row of Bc−1 to reach
process (r− 1, c− 1):

(c− 1)
(
α+

m
r
β
)
+ (r− 1)

(
α+

n
c
β
)

The time for performing the local update and passing the messages along the pipeŵ
The time for the final messages (initiated at process (r− 1, c− 1)) to reach the end
of the pipe
the time for the final update at the node at the end of the pipe (process
(r− 1, c− 2) or (r− 2, c− 1))
Summing all contributions, we obtain:
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n
c
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m
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n
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=
2mn(k+ 1)

p
γ + (k+ 2c− 3)

(
α+

m
r
β
)
+ (k+ 2r− 3)

(
α+

n
c
β
)
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Comparing the two approaches
ŵ PBLAS and ScaLAPACK

For theminimum-spanning-tree broadcast we had a cost of

T(m, n, k, p) =
2mnk
p

γ + k
(
⌈log(c)⌉+ ⌈log(r)⌉

)
α+ ⌈log(c)⌉mk

r
β + ⌈log(r)⌉nk

c
β,

For the pipelined ring broadcast we have a cost of

T(m, n, k, p) =
2mn(k+ 1)

p
γ + (k+ 2c− 3)

(
α+

m
r
β
)
+ (k+ 2r− 3)

(
α+

n
c
β
)
,

Notice that for large k, the “log” factors we had in the tree approach are removed.
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Scalability of the pipelined approach
ŵ PBLAS and ScaLAPACK

To establish the scalability, we again analyse the case wherem = n = k and r = c =
√
p.

This changes the complexity to approximately
2n3

p
γ + 2(n+ 2

√
p− 3)

(
α+

n
√
p
β

)
.

The speedup is

S(n, p) =
2n3γ

2n3
p γ + 2(n+ 2

√
p− 3)

(
α+ n√

pβ
) ≈ p

1 + p
n2α+

√
p
n β

The corresponding efficiency is

E(n, p) =
S(n, p)

p
=

1

1 + O
( p
n2
)
+ O

(√
p
n

)
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Scalability of the pipelined approach
ŵ PBLAS and ScaLAPACK

To establish the scalability, we again analyse the case wherem = n = k and r = c =
√
p.

The speedup is

S(n, p) =
2n3γ

2n3
p γ + 2(n+ 2

√
p− 3)

(
α+ n√

pβ
) ≈ p

1 + p
n2α+

√
p
n β

The corresponding efficiency is

E(n, p) =
S(n, p)

p
=

1

1 + O
( p
n2
)
+ O

(√
p
n

)
The log(p) term has disappeared and the method is again scalable in the sense that if we
maintain memory use per node, this algorithm will maintain efficiency.
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Blocking to further improve performance
ŵ PBLAS and ScaLAPACK

We can reformulate the algorithm to use matrix-matrix multiplcations, instead of
rank-one updates.

Memory acces bandwidth
Recall that matrix-matrix multiplications have a much higher computational intensity
(flops per memory access), hence they better exploit memory hierarchies and achieve
higher performance on modern architectures.

• From the previous explanation, we change that each panel of A and B consist now of
a block of columns/rows.

• An additional advantage of blocking is that it reduces the number of messages
incurred⇒ lower latency cost/communication overhead.
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Some practical considerations
ŵ PBLAS and ScaLAPACK

• Choose nb to balance computation and communication.
• Square-ish grids minimize communication volume.
• Use optimized local BLAS for the inner GEMM.
• Synchronize only for timing, not for correctness.

• The routine is called via PDGEMM.
• A, B, and C are distributed with ŵD block-cyclic layout.

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, IA, JA, DESC_A,
B, IB, JB, DESC_B,
BETA, C, IC, JC, DESC_C)
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PDGEMM parameters
ŵ PBLAS and ScaLAPACK

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, IA, JA, DESC_A,
B, IB, JB, DESC_B,
BETA, C, IC, JC, DESC_C)

• M, N, K define the sizes of C, A, and B.
• IA, JA and IB, JB select submatrices.
• DESC_A, DESC_B, DESC_C hold distribution metadata.
• ALPHA and BETA are scalars.
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Creating descriptors for PDGEMM
ŵ PBLAS and ScaLAPACK

Assume A ∈ Rm×k, B ∈ Rk×n, C ∈ Rm×n.
call descinit(descA, m, k, nb, nb, 0, 0, ictxt, lldA, info)
call descinit(descB, k, n, nb, nb, 0, 0, ictxt, lldB, info)
call descinit(descC, m, n, nb, nb, 0, 0, ictxt, lldC, info)

• Block sizes are typically identical for all matrices.
• lld* are the local leading dimensions.

Ÿŵ/ŸŹ



Calling PDGEMM
ŵ PBLAS and ScaLAPACK

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t0 = MPI_Wtime()
do i = 1, nreps

call pdgemm('N', 'N', m, n, k, alpha, A, 1, 1, descA, &
B, 1, 1, descB, beta, C, 1, 1, descC)

end do
call MPI_Barrier(MPI_COMM_WORLD, ierr)
t1 = MPI_Wtime()
elapsed_time = t1 - t0

• Synchronize before and after to measure wall-clock time.
• nreps improves timing stability.
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GFLOPS for PDGEMM
ŵ PBLAS and ScaLAPACK

The operation count for GEMM is

FLOPS = 2 ·m · n · k.

gflops = (2.0d0 * dble(m) * dble(n) * dble(k) * dble(nreps)) &
/ max_elapsed / 1.0d9

avg_time = max_elapsed / dble(nreps)
avg_gflops = (2.0d0 * dble(m) * dble(n) * dble(k)) / avg_time / 1.0d9

• Use the max time across processes for a conservative metric.
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PDGEMM performance example
ŵ PBLAS and ScaLAPACK
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Conclusions, summary, and next steps
Ŷ Conclusions, summary, and next steps

Today we have:
Discussed the distributed matrix-vector multiplication and its scalability.
Discussed the distributed matrix-matrix multiplication and its scalability.
Presented practical aspects of using ScaLAPACK routines.

Next time:
We will discuss more complex parallel algorithms for linear algebra.
We will stat looking into GPU acceleration.
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