High Performance Linear Algebra
Lecture 12: ScaLAPACK and Distributed BLAS level 3
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

Thursday 29, 2026 — 16.00:18.00

1/56

\‘"'/‘

W

Dipartimento
di Matematica
Universita di Pisa

mailto:fabio.durastante@unipi.it

Last time on High Performance Linear Algebra

1 Last time on High Performance Linear Algebra

We have

i@ We have implemented the basic routines for distributed matrices and vectors,

@ We have implemented Level-1 BLAS operations for distributed matrices and vectors,
i@ We have implemented the GEMV operation for distributed matrices and vectors.

The plan for today is to:
e Introduce ScalLAPACK,
¢ Implement the Level-3 BLAS operation GEMM for distributed matrices.

2/56

Table of Contents
2 PBLAS and ScaLAPACK

» PBLAS and ScaLAPACK
The BLACS library
The PBLAS operations
The distributed Matrix-Matrix multiplication

3/56

The PBLAS and ScalLAPACK libraries

2 PBLAS and ScaLAPACK

What we have done so far is to implement some of the routines of the PBLAS library,
which is the distributed memory version of the BLAS library.

e ScalLAPACK is designed to mirror LAPACK, relying on a Parallel BLAS (PBLAS) interface
that stays close to BLAS.
e Only one substantially new PBLAS routine is added: distributed matrix transposition.

Goal: Provide a distributed-memory standard like BLAS for shared memory.

4/56

The PBLAS and ScalLAPACK libraries

2 PBLAS and ScalLAPACK

What we have done so far is to implement some of the routines of the PBLAS library,
which is the distributed memory version of the BLAS library.

e ScalAPACK is designed to mirror LAPACK, relying on a Parallel BLAS (PBLAS) interface
that stays close to BLAS.
e Only one substantially new PBLAS routine is added: distributed matrix transposition.

Goal: Provide a distributed-memory standard like BLAS for shared memory.

2D block-cyclic layout

e PBLAS matrices use a 2D block-cyclic distribution.

e Distribution parameters are stored in an array descriptor—instead than in the
modern object-oriented style we have used.

4/56

Distributed matrix descriptors
2 PBLAS and ScalLAPACK

Descriptor fields

1. Number of rows

Number of columns

Row block size (Section 2.5)

Column block size (Section 2.5)
Process row of first row

Process column of first column
BLACS context

Leading dimension of the local array

N B o

5/56

BLACS contexts

2 PBLAS and ScaLAPACK

A BLACS context defines a communication universe.

Each distributed matrix is associated with a BLACS context.

Different contexts allow independent communication universes.

All descriptors in a PBLAS call must share the same context.

This allows modularity in programs using multiple distributed matrices.

In our modern implementation, we can think of the BLACS context as an object storing the
MPI communicator and the process grid information.

6/56

BLAS vs PBLAS: DGEMM vs PDGEMM

2 PBLAS and ScaLAPACK

Comparing two routines for matrix-matrix multiplication

BLAS PBLAS

CALL DGEMM(TRANSA, TRANSB, M, N, K, CALL PDGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A(IA, JA), LDA, ALPHA, A, IA, JA, DESC_A,
B(IB, JB), LDB, BETA, B, IB, JB, DESC_B, BETA,
c(IC, JC), LDC) c, IC, JC, DESC_C)

e DGEMM uses A(IA, JA) to specify the submatrix.
e PDGEMM requires IA, JA, and DESC_A to locate the global submatrix.
e The same applies to B and C with DESC_B and DESC_C.

7/56

\‘ '[,‘

w,

In order to create a BLACS context, we first
need to create an MPI communicator.

call MPI_Init(ierr)

call MPI_Comm_size (MPI_COMM_WORLD,

< nprocs,
call MPI_Comm_rank (MPI_COMM_WORLD,
— myrank,

8/56

We still need an MPI communicator!

2 PBLAS and ScaLAPACK

ierr)

ierr)

The generic structure of a BLACS application
is as follows:

1.

N v p N

Initialize MPI

Initialize BLACS

Create a process grid
Query process coordinates
Perform communication
Destroy grid and exit BLACS
Finalize MPI

\‘ '[,‘

. . '
4‘\\\ We still need an MPI communicator!

2 PBLAS and ScalLAPACK

integer :: ictxt, nprow, npcol The generic structure of a BLACS application
call blacs_get(-1, 0, ictxt) is as follows:
call blacs_gridinit(ictxt, 'R', L

Initialize MPI

< nprow, npcol)
Initialize BLACS

Where
e ictxt is the BLACS context identifier, Create a process grid

N

e blacs_get initializes the BLACS Query process coordinates

system,

e blacs_gridinit creates a process
grid with nprow rows and npcol
columns.

Perform communication
Destroy grid and exit BLACS
Finalize MPI

N OS¢k wN

8/56

\‘ '[,‘

. . '
4‘\\\ We still need an MPI communicator!

2 PBLAS and ScalLAPACK

We can then query the process coordinates The generic structure of a BLACS application
in the grid: is as follows:

integer :: myrow, mycol 1. Initialize MPI
call blacs_gridinfo(ictxt, nprow,

Destroy grid and exit BLACS

e mycol is the column coordinate of the
Finalize MPI

process.

— npcol, merW, mycol) 2. Iniﬁalize BLACS
3. Create a process grid

Where P g '

. . 4. Query process coordinates
e myrow is the row coordinate of the o
process, 5. Perform communication

6.
7.

8/56

Row major vs Column major
2 PBLAS and ScalLAPACK

The two common ways to map a 1D array to a 2D array are:

! Row major mapping ! Column major mapping
index = (i-1)#*ncols + (j-1) + 1 index = (j-1)*nrows + (i-1) + 1
o 1 2 3 o 3 6 9
4 5 6 7 1 4 7 10
8 9 10 1 2 5 8 11
Row major:

call blacs_gridinit(ictxt, 'R', nprow, npcol)

9/56

Row major vs Column major
2 PBLAS and ScalLAPACK

The two common ways to map a 1D array to a 2D array are:

! Row major mapping ! Column major mapping

index = (i-1)#*ncols + (j-1) + 1 index = (j-1)*nrows + (i-1) + 1
o 1 2 3 o 3 6 9
4 5 6 7 1 4 7 10
8 9 10 1 2 5 8 1

Column major:

call blacs_gridinit(ictxt, 'C', nprow, npcol)

9/56

A complete example of initialization
2 PBLAS and ScalLAPACK

integer :: ierr, nprocs, myrank
integer :: ctxt, nrows, ncols, myrow, mycol
integer :: info

! Initialize MPI

call MPI_Init(ierr)

call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)
call MPI_Comm_rank (MPI_COMM_WORLD, myrank, ierr)
! Initialize BLACS

call blacs_get(-1, 0, ctxt)

! Create a process grid

nrows = int(sqrt(real(nprocs)))

ncols = nprocs / nrows

call blacs_gridinit(ctxt, 'C', nrows, ncols)

! Query process coordinates

call blacs_gridinfo(ctxt, nrows, ncols, myrow, mycol)

10/56

If we compile and execute this code
2 PBLAS and ScalLAPACK

Compiling with

mpifort -o blacs_init blacs_init.f90 -lscalapack

And executing with

mpirun -np 4 ./blacs_init 00
0,0
We could obtain the following output:

BLACS grid: 2 x 2

Processor is at (1,1)
Processor 0 is at (0,0) (1,0)
Processor is at (1,0)

N =~ O W

Processor is at (0,1)

11/56

\\‘ 'I»A

//A\\ Where to find BLACS, PBLAS, and ScaLAPACK

2 PBLAS and ScaLAPACK

e BLACS, PBLAS, and ScaLAPACK are usually provided as part of high-performance
linear algebra libraries such as

— Intel MKL,
— AMD ACML,
— Netlib ScaLAPACK.

e The latter can also be built from source code available from the Netlib repository:
— http://www.netlib.org/scalapack/

They can be installed via Spack as well:
spack install netlib-scalapack
or

spack install intel-oneapi-mkl

12/56

http://www.netlib.org/scalapack/

PBLAS operations

2 PBLAS and ScalLAPACK

The PBLAS library provides distributed memory implementations of the Level-1, Level-2,
and Level-3 BLAS operations.

e Level-1 PBLAS operations include vector-vector operations such as P?AXPY.
e Level-2 PBLAS operations include matrix-vector operations such as P?GEMV.
o Level-3 PBLAS operations include matrix-matrix operations such as P?GEMM.

We can now try using the P?GEMYV operation, and try to measure its performance.

13/56

The P?GEMYV operation

2 PBLAS and ScaLAPACK

The P?GEMYV operation computes the matrix-vector product
Y + QAx + [y,

where A is a distributed matrix, and x and y are distributed vectors.

e The operation is called via the PDGEMV routine.
e The routine requires the descriptors of the distributed matrix and vectors.

The routine signature is as follows:

CALL PDGEMV(TRANS, M, N, ALPHA, A, IA, JA, DESC_A, X, IX, 1, DESC_X,
BETA, Y, IY, 1, DESC_Y)

14/56

The P?GEMYV operation: parameters
2 PBLAS and ScalLAPACK
CALL PDGEMV(TRANS, M, N, ALPHA, A, IA, JA, DESC_A, X, IX, 1, DESC_X,
BETA, Y, IY, 1, DESC_Y)
e TRANS specifies whether to use A or AT,
e Mand N are the number of rows and columns of A,
e ALPHA and BETA are scalars,
e Ais the local array containing the local pieces of A,
e TA and JA are the row and column indices of the first element of the submatrix of A,
e DESC_A is the descriptor of A,
X is the local array containing the local pieces of x,
IX is the index of the first element of the subvector of x,
DESC_X is the descriptor of x,
Y is the local array containing the local pieces of y,
IY is the index of the first element of the subvector of y,
DESC_Y is the descriptor of y.

15/56

Testing PDGEMV

2 PBLAS and ScalLAPACK

To test the PDGEMV routine, we can write a simple Fortran program that:
1. Build the test program and link against ScaLAPACK.
2. Run with a square number of MPI ranks.
3. Choose m, n, and block size nb via command-line arguments.

Then we can call PDGEMV to perform the matrix-vector multiplication.

The code to compile and run the test program is something on the lines of:

mpifort -03 -o test_pdegemv test_pdegemv.f90 -lscalapack
mpirun -np 4 ./test_pdegemv 4000 4000 128

16/56

2 PBLAS and ScaLAPACK

Reading command-line arguments

We can read command-line arguments in Fortran as follows:

m = 4000
n = 4000
nb = 128
nreps = 10

arg_count = command_argument_count ()
if (arg_count >= 1) then
call get_command_argument (1, arg)
read(arg, *) m
end if
if (arg_count >= 2) then
call get_command_argument (2, arg)
read(arg, *) n
end if

17/56

if (arg_count >= 3) then
call get_command_argument (3, arg)
read(arg, *) nb

end if

if (arg_count >= 4) then
call get_command_argument (4, arg)
read(arg, *) nreps

end if

Which allows us to set m, n, nb, and the
number of repetitions nreps for the
matrix-vector multiplication.

Initializing distributed environment
2 PBLAS and ScaLAPACK

We use the init code shown before to initialize MPI and BLACS.

call MPI_Init(ierr)
call MPI_Comm_rank (MPI_COMM_WORLD, world_rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, world_size, ierr)
nprocs_per_dim = int(sqrt(dble(world_size)))
if (nprocs_per_dim * nprocs_per_dim /= world_size) then
if (world_rank == 0) then
print *, 'Error: number of processes must be a perfect square.'
end if
call MPI_Finalize(ierr)
stop 1
end if

and check that the number of processes is a perfect square.

18/56

Initializing distributed environment
2 PBLAS and ScalLAPACK

Then the BLACS initialization follows:

call blacs_get(-1, 0, ictxt)

nprow = nprocs_per_dim

npcol = nprocs_per_dim

call blacs_gridinit(ictxt, 'R', nprow, npcol)

call blacs_gridinfo(ictxt, nprow, npcol, myrow, mycol)

if (myrow == -1 .or. mycol == -1) then
call blacs_exit (1)
call MPI_Finalize(ierr)
stop 1

end if

19/56

Creating distributed matrices and vectors
2 PBLAS and ScalLAPACK

We can now create the distributed matrix A and vectors x and y:

mloc
nloc
11dA

xloc
yloc
114X
11dY

numroc(m, nb, myrow, O, nprow)
numroc(n, nb, mycol, 0, npcol)
max (1, mloc)

numroc(n, nb, myrow, O, nprow)
numroc(m, nb, myrow, O, nprow)
max (1, xloc)
max (1, yloc)

Where we use NUMROC to compute the local sizes of the distributed arrays.

20/56

The NUMROC utility

2 PBLAS and ScalLAPACK

The NUMROC utility computes the number of rows or columns of a distributed matrix or
vector owned by a given process.

integer function numroc(n, nb, iproc, isrcproc, nprocs)
Where

21/56

n is the global number of rows or columns,

nb is the block size,

iproc is the coordinate of the process in the grid,

isrcproc is the coordinate of the process owning the first row or column,
nprocs is the number of processes in the grid dimension.

Creating the descriptors
2 PBLAS and ScaLAPACK

The descriptors for the distributed matrix and vectors for ScaLAPACK are variables of type
integer, defined as arrays of size 9.

integer :: descA(9), descX(9), descY(9)

We can initialize them as follows:

call descinit(descA, m, n, nb, nb, 0, 0, ictxt, 11dA, info)
call descinit(descX, n, 1, nb, 1, 0, 0, ictxt, 11dX, info)
call descinit(descY, m, 1, nb, 1, 0, 0, ictxt, 11dY, info)

We should always check the value of info after each call to descinit, e.g.,
if (info /= 0) then

if (world_rank == 0) print *, 'descinit error: ', info
call MPI_Abort (MPI_COMM_WORLD, info, ierr)
end if

22/56

<N%ul

ﬂk\V Allocate and fill the local arrays

2 PBLAS and ScalLAPACK

Next, we allocate and fill the local arrays:
allocate(A(11dA, max(1, nloc)))
allocate(X(11dX, max(1l, numroc(l, 1, mycol, O, npcol))))
allocate(Y(11dY, max(1l, numroc(il, 1, mycol, O, npcol))))
Where we use again the numroc utility to compute the local sizes of the vectors.
We fill the matrix A with:
if (mloc > 0 .and. nloc > 0) then
do j = 1, nloc
col_global = indx12g(j, nb, mycol, O, npcol)
do i =1, mloc
row_global = indx12g(i, nb, myrow, O, nprow)
A(i, j) = dble(row_global + col_global) / dble(m + n)
end do
end do
end if
23/56

<N%ul

ﬂk\V Allocate and fill the local arrays

2 PBLAS and ScalLAPACK

Next, we allocate and fill the local arrays:

allocate(A(11dA, max(1, nloc)))
allocate(X(11dX, max(1l, numroc(i, 1, mycol, O, npcol))))
allocate(Y(11dY, max(1l, numroc(il, 1, mycol, O, npcol))))

Where we use again the numroc utility to compute the local sizes of the vectors.
We fill the vectors x, and y with:
if (xloc > 0) then
do i =1, xloc
row_global = indx12g(i, nb, myrow, O, nprow)
X(i, 1) = 1.0d0 + dble(row_global) / dble(n)
end do
end if
if (yloc > 0) Y(1:yloc, 1) = 0.0d0

23/56

Timing and synchronization
2 PBLAS and ScaLAPACK

e Use MPI Barrier to synchronize before and after PDGEMV.

e Measure elapsed time with MPI_Wtime.

call MPI_Barrier (MPI_COMM_WORLD, ierr)

t0 = MPI_Wtime()

do i = 1, nreps
call pdgemv('N', m, n, alpha, A, 1, 1, descA, X, 1, 1, descX, 1, beta, VY,
— 1, 1, descY, 1)

end do

call MPI_Barrier (MPI_COMM_WORLD, ierr)

t1 = MPI_Wtime()

elapsed_time = (t1 - t0)

As usual, this the elapsed_time contains the total time for nreps repetitions of the
matrix-vector multiplication on each process.

24/56

Computing the performance
2 PBLAS and ScalLAPACK

We take the worst-case time across all processes:

call MPI_Reduce(elapsed_time, max_elapsed, 1, MPI_DOUBLE_PRECISION,
< MPI_MAX, 0, MPI_COMM_WORLD, ierr)

Then, on rank 0, we can compute the measurements:

if (myrow == 0 .and. mycol == 0) then
gflops = (2.0d0 * dble(m) * dble(n) * dble(nreps)) / max_elapsed / 1.0d9
avg_time = max_elapsed / dble(nreps)
avg_gflops = (2.0d0 * dble(m) * dble(n)) / avg_time / 1.0d49
print *, 'PDGEMV m=', m, ' n=', n, ' nb=', nb, ' procs=', world_size,
< Treps=', nreps
print *, 'Total time (s)=', max_elapsed, ' Total GFLOPS=', gflops
print *, 'Avg time (s)=', avg_time, ' Avg GFLOPS=', avg_gflops

end if

25/56

<Bﬂlq;-ll

ﬂk\V GFLOPS calculation for PDGEMV

2 PBLAS and ScalLAPACK

We can compute the number of floating-point operations for the matrix-vector
multiplication as follows:
FLOPS=2-m-n

Thus, the performance in GFLOPS can be computed as:

gflops = (2.0d0 * dble(m) * dble(n) * dble(nreps)) / max_elapsed / 1.0d9
Where nreps is the number of repetitions of the multiplication.

Similarly, the worst-case performance per repetition is:
avg_gflops = (2.0d0 * dble(m) * dble(n)) / avg_time / 1.0d49

26/56

Finalizing the distributed environment
2 PBLAS and ScalLAPACK

Finally, we need to finalize BLACS and MPI:

if (allocated(A)) deallocate(A)
if (allocated(X)) deallocate(X)
if (allocated(Y)) deallocate(Y)
call blacs_gridexit(ictxt)

call blacs_exit(0)

We don’t need to call MPI_Finalize explicitly, as it is called inside the blacs_gridexit.

We are finally done, and we can compile and run our test program. As for the case in the
other lectures, we plan on running it on the Amelia cluster at IAC-CNR. Hence, we use the
Intel Oneapi compilers, and link against Intel MKL—which provides BLACS, PBLAS, and
ScalLAPACK.

27/56

Running script
2 PBLAS and ScalLAPACK

The script to run the test program on Amelia is written as follows:
#!/usr/bin/env bash

#SBATCH —-nodes=0NODES@

#SBATCH --ntasks=QTASKS@

#SBATCH --cpus—per-task=@THREADS@

#SBATCH --partition=prod—-gn

#SBATCH —--time=01:00:00

#SBATCH —-mem=950Gb

#SBATCH --job—name=pdegemv_weak

export OMP_NUM_THREADS=1

export MKL_NUM_THREADS=1

cd /ifs/hpc/home/fdurastante/scalapacktest/launchscripts/
mpirun -np QTASKS@ ./../build/test_pdegemv QNQ@ QN@ Q@NBQ@ 2>&1 >
— ../logfiles/pdegenmv/log_t@TASKSQ.log

28/56

Running script explanation
2 PBLAS and ScalLAPACK

The script uses SLURM directives to request resource and has a number of placeholders:
e QNODES@: number of nodes to use,
e QTASKS@: number of MPI tasks to use,
e Q@THREADS@: number of threads per task,
e Q@NGQ: size of the matrix and vectors,
e ONBG: block size.

We use an auxiliary script to replace the placeholders and submit the job to SLURM:
./genscript.sh launch_pdegenmv.sh

Where genscript . sh replaces the placeholders and produces the launch files.

29/56

The genscript. sh auxiliary script
2 PBLAS and ScaLAPACK

The auxiliary script genscript.sh is as follows:

#1/bin/sh
TEMPLATE="$1"
TASKS_PER_NODE=64
THREADS_PER_TASK=1
N_LOCAL=4000
NB=128
Perfect-square task counts up to 20 nodes * 64 tasks/mnode = 1280 tasks
TASKS_LIST="64 144 256 400 576 900 1024 1156"
for TASKS in $TASKS_LIST; do
Compute number of nodes (ceiling division)
NODES=$(((TASKS + TASKS_PER_NODE - 1) / TASKS_PER_NODE))
PROCS_PER_DIM=$ (LC_NUMERIC=C echo "scale=0; sqrt($TASKS)" | bc -1)

30/56

The genscript. sh auxiliary script
2 PBLAS and ScaLAPACK

N=$ ((N_LOCAL * PROCS_PER_DIM))
OUTFILE="outscript_t${TASKS}.sh"
sed \
-e "s/GNODES@/${NODES}/g" \
-e "s/Q@TASKS@/${TASKS}/g" \
-e "s/QTHREADSO/${THREADS_PER_TASK}/g" \
-e "s/@NG/${N}/g" \
-e "s/@NBQ/${NB}/g" \
"$TEMPLATE" > "$OUTFILE"
chmod +x "$OUTFILE"
echo "Generated $0UTFILE (tasks=$TASKS, nodes=$NODES,
< threads=$THREADS_PER_TASK, N=$N, NB=$NB)"
done

31/56

The genscript. sh auxiliary script
2 PBLAS and ScaLAPACK

The script iterates over a list of perfect-square task counts
n, = 64,144,256, 400, 576, 900, 1024, 1156,

computes the number of nodes required, the problem size N, and replaces the
placeholders in the template script using sed.

The sed command replaces each placeholder with the corresponding value, its general
form being:
sed -e "s/OPLACEHOLDERQ/value/g" input_template > output_script

Where @PLACEHOLDERGQ is replaced with value in the input_template, and the result is
saved in output_script.

32/56

The genscript. sh auxiliary script
2 PBLAS and ScaLAPACK

We run the genscript. sh script as follows:
chmod +x genscript.sh
./genscript.sh launch_pdegemv.sh

Which produces the following output:

Generated outscript_t64.sh (tasks=64, nodes=1, threads=1, N=32000, NB=128)
Generated outscript_t144.sh (tasks=144, nodes=3, threads=1, N=48000, NB=128)
Generated outscript_t256.sh (tasks=256, nodes=4, threads=1, N=64000, NB=128)
Generated outscript_t400.sh (tasks=400, nodes=7, threads=1, N=80000, NB=128)
Generated outscript_t576.sh (tasks=576, nodes=9, threads=1, N=96000, NB=128)
Generated outscript_t900.sh (tasks=900, nodes=15, threads=1, N=120000, NB=128)
Generated outscript_t1024.sh (tasks=1024, nodes=16, threads=1, N=128000, NB=128)
Generated outscript_t1156.sh (tasks=1156, nodes=19, threads=1, N=136000, NB=128)

We can then submit each generated script to SLURM with:
sbatch outscript_t?7.sh

33/56

Analyzing the results

2 PBLAS and ScaLAPACK

0.3

Time (s)

0.28 |-

0.26

64|

|
o
Q
F

144 |-
256 |-
576 |-

e

Number of Processes

GFLOPS

103

102

|
<
O

|
o
Q
<+

LR

|
<
3

Number of Processes

We can see that the time remains roughly constant as we increase the number of
processes, while the performance increases accordingly N =, NB =.

34/56

The distributed Matrix-Matrix multiplication

2 PBLAS and ScaLAPACK

e We will consider the formation of the matrix products

C = aAB+ C
C = aAB! + SC
C=aA"B+ SC
Cc=aATBT + gC

e These are the special cases implemented in the sequential BLAS GEMM.
e Assume each matrix X has dimensions m* x nX, with X € {A, B, C}.
¢ Dimensions must be compatible; we take C € R™*" and the inner dimension k.

35/56

Back on the data distribution

2 PBLAS and ScaLAPACK

e We consider 2D data decompositions;
e The 1D case is obtained by setting one grid dimension to 1.

Given X € {A,B,C}™ ™ on anr x c process grid, we partition:

Xoo - Xoe-1)
x=| ‘

Xe—1o - Xp-1)(c-1)

Submatrix Xj; is assigned to process P;.

o mX « X wi X _ X _
Xjj has size mi® x nf', with 3, mi =mand ;n{ =n.

Each algorithm variant enforces row/column compatibility in these dimensions: For
this operation to be well-defined, we require m* = m, n4 = m® = k, and n® = n.

36/56

Forming C = aAB + [3C

2 PBLAS and ScaLAPACK

For simplicity, we take & = 1 and /3 = 0 in our description.
If aj, by, and c;; denote the (i,j) element of the matrices, respectively, then the elements
of C are given by

k
Cij = Z aﬂblj.
I=1

Notice that:
@ rows of C are computed from rows of A, and columns of C

@ We hence restrict our data decomposition so that rows of A and C are assigned to the
same row of nodes and columns of B and C are assigned to the same column of

nodes.

@ Hence, m{ = m{ and nf = n/.

37/56

Basic parallel algorithm (as we have seen for the
OpenMP case)

2 PBLAS and ScalLAPACK

e Compute Cj; as a sequence of rank-one updates.
e Assign block row A; to process row i.
e Assign block column B’ to process column .

p(OT
= 0 1 k—1 fd bkl)T
B= (@ o o), B=| Y
(—1)T
bj
k—1
¢ =3 alboT
t=0

38/56

Rank-one update view
2 PBLAS and ScalLAPACK

Each step t:
e broadcasts ai(t) along process row i.
e broadcasts b}t) along process column .

Perform
e Local update on Py: Cjj < Cjj + ai(t) bJ.(t)T.
t+1 t t t)T
Ci(j) _ i(j)Jrai()bj()

oW

H W N -

: C,-j +~— 0

: for{=0,....k—1do

broadcast ai(z) within my row
broadcast bj(e) within my column
Cy ¢ Cy+a” b"

end for

Now we can analyze the cost of this algorithm, both in terms of computation and

communication.

39/56

\\‘ 'I»A

ﬂl\w Algorithm cost: minimum spanning tree broadcast
2 PBLAS and ScalLAPACK

To analyze the cost of this basic algorithm, we make some simplifying assumptions:

C_ A _ c_ B
m; = m; =m/r, n; =n/ =n/c,
A_ B
ni =kj/c, m;y =k/r.

Since relatively little data is involved during each broadcast we assume a
minimum-spanning-tree broadcast.

40/56

NP

?/A\$ Algorithm cost: minimum spanning tree broadcast
2 PBLAS and ScaLAPACK

To analyze the cost of this basic algorithm, we make some simplifying assumptions:

m =m? =m/r, njC:nJB:n/c,
nd =k/c, mf =k/r.

Since relatively little data is involved during each broadcast we assume a
minimum-spanning-tree broadcast.

Minimum-Spanning-Tree Broadcast

A minimum-spanning-tree (MST) broadcast minimizes latency by organizing the broadcast
in log(p) stages, where p is the number of processes.

e Stage 0: Process 0 sends to process 1

e Stage 1: Processes 0,1 send to processes 2,3

e Stage 2: Processes 0,1,2,3 send to processes 4,5,6,7
40/86 And so on...

NP

?/A\$ Algorithm cost: minimum spanning tree broadcast
2 PBLAS and ScaLAPACK

To analyze the cost of this basic algorithm, we make some simplifying assumptions:

m =m? =m/r, njC:nJB:n/c,
nd =k/c, mf =k/r.

Since relatively little data is involved during each broadcast we assume a
minimum-spanning-tree broadcast.

Minimum-Spanning-Tree Broadcast

Cost model for MST broadcast of data size S to p processes:

Thcast = “082 (p)—‘ ’ (a +S- B)

Where:
e « and 3 are the latency and the inverse bandwidth (per unit data),

10/% Each stage involves one message transmission for = [log,(p)] total stages.

Cost model (detailed)

2 PBLAS and ScaLAPACK

The cost of the algorithm (per panel) is therefore

k 2’;" 7+ [og(e)] (o -+ =-3) + log(r)] (o + 25)} .

The three terms inside the square brackets correspond to
e 2mn/p~: local rank-one update,
e [log(c)] (a + m/rf3): row broadcast of 4,
e [log(r)] (a + n/¢f3): column broadcast of B.

Hence the total time is

2mnk

Tlm,n k. p) = %y + K [log(e)] + [log(r)])+ [log(e)] "5 + [og(r)]

c

B

41/56

Scalability analysis
2 PBLAS and ScaLAPACK

The cost T(m, n, k, p) compares to the sequential time 2mnk .

To study scalability, setm =n=k,r=c=,/p (assume p power of two).
From T(m,n, k, p) the estimated speedup is

2n’y _ p
v+ nlog(p)a +log(p) 55 1+ EigERle 4 VPRI S

2n2

S(nvp) =

The corresponding parallel efficiency is

E(n, p) S(n,p) 1 1

p 1_|_P1§rg!gp)%_|_ ﬁlzc:lg(p)g 1+O(pl:l)§p> +O<\/ﬁlogp)

n

42/56

Scalability insight

2 PBLAS and ScalLAPACK

e Speedup improves with /p process grids.
e Efficiency degrades slowly with log(p) broadcast costs.

e Increasing n with ,/p keeps memory per process fixed.
1

e = 02) + o V2R

n2

Scalability insight

Ignoring the log(p) term, which grows very slowly when p is reasonably large, we notice
the following: If we increase p and we wish to maintain efficiency, we must increase n
with | /p. Since memory requirements grow with n2, and physical memory grows linearly

with p as nodes are added.

43/56

Scalability insight

2 PBLAS and ScalLAPACK

e Speedup improves with ,/p process grids.
e Efficiency degrades slowly with log(p) broadcast costs.

e Increasing n with ,/p keeps memory per process fixed.

En.p) = + o(’”‘;%(”))i o(2kee))

Scalability insight

We conclude that the method is scalable in the following sense:
“If we maintain memory use per node, this algorithm will maintain efficiency, if log(p) is
treated as a constant.”

43/56

<wq~‘
Moving to the pipelined algorithm

2 PBLAS and ScaLAPACK

w,

We will present the benefits of pipelining computations and communications.

Let us consider implementing the broadcast as passing of a message around the logical
ring that forms the row or column.

subroutine RING_Bcast(data, count, type, root, comm)
implicit none

integer, intent(in) :: count, type, root, comm

real (kind=real64), intent(inout) :: data(x)

! Local wvartiables

integer :: me, np, next, prev, ierr

call MPI_Comm_rank(comm, me, ierr)

call MPI_Comm_size(comm, np, ierr)

44/56

\‘ '[,‘

4‘\\\ Moving to the pipelined algorithm
2 PBLAS and ScalLAPACK

if (me /= root) then
prev = mod(me - 1 + np, np)
call MPI_Recv(data, count, type, prev, MPI_ANY_TAG, comm,
< MPI_STATUS_IGNORE, ierr)
end if
if (mod(me + 1, np) /= root) then
next = mod(me + 1, np)
call MPI_Send(data, count, type, next, 0, comm, ierr)
end if
end subroutine RING_Bcast

45/56

SVl
Moving to the pipelined algorithm

2 PBLAS and ScalLAPACK

AN,

In this case, the time complexity becomes:

<4+ The time required for both the first column of A,_; and the first row of B°~! to reach
process (r—1,¢ — 1):

=1 (a+28)+ 1) (a+25)

46/56

\\w,‘
Moving to the pipelined algorithm

2 PBLAS and ScalLAPACK

w,

In this case, the time complexity becomes:

<4+ The time required for both the first column of A,_; and the first row of B°~! to reach
process (r—1,c—1)
<+ The time for performing the local update and passing the messages along the pipe

+k<rgv+a+ —B+a+ 5)

46/56

\\w,‘
Moving to the pipelined algorithm

2 PBLAS and ScaLAPACK

w,

In this case, the time complexity becomes:

<4 The time required for both the first column of A,_; and the first row of B! to reach
process (r—1,c — 1)
<+ The time for performing the local update and passing the messages along the pipe

<+ The time for the final messages (initiated at process (r—1,c— 1)) to reach the end
of the pipe:

t(c—2) (044—%5) L (r—2) (a+%5)

46/56

\\w,‘
Moving to the pipelined algorithm

2 PBLAS and ScaLAPACK

w,

In this case, the time complexity becomes:

<4+ The time required for both the first column of A,_; and the first row of B°~! to reach
process (r— 1,c — 1)
<+ The time for performing the local update and passing the messages along the pipe

<+ The time for the final messages (initiated at process (r—1,c— 1)) to reach the end
of the pipe
<+ the time for the final update at the node at the end of the pipe (process
(r—1,c—2)or(r—2,c—1)):
+2mn
~
p

46/56

\\w,‘
Moving to the pipelined algorithm

2 PBLAS and ScaLAPACK

w,

In this case, the time complexity becomes:
<4+ The time required for both the first column of A,_; and the first row of B°~! to reach
process (r—1,c — 1)
<+ The time for performing the local update and passing the messages along the pipe
=4 The time for the final messages (initiated at process (r — 1, ¢ — 1)) to reach the end
of the pipe
<+ the time for the final update at the node at the end of the pipe (process
(r—1,c—2)or(r—2,c—1))
= Summing all contributions, we obtain:
- 2mn(pk+l)7+(k+2c3) (a+?ﬁ) 4 (k+2r—3) <a+25)

46/56

Comparing the two approaches
2 PBLAS and ScaLAPACK

For the minimum-spanning-tree broadcast we had a cost of

2mnk k k
T(m, n,k,p) = =5 5 + K([log(e)] + [1og(r)])x + log(e)] =% + log(r)] "6
For the pipelined ring broadcast we have a cost of

T(m,n,k,p):mn(pwfy+(k+20—3) (a+?ﬁ> F(k+2r—3) (a—l—%ﬁ>7

@ Notice that for large k, the “log” factors we had in the tree approach are removed.

47/56

Scalability of the pipelined approach

2 PBLAS and ScaLAPACK

To establish the scalability, we again analyse the case wherem = n = kandr = ¢ = /p.
This changes the complexity to approximately

2n3 n
77+2(n+2\/§—3) <o¢—|—\/§6> .

The speedup is
2n’y 4
S(n,p) = — & 7%
7 H2n+2p - 3)(04—1—\[5) 1+ za+ 358

The corresponding efhaency is

S(n,p) _ 1
P iro(k) o)

12('131)) =

48/56

Scalability of the pipelined approach

2 PBLAS and ScaLAPACK

To establish the scalability, we again analyse the case wherem = n = kandr = ¢ = /p.

The speedup is

2n3y p
R +2n+2p—3) (a+25) 1+La+ s
p v \/ii o N7 n2 n

The corresponding efficiency is

_S(n,p) _ 1
= 140(%) +0(2)

The log(p) term has disappeared and the method is again scalable in the sense that if we
maintain memory use per node, this algorithm will maintain efficiency.

48/56

Blocking to further improve performance
2 PBLAS and ScaLAPACK

We can reformulate the algorithm to use matrix-matrix multiplcations, instead of
rank-one updates.

Memory acces bandwidth

Recall that matrix-matrix multiplications have a much higher computational intensity
(flops per memory access), hence they better exploit memory hierarchies and achieve
higher performance on modern architectures.

49/56

Blocking to further improve performance
2 PBLAS and ScaLAPACK

We can reformulate the algorithm to use matrix-matrix multiplcations, instead of
rank-one updates.

Memory acces bandwidth

Recall that matrix-matrix multiplications have a much higher computational intensity
(flops per memory access), hence they better exploit memory hierarchies and achieve
higher performance on modern architectures.

49/56

Blocking to further improve performance
2 PBLAS and ScaLAPACK

We can reformulate the algorithm to use matrix-matrix multiplcations, instead of
rank-one updates.

Memory acces bandwidth

Recall that matrix-matrix multiplications have a much higher computational intensity
(flops per memory access), hence they better exploit memory hierarchies and achieve
higher performance on modern architectures.

e From the previous explanation, we change that each panel of A and B consist now of
a block of columns/rows.

49/56

Blocking to further improve performance
2 PBLAS and ScaLAPACK

We can reformulate the algorithm to use matrix-matrix multiplcations, instead of
rank-one updates.

Memory acces bandwidth

Recall that matrix-matrix multiplications have a much higher computational intensity
(flops per memory access), hence they better exploit memory hierarchies and achieve
higher performance on modern architectures.

e From the previous explanation, we change that each panel of A and B consist now of
a block of columns/rows.

¢ An additional advantage of blocking is that it reduces the number of messages
incurred = lower latency cost/communication overhead.

49/56

Some practical considerations
2 PBLAS and ScalLAPACK

e Choose nb to balance computation and communication.
e Square-ish grids minimize communication volume.
Use optimized local BLAS for the inner GEMM.

Synchronize only for timing, not for correctness.

The routine is called via PDGEMM.

A, B, and C are distributed with 2D block-cyclic layout.
CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,

A, IA, JA, DESC_A,

B, IB, JB, DESC_B,

BETA, C, IC, JC, DESC_C)

50/56

PDGEMM parameters

2 PBLAS and ScaLAPACK

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, IA, JA, DESC_A,
B, IB, JB, DESC_B,
BETA, C, IC, JC, DESC_C)

M, N, K define the sizes of C, A, and B.

IA, JAand IB, JB select submatrices.

DESC_A, DESC_B, DESC_C hold distribution metadata.
ALPHA and BETA are scalars.

51/56

Creating descriptors for PDGEMM

2 PBLAS and ScaLAPACK

Assume A € RM*k B ¢ Rkxn ¢ c Rmxn,

call descinit(descA, m, k, nb, nb, 0, 0, ictxt, 11dA, info)
call descinit(descB, k, n, nb, nb, 0, 0, ictxt, 11dB, info)
call descinit(descC, m, n, nb, nb, 0, 0, ictxt, 11dC, info)

e Block sizes are typically identical for all matrices.
e 11dx* are the local leading dimensions.

52/56

Calling PDGEMM

2 PBLAS and ScaLAPACK

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t0 = MPI_Wtime()
do i = 1, nreps
call pdgemm('N', 'N', m, n, k, alpha, A, 1, 1, descA, &
B, 1, 1, descB, beta, C, 1, 1, descC)
end do
call MPI Barrier (MPI_COMM_WORLD, ierr)
tl = MPI_Wtime()
elapsed_time = tl1 - tO

e Synchronize before and after to measure wall-clock time.

e nreps improves timing stability.

53/56

\‘ '[,‘

//A\w GFLOPS for PDGEMM

2 PBLAS and ScaLAPACK

The operation count for GEMM is
FLOPS=2-m-n-k.

gflops = (2.0d0 * dble(m) * dble(n) * dble(k) * dble(nreps)) &
/ max_elapsed / 1.0d9
avg_time = max_elapsed / dble(nreps)
avg_gflops = (2.0d0 * dble(m) * dble(n) * dble(k)) / avg_time / 1.0d9

e Use the max time across processes for a conservative metric.

54/56

2 PBLAS and ScalLAPACK

150 - .

100 - .

Time (s)

90 - .

Gk

|
o
(@]
<+

144 |-
256 |-

Number of Processes

55/56

GFLOPS

PDGEMM performance example

10%5

104

1032

64|

|
o
[®]

| | | N |
S % on o

Number of Processes

Conclusions, summary, and next steps

3 Conclusions, summary, and next steps

Today we have:
Discussed the distributed matrix-vector multiplication and its scalability.
Discussed the distributed matrix-matrix multiplication and its scalability.
Presented practical aspects of using ScaLAPACK routines.

Next time:
8 We will discuss more complex parallel algorithms for linear algebra.

83 We will stat looking into GPU acceleration.

56/56

	Last time on High Performance Linear Algebra
	PBLAS and ScaLAPACK
	The BLACS library
	The PBLAS operations
	The distributed Matrix-Matrix multiplication

	Conclusions, summary, and next steps

