High Performance Linear Algebra
Lecture 13: LAPACK and ScaLAPACK numerical algorithms
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

Monday 02, 2026 — 14.00:16.00

1/62

\‘"'/‘

W

Dipartimento
di Matematica
Universita di Pisa

mailto:fabio.durastante@unipi.it

\\‘ 'I»A

ﬂk\V A recap of the previous lectures and today’s plan

1 Last time on High Performance Linear Algebra

We have
@ Reviewed the basic concepts of shared memory programming with OpenMP,
Reviewed the basic concepts of distributed memory programming with MPI,

We have discussed the BLAS for dense matrices and vectors:

< All three levels of the BLAS in shared memory,
< All three levels of the BLAS in distributed memory.

oy
[
oy
[

The plan for the next two lectures is to:
e Look at the LAPACK library for dense linear algebra in shared memory,
e Look at the ScaLAPACK library for dense linear algebra in distributed memory.

2/62

Table of Contents
2 LAPACK: Linear Algebra PACKage

» LAPACK: Linear Algebra PACKage
Systems of linear equations

Least-Squares Problems

Eigenproblems and Singular Value Decomposition

The Computational Routines

3/62

LAPACK: Linear Algebra PACKage

2 LAPACK: Linear Algebra PACKage

e LAPACK is a software library for numerical linear algebra that provides routines for:
— solving systems of linear equations,
— least squares problems,
— eigenvalue problemes,
— singular value decomposition,
— and other related problems.
e |t is designed to be efficient on modern computer architectures, taking advantage of
cache memory and vectorization.

e LAPACK is written in Fortran and is widely used in scientific computing applications.

e Itis built on top of the BLAS (Basic Linear Algebra Subprograms) library, which
provides low-level routines for performing basic linear algebra operations.

4/62

LAPACK: solving systems of linear equations
2 LAPACK: Linear Algebra PACKage

Two types of driver routines are provided for solving systems of linear equations:

e asimple driver (name ending -SV), which solves the system AX = B by factorizing A
and overwriting B with the solution X;

e an expert driver (name ending -SVX), which can also perform the following functions
(some of them optionally):

solve AT X = Bor AEX = B (unless A is symmetric or Hermitian);

estimate the condition number of A, check for near-singularity, and check for pivot
growth;

refine the solution and compute forward and backward error bounds;

equilibrate the system if A is poorly scaled.

@ The expert driver requires roughly twice as much storage as the simple driver in
order to perform these extra functions.

5/62

LAPACK: solving systems of linear equations
2 LAPACK: Linear Algebra PACKage

Two types of driver routines are provided for solving systems of linear equations:

e asimple driver (nhame ending -SV), which solves the system AX = B by factorizing A
and overwriting B with the solution X;

e an expert driver (nhame ending -SVX), which can also perform the following functions
(some of them optionally):

— solve ATX = Bor A”X = B (unless A is symmetric or Hermitian);

— estimate the condition number of A, check for near-singularity, and check for pivot
growth;

— refine the solution and compute forward and backward error bounds;

— equilibrate the system if A is poorly scaled.

@ Both types of driver routines can handle multiple right hand sides (the columns of B).

5/62

LAPACK: solving systems of linear equations
2 LAPACK: Linear Algebra PACKage

Two types of driver routines are provided for solving systems of linear equations:

e asimple driver (name ending -SV), which solves the system AX = B by factorizing A
and overwriting B with the solution X;
e an expert driver (name ending -SVX), which can also perform the following functions
(some of them optionally):
— solve ATX = Bor A”X = B (unless A is symmetric or Hermitian);
— estimate the condition number of A, check for near-singularity, and check for pivot
growth;
— refine the solution and compute forward and backward error bounds;
— equilibrate the system if A is poorly scaled.

@ Different driver routines are provided to take advantage of special properties or
storage schemes of the matrix A, for example, if A is symmetric, triangular, banded,
or tridiagonal.

5/62

LAPACK: the simple drivers 7GESV

2 LAPACK: Linear Algebra PACKage

For a general (non-symmetric, non-Hermitian) matrix A, the simple driver routine to solve
the system AX = Bis ?GESV, where the 7 is the data-type placeholder.
SUBROUTINE ?GESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER N, NRHS, LDA, LDB, INFO
INTEGER IPIV(*)
? AC LDA, *), B(LDB, *)

END SUBROUTINE ?GESV
=>» N is the order of the matrix A,
=» NRHS is the number of right hand sides (the number of columns of B),
=> Ais the coefficient matrix A (on entry) and its LU factorization (on exit),
=» IPIVisan integer array of pivot indices,
=» Bis the right hand side matrix B (on entry) and the solution matrix X (on exit),
=» INFOis an integer output variable that indicates success or failure of the routine.

6/62

LAPACK: the simple drivers DGESV

2 LAPACK: Linear Algebra PACKage

Let us look at an example of usage of the simple driver DGESV to solve a system of linear

equations.
A classical source of dense linear systems is the discretization of integral equations:

b
/ K(x.p)u(y)dy = fix), x€ [a,b].

Using a quadrature rule with nodes y; and weights w;, we can approximate the integral as
n
ZW]K(X“VJ)U(YJ) %f(xi)v i=]-7---7na
j=1

which leads to the linear system

Au=f, Ay =wiK(x;,y).

7/62

Discretization of a Stable Volterra Equation
2 LAPACK: Linear Algebra PACKage

We consider the Volterra integral equation of the second kind:

u(s) — /Os(s — t)u(t)dt = sin(s), se€[0,1].

We discretize the domain into n nodes s; = :1%11 with step size h = n—il Using the

composite trapezoidal rule, the integral is approximated for each node s;:
Si i
[s tutee = Y wytsi— gute). 4=,
0 .
j=1

where the weights are wy; = % for the endpoints (j = 1,i) and w;; = h otherwise.
This leads to a lower triangular linear system (I — A)u = f:

i
ui—ZAijuj =fi, Aij:Wij(Si—t:j)a i=1,...,n

1
8/62 ’

LAPACK: writing the function building the matrix A and b

2 LAPACK: Linear Algebra PACKage

We need to write a function that builds the matrix A and the right-hand side vector b.

subroutine build_system(n_size, mat, rhs, xplot_vec, sol_vec)
use iso_fortran_env, only: dp => real64
integer, intent(in) :: n_size
real(dp), intent(out) :: mat(n_size,n_size), rhs(n_size), xplot_vec(n_size),
— sol_vec(n_size)
end subroutine build_system

=» n_size s the size of the system,

=» mat is the matrix A,

=» rhsis the right-hand side vector b,

-» xplot_vec is the vector of x coordinates for plotting,

=» sol_vec is the vector of the exact solution for comparison.

9/62

LAPACK: writing the function building the matrix A and b

2 LAPACK: Linear Algebra PACKage

The implementation of the function is as follows:
integer :: i, j
real(dp) :: s_i, t_j, h

h =1.0_dp / real(n_size - 1, dp)
mat = 0.0_dp
!$omp parallel do private(i,j,s_t,t_j) shared(mat,rhs,zplot_vec,sol_vec,h)
do i = 1, n_size

s_i = real(i-1, dp) * h

rhs(i) = sin(s_i) ! f(s)

xplot_vec(i) = s_i ! = coordinates for plotting

sol_vec(i) = 0.5%sinh(s_i) + 0.5%sin(s_i)

mat(i,i) = 1.0_dp ! Identity part: z(s)

10/62

LAPACK: writing the function building the matrix A and b

2 LAPACK: Linear Algebra PACKage

do j =1, i
t_j = real(j-1, dp) * h ! Kernel K(s, t) = s - t
if (j == 1 .or. j == i) then
mat(i,j) = mat(i,j) - (s_i - t_j) * (b / 2.0_dp)
else
mat(i,j) = mat(i,j) - (s_i - t_j) *h
end if
end do
end do

!$omp end parallel do

=> We initialize the matrix and vectors,
= We use OpenMP to parallelize the outer loop over i,
=» We compute the entries of the matrix A and the right-hand side vector b.

11/62

LAPACK: the solution step

2 LAPACK: Linear Algebra PACKage

The remaining part of the program uses the LAPACK routine DGESV to solve the linear
system, after reading the matrix size from the command line and using the
build_system subroutine to create the matrix and right-hand side vector.

program linear_system_solve

use, intrinsic :: iso_fortran_env, only: wp => real64, error_unit
implicit none

character(len=20) :: arg

integer :: n, info

real(wp), allocatable :: A(:,:), b(:), x(:), xplot(:), sol(:)
integer, allocatable :: ipiv(:)

! Read matriz size from command line arguments
if (command_argument_count() < 1) then

12/62

LAPACK: the solution step

2 LAPACK: Linear Algebra PACKage

write(error_unit, *) "Usage: linear_system_solve <matrix_size>"
stop 1

end if

call get_command_argument(l, arg)

read(arg, *) n

! Allocate arrays
allocate(A(n,n), b(n), x(n), xplot(n), sol(n), ipiv(n))

! Initialize matriz A and vector b

call build_system(n, A, b, xplot, sol)

! Solve the linear system A*xz = b using LAPACK
x =Db

13/62

LAPACK: the solution step

2 LAPACK: Linear Algebra PACKage

call dgesv(n, 1, A, n, ipiv, x, n, info)

! Output the solution vector = to file "solution.out”
open(unit=10, file="solution.out", status="replace", action="write",
< iostat=info)
if (info /= 0) then

write(error_unit, *) "Error opening output file"

stop 1
end if
write(10, '(A)') "x computed exact"
don =1, size(x)

write(10, '(E24.16,E24.16,E24.16)') xplot(n), x(n), sol(n)
end do

14/62

LAPACK: the solution step

2 LAPACK: Linear Algebra PACKage

close(10)

! Deallocate arrays
deallocate(A, b, x, xplot, sol, ipiv)
stop O
¢/> The program reads the matrix size from command line arguments,
<[> Allocates the necessary arrays,
<[> Calls the build_system subroutine to initialize the matrix and vector,
<[> Uses DGESV to solve the linear system,
<[> Outputs the computed solution and exact solution to a file for comparison.

15/62

N

?/A\$ Visualization of the solution of the integral equation
2 LAPACK: Linear Algebra PACKage

Computing the solution with n = 100 nodes and plotting the numerical solution against
the exact solution:

T T T
1 | — Numerical solution .

--- Exact solution

16/62

AV 'I»A

ﬂk\V A remark on integral equations and dense linear systems
2 LAPACK: Linear Algebra PACKage

e For large-scale problems, storing and manipulating dense matrices can be
memory-intensive and computationally expensive.
e However, the matrices arising from integral equations often have special structures
that can be exploited:
— Low-rank approximations: The matrix may be well-approximated by a low-rank matrix,
reducing storage and computation.
— Hierarchical matrices (H-matrices): Exploit block-wise low-rank structure for efficient
storage and computation.
— Sparse representations: Using techniques like the Fast Multipole Method (FMM) to
avoid explicit matrix construction.
e These alternative storage formats can significantly reduce memory requirements and
computational complexity compared to standard dense matrix representations.

17/62

LAPACK: the other linear system routines

2 LAPACK: Linear Algebra PACKage

Type of matrix

Operation

Single precision

Double precision

and storage scheme real complex real complex
General simple driver SGESV CGESV DGESV ZGESV
expert driver SGESVX CGESVX DGESVX ZGESVX
General band simple driver SGBSV CGBSV DGBSV ZGBSV
expert driver SGBSVX CGBSVX DGBSVX ZGBSVX
General tridiagonal simple driver ~ SGTSV CGTSV DGTSV ZGTSV
expert driver SGTSVX CGTSVX DGTSVX ZGTSVX
Sym./Herm. pos. def. simple driver SPOSV CPOSV DPOSV ZP0OSV
expert driver SPOSVX CPOSVX DPOSVX ZPOSVX

18/62

2 LAPACK: Linear Algebra PACKage

LAPACK: the other linear system routines

Type of matrix Operation Single precision Double precision
and storage scheme real complex real complex
Sym./Herm. pos. def. simple driver SPPSV CPPSV DPPSV ZPPSV
(packed) expert driver SPPSVX CPPSVX DPPSVX ZPPSVX
Sym./Herm. pos. def. simple driver SPBSV CPBSV DPBSV ZPBSV
band expert driver SPBSVX CPBSVX DPBSVX ZPBSVX
Sym./Herm. pos. def. simple driver SPTSV CPTSV DPTSV ZPTSV
tridiagonal expert driver SPTSVX CPTSVX DPTSVX ZPTSVX
Sym./Herm. indefinite simple driver ~ SSYSV CHESV DSYSV ZHESV
expert driver SSYSVX CHESVX DSYSVX ZHESVX

19/62

LAPACK: the other linear system routines

2 LAPACK: Linear Algebra PACKage

Type of matrix Operation Single precision Double precision
and storage scheme real complex real complex
Complex symmetric simple driver CSYSV ZSYSV
expert driver CSYSVX ZSYSVX
Sym./Herm. indefinite simple driver =~ SSPSV CHPSV DSPSV ZHPSV
(packed) expert driver SSPSVX CHPSVX DSPSVX ZHPSVX
Complex symmetric simple driver CSPSV ZSPSV
(packed) expert driver CSPSVX ZSPSVX

@ The table summarizes the LAPACK routines for solving systems of linear equations for
various types of matrices and storage schemes.

20/62

LAPACK: storage schemes

2 LAPACK: Linear Algebra PACKage

Generally, LAPACK supports different storage schemes for matrices to optimize memory
usage and computational efficiency. The main storage schemes are:

e Full storage: The entire matrix is stored in a two-dimensional array. This is the most
straightforward representation but can be inefficient for large matrices.

e Banded storage: Only the non-zero bands of a banded matrix are stored,

e Packed storage: Only the non-zero elements of symmetric or Hermitian matrices are
stored in a one-dimensional array,

We have already seen examples of full storage, let us briefly discuss the other storage
schemes.

21/62

LAPACK: banded storage scheme

2 LAPACK: Linear Algebra PACKage

In the banded storage scheme, only the non-zero bands of a banded matrix are stored in

a compact form.
A banded matrix has non-zero elements only within a certain bandwidth around the main

diagonal.
=» KL is the number of subdiagonals (non-zero elements below the main diagonal),
=» KU is the number of superdiagonals (non-zero elements above the main diagonal),
=» LDAB s the leading dimension of the array AB, which must be at least 2*KL+KU+1,
<[> AB(KL+KU+1+i-j,j) = A(i,j) formax(1l,j-KU)<=i<=min(N, j+KL)

For example, a matrix with KL = 1 (one subdiagonal) and KU = 2 (two superdiagonals)
would be stored in a compact form requiringonly 2 x 1 + 2 + 1 = 5 rows instead of
storing the full matrix.

22/62

LAPACK: banded storage scheme example.

2 LAPACK: Linear Algebra PACKage

Consider the following banded matrix A with In banded storage, this matrix would be
KL =1and KU = 2: stored in the array AB as follows:
ann aip a3 0 0 0 0 a3 axn ass
a1 dge azz az O Ap— |®12 G2 a3 a5 0
A= |0 a3z az3 as ass ~ lair ax asz agy ass
0 0 ag3 ag ags as; azy g3 asy 0

0 0 0 ds4 dsn
Here,
=» the first row contains the second superdiagonal,
-» the second row contains the first superdiagonal,
-» the third row contains the main diagonal,
-» the fourth row contains the first subdiagonal.

23/62

LAPACK: banded storage scheme example.

2 LAPACK: Linear Algebra PACKage

Consider the following banded matrix A with In banded storage, this matrix would be
KL =1and KU = 2: stored in the array AB as follows:
a; a2 ai3 0 0 0 0 a3 ay ass
a1 dge dazz az O AB_ |®12 G2 a3 a5 0
A= |0 a3 az az ass ~ |ann axn a3z aus ass
0 0 as3 ag ags as; azy g3 asy 0

0 0 0 ds4 dsn
Here,
=» the first row contains the second superdiagonal,
-» the second row contains the first superdiagonal,
-» the third row contains the main diagonal,
-» the fourth row contains the first subdiagonal.

23/62

LAPACK: banded storage scheme example.

2 LAPACK: Linear Algebra PACKage

Consider the following banded matrix A with In banded storage, this matrix would be
KL =1and KU = 2: stored in the array AB as follows:
app a2 ai3 0 0 0 0 a3 ay ass
a1 aze dazz az O Ap— |®12 G2 a3 a5 0
A= |0 a3 az as ass ~ |ann axn ass aus ass
0 0 ag3 au ags as; azy g3 asy 0

0 0 0 ds4 055
Here,
=» the first row contains the second superdiagonal,
-» the second row contains the first superdiagonal,
-» the third row contains the main diagonal,
-» the fourth row contains the first subdiagonal.

23/62

LAPACK: banded storage scheme example.

2 LAPACK: Linear Algebra PACKage

Consider the following banded matrix A with In banded storage, this matrix would be
KL =1and KU = 2: stored in the array AB as follows:
a a2 a3 0 0 0 0 a3 ay ass
asy Qg dasz asy O AB— |2 @23 O34 s 0
A= |0 a3 azz azs ass ~layn a as3 ass ass
0 0 as3 ags ags ay1 a3y Q43 Asq4 O

0 0 0 ds4 dss
Here,
=» the first row contains the second superdiagonal,
-» the second row contains the first superdiagonal,
-» the third row contains the main diagonal,
-» the fourth row contains the first subdiagonal.

23/62

LAPACK: routine for banded storage

2 LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with banded storage is 7GBSV
for the simple driver and ?GBSVX for the expert driver.

=» These routines take as input the banded matrix in the compact form,
=» They perform LU factorization with partial pivoting to solve the system efficiently,

=» They are particularly useful when dealing with large banded matrices, as they reduce
memory usage and computational time compared to full storage methods.

SUBROUTINE ?GBSV(N, NRHS, KL, KU, AB, LDAB, IPIV, B, LDB, INFO)

INTEGER N, NRHS, KL, KU, LDAB, LDB, INFO
INTEGER IPIV(*)
? AB(LDAB, *), B(LDB, *)

END SUBROUTINE ?7GBSV

24/62

LAPACK: routine for banded storage

2 LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with banded storage is 7GBSV
for the simple driver and ?GBSVX for the expert driver.

=» These routines take as input the banded matrix in the compact form,
=» They perform LU factorization with partial pivoting to solve the system efficiently,

=» They are particularly useful when dealing with large banded matrices, as they reduce
memory usage and computational time compared to full storage methods.

On exit, details of the factorization: U is stored as an upper triangular band matrix with
KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.

24/62

LAPACK: the tridiagonal case

2 LAPACK: Linear Algebra PACKage

A special case of banded matrices is the tridiagonal matrix, which has non-zero elements
only on the main diagonal and the first sub- and super-diagonals.

The LAPACK routine for solving systems of linear equations with tridiagonal matrices is
?GTSV for the simple driver and ?GTSVX for the expert driver.

SUBROUTINE ?GTSV(N, NRHS, DL, D, DU, B, LDB, INFO)
INTEGER N, NRHS, LDB, INFO
v DL(*), DC %), DU(C =), B(LDB, *)
END SUBROUTINE ?GTSV
=» DL is the subdiagonal elements of size N-1,
=» D is the main diagonal elements of size N,

-» DU is the superdiagonal elements of size N-1.

25/62

Lapack: packed storage scheme
2 LAPACK: Linear Algebra PACKage

In the packed storage scheme, only the non-zero elements of symmetric or Hermitian
matrices are stored in a one-dimensional array. This is particularly useful for large
symmetric or Hermitian matrices, as it reduces memory usage significantly.

For a symmetric matrix, only the upper or lower triangular part needs to be stored, as the
other part can be inferred due to symmetry.

=» The packed storage format stores the elements column-wise (or row-wise) in a
one-dimensional array,

=» This format is efficient for both storage and computation, especially when combined
with LAPACK routines designed to work with packed storage.

26/62

LAPACK: routine for packed storage

2 LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is ?PPSV
for the simple driver and ?PPSVX for the expert driver.

SUBROUTINE ?PPSV(UPLO, N, NRHS, AP, B, LDB, INFO)

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP(*), B(LDB, *)

END SUBROUTINE ?7PPSV

=» UPLO indicates whether the upper or lower triangular part of the matrix is stored,

-» AP is the one-dimensional array containing the packed storage of the matrix.

27/62

LAPACK: routine for packed storage

2 LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is 7PPSV
for the simple driver and ?PPSVX for the expert driver.
SUBROUTINE ?PPSV(UPLO, N, NRHS, AP, B, LDB, INFO)

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP(*), B(LDB, *)

END SUBROUTINE ?PPSV
=» UPLO indicates whether the upper or lower triangular part of the matrix is stored,
=>» AP is the one-dimensional array containing the packed storage of the matrix.

If UPLO = 'U', the upper triangular part of the matrix is stored column-wise in AP as
follows:

AP = [ay1,a12, a2, a3, a23, 433, . - . , AN, G2N, - - - , ANN]

27/62

LAPACK: routine for packed storage

2 LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is 7PPSV
for the simple driver and ?PPSVX for the expert driver.
SUBROUTINE ?PPSV(UPLO, N, NRHS, AP, B, LDB, INFO)

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP(*), B(LDB, *)

END SUBROUTINE ?PPSV
=» UPLO indicates whether the upper or lower triangular part of the matrix is stored,
=>» AP is the one-dimensional array containing the packed storage of the matrix.

If UPLO = 'L', the lower triangular part of the matrix is stored column-wise in AP as
follows:

AP = [ay1,a21, 022, 031,032,033, . . ., AN1, AN2, - - - , ANN]

27/62

LAPACK: routine for packed storage

2 LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is 7PPSV

for the simple driver and ?PPSVX for the expert driver.
SUBROUTINE ?PPSV(UPLO, N, NRHS, AP, B, LDB, INFO)

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP(*), B(LDB, *)

END SUBROUTINE 7PPSV
=» UPLO indicates whether the upper or lower triangular part of the matrix is stored,
-» AP is the one-dimensional array containing the packed storage of the matrix.
=» Nis the order of the matrix,
-» NRHS is the number of right hand sides,
=» Bis the right hand side matrix.
-» LDBis the leading dimension of the array B.

-» INFOis an integer output variable that indicates success or failure of the routine.
27/62

LAPACK: routine for packed storage

2 LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is ?PPSV
for the simple driver and ?PPSVX for the expert driver.

SUBROUTINE 7PPSV(UPLO, N, NRHS, AP, B, LDB, INFO)

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP(*), B(LDB, *)

END SUBROUTINE 7PPSV

On exit, the solution matrix X overwrites the right hand side matrix B.

The routine uses the Cholesky factorization to solve the system efficiently while taking
advantage of the packed storage format. The factor U or L from the Cholesky factorization
A=U"UorA =LL", in the same storage format as A.

27/62

LAPACK: Linear Least Squares Problems

2 LAPACK: Linear Algebra PACKage

The linear least squares problem is:
minimize ||b — Ax||2
X

where A is an m-by-n matrix, b is a given m element vector, and x is the n element
solution vector.

In the most usual case m > n and rank(A) = n, the solution to the problem is unique, and
the problem is referred to as finding a least squares solution to an overdetermined system
of linear equations.

28/62

LAPACK: Linear Least Squares Problems

2 LAPACK: Linear Algebra PACKage

The linear least squares problem is:
minimize ||b — Ax||2
X

where A is an m-by-n matrix, b is a given m element vector, and x is the n element
solution vector.

When m < n and rank(A) = m, there are infinitely many solutions x that exactly satisfy
b — Ax = 0. In this case, it is useful to find the unique solution x which minimizes ||x||2,

referred to as finding a minimum norm solution to an underdetermined system of linear
equations.

28/62

LAPACK: Linear Least Squares Problems

2 LAPACK: Linear Algebra PACKage

The linear least squares problem is:
minimize ||b — Ax||2
X

where A is an m-by-n matrix, b is a given m element vector, and x is the n element
solution vector.

In the general case when rank(A) < min(m, n) (i.e., A may be rank-deficient), we seek the
minimum norm least squares solution x which minimizes both ||x||2 and ||b — Ax||5.

28/62

LAPACK: Driver routines for least squares problems
2 LAPACK: Linear Algebra PACKage

The driver routine DGELS solves the linear least squares problem assuming
rank(A) = min(m, n), i.e., A has full rank.

=» It finds a least squares solution of an overdetermined system when m > n,

=>» It finds a minimum norm solution of an underdetermined system when m < n,
=> It uses QR or LQ factorization of A,

= It allows A to be replaced by AT (or AH if A is complex).

For rank-deficient matrices, several routines are available:
e DGELSY — uses complete orthogonal factorization,
e DGELSS — uses singular value decomposition (SVD),
e DGELSD — uses divide-and-conquer SVD (faster for large problems).

29/62

LAPACK: LLS driver routines summary

2 LAPACK: Linear Algebra PACKage

Operation Single precision Double precision
real complex real complex
Solve LLS using QR or LQ SGELS CGELS DGELS ZGELS
Solve LLS using COF SGELSY CGELSY DGELSY ZGELSY
Solve LLS using SVD SGELSS CGELSS DGELSS ZGELSS

Solve LLS using DC-SVD SGELSD CGELSD DGELSD ZGELSD

@ All routines can handle multiple right hand sides stored as columns of B and X.
@ Each right hand side is solved independently, i.e., we do not find:

arg min ||B — AX||3.

30/62

LLS: The different algorithms

2 LAPACK: Linear Algebra PACKage

¢ QR and LQ factorization: A = QR or A = LQ with Q orthogonal and R (or L)
triangular.
— Suitable for full-rank matrices,
— Efficient for both overdetermined and underdetermined systems,
— Utilizes orthogonal transformations to minimize numerical errors,
— Cost: O(mn?) for m > n and O(nm?) form < n.

Ri1 Ryo
0 0
P a permutation matrix, and Ry upper triangular, and R, dense,

— Handles rank-deficient matrices,
— Decomposes A into orthogonal and triangular matrices,

— Provides a stable solution even when A is ill-conditioned,
— Cost: O(mn?) form > n and O(nm?) for m < n.

e Complete Orthogonal Factorization (COF): A = Q PT, with Q orthogonal,

31/62

LLS: The different algorithms

2 LAPACK: Linear Algebra PACKage

e Singular Value Decomposition (SVD): A = UXVT, with U and V orthogonal and £
diagonal,
— Robust method for rank-deficient matrices,
— Decomposes A into singular values and vectors,
— Minimizes the effect of small singular values on the solution,
— Cost: O(mn? + n?) form > nand O(nm? + m?) form < n.
¢ Divide-and-Conquer SVD:
— An efficient variant of SVD for large problems,
— Divides the matrix into smaller submatrices,
— Combines results to obtain the final solution,
— Cost: O(mn?) for m > n and O(nm?) for m < n (faster than traditional SVD for
large-scale problems).

32/62

LAPACK: Generalized Linear Least Squares Problems
2 LAPACK: Linear Algebra PACKage

Driver routines are provided for two types of generalized linear least squares problems.

The first is the linear equality-constrained least squares problem (LSE):

min |c — Ax||s subjectto Bx=d
X

where A € R™*", B € RP*" ¢ is a given m-vector, d is a given p-vector, with
p<n<m-+p.
-» The routine DGGLSE solves this problem using the generalized RQ factorization,

-» Assumes B has full row rank p and [g] has full column rank n,

=» Under these assumptions, the problem has a unique solution.

33/62

LAPACK: Generalized Linear Model Problem

2 LAPACK: Linear Algebra PACKage

The second is the general linear model problem (GLM):

min ||y||]2 subjectto d = Ax+ By
X

where A € R™™ B € R" P, and d is a given n-vector, withm < n < m + p.
=» When B = I, the problem reduces to an ordinary linear least squares problem,
-» When Bis square and nonsingular, it is equivalent to the weighted linear least
squares problem:
min B~ (d - Ax)||

The routine DGGGLM solves this problem using the generalized QR factorization:
=> Assumes A has full column rank m and (4, B) has full row rank n,
=» Under these assumptions, there are unique solutions x and y.

34/62

LAPACK: Generalized Linear Model Problem

2 LAPACK: Linear Algebra PACKage

Operation Single precision Double precision
real complex real complex

Solve LSE using GRQ SGGLSE CGGLSE DGGLSE ZGGLSE
Solve GLM using GQR SGGGLM CGGGLM DGGGLM ZGGGLM

@ The GRQ decomposes the pair (A, B) into orthogonal and triangular matrices as
A = RQand B =ZTQ, Q,Zorthogonal, R, T upper triangular
@ The GQR decomposes the pair (4, B) into orthogonal and triangular matrices as

A = QRand B = QTZ, Q,Zorthogonal, R, T upper triangular;

35/62

Eigenproblems and Singular Value Decomposition
2 LAPACK: Linear Algebra PACKage

LAPACK provides a comprehensive set of routines for solving various types of eigenvalue
problems and performing singular value decomposition (SVD).

These routines are designed to handle different matrix types, including general,
symmetric, Hermitian, and banded matrices.
Key features of LAPACK’s eigenproblem and SVD routines include:

e Efficient algorithms for computing eigenvalues and eigenvectors,

e Support for both real and complex matrices,

e Routines for computing the SVD of general matrices,

e Specialized routines for symmetric and Hermitian matrices to exploit their properties
for improved performance.

36/62

LAPACK: Symmetric Eigenproblems (SEP)

2 LAPACK: Linear Algebra PACKage

The symmetric eigenvalue problem is to find the eigenvalues \ and corresponding
eigenvectors z # 0, such that:

Az=)Xz, A=A", whereAisreal.
For the Hermitian eigenvalue problem we have:
Az =)z, A=A
For both problems the eigenvalues X are real.
When all eigenvalues and eigenvectors have been computed, we write:
A=7ZAZ"

where A is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an
orthogonal (or unitary) matrix whose columns are the eigenvectors. This is the classical
spectral factorization of A.

37/62

Driver routines for symmetric eigenproblems
2 LAPACK: Linear Algebra PACKage

There are four types of driver routines for symmetric and Hermitian eigenproblems:

= Asimple driver (hame ending ~EV) computes all the eigenvalues and (optionally)
eigenvectors,

=> An expert driver (hame ending ~EVX) computes all or a selected subset of the
eigenvalues and eigenvectors,

=» Adivide-and-conquer driver (name ending —~EVD) solves the same problem as the
simple driver but is much faster for large matrices,

=> Arelatively robust representation (RRR) driver (name ending -EVR) is the fastest
algorithm and uses the least workspace.

Different driver routines are provided to take advantage of special structure or storage of
the matrix A.

38/62

LAPACK: Driver routines for symmetric eigenproblems
2 LAPACK: Linear Algebra PACKage

Function and storage scheme Single precision Double precision
real complex real complex
simple driver SSYEV CHEEV DSYEV ZHEEV
divide and conquer driver SSYEVD CHEEVD DSYEVD ZHEEVD
expert driver SSYEVX CHEEVX DSYEVX ZHEEVX
RRR driver SSYEVR CHEEVR DSYEVR ZHEEVR
simple driver (packed) SSPEV CHPEV DSPEV ZHPEV

divide and conquer (packed) SSPEVD CHPEVD DSPEVD ZHPEVD
expert driver (packed) SSPEVX CHPEVX DSPEVX ZHPEVX

39/62

LAPACK: Driver routines for symmetric eigenproblems
2 LAPACK: Linear Algebra PACKage

Function and storage scheme Single precision Double precision
real complex real complex

simple driver (band) SSBEV CHBEV DSBEV ZHBEV

divide and conquer (band) SSBEVD CHBEVD DSBEVD ZHBEVD

expert driver (band) SSBEVX CHBEVX DSBEVX ZHBEVX

simple driver (tridiagonal) SSTEV DSTEV

divide and conquer (tridiagonal) SSTEVD DSTEVD

expert driver (tridiagonal) SSTEVX DSTEVX

RRR driver (tridiagonal) SSTEVR DSTEVR

40/62

Nonsymmetric Eigenproblems (NEP)
2 LAPACK: Linear Algebra PACKage

The nonsymmetric eigenvalue problem is to find the eigenvalues \ and corresponding
right eigenvectors v £ 0, such that:

Av =).

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs. A
vector u # 0 satisfying:
utla = \uf

is called a left eigenvector of A.
This problem can be solved via the Schur factorization of A:
A=7TZ" (realcase), A=ZIZ! (complex case)
where Z is orthogonal (or unitary) and T is an upper quasi-triangular (or triangular) matrix.

41/62

LAPACK: Driver routines for nonsymmetric

eigenproblems
2 LAPACK: Linear Algebra PACKage

Function Single precision Double precision
real complex real complex

simple driver for Schur factorization SGEES CGEES DGEES ZGEES
expert driver for Schur factorization SGEESX CGEESX DGEESX ZGEESX
simple driver for eigenvalues/vectors SGEEV CGEEV DGEEV ZGEEV
expert driver for eigenvalues/vectors SGEEVX CGEEVX DGEEVX ZGEEVX

42/62

LAPACK: Driver routines for nonsymmetric

eigenproblems
2 LAPACK: Linear Algebra PACKage

Two pairs of drivers are provided:

=» xGEES and xGEESX: compute the Schur factorization of A, with optional ordering of
eigenvalues,

= xGEEV and xGEEVX: compute all eigenvalues and (optionally) right or left
eigenvectors.

@ The expert drivers (xGEESX and xGEEVX) can additionally balance the matrix and
compute condition numbers for the eigenvalues or eigenvectors.

42/62

Singular Value Decomposition (SVD)
2 LAPACK: Linear Algebra PACKage

The singular value decomposition of an m-by-n matrix A is given by:
A=UxV" (A= UxVinthe complex case)

where U and V are orthogonal (unitary) and X is an m-by-n diagonal matrix with real
diagonal elements o; such that:

012022 ... 2 Opin(mn) = 0.

The o; are the singular values of A and the first min(m, n) columns of U and V are the left
and right singular vectors of A.

43/62

Driver routines for SVD
2 LAPACK: Linear Algebra PACKage

Two types of driver routines are provided for the SVD:

=>» Asimple driver xGESVD computes all the singular values and (optionally) left and/or
right singular vectors,

=» Adivide-and-conquer driver xGESDD solves the same problem but is much faster for
large matrices.

@ The divide-and-conquer driver uses more workspace but is significantly faster than
the simple driver for large matrices.

44/62

Generalized Symmetric Definite Eigenproblems (GSEP)

2 LAPACK: Linear Algebra PACKage

Drivers are provided to compute all the eigenvalues and (optionally) the eigenvectors of
the following types of problems:

1. Az = \Bz
2. ABz = \z
3. BAz = \z

where A and B are symmetric or Hermitian and B is positive definite.
For all these problems the eigenvalues A are real. The matrices Z of computed
eigenvectors satisfy:

e ZTAZ = A (problem types 1and 3) or Z *AZ~T = I (problem type 2),

e Z"BZ = I (problem types 1and 2) or Z' B~1Z = I (problem type 3),
where A is a diagonal matrix with the eigenvalues on the diagonal.

45/62

Driver routines for GSEP
2 LAPACK: Linear Algebra PACKage

Three types of driver routines are provided for generalized symmetric and Hermitian
eigenproblems:

=> Asimple driver (hame ending —~GV) computes all the eigenvalues and (optionally)
eigenvectors,

=» An expert driver (name ending -GVX) computes all or a selected subset of the
eigenvalues and eigenvectors. If few enough eigenvalues or eigenvectors are desired,
the expert driver is faster than the simple driver,

=» Adivide-and-conquer driver (name ending —-GVD) solves the same problem as the
simple driver but is much faster for large matrices, although it uses more workspace.

Different driver routines are provided to take advantage of special structure or storage of
the matrices A and B.

46/62

47/62

LAPACK: Driver routines for GSEP

2 LAPACK: Linear Algebra PACKage

Function and storage scheme

Single precision

Double precision

real complex real complex
simple driver SSYGV CHEGV DSYGV ZHEGV
divide and conquer driver SSYGVD CHEGVD DSYGVD ZHEGVD
expert driver SSYGVX CHEGVX DSYGVX ZHEGVX
simple driver (packed) SSPGV CHPGV DSPGV ZHPGV
divide and conquer (packed) = SSPGVD CHPGVD DSPGVD ZHPGVD
expert driver (packed) SSPGVX CHPGVX DSPGVX ZHPGVX
simple driver (band) SSBGV CHBGV DSBGV ZHBGV
divide and conquer (band) SSBGVD CHBGVD DSBGVD ZHBGVD
expert driver (band) SSBGVX CHBGVX DSBGVX ZHBGVX

Generalized Nonsymmetric Eigenproblems (GNEP)
2 LAPACK: Linear Algebra PACKage

Given a matrix pair (A, B), where A and B are square n x n matrices, the generalized
nonsymmetric eigenvalue problem is to find the eigenvalues A and corresponding
eigenvectors x # 0 such that:

Ax = \Bx

or to find the eigenvalues i and corresponding eigenvectors y # 0 such that:

uAy = By

These problems are equivalent with . = 1/ and x = y if neither A nor y is zero.

48/62

Matrix Pencils and Eigenvalue Representation
2 LAPACK: Linear Algebra PACKage

To deal with cases where \ or p is zero or nearly so, LAPACK routines return two values, «
and S, for each eigenvalue, such that:

A=a/f and pu=p/«a
Vectors u # 0 or v # 0 satisfying:
u'A=Xu'"B or w'A=v'B
are called left eigenvectors.

The matrix pencil A — \B is used to refer to the generalized eigenproblem. The problem is
called:

¢ Regular if det(A — AB) # 0 for all A,
e Singular if det(A — AB) = 0 for all X (signaled by e = 5 = 0).

49/62

Generalized Schur Decomposition
2 LAPACK: Linear Algebra PACKage

The generalized nonsymmetric eigenvalue problem can be solved via the generalized
Schur decomposition of the matrix pair (A, B).

In the real case:
A=0sz", B=0QTZ'

In the complex case:
A=0sz%, B=QrZ!

where Q and Z are orthogonal (or unitary), T is upper triangular, and S is upper
quasi-triangular with 1 x 1 and 2 x 2 diagonal blocks.

The columns of Q and Z are called left and right generalized Schur vectors and span pairs
of deflating subspaces of A and B.

50/62

Driver routines for GNEP
2 LAPACK: Linear Algebra PACKage

Two pairs of drivers are provided:

=> xGGES and xGGESX: compute the generalized Schur decomposition of (A, B), with
optional ordering of eigenvalues,

= xGGEV and xGGEVX: compute all generalized eigenvalues and (optionally) right or left
eigenvectors.

The expert drivers (xGGESX and xGGEVX) can additionally:
e Balance the matrix pair to improve conditioning,

e Compute condition numbers for the eigenvalues or eigenvectors.

51/62

52/62

Summary of GNEP driver routines
2 LAPACK: Linear Algebra PACKage

Double precision

Function Single precision

real complex real complex
simple driver (Schur) SGGES CGGES DGGES ZGGES
expert driver (Schur) SGGESX CGGESX DGGESX ZGGESX
simple driver (eigenvalues) SGGEV ~ CGGEV ~ DGGEV ZGGEV
expert driver (eigenvalues) SGGEVX CGGEVX DGGEVX ZGGEVX

Generalized Singular Value Decomposition (GSVD)
2 LAPACK: Linear Algebra PACKage

The generalized (or quotient) singular value decomposition of an m x n matrix A and a
p X n matrix Bis given by:

A=Us[0,RQ" and B=V%,[0,RQ"

where:

e Uism x m,Visp x p, Qisn x n, all orthogonal (or unitary for complex),
. . . . A

e Risr x r,upper triangular and nonsingular, where r is the rank of [B] ,

e Y1 ism x rand s isp x r, both real, nonnegative, and diagonal.

The ratios a1 /1, - . ., o/ By are called the generalized singular values of the pair (A, B).

53/62

Special Cases of GSVD

2 LAPACK: Linear Algebra PACKage

Important special cases of the generalized singular value decomposition include:
=» If Bis square and nonsingular, then r = n and the GSVD is equivalent to the SVD of
AB1,
- Ifthe columns of [AT B'] T are orthonormal, then r = n, R = I, and the GSVD is
equivalent to the Cosine-Sine (CS) decomposition,
=> The generalized eigenvalues of ATA — A\BT B can be expressed in terms of the GSVD.

54/62

Driver routine for GSVD

2 LAPACK: Linear Algebra PACKage

A single driver routine xGGSVD computes the generalized singular value decomposition of
A and B.

Function Single precision Double precision
real complex real complex

GSvVD SGGSVD CGGSVD DGGSVD ZGGSVD

@ The method is based on the generalized QR and RQ factorizations,
@ |t is useful for solving certain least squares and generalized eigenvalue problems,

@ The GSVD provides a unified framework for understanding relationships between
different matrix decompositions.

55/62

Computational Routines
2 LAPACK: Linear Algebra PACKage

Driver routines call a sequence of computational routines (also called auxiliary routines)
to perform specific tasks:

Factorization routines compute matrix factorizations (LU, QR, Cholesky, etc.),
Solver routines solve systems using a precomputed factorization,
Eigenvalue routines reduce matrices to condensed forms (tridiagonal, Hessenberg),

Utility routines perform auxiliary operations (scaling, orthogonal transformations).

@ Users can call computational routines directly for finer control and better
performance,

@ Useful when you need to reuse a factorization for multiple operations,
@ Allows combining different algorithms in a custom sequence.

56/62

LAPACK: Factorization Routines

2 LAPACK: Linear Algebra PACKage

Examples of factorization computational routines:
=» xGETRF: LU factorization with partial pivoting,
=» xGETRS: solve using LU factorization,
- xGEQRF: QR factorization,
=> xGERQF: RQ factorization,
=> xGELQF: LQ factorization,
-» xORMQR (or xUNMQR): apply orthogonal transformation from QR,
=» xPOTRF: Cholesky factorization.

Combining computational routines allows implementing custom algorithms:
! Compute QR factorization

call dgeqrf(m, n, A, 1lda, tau, work, lwork, info)

! Adpply @ to a wector

call dormgr('L', 'T', m, nrhs, n, A, lda, tau, B, ldb, work, lwork, info)

57/62

LAPACK: Solver Routines

2 LAPACK: Linear Algebra PACKage

Solver routines use precomputed factorizations to solve linear systems efficiently:

=» xGETRS:
=> xPOTRS:
=» xTRTRS:
-» xGBTRS:
=> xGTTRS:

solve using LU factorization from xGETRF,

solve using Cholesky factorization from xPOTRF,

solve triangular systems,

solve banded systems using factorization from xGBTRF,
solve tridiagonal systems using factorization from xGTTRF.

These routines typically perform O(n?) operations instead of O(n?) for factorization:

! Factorize

once

call dgetrf(n, n, A, 1lda, ipiv, info)

! Solve for

multiple right-hand sides

do i = 1, nrhs
call dgetrs('N', n, 1, A, lda, ipiv, B(:,i), n, info)

end do

58/62

LAPACK: Solver Routines

2 LAPACK: Linear Algebra PACKage

Solver routines use precomputed factorizations to solve linear systems efficiently:
=» xGETRS: solve using LU factorization from xGETRF,
=» xPOTRS: solve using Cholesky factorization from xPOTRF,
=» xTRTRS: solve triangular systems,
=» xGBTRS: solve banded systems using factorization from xGBTRF,
-» xGTTRS: solve tridiagonal systems using factorization from xGTTRF.

@ Separating factorization and solving provides significant performance gains for
multiple systems,

@ Essential for iterative refinement and other advanced techniques.

58/62

LAPACK: Eigenvalue Reduction and Schur Manipulation

2 LAPACK: Linear Algebra PACKage

Reducing to Hessenberg form is often the first step in computing eigenvalues of
nonsymmetric matrices:

=» xGEHRD: reduce a general matrix to upper Hessenberg form,
-» xORGHR (or xUNGHR): generate the orthogonal matrix from the reduction,

-» Hessenberg form has zeros below the first subdiagonal, reducing subsequent
eigenvalue computations.

Schur factorization manipulation:
-» xTREXC: reorder eigenvalues in Schur factorization by exchanging diagonal blocks,
-» xTRSEN: reorder and compute condition numbers for selected eigenvalues,
=» Useful for isolating specific eigenvalues or organizing them by magnitude or stability.

59/62

LAPACK: Eigenvalue Reduction and Schur Manipulation

2 LAPACK: Linear Algebra PACKage

Solving Sylvester equations:
= xTRSYL: solve the generalized Sylvester equation AX + XB = C or related forms,
-» Requires Schur factorizations of A and B as input,

=» Applications include model reduction, control theory, and matrix equation solutions.

! Reduce to Hessenberg form

call dgehrd(n, 1, n, A, 1lda, tau, work, lwork, info)

! Reorder Schur form

call dtrexc('V', n, T, 1dt, Q, ldq, ifst, ilst, work, info)

! Solve Sylvester equation: AX + XB = C

call dtrsyl('N', 'N', 1, m, n, A, 1da, B, 1db, C, ldc, scale, info)

60/62

\\w,‘
Why Use Computational Routines?

2 LAPACK: Linear Algebra PACKage

w,

Factorization reuse Compute factorization once, use it for multiple right-hand sides or
operations

Memory efficiency Control allocation and reuse of intermediate arrays
Algorithm customization Combine different routines to implement specialized algorithms

Performance Avoid redundant computations when multiple related operations are
needed

Stability control Apply equilibration or scaling before factorization for better conditioning

Example use case: Solve multiple systems Ax; = b; where b; depends on x;_1:
1. Compute LU factorization of A once using DGETRF,
2. For each b;, call DGETRS with the precomputed factors,
3. Much faster than calling DGESV repeatedly.

61/62

Conclusions

3 Conclusions and next step

i LAPACK provides a suite of routines for solving LA problems efficiently,
/> Driver routines offer high-level interfaces for common tasks,
p o Computational routines allow fine-grained control,

© Understanding both types of routines enables users to optimize performance and
tailor solutions to specific needs.

83 Next step: look at the ScaLAPACK library for distributed-memory parallel computing,

B3 ScalAPACK extends LAPACK’s capabilities to large-scale problems across multiple
processors.

62/62

	Last time on High Performance Linear Algebra
	LAPACK: Linear Algebra PACKage
	Systems of linear equations
	Least-Squares Problems
	Eigenproblems and Singular Value Decomposition
	The Computational Routines

	Conclusions and next step

