High Performance Linear Algebra
Lecture 14: LAPACK and ScalLAPACK numerical algorithms
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

Tuesday 03, 2026 — 14.00:16.00

1/70

\‘"'/‘

W

Dipartimento
di Matematica
Universita di Pisa

mailto:fabio.durastante@unipi.it

Table of Contents
1 ScaLAPACK Numerical Routines

» ScaLAPACK Numerical Routines

2/70

Linear System Solution

Linear Least Squares Problems

Symmetric Eigenproblems and Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Computational Routines

Summary of ScaLAPACK Infrastructure
1 ScaLAPACK Numerical Routines

ScaLAPACK = Scalable Linear Algebra PACKage

e Distributed-memory extension of

LAPACK for parallel computing ScalAPACK Routines

e Built on three key layers: J/

1. MPI (Message Passing Interface) — PBLAS
low-level communication

2. BLACS (Basic Linear Algebra *L
Communication Subprograms) — BLACS
higher-level communication primitives

3. PBLAS (Parallel BLAS) — distributed ‘L
matrix operations MPI

e Matrix distributed across process grid

using 2D block-cyclic layout Each layer abstracts communication details,

enabling scalable algorithms
3/70

Initialization: process grid and matrix distribution
1 ScaLAPACK Numerical Routines

Process grid setup:
CALL BLACS_GRIDINIT(ICTXT, 'R', NPROW, NPCOL)

where ICTXT is the BLACS context, NPROW and NPCOL define the process grid dimensions.

Matrix descriptor creation:

CALL DESCINIT(DESC, M, N, MB, NB, RSRC, CSRC, ICTXT, LLD, INFO)
where DESC is the descriptor array for the distributed matrix, M, N are global matrix
dimensions, MB, NB are block sizes, and RSRC, CSRC specify the process owning the first
block.

Information on the local part of the matrix can be obtained using:

CALL NUMROC(N, NB, IPROC, ISRCPROC, NPROCS)
which computes the number of rows or columns of the distributed matrix owned by a
specific process.

4/70

ScaLAPACK: Driver Routines for Linear Systems

1 ScaLAPACK Numerical Routines

Two types of driver routines are provided for solving systems of linear equations:
e Simple driver (name ending -SV):
— Solves the system AX = B by factorizing A and overwriting B with the solution X
e Expert driver (name ending -SVX):
— Solve ATX = Bor A"X = B (unless A is symmetric or Hermitian)
— Estimate the condition number of A, check for near-singularity and pivot growth
— Refine the solution and compute forward and backward error bounds
— Equilibrate the system if A is poorly scaled

Expert driver requires roughly twice as much storage to perform these extra functions.

Both types handle multiple right-hand sides (columns of B). Different drivers exploit
special properties or storage schemes of matrix A.

Note: For band/tridiagonal matrices (PxDBTRF, PxDTTRF, PxGBTRF, PxPBTRF, PxPTTRF),
the factorization differs from LAPACK due to additional permutations for parallelism.

5/70

ScaLAPACK: Linear System Solution Drivers

1 ScaLAPACK Numerical Routines

Type of matrix and storage
scheme

Operation

Single precision

Double precision

Real

Complex

Real

Complex

general (partial pivoting)

simple driver
expert driver

PSGESV

PCGESV

PDGESV

PZGESV

PSGESVX PCGESVX PDGESVX PZGESVX

general band (partial pivot- simple driver PSGBSV PCGBSV PDGBSV PZGBSV
ing)

general band (no pivoting) simple driver ~ PSDBSV PCDBSV PDDBSV PZDBSV
general tridiagonal (no piv- simple driver ~ PSDTSV PCDTSV PDDTSV PZDTSV

oting)

6/70

ScaLAPACK: Linear System Solution Drivers

1 ScaLAPACK Numerical Routines

Type of matrix and storage
scheme

Operation

Single precision

Double precision

Real

Complex

Real

Complex

symmetric/Hermitian posi-
tive definite

symmetric/Hermitian posi-
tive definite band
symmetric/Hermitian posi-
tive definite tridiagonal

simple driver

expert driver
simple driver

simple driver

PSPOSV

PCPOSV

PDPOSV

PZPOSV

PSPOSVX PCPOSVX PDPOSVX PZPOSVX

PSPBSV

PSPTSV

PCPBSV

PCPTSV

PDPBSV

PDPTSV

PZPBSV

PZPTSV

7/70

Divide and Conquer for Banded Linear Systems
1 ScaLAPACK Numerical Routines

The algorithm we discuss is based on the divide and conquer strategy introduced in

[] Dongarra and L. Johnsson. Solving banded systems on a parallel processor. Parallel
Computing, 5:219-246, 1987,

B A. Cleary and J. Dongarra. Implementation in ScaLAPACK of Divide-and-Conquer Algorithms
for Banded and Tridiagonal Linear Systems. Computer Science Dept. Technical Report
CS-97-358, University of Tennessee, Knoxville, TN, April 1997. (Also LAPACK Working Note
125).

The main idea is to partition the banded matrix into smaller submatrices, solve the

smaller systems independently, and then combine the solutions to obtain the solution of
the original system.

8/70

Divide and Conquer for Banded Linear Systems
1 ScaLAPACK Numerical Routines

Ax = b, lower bandwidth (;, upper bandwidth (3,

The algorithm follows these steps:
1. First produce a reordering: PA(P~!P)x = Pb, where P is a permutation matrix,

2. The reorderd matrix PAP~! is factore as LU or LL" via Gaussian
Elimination/Chokesky,
3. Solve the system LUX' = b’ (or LLTx’ = b’) where X’ = Px and b’ = Pb,
3.1 Solve Lz = b’ via forward substitution,
3.2 Solve Ux’ = z via back substitution,

4. Finally, recover the solution x = P~ 1x’.

Find a good n x n permutation matrix P that reorders A to allow exploitation of
parallelism,

9/70

The Symmetric and Positive Definite Case
1 ScaLAPACK Numerical Routines

A, e User inputs the matrix in lower triangular form,

e Each processor stores a contiguous set of
columns of the matrix
e We partition each process matrix:

— A;: "trapezoidal” block along the diagonal of
size O;,

— By, G, D;: lower triangular blocks of size 5 x 3,

. — The last processor has only the A; block.

C

Dy

10/70

The Symmetric and Positive Definite Case
1 ScaLAPACK Numerical Routines

The reordering goes as follows:

e Number the equations in the A; first, keeping the
same relative order,

e Number the equations in the C; next, keeping the
same relative order,

The Cholesky factorization of the reordered matrix
can be computed with sequential block operations.

&\ We do not physically reorder the matrix but,
rather, we base block operations on the reordering.

10/70

Cholesky Factor of the Permuted Matrix

1 ScaLAPACK Numerical Routines

e Factorization: largely computed
with sequential block operations,
minimal communication required.

e Fill-in: G; and H; represent fill-in,
doubling nonzeros compared to
sequential algorithms.

e Operation Count: O(4N3?)

=+ A, factorization: NG2.

<4+ Forming Gi: 2NB2.

<+ Updating C; with Gi: N32.
A ”2, © e Total: Approx. 4x operations of
AN the sequential algorithm.

11/70

The three phases of the Divide and Conquer Algorithm

1 ScaLAPACK Numerical Routines

Phase 1 Formation of the reduced system.
Each processor does computations independently (for the most part) with
local parts and then combines to form the Schur complement system
corresponding to the parts already factored.
The Schur complement is often called the reduced system.

Phase 2 The reduced system is solved, and the answers are communicated back to
all of the processors.

Phase 3 The solutions from Phase 2 are applied in a backsolution process.

12/70

Phase 1: Formation of the Reduced System
1 ScaLAPACK Numerical Routines

We look at the i-th processor, first and last processors have special cases.

e Communication Step: D; is sent to processor i + 1. Since this is a small communication, it is
completely overlapped with subsequent computations.

At this point, portions of the matrix are stored locally.
e We treat local computations as a frontal computation.
e We perform O; factorization steps and apply them to the remaining submatrix of size 2.

e This submatrix is subsequently used in Phase 2 to form the reduced system.

The “divide” in the algorithm’s name stems from the reordering allowing each defined front to be
independent.

Only the 23 update equations at the end of each front need be coordinated with other processors.

13/70

Ay

Phase 1: Continued
1 ScaLAPACK Numerical Routines

14/70

B

0

Co

e Start the exchange of D; block with processi + 1.

Phase 1: Continued
1 ScaLAPACK Numerical Routines

e Start the exchange of D; block with processi + 1.

e Take O; steps of Cholesky factorization on the
local front:

— Factor A; to get L(4;),

By
0 C

call dpbtrf(... , A_i, ...)

14/70

Phase 1: Continued
1 ScaLAPACK Numerical Routines

e Start the exchange of D; block with processi + 1.
e Take O; steps of Cholesky factorization on the

A
’ local front:
— Factor A; to get L(4;),
. — Update B; using L; = L(4;): LB." = B/,
D| 0
B,
0 C
call dtrtrs(... , B_i, ...)

14/70

Ay

B,
21 o

Phase 1: Continued
1 ScaLAPACK Numerical Routines

G

call dtrmm(... , B_i, ...

14/70

e Start the exchange of D; block with processi + 1.

e Take O; steps of Cholesky factorization on the
local front:
— Factor A; to get L(4;),
— Update B; using L; = L(4;): LB." = B/,
— Update C; using Bl asC, = C; — B/B] .

Phase 1: Continued
1 ScaLAPACK Numerical Routines

e Start the exchange of D; block with processi + 1.
e Take O; steps of Cholesky factorization on the

A
’ local front:
— Factor A; to get L(4;),
; — Update B; using L; = L(4;): LB." = B/,
h G | H | 3 — Update C; using Bl asC, = C; — BB/ .
1 | .
" e The exchanged D; is now needed:
21 o o — Compute G; from LG = D,
2
call dtbtrs(... , B_i, ...)

14/70

Phase 1: Continued
1 ScaLAPACK Numerical Routines

Ay
?
G ' H
D] 2 | 2 E
B,
0
C
call dsyrk(... , G_i, ...)

14/70

e Start the exchange of D; block with processi + 1.

e Take O; steps of Cholesky factorization on the
local front:

— Factor A; to get L(4;),

— Update B; using L; = L(4;): LB." = B/,

— Update C; using Bl asC, = C; — BB/ .

e The exchanged D; is now needed:

— Compute G; from LG = D,

— The matrix E; represents the contribution from
processor i to the diagonal block of the reduced
system stored on process i — i, that is C|_;:

E = GG,/

Phase 1: Continued
1 ScaLAPACK Numerical Routines

¢

Ay
l
G ' H:
D] 2 | 2 E»
B,
2 FQ
call dtrmm(... , B_i, ...

14/70

— The local computation is finished by computing
F;, using B; and the last 8 columns of G;, which
we have labelled H;:

Fl =HB]"

Eo

14/70

Fo

Phase 1: Continued
1 ScaLAPACK Numerical Routines

— The local computation is finished by computing
F;, using B and the last 8 columns of G;, which
we have labelled H;:

Fl =HB"

e The processor is now ready for Phase 2.
c,

Phase 2: Solution of the Reduced System
1 ScaLAPACK Numerical Routines

Phase 2 consists of the forming and factorization of the Schur complement matrix.
e Each processor contributes three blocks of size § x [to this system: E;, F;, C;.
e FEach C,f is added to E; 1 to form the diagonal blocks of the matrix,.
e The F; form the off-diagonal blocks.

The resultant system is block tridiagonal, with P — 1 blocks.

Several methods for factoring the reduced system have been proposed:
e For small P or small 3: Perform an all-to-all broadcast of each processor’s portion of
the reduced system.
) Disadvantage: Entire reduced system ends up on each processor.
sl Advantage: Only one (expensive) communication step.
Ll Disadvantage: Redundant computation (serial algorithm), will not scale.
¢ Parallel Solution: For larger problems, ScaLAPACK uses a parallel block tridiagonal
solver scaling as O(log P) or P.

15/70

Phase 2: Solution of the Reduced System
1 ScaLAPACK Numerical Routines

We use a block formulation of odd-even (or cyclic) reduction.
e This algorithm has log, P stages.
e At each stage, the odd-numbered blocks are used to “eliminate” the
even-numbered blocks.
e The process decreases the number of blocks left by a factor of two at each stage.
e Symmetry is maintained throughout (Cholesky factorization of a symmetric
permutation of the reduced system).

Reordering Strategy:
e Blocks are ordered so that even-numbered blocks in Step 1 are first, those in Step 2
correspond to second, and so on.
e Results in an elimination tree of minimal height.
A Implementation requires additional space allocation for fill-in created by the reordering
(though of much lower order than Phase 1 fill-in).
16/70

Phase 3: Backsolution
1 ScaLAPACK Numerical Routines

e Phase 3 is specific to the solution step (not factorization).
e Operations performed mirror the factorization steps (Phase 1 and 2) but operate on
the right-hand sides.

Procedure At the end of Phase 2, processors hold portions of the solution to the
reduced system.
Communication Each processor distributes 23 elements of this solution to neighboring
processors.
Computation Partial solutions are back-substituted into locally stored factors. This is a
completely local computation stage.

e Structure is similar to factorization but simpler.
e Uses block operations from LAPACK and BLAS.
e Multiple right-hand sides are handled efficiently in this context.

17/70

Running an example
1 ScaLAPACK Numerical Routines

We want to run an example of the parallel divide and conquer algorithm:
call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

Where:

e uplo: ‘L for lower triangular storage, e desca: array descriptor for matrix a,
e n: order of the matrix, e b: local array containing the right-hand
e bw: bandwidth of the matrix, side(s),
e nrhs: number of right-hand sides, e ib: global row index of the first local
. . row of b,

e a: local array containing the lower

triangular part of the matrix, e descb: array descriptor for matrix b,
e ja: global column index of the first * work: workspace array,

local column of a, e lwork: size of the workspace array,

e info: output status variable.
18/70

The construction of the input matrix
1 ScaLAPACK Numerical Routines

e |nitialize matrix A in banded format,
e Create a symmetric positive definite banded matrix,

In packed banded format for UPLO="U":
Ajjis stored in A(BW+1+i-j, j) formax(1,j—BW) <i <j.

a = 0.0_realb4d
do j =1, loc_n_a
! Global column indezx
jloc = (mycol * nb) + j
if (jloc <= n) then
! Diagonal element (make tt dominant for postitive definiteness)
a(bw + 1 + (j-1)*11d_a) = 4.0_real64 + 2.0_real64 * real(bw, real64)

19/70

The construction of the input matrix
1 ScaLAPACK Numerical Routines

! Off-diagonal elements
do i = max(1l, jloc - bw), jloc - 1
if (i >= 1 .and. i < jloc) then
iloc = bw + 1 + 1 - jloc
if (iloc >= 1 .and. iloc <= bw + 1) then
a(iloc + (j-1)*1ld_a) = -1.0_real64
end if
end if
end do
end if
end do

20/70

The construction of the input matrix
1 ScaLAPACK Numerical Routines

The previous code build the following matrix forn = 8 and bw = 2:

6 -1 -1 0 0 0 O
-1 6 -1 -1 0 0 O
-1 -1 6 -1 -1 0 O

-1 -1 6 -1 -1 O
-1 -1 6 -1 -1
o -1 -1 6 -1 -1
0 o0 -1 -1 6 -1
0o 0 0 -1 -1 6

o O O oo
o O O O

which is symmetric positive definite and banded with bandwidth 2.

21/70

The work spaces
1 ScaLAPACK Numerical Routines

e ScalAPACK routines use a workspace array WORK of size LWORK to store temporary
data.

e The size of LWORK depends on the routine and the problem size.

e |f LWORK is too small, the routine returns an error.

For PDPBSV, the minimal size is:
LWORK > (NB + 2 - BW) - BW 4 max((BW - NRHS), BW?)

e NB: Block size,
e BW: Bandwidth,
e NRHS: Number of right-hand sides.

Query mechanism: If LWORK = -1, the routine calculates the optimal size and returns it
in WORK (1). This is the recommended way to allocate the workspace.

22/70

The work spaces
1 ScaLAPACK Numerical Routines

e ScalAPACK routines use a workspace array WORK of size LWORK to store temporary
data.

e The size of LWORK depends on the routine and the problem size.

e If LWORK is too small, the routine returns an error.

For PDPBSV, the minimal size is:
LWORK > (NB + 2 - BW) - BW 4 max((BW - NRHS), BW?)

e NB: Block size,
e BW: Bandwidth,
e NRHS: Number of right-hand sides.

lwork = (nb + 2*bw) * bw + max(bw*nrhs, bwkxbw)
allocate (work(lwork), stat=info)

22/70

Calling the ScaLAPACK routine and measure time
1 ScaLAPACK Numerical Routines

Finally, we can call the ScaLAPACK routine to solve the system Ax = b:

! Start timing

t_start = mpi_wtime()

! Call PDPBSV to solwe the system

call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, &
work, lwork, info)

! End timing

t_end = mpi_wtime()

t_elapsed = t_end - t_start

! A1l reduce to get mazimum time across all processors

call mpi_allreduce(mpi_in_place, t_elapsed, 1, mpi_double_precision, &

mpi_max, mpi_comm_world, ierr)

23/70

Scaling Results
1 ScaLAPACK Numerical Routines

We run the weak scaling on the Amelia cluster at IAC-CNR, with Intel 2023.

24/70

Time (seconds)

=

w

[\)

_, Time Measuring

| | | |
/e & 8 3
- o n N le)
Q

Number of Processors (P

GFLOPs

80

60

40

20

Performance

[T [[[
|| | | | |
3!Y & 3 3
©d q n N le)

Number of Processors (P

~

Scaling Results
1 ScaLAPACK Numerical Routines

Observations:

e The time for the solution of the linear system remains constant as we increase the
number of processors P while keeping the problem size N proportional to P.
e This is the expected behavior for a weak scaling experiment:
— N = P x local_size.
— ldeal weak scaling behavior: execution time is constant.

e The GFLOPs metric increases linearly with P, showing that we are able to effectively
use the added computational power.

The divide and conquer algorithm for banded systems in ScaLAPACK exhibits good parallel
scalability, effectively handling the inherent dependencies of the banded structure
through the hierarchical decomposition.

25/70

Linear Least Squares Problems
1 ScaLAPACK Numerical Routines

The linear least squares (LLS) problem is defined as finding x that minimizes:

min ||b — Ax||2
X
where A is an m x n matrix and b is an m-element vector.

Underdetermined (m < n)
e If full rank (m), infinite solutions satisfy
b—Ax=0.
e We seek the minimum norm solution
which minimizes ||x||2.

Overdetermined (m > n)
e If full rank (n), the solution is unique.

e “Least squares solution”.

In the rank-deficient case (rank(A) < min(m, n)), we seek the minimum norm least
squares solution which minimizes both ||b — Ax||2 and ||x||2.

26/70

ScaLAPACK LLS Driver: PxGELS

1 ScaLAPACK Numerical Routines

The driver routine PxGELS solves the LLS problem assuming A has full rank.
e Finds the LLS solution for m > n and the minimum norm solution for m < n.
e Uses QR factorization or LQ factorization of A.

Can handle A or A¥ (or AT for real matrices).

Handles multiple right-hand sides (columns of B) in a single call.

Driver Routines for Linear Least Squares:

Problem Type Driver Single precision Double precision
Real Complex Real Complex
Full rank LLS PxGELS PSGELS PCGELS PDGELS PZGELS

27/70

Symmetric Eigenproblems (SEP)

1 ScaLAPACK Numerical Routines

The symmetric/Hermitian eigenvalue problem is to find the eigenvalues)\ and
corresponding eigenvectors z £ 0 such that:

Az =)z, whereA = AT (symmetric) or A = A (Hermitian).

The eigenvalues)\ are always real.

When all eigenvalues and eigenvectors are computed, we can write the spectral
factorization A = ZAZH, where A is diagonal containing eigenvalues, and Z is orthogonal
(or unitary) containing eigenvectors.

Two types of driver routines are provided:
e Simple driver (name ending —-EV):
— Computes all eigenvalues and (optionally) eigenvectors.
e Expert driver (name ending -EVX):
— Computes either all or a selected subset of eigenvalues.
— Optionally computes corresponding eigenvectors.

28/70

Singular Value Decomposition (SVD)
1 ScaLAPACK Numerical Routines

The Singular Value Decomposition (SVD) of an m x n matrix A is given by:
A=UXV' (or A = USV¥ for complex)

where U and V are orthogonal (unitary) and X is an m-by-n diagonal matrix with real
diagonal elements o, such that:

o1 Z g9 Z e Z O_min(mm) Z 0

The o; are the singular values, and the first min(m, n) columns of U and V are the left and
right singular vectors, satisfying:

AVi = OiU; and ATui = OiVj

Driver Routine: PxGESVD

29/70

Singular Value Decomposition (SVD)
1 ScaLAPACK Numerical Routines

e Computes the “economy size” or “thin” SVD.

e If m > n: only the first n columns of U are computed.

Operation Driver Single precision Double precision
Real Complex Real Complex
Thin SVD PxGESVD PSGESVD PCGESVD PDGESVD PZGESVD

30/70

\\‘ 'I»A

ﬂk\V Generalized Symmetric Definite Eigenproblems (GSEP)

1 ScaLAPACK Numerical Routines

An expert driver is provided to compute all (or selected) eigenvalues and (optionally)
eigenvectors for the following problems:

1. Az = \Bz
2. ABz =)\z
3. BAz = \z

where A and B are symmetric (or Hermitian) and B is positive definite.
Properties:
e The eigenvalues)\ are real.

e The matrix of eigenvectors Z satisfies orthogonality conditions relative to B (e.g.,
ZHBZ = I for type 1).

31/70

\\‘ 'I»A

ﬂk\V Generalized Symmetric Definite Eigenproblems (GSEP)

1 ScaLAPACK Numerical Routines

An expert driver is provided to compute all (or selected) eigenvalues and (optionally)
eigenvectors for the following problems:

1. Az = \Bz
2. ABz = \z
3. BAz = \z

where A and B are symmetric (or Hermitian) and B is positive definite.

Driver Routines (Expert):

Matrix Type Single precision Double precision
Real Complex Real Complex

Symmetric PSSYGVX - PDSYGVX -

Hermitian - PCHEGVX - PZHEGVX

31/70

Computational Routines Overview
1 ScaLAPACK Numerical Routines

ScalLAPACK provides a suite of computational routines for solving linear algebra
problems, including:

Solving systems of linear equations,

Computing matrix factorizations,

Estimating condition numbers,

Refining solutions and computing error bounds,

Computing matrix inverses,

e Performing matrix equilibration.

These routines are designed to work with distributed matrices and leverage parallel
computing architectures for efficiency and scalability.

32/70

Computational Routines for Linear Equations
1 ScaLAPACK Numerical Routines

Linear System Notation:
AX =B

where A is the coefficient matrix, B is the right-hand side, and X is the solution.

ScalLAPACK provides computational routines for factorizing A based on its properties:
e General matrices: LU factorization with partial pivoting (A = PLU).
e Symmetric/Hermitian positive definite: Cholesky factorization (A = UMU or
A =LIH).
e Band matrices: Generalized band factorizations.
e Tridiagonal matrices: Specialized LU or LDL¥ factorizations.

33/70

Tasks Performed by Computational Routines
1 ScaLAPACK Numerical Routines

The last three characters of the routine name indicate the task:
PxyyTRF Factorize the matrix (e.g., LU, Cholesky).
PxyyTRS Use the factorization to solve AX = B via forward/backward substitution.
PxyyCON Estimate the reciprocal of the condition number «(A).
PxyyRFS Refine the solution and compute error bounds (iterative refinement).
PxyyTRI Compute the matrix inverse A~! using the factorization.
PxyyEQU Compute equilibration scaling factors to improve condition number.

Note: Not all routines are available for all matrix types (e.g., inversion is not provided for band
matrices as the inverse is generally dense).

34/70

Summary of Computational Routines
1 ScaLAPACK Numerical Routines

Matrix type Factorize Solve Condition Error Invert Equilibrate
Estimate Bounds

General PxGETRF PxGETRS PxGECON PxGERFS PxGETRI PxGEEQU

General Band PxGBTRF PxGBTRS PxGBCON PxGBRFS - PxGBEQU

General Tridiagonal PxDTTRF PxDTTRS - - - -

Sym./Herm. Pos. Def. PxPOTRF PxPOTRS PxPOCON PxPORFS PxPOTRI PxPOEQU

Sym./Herm. Pos. Def. PxPBTRF PxPBTRS PxPBCON PxPBRFS - PxPBEQU

Band

Sym./Herm. Pos. Def. PxPTTRF PxPTTRS - - - -

Tridiagonal

Triangular - PxTRTRS PxTRCON PxTRRFS PxTRTRI -

35/70

Computational Routines for Orthogonal Factorization
and LLS

1 ScaLAPACK Numerical Routines

ScalLAPACK provides routines for orthogonal factorizations and solving linear least
squares (LLS) problems.
Orthogonal Factorizations:

e QR factorization (A = QR) for general matrices.

e LQ factorization (A = LQ) for general matrices.

Linear Least Squares Problems:
e Solve overdetermined systems (m > n) to find the least squares solution.
e Solve underdetermined systems (m < n) to find the minimum norm solution.

36/70

\\‘ 'I»A

4‘\\\ QR Factorization

1 ScaLAPACK Numerical Routines
The most common of the factorizations is the QR factorization given by:

A=0R

where Risn x n upper triangular and Q is m x m orthogonal (or unitary). If A is of full
rank n, then R is nonsingular.

It is often written as:
R
A= (01 Q) <01> =01k

where Q; consists of the first n columns of Q, and Q, the remaining m — n columns.
Ifm < n:
A=0Q (R Ry)

where R; is upper triangular and R, is rectangular.

37/70

ScalLAPACK support for QR

1 ScaLAPACK Numerical Routines

The routine PxGEQRF computes the QR factorization.

e (Qis not formed explicitly but represented as a product of elementary reflectors
(H =1—7wh).

e PxORGQR (or PxUNGQR): Generates all or part of Q.

e PxORMQR (or PXUNMQR): Pre- or post-multiplies a matrix by Q or Q.

38/70

\\‘ 'I»A

ﬂk\V Orthogonal or Unitary Matrices in ScaLAPACK
1 ScaLAPACK Numerical Routines

ScaLAPACK represents an orthogonal (or unitary) matrix Q as a product of elementary
reflectors (Householder matrices):

Q:H1H2...Hk

where each H; = I — 7w

e 7 isascalar and v is the Householder vector.
e v; = 1, so it does not need to be stored.

Working with Q: Most users do not operate on H; directly but use provided routines:
e Generate Q: Routines ending in ~ORG / -UNG (e.g., PDORGQR) form Q explicitly.
e Apply Q: Routines ending in ~ORM / ~UNM (e.g., PDORMQR) compute Q”C or QC without
forming Q.
Note: In complex arithmetic, elementary reflectors are unitary but not Hermitian. This allows
reducing complex Hermitian matrices to real symmetric tridiagonal form.

39/70

Solving Linear Least Squares with QR
1 ScaLAPACK Numerical Routines

When m > n and A has full rank, the LLS problem minimizes ||b — Ax||2.

Ib— Ax|l> = Qb — QFax|s = || (<) — (F1)x
Co 0
Steps:

1. Compute ¢ = QPb using PxORMQR,
2. Solve the upper triangular system Rix = ¢ using PxTRTRS,

2

. . 0} . .
3. The residual vectorisr = Q <c), its norm is ||c2||2.
2

40/70

LQ Factorization
1 ScaLAPACK Numerical Routines

The LQ factorization is given by:
Q1
A= (L 0 =1L
@ o (3) =10

where Lis m x m lower triangular, Q is n x n orthogonal (or unitary), Q; consists of the
first m rows of Q, and Qs the remaining n — m rows.
ScaLAPACK Routines:
e PxGELQF: Computes the factorization. Q is represented as a product of elementary
reflectors.
e PxORGLQ (or PxXUNGLQ): Generates all or part of Q.
e PxORMLQ (or PXUNMLQ): Pre- or post-multiplies a matrix by Q or Q.

The LQ factorization of A corresponds to the QR factorization of A" (or AH):

A=10 < A" =0Q'L"
41/70

Solving Underdetermined Systems with LQ

1 ScaLAPACK Numerical Routines

The LQ factorization is used to find the minimum norm solution of an underdetermined
system (m < n) with rank m.
L™ 'b
_ Nl
ot (ty’)

The solution is given by:
Computational Steps:
1. Solve the lower triangular system Ly = b for y using PxTRTRS,

0
3. Compute x = Qfy using PxORMLQ (or PXUNMLQ).

2. Form the vectory = (y) ,

42/70

QR Factorization with Column Pivoting
1 ScaLAPACK Numerical Routines

If A is not of full rank, or the rank is in doubt, we can perform a QR factorization with
column pivoting:
AP = QR

where P is a permutation matrix.
e Pischosen sothat |ri1| > |ree| > -+ > |ranl.
e And for each k, the leading submatrix Ry, of size k x k is well-conditioned, while the
trailing submatrix Ros is negligible.

Rank Determination: If Ros is negligible, then k is the effective rank of A.

Basic Solution to LLS:
x=P Rilcl
N 0

where c; consists of the first k elements of ¢ = Q"b.

43/70

ScaLAPACK routine for QR with Pivoting

1 ScaLAPACK Numerical Routines

The routine PxGEQPF computes the QR factorization with column pivoting.

e |t does not attempt to determine the rank of A automatically (user must inspect
diagonal of R).

e (Qis represented in the same way as in PxGEQRF.
e Routines PxORMQR (real) or PxUNMQR (complex) can be used to apply Q.

44/70

Complete Orthogonal Factorization
1 ScaLAPACK Numerical Routines

QR with column pivoting does not compute a minimum norm solution for rank-deficient
LLS unless Ry5 = 0.

To solve this, we apply further orthogonal transformations from the right to the upper
trapezoidal matrix R (using PxTZRZF) to eliminate Rya:

N Ti1 O
RP-(0 O)Z

This yields the complete orthogonal factorization:
Ty1 O
AP = Z

45/70

Complete Orthogonal Factorization
1 ScaLAPACK Numerical Routines

From this, the minimum norm solution is obtained as:

1
X = PZH <TT601>

Software Details:
e Zisrepresented as a product of elementary reflectors.
e PxORMRZ (or PxUNMRZ) is provided to multiple a matrix by Z or ZF.

46/70

Summary of Orthogonal Factorization Routines (QR)
1 ScaLAPACK Numerical Routines

All the factorization routines discussed here (except PxTZRZF) allow arbitrary m and n, so
that in some cases the matrices R or L are trapezoidal rather than triangular.

A routine that performs pivoting is provided only for the QR factorization.

Computational routines for QR factorization

Task Single precision Double precision

Real Complex Real Complex

QR factorization and related operations

Factorize generic PSGEQRF PCGEQRF PDGEQRF PZGEQRF
Factorize w/ pivoting PSGEQPF PCGEQPF PDGEQPF PZGEQPF
Apply Q PSORMQR PCUNMQR PDORMQR PZUNMQR
Generate Q PSORGQR PCUNGQR PDORGQR PZUNGQR

47/70

Summary of Orthogonal Factorization Routines (LQ)
1 ScaLAPACK Numerical Routines

Computational routines for LQ factorization

Task Single precision Double precision

Real Complex Real Complex

LQ factorization and related operations

Factorize generic PSGELQF PCGELQF PDGELQF PZGELQF
Apply Q PSORMLQ PCUNMLQ PDORMLQ PZUNMLQ
Generate Q PSORGLQ PCUNGLQ PDORGLQ PZUNGLQ

48/70

Sl
Generalized QR (GQR) Factorization

1 ScaLAPACK Numerical Routines

U,

The Generalized QR (GQR) factorization of an n x m matrix A and an n x p matrix B is
given by the pair of factorizations:

A=0QR, B=0QTZ

where Q (n x n) and Z (p x p) are orthogonal (or unitary) matrices. R and T are generally
upper triangular (or trapezoidal) matrices.

Implicit Factorization

If B is square and nonsingular, the GQR factorization implicitly gives the QR factorization
of B~A:
B~'A =7H(T'R)

without explicitly computing the inverse or the matrix product.

49/70

\\‘ 'I»A

ﬂL\V Generalized QR (GQR) Factorization

1 ScaLAPACK Numerical Routines

The Generalized QR (GQR) factorization of an n x m matrix A and an n X p matrix B is
given by the pair of factorizations:

A=QR, B=0TZ
where Q (n x n) and Z (p x p) are orthogonal (or unitary) matrices. R and T are generally
upper triangular (or trapezoidal) matrices.

ScaLAPACK Routine: PxGGQRF

e Algorithms proceeds by computing the QR factorization of A and then the RQ
factorization of Q7B.

e (Qand Z can be formed explicitly or used to multiply other matrices (like standard QR).

49/70

NP

?/A\$ Generalized RQ (GRQ) Factorization

1 ScaLAPACK Numerical Routines

The Generalized RQ (GRQ) factorization of an m x n matrix A and a p x n matrix B is
given by the pair of factorizations:

A=RQ, B=1Z7TQ
where Q (n x n) and Z (p x p) are orthogonal (or unitary) matrices.

Structure:
e Ris upper trapezoidal (triangular) with structure similar to the R in RQ.
e Tis upper trapezoidal (triangular) with structure similar to the R in QR.

Implicit Factorization

If Bis square and nonsingular, the GRQ factorization implicitly gives the RQ of AB~!:
AB~! = (RT 1) ZH

without explicitly computing the inverse or the product.

\\‘ 'I»A

ﬂL\V Generalized RQ (GRQ) Factorization

1 ScaLAPACK Numerical Routines

The Generalized RQ (GRQ) factorization of an m x n matrix A and a p x n matrix B is
given by the pair of factorizations:

A=RQ, B=ZTQ

where Q (n x n) and Z (p x p) are orthogonal (or unitary) matrices.

Structure:
e Ris upper trapezoidal (triangular) with structure similar to the R in RQ.
e Tis upper trapezoidal (triangular) with structure similar to the R in QR.
ScaLAPACK Routine: PxGGRQF
e Computes the RQ factorization of A first, then the QR factorization of BQ.
e (and Z can be formed explicitly or used to multiply other matrices.

50/70

Computational Routines for Symmetric Eigenproblems
1 ScaLAPACK Numerical Routines

Problem Definition: Let A be a real symmetric or complex Hermitian N x N matrix. Find
eigenvalues A and non-zero eigenvectors z such that:

Az = Nz

Computation Stages:

1. Reduction to Tridiagonal Form:
A = QTOQH

where Q is orthogonal (unitary) and T is real symmetric tridiagonal.
2. Solve Tridiagonal Problem: Compute eigenvalues/vectors of T.

T=SAS'
The eigenvectors of A are recovered as Z = QS.

51/70

Reduction to Tridiagonal Form
1 ScaLAPACK Numerical Routines

The reduction A = QTQ! is performed by:
e PxSYTRD: Real symmetric matrices.

e PxHETRD: Complex Hermitian matrices.

Handling Q:

e The matrix Q is represented as a product of elementary reflectors.

e Px0ORMTR (Real) / PxUNMTR (Complex): Multiplies a matrix by Q without forming it
explicitly.

e Used to transform eigenvectors of T back to eigenvectors of A.

52/70

Solving the Tridiagonal Problem
1 ScaLAPACK Numerical Routines

ScalLAPACK provides specific routines for the tridiagonal phase:
xSTEQR2 Modified version of LAPACK's xSTEQR.
e Computes all eigenvalues and (optionally) eigenvectors using implicit
QL or QR.
e Optimized look-ahead and partial updates for parallel execution.
PxSTEBZ Uses bisection.
e Computes some or all eigenvalues (e.g., in an interval [a, b] or indices i
toj).
e Tunable accuracy vs. speed.
PxSTEIN Uses inverse iteration.
e Computes eigenvectors given accurate eigenvalues.
e Performs reorthogonalization to ensure vector quality (limited by
workspace).

53/70

54/70

Summary of Computational Routines for SEP
1 ScaLAPACK Numerical Routines

Task Single precision Double precision
Real Complex Real Complex

Tridiagonal reduction

Factorize A = QTQT PSSYTRD PCHETRD PDSYTRD PZHETRD

Multiply by Q PSORMTR PCUNMTR PDORMTR PZUNMTR

Tridiagonal solvers

All eigs (QR/QL) SSTEQR2 CSTEQR2 DSTEQR2 ZSTEQR2

Selected eigs (Bisection) PSSTEBZ PCSTEBZ PDSTEBZ PZSTEBZ

Selected vectors (Inv. It.) PSSTEIN PCSTEIN PDSTEIN PZSTEIN

Nonsymmetric Eigenproblems (NEP)
1 ScaLAPACK Numerical Routines

Problem Definition: Let A be a square n x n matrix.

e Ascalar)\ is an eigenvalue and a non-zero vector v is a right eigenvector if:
Av = \v
e A non-zero vector u is a left eigenvector if:

uflA = \ufl

Goal: The basic task is to compute all n eigenvalues A and, optionally, their associated
right eigenvectors v and/or left eigenvectors u.

55/70

Schur Factorization
1 ScaLAPACK Numerical Routines

A fundamental step in solving NEP is the Schur factorization:

A =ZT7" (or A = ZTZ' for real matrices)

e Complex Case: Z is unitary, and T is upper triangular. The eigenvalues appear on the
diagonal of T.

e Real Case: Zis orthogonal, and T is upper quasi-triangular.

— T has 1-by-1 and 2-by-2 blocks on the diagonal.
— Complex conjugate eigenvalues correspond to the 2-by-2 blocks.

e The columns of Z are called the Schur vectors of A.

56/70

Computational Stages for NEP

1 ScaLAPACK Numerical Routines

The computation is typically performed in two stages:
1. Reduction to Upper Hessenberg Form:

A = QHQY

where H is upper Hessenberg (zero below the first subdiagonal) and Q is
orthogonal/unitary.

2. Schur Factorization of H:
H = STSH

where T is the Schur form. The Schur vectors of the original matrix A are recovered
as Z = QS.

57/70

Stage 1: Reduction to Hessenberg Form
1 ScaLAPACK Numerical Routines

Factorization Routine: PxGEHRD
e Reduces a general matrix A to upper Hessenberg form H.

e Represents the orthogonal matrix Q in a factored form (product of elementary
reflectors).

Orthogonal/Unitary Matrix Operations:
e PxORMHR (Real) / PxUNMHR (Complex).
e Used to multiply another matrix by Q (or Q) without explicitly forming Q.

58/70

Stage 2: Schur Factorization
1 ScaLAPACK Numerical Routines

Routine: PxLAHQR
e Computes the Schur factorization of the upper Hessenberg matrix H.

e Eigenvalues are obtained from the diagonal of T.

Parallel Algorithm Strategy:
e Unlike LAPACK’s xLLAHQR (single double shift) or xHSEQR (single large multi-shift),
ScalLAPACK uses multiple double shifts.
e Shifts are spaced apart to allow parallelism across several processor rows/columns.

e Shifts are applied in a block fashion to maximize performance.

59/70

Heuristics for Eigenvalue Computations: Shifting
1 ScaLAPACK Numerical Routines

The convergence of the QR algorithm (or similar iterative methods like the Francis
double-shift) depends on the ratio of eigenvalues || /| ;.

Goal: Accelerate convergence by subtracting a scalar shift o
A—ocl=QR — Apew =RQ+0I

Ideally, if o =~ \,, the deflation happens very quickly.

Techniques:
¢ Francis Double Shift: Standard for real non-symmetric matrices. Uses a 2 x 2 block
from the bottom corner to perform implicitly shifted steps with complex conjugate
shifts, keeping arithmetic real.
o Aggressive Early Deflation: Looks for convergence in a large window at the bottom
of the matrix, deflating multiple eigenvalues at once.

60/70

Parallelism and Bulge Chasing
1 ScaLAPACK Numerical Routines

The implicit shift strategy creates a “bulge” (non-zero entries outside the Hessenberg
form) that must be chased down the diagonal to restore the form.

Initial Bulge Chasing... Restored

Parallel Approach (ScaLAPACK):
e Multi-shift: Instead of chasing one bulge, introduce multiple bulges (chains of shifts)
simultaneously.
e These bulges can be chased by different processors in a pipelined fashion, increasing

s1/70 the arithmetic intensity (BLAS 3) and parallelism.

62/70

Summary of Computational Routines for NEP
1 ScaLAPACK Numerical Routines

Task Single precision Double precision
Real Complex Real Complex

Hessenberg reduction

Factorize A = QHQH PSGEHRD PCGEHRD PDGEHRD PZGEHRD

Multiply by Q PSORMHR PCUNMHR PDORMHR PZUNMHR

Schur factorization

Compute H = STSH PSLAHQR PCLAHQR PDLAHQR PZLAHQR

Computational Stages for SVD

1 ScaLAPACK Numerical Routines

Let A be an m x n matrix. The computation of the SVD proceeds in two main stages:
1. Reduction to Bidiagonal Form:

A = QBP!

where B is real bidiagonal, and Q (m x m) and P (n x n) are orthogonal (unitary).
— If m > n, Bis upper bidiagonal.
— If m < n, Bis lower bidiagonal.

2. SVD of the Bidiagonal Matrix:
B=UxV!

where Uy and V; are orthogonal, and X contains the singular values.
The singular vectors of A are then U = QU; and V = PV;.

63/70

Computational Routines for SVD

1 ScaLAPACK Numerical Routines

Reduction Routine: PxGEBRD
e Reduces A to bidiagonal form B.
e Represents Q and P as products of elementary reflectors.

Applying Q and P:
e PxORMBR (Real) / PxUNMBR (Complex).
e Routine to multiply a given matrix by Q or P (or their transposes).

Solving the Bidiagonal Problem:

e ScalAPACK typically utilizes the LAPACK routine xBDSQR to compute the SVD of the
bidiagonal matrix B.

64/70

\\‘ 'I»A

ﬂk\w Optimization for Non-Square Matrices
1 ScaLAPACK Numerical Routines
If m > norn > m,itis more efficient to perform a preliminary QR or LQ factorization.

Casem > n:
1. Compute QR factorization: A = QR (using PxGEQRF).
2. Compute SVD of the n x n matrix R.

Casen > m:
1. Compute LQ factorization: A = LQ (using PxGELQF).
2. Compute SVD of the m x m matrix L.

Note: The driver routine PxGESVD automatically handles these paths.

65/70

Rank-Deficient Linear Least Squares
1 ScaLAPACK Numerical Routines

The SVD is used to solve rank-deficient LLS problems (min ||b — Ax||2) by finding the
minimum norm solution.

Let k be the effective rank of A (number of singular values o; > threshold).
The solution is given by:

X = VkE,:lcl
where:
e Y is the leading k x k submatrix of %,
e Vj consists of the first k columns of V,
e ¢, consists of the first k elements of ¢ = Ub.
PxORMBR (or PxUNMBR) is used to compute Ub.

66/70

67/70

Summary of SVD Computational Routines
1 ScaLAPACK Numerical Routines

Task Single precision Double precision
Real Complex Real Complex

Bidiagonal reduction

Factorize A = QBPH PSGEBRD PCGEBRD PDGEBRD PZGEBRD

Multiply by Q or P PSORMBR PCUNMBR PDORMBR PZUNMBR

Bidiagonal SVD (LAPACK)
SVD of B SBDSQR CBDSQR DBDSQR ZBDSQR

Computational Routines for GSEP

1 ScaLAPACK Numerical Routines

Reduction to Standard Form: The generalized problems are reduced to the standard
symmetric eigenvalue problem Cy = \y using the Cholesky factorization of B (B = U"U or
B = LLH).
Reduction Strategy:

e Type1(Az = \Bz): C=U HAU ' or L71AL7®. z = U lyor L Hy.

e Type 2 (ABz = \z): C = UAU" or IHAL. z = U~ 'y or L Hy.

e Type 3 (BAz = \z): C = UAU" or IHAL. z = Uy or Ly.

ScalLAPACK Routine: PxyyGST
e Overwrites A with the standard matrix C.
e After reduction, standard SEP routines (e.g., PxSYTRD) are used on C.

68/70

Summary of Computational Routines for GSEP
1 ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Reduction to standard

form
Compute C from A, B PSSYGST PCHEGST PDSYGST PZHEGST

Note on Eigenvectors: No special routines are needed to recover eigenvectors z from y.
These are simple triangular solves or matrix-vector multiplications handled by PBLAS (e.g.,

PxTRSV or PxTRMM).

69/70

Conclusions

2 Conclusions

ScaLAPACK provides a comprehensive suite of routines for distributed-memory parallel
computation of a wide range of linear algebra problems, including:

e Orthogonal factorizations (QR, LQ, GQR, GRQ).
e Symmetric and nonsymmetric eigenproblems (SEP, NEP, GSEP).
e Singular Value Decomposition (SVD).

The library leverages efficient algorithms and parallelism strategies to ensure scalability
and performance on large-scale systems.

These tools permits to implement high-performance applications in scientific computing
and engineering that require robust linear algebra capabilities, e.g., model reduction,
computation of matrix functions, and solving large-scale optimization problems.

70/70

	ScaLAPACK Numerical Routines
	Linear System Solution
	Linear Least Squares Problems
	Symmetric Eigenproblems and Singular Value Decomposition
	Generalized Symmetric Definite Eigenproblems
	Computational Routines

	Conclusions

