
High Performance Linear Algebra
Lecture Ŵŷ: LAPACK and ScaLAPACK numerical algorithms
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

Tuesday ųŶ, ŵųŵŹ — Ŵŷ.ųų:ŴŹ.ųų

Ŵ/źų

mailto:fabio.durastante@unipi.it

Table of Contents
Ŵ ScaLAPACK Numerical Routines

▶ ScaLAPACK Numerical Routines
Linear System Solution

The Divide and Conquer Algorithm
Linear Least Squares Problems
Symmetric Eigenproblems and Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Computational Routines

Linear Equations
Orthogonal factorization and linear least-square
Generalized Orthogonal Factorizations
Symmetric Eigenproblems
General Eigenproblems
Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems

ŵ/źų

Summary of ScaLAPACK Infrastructure
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK = Scalable Linear Algebra PACKage

• Distributed-memory extension of
LAPACK for parallel computing

• Built on three key layers:
Ŵ. MPI (Message Passing Interface) —
low-level communication

ŵ. BLACS (Basic Linear Algebra
Communication Subprograms) —
higher-level communication primitives

Ŷ. PBLAS (Parallel BLAS) — distributed
matrix operations

• Matrix distributed across process grid
using ŵD block-cyclic layout

ScaLAPACK Routines

PBLAS

BLACS

MPI

Each layer abstracts communication details,
enabling scalable algorithmsŶ/źų

Initialization: process grid and matrix distribution
Ŵ ScaLAPACK Numerical Routines

Process grid setup:
CALL BLACS_GRIDINIT(ICTXT, 'R', NPROW, NPCOL)

where ICTXT is the BLACS context, NPROW and NPCOL define the process grid dimensions.

Matrix descriptor creation:
CALL DESCINIT(DESC, M, N, MB, NB, RSRC, CSRC, ICTXT, LLD, INFO)

where DESC is the descriptor array for the distributed matrix, M, N are global matrix
dimensions, MB, NB are block sizes, and RSRC, CSRC specify the process owning the first
block.
Information on the local part of the matrix can be obtained using:

CALL NUMROC(N, NB, IPROC, ISRCPROC, NPROCS)
which computes the number of rows or columns of the distributed matrix owned by a
specific process.

ŷ/źų

ScaLAPACK: Driver Routines for Linear Systems
Ŵ ScaLAPACK Numerical Routines

Two types of driver routines are provided for solving systems of linear equations:
• Simple driver (name ending -SV):

— Solves the system AX = B by factorizing A and overwriting B with the solution X
• Expert driver (name ending -SVX):

— Solve A⊤X = B or AHX = B (unless A is symmetric or Hermitian)
— Estimate the condition number of A, check for near-singularity and pivot growth
— Refine the solution and compute forward and backward error bounds
— Equilibrate the system if A is poorly scaled

Expert driver requires roughly twice as much storage to perform these extra functions.

Both types handle multiple right-hand sides (columns of B). Different drivers exploit
special properties or storage schemes of matrix A.

Note: For band/tridiagonal matrices (PxDBTRF, PxDTTRF, PxGBTRF, PxPBTRF, PxPTTRF),
the factorization differs from LAPACK due to additional permutations for parallelism.

Ÿ/źų

ScaLAPACK: Linear System Solution Drivers
Ŵ ScaLAPACK Numerical Routines

Type of matrix and storage
scheme

Operation Single precision Double precision

Real Complex Real Complex

general (partial pivoting) simple driver PSGESV PCGESV PDGESV PZGESV
expert driver PSGESVX PCGESVX PDGESVX PZGESVX

general band (partial pivot-
ing)

simple driver PSGBSV PCGBSV PDGBSV PZGBSV

general band (no pivoting) simple driver PSDBSV PCDBSV PDDBSV PZDBSV

general tridiagonal (no piv-
oting)

simple driver PSDTSV PCDTSV PDDTSV PZDTSV

Ź/źų

ScaLAPACK: Linear System Solution Drivers
Ŵ ScaLAPACK Numerical Routines

Type of matrix and storage
scheme

Operation Single precision Double precision

Real Complex Real Complex

symmetric/Hermitian posi-
tive definite

simple driver PSPOSV PCPOSV PDPOSV PZPOSV

expert driver PSPOSVX PCPOSVX PDPOSVX PZPOSVX
symmetric/Hermitian posi-
tive definite band

simple driver PSPBSV PCPBSV PDPBSV PZPBSV

symmetric/Hermitian posi-
tive definite tridiagonal

simple driver PSPTSV PCPTSV PDPTSV PZPTSV

ź/źų

Divide and Conquer for Banded Linear Systems
Ŵ ScaLAPACK Numerical Routines

The algorithm we discuss is based on the divide and conquer strategy introduced in

J. Dongarra and L. Johnsson. Solving banded systems on a parallel processor. Parallel
Computing, Ÿ:ŵŴż–ŵŷŹ, ŴżŻź,

A. Cleary and J. Dongarra. Implementation in ScaLAPACK of Divide-and-Conquer Algorithms
for Banded and Tridiagonal Linear Systems. Computer Science Dept. Technical Report
CS-żź-ŶŸŻ, University of Tennessee, Knoxville, TN, April Ŵżżź. (Also LAPACK Working Note
ŴŵŸ).

The main idea is to partition the banded matrix into smaller submatrices, solve the
smaller systems independently, and then combine the solutions to obtain the solution of
the original system.

Ż/źų

Divide and Conquer for Banded Linear Systems
Ŵ ScaLAPACK Numerical Routines

Ax = b, lower bandwidth βl, upper bandwidth βu
The algorithm follows these steps:
Ŵ. First produce a reordering: PA(P−1P)x = Pb, where P is a permutation matrix,
ŵ. The reorderd matrix PAP−1 is factore as LU or LL⊤ via Gaussian
Elimination/Chokesky,

Ŷ. Solve the system LUx′ = b′ (or LL⊤x′ = b′) where x′ = Px and b′ = Pb,
Ŷ.Ŵ Solve Lz = b′ via forward substitution,
Ŷ.ŵ Solve Ux′ = z via back substitution,

ŷ. Finally, recover the solution x = P−1x′.

Find a good n× n permutation matrix P that reorders A to allow exploitation of
parallelism,

ż/źų

The Symmetric and Positive Definite Case
Ŵ ScaLAPACK Numerical Routines

A1

B1 C1

D1 . . .

• User inputs the matrix in lower triangular form,
• Each processor stores a contiguous set of
columns of the matrix

• We partition each process matrix:
— Ai: ”trapezoidal” block along the diagonal of

size Oi,
— Bi, Ci, Di: lower triangular blocks of size β × β,
— The last processor has only the Ai block.

Ŵų/źų

The Symmetric and Positive Definite Case
Ŵ ScaLAPACK Numerical Routines

The reordering goes as follows:
• Number the equations in the Ai first, keeping the
same relative order,

• Number the equations in the Ci next, keeping the
same relative order,

The Cholesky factorization of the reordered matrix
can be computed with sequential block operations.

We do not physically reorder the matrix but,
rather, we base block operations on the reordering.

Ŵų/źų

Cholesky Factor of the Permuted Matrix
Ŵ ScaLAPACK Numerical Routines

L1

L2

L3

L4

B′1
D′1

⊤ G2 H2

B′2
D′2

⊤ G3 H3

B′3 D′3
⊤ G4 H4

L(C1)

F2 L(C2)

F3 L(C3)

• Factorization: largely computed
with sequential block operations,
minimal communication required.

• Fill-in: Gi and Hi represent fill-in,
doubling nonzeros compared to
sequential algorithms.

• Operation Count: O(4Nβ2)

Ai factorization: Nβ2.
Forming Gi: 2Nβ2.
Updating Ci with Gi: Nβ2.

• Total: Approx. 4× operations of
the sequential algorithm.

ŴŴ/źų

The three phases of the Divide and Conquer Algorithm
Ŵ ScaLAPACK Numerical Routines

Phase Ŵ Formation of the reduced system.
Each processor does computations independently (for the most part) with
local parts and then combines to form the Schur complement system
corresponding to the parts already factored.
The Schur complement is often called the reduced system.

Phase ŵ The reduced system is solved, and the answers are communicated back to
all of the processors.

Phase Ŷ The solutions from Phase ŵ are applied in a backsolution process.

Ŵŵ/źų

Phase Ŵ: Formation of the Reduced System
Ŵ ScaLAPACK Numerical Routines

We look at the i-th processor, first and last processors have special cases.
• Communication Step: Di is sent to processor i+ 1. Since this is a small communication, it is
completely overlapped with subsequent computations.

At this point, portions of the matrix are stored locally.

• We treat local computations as a frontal computation.

• We perform Oi factorization steps and apply them to the remaining submatrix of size 2β.

• This submatrix is subsequently used in Phase ŵ to form the reduced system.

The “divide” in the algorithm’s name stems from the reordering allowing each defined front to be
independent.

Only the 2β update equations at the end of each front need be coordinated with other processors.

ŴŶ/źų

Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

0

B2
0

C2

0

• Start the exchange of Di block with process i+ 1.

• Take Oi steps of Cholesky factorization on the
local front:

— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:

— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i

Ŵŷ/źų

Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

0

B2
0

C2

0

call dpbtrf(... , A_i, ...)

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),

— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:

— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i

Ŵŷ/źų

Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

0

B′2 0
C2

0

call dtrtrs(... , B_i, ...)

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,

— Update Ci using B′i as C′i = Ci − B′iB
′
i
⊤.

• The exchanged Di is now needed:

— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i

Ŵŷ/źų

Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

0

B′2 0
C2

0

call dtrmm(... , B_i, ...)

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:

— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i

Ŵŷ/źų

Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

G2 H2

B′2 0 C′2

0

call dtbtrs(... , B_i, ...)

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:
— Compute Gi from LiG⊤i = Di,

— The matrix Ei represents the contribution from
processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i

Ŵŷ/źų

Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

G2 H2

B′2 0 C′2

E2

call dsyrk(... , G_i, ...)

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:
— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i

Ŵŷ/źų

Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

G2 H2

B′2 F2 C′2

E2

call dtrmm(... , B_i, ...)

— The local computation is finished by computing
Fi, using B′i and the last β columns of Gi, which
we have labelled Hi:

F⊤i = HiB′i
⊤

• The processor is now ready for Phase ŵ.

Ŵŷ/źų

Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

G2 H2

B′2 F2 C′2

E2

— The local computation is finished by computing
Fi, using B′i and the last β columns of Gi, which
we have labelled Hi:

F⊤i = HiB′i
⊤

• The processor is now ready for Phase ŵ.

Ŵŷ/źų

Phase ŵ: Solution of the Reduced System
Ŵ ScaLAPACK Numerical Routines

Phase ŵ consists of the forming and factorization of the Schur complement matrix.
• Each processor contributes three blocks of size β × β to this system: Ei, Fi, C′i.
• Each C′i is added to Ei+1 to form the diagonal blocks of the matrix,.
• The Fi form the off-diagonal blocks.

The resultant system is block tridiagonal, with P− 1 blocks.

Several methods for factoring the reduced system have been proposed:
• For small P or small β: Perform an all-to-all broadcast of each processor’s portion of
the reduced system.

Disadvantage: Entire reduced system ends up on each processor.
Advantage: Only one (expensive) communication step.
Disadvantage: Redundant computation (serial algorithm), will not scale.

• Parallel Solution: For larger problems, ScaLAPACK uses a parallel block tridiagonal
solver scaling as O(log P) or P.

ŴŸ/źų

Phase ŵ: Solution of the Reduced System
Ŵ ScaLAPACK Numerical Routines

We use a block formulation of odd-even (or cyclic) reduction.
• This algorithm has log2 P stages.
• At each stage, the odd-numbered blocks are used to “eliminate” the
even-numbered blocks.

• The process decreases the number of blocks left by a factor of two at each stage.
• Symmetry is maintained throughout (Cholesky factorization of a symmetric
permutation of the reduced system).

Reordering Strategy:
• Blocks are ordered so that even-numbered blocks in Step Ŵ are first, those in Step ŵ
correspond to second, and so on.

• Results in an elimination tree of minimal height.
Implementation requires additional space allocation for fill-in created by the reordering

(though of much lower order than Phase Ŵ fill-in).
ŴŹ/źų

Phase Ŷ: Backsolution
Ŵ ScaLAPACK Numerical Routines

• Phase Ŷ is specific to the solution step (not factorization).
• Operations performed mirror the factorization steps (Phase Ŵ and ŵ) but operate on
the right-hand sides.

Procedure At the end of Phase ŵ, processors hold portions of the solution to the
reduced system.

Communication Each processor distributes 2β elements of this solution to neighboring
processors.

Computation Partial solutions are back-substituted into locally stored factors. This is a
completely local computation stage.

• Structure is similar to factorization but simpler.
• Uses block operations from LAPACK and BLAS.
• Multiple right-hand sides are handled efficiently in this context.

Ŵź/źų

Running an example
Ŵ ScaLAPACK Numerical Routines

We want to run an example of the parallel divide and conquer algorithm:
call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

Where:
• uplo: ‘L‘ for lower triangular storage,
• n: order of the matrix,
• bw: bandwidth of the matrix,
• nrhs: number of right-hand sides,
• a: local array containing the lower
triangular part of the matrix,

• ja: global column index of the first
local column of a,

• desca: array descriptor for matrix a,
• b: local array containing the right-hand
side(s),

• ib: global row index of the first local
row of b,

• descb: array descriptor for matrix b,
• work: workspace array,
• lwork: size of the workspace array,
• info: output status variable.

ŴŻ/źų

The construction of the input matrix
Ŵ ScaLAPACK Numerical Routines

• Initialize matrix A in banded format,
• Create a symmetric positive definite banded matrix,
• In packed banded format for UPLO='U':

Ai,j is stored in A(BW+1+i-j, j) formax(1, j− BW) ≤ i ≤ j.
a = 0.0_real64
do j = 1, loc_n_a

! Global column index
jloc = (mycol * nb) + j
if (jloc <= n) then

! Diagonal element (make it dominant for positive definiteness)
a(bw + 1 + (j-1)*lld_a) = 4.0_real64 + 2.0_real64 * real(bw, real64)

Ŵż/źų

The construction of the input matrix
Ŵ ScaLAPACK Numerical Routines

! Off-diagonal elements
do i = max(1, jloc - bw), jloc - 1

if (i >= 1 .and. i < jloc) then
iloc = bw + 1 + i - jloc
if (iloc >= 1 .and. iloc <= bw + 1) then
a(iloc + (j-1)*lld_a) = -1.0_real64

end if
end if

end do
end if

end do

ŵų/źų

The construction of the input matrix
Ŵ ScaLAPACK Numerical Routines

The previous code build the following matrix for n = 8 and bw = 2:

A =



6 −1 −1 0 0 0 0 0
−1 6 −1 −1 0 0 0 0
−1 −1 6 −1 −1 0 0 0
0 −1 −1 6 −1 −1 0 0
0 0 −1 −1 6 −1 −1 0
0 0 0 −1 −1 6 −1 −1
0 0 0 0 −1 −1 6 −1
0 0 0 0 0 −1 −1 6


which is symmetric positive definite and banded with bandwidth ŵ.

ŵŴ/źų

The work spaces
Ŵ ScaLAPACK Numerical Routines

• ScaLAPACK routines use a workspace array WORK of size LWORK to store temporary
data.

• The size of LWORK depends on the routine and the problem size.
• If LWORK is too small, the routine returns an error.

For PDPBSV, the minimal size is:

LWORK ≥ (NB+ 2 · BW) · BW+max((BW · NRHS), BW2)

• NB: Block size,
• BW: Bandwidth,
• NRHS: Number of right-hand sides.

Query mechanism: If LWORK = -1, the routine calculates the optimal size and returns it
in WORK(1). This is the recommended way to allocate the workspace.

ŵŵ/źų

The work spaces
Ŵ ScaLAPACK Numerical Routines

• ScaLAPACK routines use a workspace array WORK of size LWORK to store temporary
data.

• The size of LWORK depends on the routine and the problem size.
• If LWORK is too small, the routine returns an error.

For PDPBSV, the minimal size is:

LWORK ≥ (NB+ 2 · BW) · BW+max((BW · NRHS), BW2)

• NB: Block size,
• BW: Bandwidth,
• NRHS: Number of right-hand sides.

lwork = (nb + 2*bw) * bw + max(bw*nrhs, bw*bw)
allocate(work(lwork), stat=info)

ŵŵ/źų

Calling the ScaLAPACK routine and measure time
Ŵ ScaLAPACK Numerical Routines

Finally, we can call the ScaLAPACK routine to solve the system Ax = b:
! Start timing
t_start = mpi_wtime()
! Call PDPBSV to solve the system
call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, &

work, lwork, info)
! End timing
t_end = mpi_wtime()
t_elapsed = t_end - t_start
! All reduce to get maximum time across all processors
call mpi_allreduce(mpi_in_place, t_elapsed, 1, mpi_double_precision, &

mpi_max, mpi_comm_world, ierr)

ŵŶ/źų

Scaling Results
Ŵ ScaLAPACK Numerical Routines

We run the weak scaling on the Amelia cluster at IAC-CNR, with Intel ŵųŵŶ.

Źŷ Ŵŵ
Ż

ŵŸ
Ź

ŸŴ
ŵ

źŹ
Ż

Ŵų
ŵŷ

2

3

4

·10−2

Number of Processors (P)

Ti
m
e
(s
ec
on
ds
)

Time Measuring

Źŷ Ŵŵ
Ż

ŵŸ
Ź

ŸŴ
ŵ

źŹ
Ż

Ŵų
ŵŷ

20

40

60

80

Number of Processors (P)
GF
LO
Ps

Performance

ŵŷ/źų

Scaling Results
Ŵ ScaLAPACK Numerical Routines

Observations:
• The time for the solution of the linear system remains constant as we increase the
number of processors P while keeping the problem size N proportional to P.

• This is the expected behavior for a weak scaling experiment:
— N = P× local_size.
— Ideal weak scaling behavior: execution time is constant.

• The GFLOPsmetric increases linearly with P, showing that we are able to effectively
use the added computational power.

The divide and conquer algorithm for banded systems in ScaLAPACK exhibits good parallel
scalability, effectively handling the inherent dependencies of the banded structure
through the hierarchical decomposition.

ŵŸ/źų

Linear Least Squares Problems
Ŵ ScaLAPACK Numerical Routines

The linear least squares (LLS) problem is defined as finding x that minimizes:

min
x

∥b− Ax∥2

where A is anm× nmatrix and b is anm-element vector.

Overdetermined (m ≥ n)
• If full rank (n), the solution is unique.
• “Least squares solution”.

Underdetermined (m < n)
• If full rank (m), infinite solutions satisfy

b− Ax = 0.
• We seek theminimum norm solution
which minimizes ∥x∥2.

In the rank-deficient case (rank(A) < min(m, n)), we seek theminimum norm least
squares solution which minimizes both ∥b− Ax∥2 and ∥x∥2.

ŵŹ/źų

ScaLAPACK LLS Driver: PxGELS
Ŵ ScaLAPACK Numerical Routines

The driver routine PxGELS solves the LLS problem assuming A has full rank.
• Finds the LLS solution form ≥ n and the minimum norm solution form < n.
• Uses QR factorization or LQ factorization of A.
• Can handle A or AH (or A⊤ for real matrices).
• Handles multiple right-hand sides (columns of B) in a single call.

Driver Routines for Linear Least Squares:

Problem Type Driver Single precision Double precision

Real Complex Real Complex

Full rank LLS PxGELS PSGELS PCGELS PDGELS PZGELS

ŵź/źų

Symmetric Eigenproblems (SEP)
Ŵ ScaLAPACK Numerical Routines

The symmetric/Hermitian eigenvalue problem is to find the eigenvalues λ and
corresponding eigenvectors z ̸= 0 such that:

Az = λz, where A = A⊤ (symmetric) or A = AH (Hermitian).

The eigenvalues λ are always real.
When all eigenvalues and eigenvectors are computed, we can write the spectral
factorization A = ZΛZH, where Λ is diagonal containing eigenvalues, and Z is orthogonal
(or unitary) containing eigenvectors.

Two types of driver routines are provided:
• Simple driver (name ending -EV):

— Computes all eigenvalues and (optionally) eigenvectors.
• Expert driver (name ending -EVX):

— Computes either all or a selected subset of eigenvalues.
— Optionally computes corresponding eigenvectors.

ŵŻ/źų

Singular Value Decomposition (SVD)
Ŵ ScaLAPACK Numerical Routines

The Singular Value Decomposition (SVD) of anm× nmatrix A is given by:

A = UΣV⊤ (or A = UΣVH for complex)

where U and V are orthogonal (unitary) and Σ is anm-by-n diagonal matrix with real
diagonal elements σi, such that:

σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0

The σi are the singular values, and the firstmin(m, n) columns of U and V are the left and
right singular vectors, satisfying:

Avi = σiui and A⊤ui = σivi

Driver Routine: PxGESVD

ŵż/źų

Singular Value Decomposition (SVD)
Ŵ ScaLAPACK Numerical Routines

• Computes the “economy size” or “thin” SVD.
• Ifm > n: only the first n columns of U are computed.

Operation Driver Single precision Double precision

Real Complex Real Complex

Thin SVD PxGESVD PSGESVD PCGESVD PDGESVD PZGESVD

Ŷų/źų

Generalized Symmetric Definite Eigenproblems (GSEP)
Ŵ ScaLAPACK Numerical Routines

An expert driver is provided to compute all (or selected) eigenvalues and (optionally)
eigenvectors for the following problems:
Ŵ. Az = λBz

ŵ. ABz = λz

Ŷ. BAz = λz

where A and B are symmetric (or Hermitian) and B is positive definite.

Properties:
• The eigenvalues λ are real.
• The matrix of eigenvectors Z satisfies orthogonality conditions relative to B (e.g.,

ZHBZ = I for type Ŵ).

ŶŴ/źų

Generalized Symmetric Definite Eigenproblems (GSEP)
Ŵ ScaLAPACK Numerical Routines

An expert driver is provided to compute all (or selected) eigenvalues and (optionally)
eigenvectors for the following problems:
Ŵ. Az = λBz
ŵ. ABz = λz
Ŷ. BAz = λz

where A and B are symmetric (or Hermitian) and B is positive definite.

Driver Routines (Expert):

Matrix Type Single precision Double precision

Real Complex Real Complex

Symmetric PSSYGVX – PDSYGVX –
Hermitian – PCHEGVX – PZHEGVX

ŶŴ/źų

Computational Routines Overview
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK provides a suite of computational routines for solving linear algebra
problems, including:
• Solving systems of linear equations,
• Computing matrix factorizations,
• Estimating condition numbers,
• Refining solutions and computing error bounds,
• Computing matrix inverses,
• Performing matrix equilibration.

These routines are designed to work with distributed matrices and leverage parallel
computing architectures for efficiency and scalability.

Ŷŵ/źų

Computational Routines for Linear Equations
Ŵ ScaLAPACK Numerical Routines

Linear System Notation:
AX = B

where A is the coefficient matrix, B is the right-hand side, and X is the solution.

ScaLAPACK provides computational routines for factorizing A based on its properties:
• General matrices: LU factorization with partial pivoting (A = PLU).
• Symmetric/Hermitian positive definite: Cholesky factorization (A = UHU or

A = LLH).
• Band matrices: Generalized band factorizations.
• Tridiagonal matrices: Specialized LU or LDLH factorizations.

ŶŶ/źų

Tasks Performed by Computational Routines
Ŵ ScaLAPACK Numerical Routines

The last three characters of the routine name indicate the task:
PxyyTRF Factorize the matrix (e.g., LU, Cholesky).
PxyyTRS Use the factorization to solve AX = B via forward/backward substitution.
PxyyCON Estimate the reciprocal of the condition number κ(A).
PxyyRFS Refine the solution and compute error bounds (iterative refinement).
PxyyTRI Compute thematrix inverse A−1 using the factorization.
PxyyEQU Compute equilibration scaling factors to improve condition number.

Note: Not all routines are available for all matrix types (e.g., inversion is not provided for band
matrices as the inverse is generally dense).

Ŷŷ/źų

Summary of Computational Routines
Ŵ ScaLAPACK Numerical Routines

Matrix type Factorize Solve Condition Error Invert Equilibrate
Estimate Bounds

General PxGETRF PxGETRS PxGECON PxGERFS PxGETRI PxGEEQU
General Band PxGBTRF PxGBTRS PxGBCON PxGBRFS – PxGBEQU
General Tridiagonal PxDTTRF PxDTTRS – – – –

Sym./Herm. Pos. Def. PxPOTRF PxPOTRS PxPOCON PxPORFS PxPOTRI PxPOEQU
Sym./Herm. Pos. Def.
Band

PxPBTRF PxPBTRS PxPBCON PxPBRFS – PxPBEQU

Sym./Herm. Pos. Def.
Tridiagonal

PxPTTRF PxPTTRS – – – –

Triangular – PxTRTRS PxTRCON PxTRRFS PxTRTRI –

ŶŸ/źų

Computational Routines for Orthogonal Factorization
and LLS
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK provides routines for orthogonal factorizations and solving linear least
squares (LLS) problems.

Orthogonal Factorizations:
• QR factorization (A = QR) for general matrices.
• LQ factorization (A = LQ) for general matrices.

Linear Least Squares Problems:
• Solve overdetermined systems (m ≥ n) to find the least squares solution.
• Solve underdetermined systems (m < n) to find the minimum norm solution.

ŶŹ/źų

QR Factorization
Ŵ ScaLAPACK Numerical Routines

The most common of the factorizations is the QR factorization given by:

A = QR

where R is n× n upper triangular and Q ism×m orthogonal (or unitary). If A is of full
rank n, then R is nonsingular.

It is often written as:
A =

(
Q1 Q2

)(R1
0

)
= Q1R1

where Q1 consists of the first n columns of Q, and Q2 the remainingm− n columns.
Ifm < n:

A = Q
(
R1 R2

)
where R1 is upper triangular and R2 is rectangular.

Ŷź/źų

ScaLAPACK support for QR
Ŵ ScaLAPACK Numerical Routines

The routine PxGEQRF computes the QR factorization.
• Q is not formed explicitly but represented as a product of elementary reflectors
(Hi = I− τvvH).

• PxORGQR (or PxUNGQR): Generates all or part of Q.
• PxORMQR (or PxUNMQR): Pre- or post-multiplies a matrix by Q or QH.

ŶŻ/źų

Orthogonal or Unitary Matrices in ScaLAPACK
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK represents an orthogonal (or unitary) matrix Q as a product of elementary
reflectors (Householder matrices):

Q = H1H2 · · ·Hk

where each Hi = I− τvvH.
• τ is a scalar and v is the Householder vector.
• v1 = 1, so it does not need to be stored.

Working with Q: Most users do not operate on Hi directly but use provided routines:
• Generate Q: Routines ending in -ORG / -UNG (e.g., PDORGQR) form Q explicitly.
• Apply Q: Routines ending in -ORM / -UNM (e.g., PDORMQR) compute QTC or QCwithout
forming Q.

Note: In complex arithmetic, elementary reflectors are unitary but not Hermitian. This allows
reducing complex Hermitian matrices to real symmetric tridiagonal form.
Ŷż/źų

Solving Linear Least Squares with QR
Ŵ ScaLAPACK Numerical Routines

Whenm ≥ n and A has full rank, the LLS problem minimizes ∥b− Ax∥2.

∥b− Ax∥2 = ∥QHb− QHAx∥2 =
∥∥∥∥(c1c2

)
−
(
R1
0

)
x
∥∥∥∥
2

Steps:
Ŵ. Compute c = QHb using PxORMQR,
ŵ. Solve the upper triangular system R1x = c1 using PxTRTRS,

Ŷ. The residual vector is r = Q
(
0
c2

)
, its norm is ∥c2∥2.

ŷų/źų

LQ Factorization
Ŵ ScaLAPACK Numerical Routines

The LQ factorization is given by:

A =
(
L 0

)(Q1

Q2

)
= LQ1

where L ism×m lower triangular, Q is n× n orthogonal (or unitary), Q1 consists of the
firstm rows of Q, and Q2 the remaining n−m rows.

ScaLAPACK Routines:
• PxGELQF: Computes the factorization. Q is represented as a product of elementary
reflectors.

• PxORGLQ (or PxUNGLQ): Generates all or part of Q.
• PxORMLQ (or PxUNMLQ): Pre- or post-multiplies a matrix by Q or QH.

The LQ factorization of A corresponds to the QR factorization of A⊤ (or AH):

A = LQ ⇐⇒ A⊤ = Q⊤L⊤

ŷŴ/źų

Solving Underdetermined Systems with LQ
Ŵ ScaLAPACK Numerical Routines

The LQ factorization is used to find theminimum norm solution of an underdetermined
system (m < n) with rankm.
The solution is given by:

x = QH
(
L−1b
0

)
Computational Steps:
Ŵ. Solve the lower triangular system Ly = b for y using PxTRTRS,

ŵ. Form the vector ỹ =
(
y
0

)
,

Ŷ. Compute x = QHỹ using PxORMLQ (or PxUNMLQ).

ŷŵ/źų

QR Factorization with Column Pivoting
Ŵ ScaLAPACK Numerical Routines

If A is not of full rank, or the rank is in doubt, we can perform a QR factorization with
column pivoting:

AP = QR

where P is a permutation matrix.
• P is chosen so that |r11| ≥ |r22| ≥ · · · ≥ |rnn|.
• And for each k, the leading submatrix R11 of size k× k is well-conditioned, while the
trailing submatrix R22 is negligible.

Rank Determination: If R22 is negligible, then k is the effective rank of A.

Basic Solution to LLS:
x = P

(
R−1
11 c1
0

)
where c1 consists of the first k elements of c = QHb.

ŷŶ/źų

ScaLAPACK routine for QR with Pivoting
Ŵ ScaLAPACK Numerical Routines

The routine PxGEQPF computes the QR factorization with column pivoting.
• It does not attempt to determine the rank of A automatically (user must inspect
diagonal of R).

• Q is represented in the same way as in PxGEQRF.
• Routines PxORMQR (real) or PxUNMQR (complex) can be used to apply Q.

ŷŷ/źų

Complete Orthogonal Factorization
Ŵ ScaLAPACK Numerical Routines

QR with column pivoting does not compute aminimum norm solution for rank-deficient
LLS unless R12 = 0.

To solve this, we apply further orthogonal transformations from the right to the upper
trapezoidal matrix R (using PxTZRZF) to eliminate R12:

RP =

(
T11 0
0 0

)
Z

This yields the complete orthogonal factorization:

AP = Q
(
T11 0
0 0

)
Z

ŷŸ/źų

Complete Orthogonal Factorization
Ŵ ScaLAPACK Numerical Routines

From this, the minimum norm solution is obtained as:

x = PZH
(
T−1
11 c1
0

)
Software Details:
• Z is represented as a product of elementary reflectors.
• PxORMRZ (or PxUNMRZ) is provided to multiple a matrix by Z or ZH.

ŷŹ/źų

Summary of Orthogonal Factorization Routines (QR)
Ŵ ScaLAPACK Numerical Routines

All the factorization routines discussed here (except PxTZRZF) allow arbitrarym and n, so
that in some cases the matrices R or L are trapezoidal rather than triangular.

A routine that performs pivoting is provided only for the QR factorization.

Computational routines for QR factorization
Task Single precision Double precision

Real Complex Real Complex

QR factorization and related operations
Factorize generic PSGEQRF PCGEQRF PDGEQRF PZGEQRF
Factorize w/ pivoting PSGEQPF PCGEQPF PDGEQPF PZGEQPF
Apply Q PSORMQR PCUNMQR PDORMQR PZUNMQR
Generate Q PSORGQR PCUNGQR PDORGQR PZUNGQR

ŷź/źų

Summary of Orthogonal Factorization Routines (LQ)
Ŵ ScaLAPACK Numerical Routines

Computational routines for LQ factorization
Task Single precision Double precision

Real Complex Real Complex

LQ factorization and related operations
Factorize generic PSGELQF PCGELQF PDGELQF PZGELQF
Apply Q PSORMLQ PCUNMLQ PDORMLQ PZUNMLQ
Generate Q PSORGLQ PCUNGLQ PDORGLQ PZUNGLQ

ŷŻ/źų

Generalized QR (GQR) Factorization
Ŵ ScaLAPACK Numerical Routines

The Generalized QR (GQR) factorization of an n×mmatrix A and an n× pmatrix B is
given by the pair of factorizations:

A = QR, B = QTZ

where Q (n× n) and Z (p× p) are orthogonal (or unitary) matrices. R and T are generally
upper triangular (or trapezoidal) matrices.

Implicit Factorization
If B is square and nonsingular, the GQR factorization implicitly gives the QR factorization
of B−1A:

B−1A = ZH(T−1R)

without explicitly computing the inverse or the matrix product.

ŷż/źų

Generalized QR (GQR) Factorization
Ŵ ScaLAPACK Numerical Routines

The Generalized QR (GQR) factorization of an n×mmatrix A and an n× pmatrix B is
given by the pair of factorizations:

A = QR, B = QTZ

where Q (n× n) and Z (p× p) are orthogonal (or unitary) matrices. R and T are generally
upper triangular (or trapezoidal) matrices.

ScaLAPACK Routine: PxGGQRF
• Algorithms proceeds by computing the QR factorization of A and then the RQ
factorization of QHB.

• Q and Z can be formed explicitly or used to multiply other matrices (like standard QR).

ŷż/źų

Generalized RQ (GRQ) Factorization
Ŵ ScaLAPACK Numerical Routines

The Generalized RQ (GRQ) factorization of anm× nmatrix A and a p× nmatrix B is
given by the pair of factorizations:

A = RQ, B = ZTQ

where Q (n× n) and Z (p× p) are orthogonal (or unitary) matrices.

Structure:
• R is upper trapezoidal (triangular) with structure similar to the R in RQ.
• T is upper trapezoidal (triangular) with structure similar to the R in QR.

Implicit Factorization
If B is square and nonsingular, the GRQ factorization implicitly gives the RQ of AB−1:

AB−1 = (RT−1)ZH

without explicitly computing the inverse or the product.Ÿų/źų

Generalized RQ (GRQ) Factorization
Ŵ ScaLAPACK Numerical Routines

The Generalized RQ (GRQ) factorization of anm× nmatrix A and a p× nmatrix B is
given by the pair of factorizations:

A = RQ, B = ZTQ

where Q (n× n) and Z (p× p) are orthogonal (or unitary) matrices.

Structure:
• R is upper trapezoidal (triangular) with structure similar to the R in RQ.
• T is upper trapezoidal (triangular) with structure similar to the R in QR.

ScaLAPACK Routine: PxGGRQF
• Computes the RQ factorization of A first, then the QR factorization of BQH.
• Q and Z can be formed explicitly or used to multiply other matrices.

Ÿų/źų

Computational Routines for Symmetric Eigenproblems
Ŵ ScaLAPACK Numerical Routines

Problem Definition: Let A be a real symmetric or complex Hermitian N× Nmatrix. Find
eigenvalues λ and non-zero eigenvectors z such that:

Az = λz

Computation Stages:
Ŵ. Reduction to Tridiagonal Form:

A = QTQH

where Q is orthogonal (unitary) and T is real symmetric tridiagonal.
ŵ. Solve Tridiagonal Problem: Compute eigenvalues/vectors of T.

T = SΛS⊤

The eigenvectors of A are recovered as Z = QS.

ŸŴ/źų

Reduction to Tridiagonal Form
Ŵ ScaLAPACK Numerical Routines

The reduction A = QTQH is performed by:
• PxSYTRD: Real symmetric matrices.
• PxHETRD: Complex Hermitian matrices.

Handling Q:
• The matrix Q is represented as a product of elementary reflectors.
• PxORMTR (Real) / PxUNMTR (Complex): Multiplies a matrix by Q without forming it
explicitly.

• Used to transform eigenvectors of T back to eigenvectors of A.

Ÿŵ/źų

Solving the Tridiagonal Problem
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK provides specific routines for the tridiagonal phase:
xSTEQR2 Modified version of LAPACK’s xSTEQR.

• Computes all eigenvalues and (optionally) eigenvectors using implicit
QL or QR.

• Optimized look-ahead and partial updates for parallel execution.
PxSTEBZ Uses bisection.

• Computes some or all eigenvalues (e.g., in an interval [a, b] or indices i
to j).

• Tunable accuracy vs. speed.
PxSTEIN Uses inverse iteration.

• Computes eigenvectors given accurate eigenvalues.
• Performs reorthogonalization to ensure vector quality (limited by
workspace).

ŸŶ/źų

Summary of Computational Routines for SEP
Ŵ ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Tridiagonal reduction
Factorize A = QTQT PSSYTRD PCHETRD PDSYTRD PZHETRD
Multiply by Q PSORMTR PCUNMTR PDORMTR PZUNMTR

Tridiagonal solvers
All eigs (QR/QL) SSTEQR2 CSTEQR2 DSTEQR2 ZSTEQR2
Selected eigs (Bisection) PSSTEBZ PCSTEBZ PDSTEBZ PZSTEBZ
Selected vectors (Inv. It.) PSSTEIN PCSTEIN PDSTEIN PZSTEIN

Ÿŷ/źų

Nonsymmetric Eigenproblems (NEP)
Ŵ ScaLAPACK Numerical Routines

Problem Definition: Let A be a square n× nmatrix.
• A scalar λ is an eigenvalue and a non-zero vector v is a right eigenvector if:

Av = λv

• A non-zero vector u is a left eigenvector if:

uHA = λuH

Goal: The basic task is to compute all n eigenvalues λ and, optionally, their associated
right eigenvectors v and/or left eigenvectors u.

ŸŸ/źų

Schur Factorization
Ŵ ScaLAPACK Numerical Routines

A fundamental step in solving NEP is the Schur factorization:

A = ZTZH (or A = ZTZ⊤ for real matrices)

• Complex Case: Z is unitary, and T is upper triangular. The eigenvalues appear on the
diagonal of T.

• Real Case: Z is orthogonal, and T is upper quasi-triangular.
— T has Ŵ-by-Ŵ and ŵ-by-ŵ blocks on the diagonal.
— Complex conjugate eigenvalues correspond to the ŵ-by-ŵ blocks.

• The columns of Z are called the Schur vectors of A.

ŸŹ/źų

Computational Stages for NEP
Ŵ ScaLAPACK Numerical Routines

The computation is typically performed in two stages:
Ŵ. Reduction to Upper Hessenberg Form:

A = QHQH

where H is upper Hessenberg (zero below the first subdiagonal) and Q is
orthogonal/unitary.

ŵ. Schur Factorization of H:
H = STSH

where T is the Schur form. The Schur vectors of the original matrix A are recovered
as Z = QS.

Ÿź/źų

Stage Ŵ: Reduction to Hessenberg Form
Ŵ ScaLAPACK Numerical Routines

Factorization Routine: PxGEHRD
• Reduces a general matrix A to upper Hessenberg form H.
• Represents the orthogonal matrix Q in a factored form (product of elementary
reflectors).

Orthogonal/Unitary Matrix Operations:
• PxORMHR (Real) / PxUNMHR (Complex).
• Used to multiply another matrix by Q (or QH) without explicitly forming Q.

ŸŻ/źų

Stage ŵ: Schur Factorization
Ŵ ScaLAPACK Numerical Routines

Routine: PxLAHQR
• Computes the Schur factorization of the upper Hessenberg matrix H.
• Eigenvalues are obtained from the diagonal of T.

Parallel Algorithm Strategy:
• Unlike LAPACK’s xLAHQR (single double shift) or xHSEQR (single large multi-shift),
ScaLAPACK usesmultiple double shifts.

• Shifts are spaced apart to allow parallelism across several processor rows/columns.
• Shifts are applied in a block fashion to maximize performance.

Ÿż/źų

Heuristics for Eigenvalue Computations: Shifting
Ŵ ScaLAPACK Numerical Routines

The convergence of the QR algorithm (or similar iterative methods like the Francis
double-shift) depends on the ratio of eigenvalues |λi|/|λj|.
Goal: Accelerate convergence by subtracting a scalar shift σ:

A− σI = QR −→ Anew = RQ+ σI

Ideally, if σ ≈ λn, the deflation happens very quickly.

Techniques:
• Francis Double Shift: Standard for real non-symmetric matrices. Uses a 2× 2 block
from the bottom corner to perform implicitly shifted steps with complex conjugate
shifts, keeping arithmetic real.

• Aggressive Early Deflation: Looks for convergence in a large window at the bottom
of the matrix, deflating multiple eigenvalues at once.

Źų/źų

Parallelism and Bulge Chasing
Ŵ ScaLAPACK Numerical Routines

The implicit shift strategy creates a “bulge” (non-zero entries outside the Hessenberg
form) that must be chased down the diagonal to restore the form.

Initial Bulge Chasing... Restored

Parallel Approach (ScaLAPACK):
• Multi-shift: Instead of chasing one bulge, introduce multiple bulges (chains of shifts)
simultaneously.

• These bulges can be chased by different processors in a pipelined fashion, increasing
the arithmetic intensity (BLAS Ŷ) and parallelism.

ŹŴ/źų

Summary of Computational Routines for NEP
Ŵ ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Hessenberg reduction
Factorize A = QHQH PSGEHRD PCGEHRD PDGEHRD PZGEHRD
Multiply by Q PSORMHR PCUNMHR PDORMHR PZUNMHR

Schur factorization
Compute H = STSH PSLAHQR PCLAHQR PDLAHQR PZLAHQR

Źŵ/źų

Computational Stages for SVD
Ŵ ScaLAPACK Numerical Routines

Let A be anm× nmatrix. The computation of the SVD proceeds in two main stages:
Ŵ. Reduction to Bidiagonal Form:

A = QBPH

where B is real bidiagonal, and Q (m×m) and P (n× n) are orthogonal (unitary).
— Ifm ≥ n, B is upper bidiagonal.
— Ifm < n, B is lower bidiagonal.

ŵ. SVD of the Bidiagonal Matrix:
B = U1ΣVH1

where U1 and V1 are orthogonal, and Σ contains the singular values.
The singular vectors of A are then U = QU1 and V = PV1.

ŹŶ/źų

Computational Routines for SVD
Ŵ ScaLAPACK Numerical Routines

Reduction Routine: PxGEBRD
• Reduces A to bidiagonal form B.
• Represents Q and P as products of elementary reflectors.

Applying Q and P:
• PxORMBR (Real) / PxUNMBR (Complex).
• Routine to multiply a given matrix by Q or P (or their transposes).

Solving the Bidiagonal Problem:
• ScaLAPACK typically utilizes the LAPACK routine xBDSQR to compute the SVD of the
bidiagonal matrix B.

Źŷ/źų

Optimization for Non-Square Matrices
Ŵ ScaLAPACK Numerical Routines

Ifm ≫ n or n ≫ m, it is more efficient to perform a preliminary QR or LQ factorization.

Casem ≫ n:
Ŵ. Compute QR factorization: A = QR (using PxGEQRF).
ŵ. Compute SVD of the n× nmatrix R.

Case n ≫ m:
Ŵ. Compute LQ factorization: A = LQ (using PxGELQF).
ŵ. Compute SVD of them×mmatrix L.

Note: The driver routine PxGESVD automatically handles these paths.

ŹŸ/źų

Rank-Deficient Linear Least Squares
Ŵ ScaLAPACK Numerical Routines

The SVD is used to solve rank-deficient LLS problems (min ∥b− Ax∥2) by finding the
minimum norm solution.

Let k be the effective rank of A (number of singular values σi > threshold).
The solution is given by:

x = VkΣ
−1
k c1

where:
• Σk is the leading k× k submatrix of Σ,
• Vk consists of the first k columns of V,
• c1 consists of the first k elements of c = UHb.

PxORMBR (or PxUNMBR) is used to compute UHb.

ŹŹ/źų

Summary of SVD Computational Routines
Ŵ ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Bidiagonal reduction
Factorize A = QBPH PSGEBRD PCGEBRD PDGEBRD PZGEBRD
Multiply by Q or P PSORMBR PCUNMBR PDORMBR PZUNMBR

Bidiagonal SVD (LAPACK)
SVD of B SBDSQR CBDSQR DBDSQR ZBDSQR

Źź/źų

Computational Routines for GSEP
Ŵ ScaLAPACK Numerical Routines

Reduction to Standard Form: The generalized problems are reduced to the standard
symmetric eigenvalue problem Cy = λy using the Cholesky factorization of B (B = UHU or
B = LLH).

Reduction Strategy:
• Type Ŵ (Az = λBz): C = U−HAU−1 or L−1AL−H. z = U−1y or L−Hy.
• Type ŵ (ABz = λz): C = UAUH or LHAL. z = U−1y or L−Hy.
• Type Ŷ (BAz = λz): C = UAUH or LHAL. z = UHy or Ly.

ScaLAPACK Routine: PxyyGST
• Overwrites A with the standard matrix C.
• After reduction, standard SEP routines (e.g., PxSYTRD) are used on C.

ŹŻ/źų

Summary of Computational Routines for GSEP
Ŵ ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Reduction to standard
form
Compute C from A, B PSSYGST PCHEGST PDSYGST PZHEGST

Note on Eigenvectors: No special routines are needed to recover eigenvectors z from y.
These are simple triangular solves or matrix-vector multiplications handled by PBLAS (e.g.,
PxTRSV or PxTRMM).

Źż/źų

Conclusions
ŵ Conclusions

ScaLAPACK provides a comprehensive suite of routines for distributed-memory parallel
computation of a wide range of linear algebra problems, including:
• Orthogonal factorizations (QR, LQ, GQR, GRQ).
• Symmetric and nonsymmetric eigenproblems (SEP, NEP, GSEP).
• Singular Value Decomposition (SVD).

The library leverages efficient algorithms and parallelism strategies to ensure scalability
and performance on large-scale systems.

These tools permits to implement high-performance applications in scientific computing
and engineering that require robust linear algebra capabilities, e.g.,model reduction,
computation of matrix functions, and solving large-scale optimization problems.

źų/źų

	ScaLAPACK Numerical Routines
	Linear System Solution
	Linear Least Squares Problems
	Symmetric Eigenproblems and Singular Value Decomposition
	Generalized Symmetric Definite Eigenproblems
	Computational Routines

	Conclusions

