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HPLA up to now and today’s plan

1 GPU BLAS libraries

Up to now, we have seen:

The design principles of the BLAS library,

The implementation of the BLAS library on CPUs and shared memory systems,
Some performance considerations on CPU BLAS implementations,

The implementation of the BLAS library on distributed memory systems.

Some performance considerations on distributed memory BLAS implementations.
LAPACK and ScalLAPACK libraries for dense linear algebra.

BN EEnn

Today we will look at some implementations of the BLAS library on GPUs.
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2 GPGPU Computing and Dense Linear Algebra

GPGPU stands for General-Purpose computing on Graphics Processing Units.

Originally designed for image rendering, GPUs have evolved into highly parallel,
multi-threaded, many-core processors with tremendous computational power and
very high memory bandwidth.
Why leverage GPUs for scientific computing?

— High arithmetic intensity.

— Massive parallelism (thousands of cores).

— Energy efficiency (FLOPS per Watt).
Dense Linear Algebra (DLA) is a prime candidate for GPU acceleration due to its
regular memory access patterns and high computational density.



CPU vs. GPU Architecture

2 GPGPU Computing and Dense Linear Algebra

CPU (Latency Oriented) GPU (Throughput Oriented)
e Optimized for serial performance. e Optimized for parallel performance.
e Complex control logic. e Simple control logic.
e Large caches to minimize latency. e Small caches (latency hidden by
e Fewer, powerful cores. thread switching).

e Many simpler cores (SIMT).

Control 000
O]

...many ALUs ...
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CPU vs. GPU Architecture

High-Level View: GPU = collection of
Streaming Multiprocessors (SMs).

Organization: SMs are grouped into
Graphics Processing Clusters (GPCs).
Inside an SM:

— Register file.

— Unified data cache (L1 cache +
Shared Memory).

— Functional units (CUDA cores,
Tensor cores).

Flexibility: The split between L1 and
Shared Memory is configurable at
runtime.

2 GPGPU Computing and Dense Linear Algebra
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Programming Models for GPUs

2 GPGPU Computing and Dense Linear Algebra

To utilize GPUs for linear algebra, we need specific programming models:

CUDA (Compute Unified Device Architecture) Proprietary NVIDIA platform. The de-facto
standard for HPC on NVIDIA GPUs. Provides low-level control and high
performance.

HIP (Heterogeneous-Compute Interface for Portability) AMD’s answer to CUDA, allowing
code to run on AMD hardware.

OpenCL / SYCL / OneAPI Open standards for cross-platform parallel programming.

OpenACC / OpenMP Directive-based approaches (pragmas) to offload computations to
accelerators without rewriting the entire codebase.

Most vendor-provided BLAS libraries (cuBLAS, rocBLAS) are highly optimized using the
native models (CUDA/HIP).
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How much does it costs?
2 GPGPU Computing and Dense Linear Algebra

@ll@llll 1@ =0

NVIDIA HGX200
® 141GB of HBM3e
e 4.8TB/s of bandwidth
e 4 petaFLOPS for FP8

$ ~ 300.000 %
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AMD Instinct™ MI355X GPUs
e 288GB of HBM3e
e 8 TB/s of bandwidth
e 5 petaFLOPS for FP8

$ ~220.000 €

Intel® GPU Max 1550
e 128 GB of HBM2e
e 3.28 TB/s of bandwidth
e 52.43 TFLOPS for FP8
$ ~8.550 €



Heterogeneous Computing
2 GPGPU Computing and Dense Linear Algebra

The CUDA programming model assumes a heterogeneous system:
e Host: The CPU and its memory (system memory).
e Device: The GPU and its own memory.

Typically, a CUDA program flows as follows:
1. Copy data from Host memory to Device memory.
2. Launch Kernel: The CPU instructs the GPU to execute a function (kernel) on the data.
3. Execute: The GPU executes the kernel in parallel across many threads.
4. Copy results from Device memory back to Host memory.
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Thread blocks and grids

2 GPGPU Computing and Dense Linear Algebra

Grid

Thread Block Thread Block Thread Block Thread Block
e High count: Kernels launch millions of
threads, organized into Blocks. llﬂllu llllull lllllul llllllll
e Structure: blocks form a Grid.

— Blocksi id h th ize.
— sodsinagridhavethesomesie. | (111§ UL | L |

mapping to data.

The CUDA programming model enables
arbitrarily large grids to run on GPUs of any
size. To achieve this, it requires that there
be no data dependencies between threads
in different thread blocks.

e |dentity: Threads use built-in
variables to find their coordinates in
the Block/Grid.
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e Hardware Mapping:

— A block executes on a single SM.

— Enables fast synch and Shared
Memory usage within a block.

— Grids scale to millions of blocks,
automatically scheduled on
available SMs.

Threads within a block run on the same
SM, while different thread blocks are
scheduled among available SMs in any
order. This allows the execution to be
parallel or serial, ensuring scalability across
different hardware.
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Thread blocks and grids

2 GPGPU Computing and Dense Linear Algebra

Grid

Thread Block Thread Block Thread Block Thread Block
TN iy s pttaedd
The CUDA programming model enables
arbitrarily large grids to run on GPUs of any
size. To achieve this, it requires that there

be no data dependencies between threads
in different thread blocks.
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Thread blocks and grids

Clusters (CC > 9.0): An optional
hierarchy level grouping thread
blocks.

Execution: Guaranteed to run on a
single GPC (Graphics Processing
Cluster).
Benefits:
— Synchronization between blocks in
the same cluster.
— Distributed Shared Memory:
Threads can access the shared
memory of all blocks in the cluster.

2 GPGPU Computing and Dense Linear Algebra

Grid with Clusters

Thread Block Cluster

Thread Block Cluster

Thread Block

HW

Thread Block

HUW

Thread Block

U

Thread Block

HHUN

Thread Block

HHUN

Thread Block

HUUN

Thread Block

W

Thread Block

HHUN

The CUDA programming model enables
arbitrarily large grids to run on GPUs of any
size. To achieve this, it requires that there
be no data dependencies between threads
in different thread blocks.
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4‘\\\ Warps and SIMT

2 GPGPU Computing and Dense Linear Algebra

e Warps:

— Threads within a block are grouped into bundles of 32 threads called warps.
— Warps are the fundamental unit of scheduling on an SM.

e SIMT (Single-Instruction, Multiple-Threads):

— All threads in a warp execute the same instruction at the same time.
— Each thread has its own instruction address counter and register state.
— Lock-step execution: Ideally, all 32 threads progress together.

e Recommendation:

— Configure thread block sizes to be multiples of 32.
— If not, the last warp will have inactive lanes, wasting computational resources.
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2 GPGPU Computing and Dense Linear Algebra

if(threadIdx.x%2 == ©)

e Threads in a warp can follow different execution {a =r(t);}
paths (e.g., if-else statements). else

e Divergence: If threads diverge, the warp serially {a=q(t); }
executes each branch path. y = £(a);

e Threads not on the current path are masked off Warp Lanes
(inactive). 0 1 2 3 4 5 3

e Impact: Significantly reduces parallel efficiency I:‘

(active threads < 32).

e Optimization: Maximize utilization by ensuring
i 1 3 5 1 .
threads in a warp follow the same control flow.

012345
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//A\V GPU Memory Model Overview
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Modern GPUs utilize a complex memory hierarchy to balance bandwidth and latency.
We distinguish between:
e Off-Chip Memory (DRAM):
— Global Memory: The large DRAM attached to the GPU. Accessible by all SMs. High
latency, high bandwidth.
— System Memory: DRAM attached to the CPU (Host).
e On-Chip Memory:
— Registers: Fastest memory, private to a thread.

— Shared Memory: Programmable cache shared within a Thread Block (or Cluster).
— Caches: L1 (per SM) and L2 (device-wide).

Unified Addressing: CPU and GPU share a single virtual memory space, allowing the
unique identification of memory locations across devices.
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On-Chip Memory Details

2 GPGPU Computing and Dense Linear Algebra

w,

Registers
e Stores thread-local variables.
L . SM M
o Allocation is per-thread; total usage determines ’ Regs ‘ ’ Regs ‘

occupancy (how many blocks fit on an SM).

Shared Memory

.. . L1/ Shared| L1/ Shared
e Visible to all threads in a Block (or Cluster on ’1 1‘1 1‘

H100+). , .
e Used for inter-thread communication and data ‘ L2 CaChZ(De"ice) ‘
reuse.

‘ Global Memory (DRAM) ‘

e Physically shares storage with L1 Cache; the split
is often configurable.
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The CUDA Platform Overview

2 GPGPU Computing and Dense Linear Algebra

The NVIDIA CUDA platform enables heterogeneous computing through a combination of
hardware and software components.

Key Components:
e Compute Capability (CC):
— Version number (X.Y) indicating supported features and hardware parameters.
— Corresponds to the Streaming Multiprocessor (SM) version (e.g., CC 9.0 — sm_90).

e NVIDIA Driver:

— acts as the "0S” of the GPU.
— Foundational; required for all GPU uses (CUDA, Vulkan, Direct3D).

e CUDA Toolkit:
— Suite of libraries, headers, tools (e.g., nvcc), and the CUDA Runtime.
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CUDA APIs: Runtime vs. Driver

2 GPGPU Computing and Dense Linear Algebra

CUDA offers two main APIs for application development:
CUDA Runtime API CUDA Driver API

e High-level API. e Low-level APl exposed directly by the

e Handles common tasks (memory driver.
allocation, data transfer, kernel e Grants finer control (e.g., context
launching) easily. management).

e Language extensions (e.g., e More verbose; conceptually similar to
<<, . .>>> syntax). OpenCL.

Used in most CUDA applications.

e The Runtime APl is implemented on top of the Driver API.
e Applications can mix both APIs (interoperability).
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Parallel Thread Execution (PTX)

2 GPGPU Computing and Dense Linear Algebra

e What is PTX?

— Avirtual Instruction Set Architecture (ISA).
— An intermediate assembly language that abstracts the physical hardware.

e Role in Compilation:

— High-level code (C++/Fortran) is compiled into PTX.
— The graphics driver Just-In-Time (JIT) compiles PTX into machine code (SASS) valid for
the specific GPU installed.

e Benefit:

— Forward compatibility: Code compiled to PTX years ago can often run on new GPUs
because the driver translates the virtual instructions to the new architecture.

16/71



Binary Compatibility

2 GPGPU Computing and Dense Linear Algebra

NVIDIA GPUs guarantee binary compatibility under specific conditions:
e Within Major Version:

— Binary code (cubin, e.g., sm_86) can run on GPUs with the same major version and
equal or higher minor version.

— Example: Code compiled for sm_86 works on sm_86 and sm_89, but not on sm_80
(minor version too low).

e Between Major Versions:

— Binaries are not compatible across major versions.
— Example: Code for sm_80 will not run on a Hopper GPU (sm_90).

Note: Binary compatibility applies only to binaries generated by official NVIDIA tools (e.g.,
nvcc).
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PTX Compatibility & Forward Compatibility

2 GPGPU Computing and Dense Linear Algebra

To support future hardware, GPU code can be embedded as PTX (virtual assembly) rather
than just binary SASS.
e Mechanism:
— Application stores PTX for a specific virtual architecture (e.g., compute_80).
— At runtime, the driver Just-In-Time (JIT) compiles this PTX into binary code for the
detected GPU.
e Requirement: The PTX version must be < the GPU’s compute capability.
e Benefit:

— Forward Compatibility: An app compiled today for compute_80 can run on a future
architecture (e.g., sm_120) without recompilation.
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Just-in-Time (JIT) Compilation
2 GPGPU Computing and Dense Linear Algebra

e Process: The device driver translates loaded PTX into native binary code at
application load time.
¢ Trade-offs:
'@ Increases application load / startup time.
s Allows code to run on GPUs that didn’t exist when the app was built.
sl Benefits from newer compiler optimizations in updated drivers.
e Compute Cache:
— The driver caches generated binaries to avoid recompiling on subsequent runs.
— Cache is invalidated upon driver updates.
e NVRTC: A runtime compilation library that allows compiling CUDA C++ source code
directly to PTX at runtime, offering even more flexibility.
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ﬂk\V A Simple CUDA hell-world Program

2 GPGPU Computing and Dense Linear Algebra

#include <iostream>

__global__ void helloFromGPU() {
printf ("Hello World from GPU!\n");

}

int main() {
// Launch kernel with 1 block of 1 thread
helloFromGPU<<<1, 1>>>();
// Wait for GPU to finish
cudaDeviceSynchronize() ;
return 0O;

e The __global__ qualifier indicates a kernel function executed on the GPU.
e The <<<1, 1>>> syntax launches the kernel with 1 block of 1 thread.
e cudaDeviceSynchronize () ensures the CPU waits for the GPU before exiting.
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Compilation
2 GPGPU Computing and Dense Linear Algebra

To compile the CUDA program, use the NVIDIA CUDA Compiler nvcec:

nvcc —-o hello_cuda hello_cuda.cu

This command generates an executable named hello_cuda.

We can specify the target GPU architecture using the —arch flag:

nvcc —arch=sm_89 -o hello_cuda hello_cuda.cu

This compiles the code for GPUs with Compute Capability 8.9 (The NVIDIA GeForce RTX
4060 on my laptop).

If we run the program, we should see:
Hello World from GPU!
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Compilation with CMake

2 GPGPU Computing and Dense Linear Algebra

To compile CUDA code with CMake, we need to enable CUDA support in our

CMakeLists.txt file

cmake_minimum_required (VERSION 3.18)

project (HelloCUDA LANGUAGES CXX CUDA)

add_executable(hello_cuda hello_cuda.cu)

set_target_properties(hello_cuda PROPERTIES
CUDA_ARCHITECTURES "89"

)

e CUDA is treated as a first-class language in CMake.

e The set_target_properties(target CUDA_ARCHITECTURES) property
specifies the target GPU architectures.
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Implementing DAXPY with CUDA

2 GPGPU Computing and Dense Linear Algebra

The DAXPY operation computesy < ax + y for vectors x and y and scalar «. Here is a
simple CUDA implementation:

__global__ void daxpy(int n, double alpha, const double *x, double *y) {
int i = blockIdx.x * blockDim.x + threadldx.x;
if (1 < n) {
y[i] += alpha * x[i];
¥

e Each thread computes one element of the result.
e The thread index i is calculated using block and thread indices.
¢ A boundary check ensures we do not access out-of-bounds memory.
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Block and Thread Indexing

2 GPGPU Computing and Dense Linear Algebra

In the DAXPY kernel, each thread computes a single element of the output vector y. The
thread index i is calculated as:

i = blockldx.x x blockDim.x + threadldx.x

blockldx.x The index of the current block in the grid.
blockDim.x The number of threads per block.
threadldx.x The index of the thread within its block.

This calculation allows us to uniquely identify each thread across the entire grid, enabling
parallel computation of the DAXPY operation.

24/71



Launching the DAXPY Kernel

2 GPGPU Computing and Dense Linear Algebra

To launch the DAXPY kernel from the host (CPU) code, we need to allocate memory on the
GPU, copy data, and invoke the kernel:

// Host code

int n = 1<<20; // Vector size

double alpha = 2.0;

double *h_x = (double*)malloc(n * sizeof (double));

double *h_y (doublex*)malloc(n * sizeof (double));

// Initialize h_z and h_y...

double *d_x, *d_y;

cudaMalloc(&d_x, n * sizeof (double));

cudaMalloc(&d_y, n * sizeof (double));

cudaMemcpy(d_x, h_x, n * sizeof (double), cudaMemcpyHostToDevice) ;
cudaMemcpy(d_y, h_y, n * sizeof (double), cudaMemcpyHostToDevice) ;
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Launching the DAXPY Kernel

2 GPGPU Computing and Dense Linear Algebra

// Launch kernel

int blockSize = 256;

int numBlocks = (n + blockSize - 1) / blockSize;
daxpy<<<numBlocks, blockSize>>>(n, alpha, d_x, d_y);

// Copy result back to host

cudaMemcpy(h_y, d_y, n * sizeof (double), cudaMemcpyDeviceToHost) ;
// Free device memory

cudaFree(d_x);

cudaFree(d_y) ;

e We allocate device memory using cudaMalloc and copy data with cudaMemcpy.
e The kernel is launched with a calculated number of blocks and threads per block.

o Finally, we copy the result back to the host and free device memory.
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Executing a Kernel
2 GPGPU Computing and Dense Linear Algebra

We execute a kernel on the GPU using the triple angle bracket syntax <<<.

daxpy<<<numBlocks, blockSize>>>(n, alpha, d_x, d_y);
Here:

e numBlocks specifies the number of thread blocks in the grid.
e blockSize specifies the number of threads per block.
Example Calculation:

e The int n=1<<20; sets the vector size to 220 = 1, 048, 576.

e For a vector of sizen = 1,000, 000 and a block size of 256:
e Number of blocks = (%] = 3907.

27/71
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4‘\\\ What performances do we get out of this?

2 GPGPU Computing and Dense Linear Algebra

e The performance of our simple DAXPY implementation will depend on several
factors:
Memory bandwidth The speed of data transfer between global memory and the
GPU cores.
Kernel launch overhead The time taken to launch the kernel on the GPU.
Occupancy How well the GPU'’s resources are utilized (number of active warps per
SM).
e To measure performance, we can use CUDA events to time the kernel execution and
calculate the achieved GFLOPS.

e Optimizations such as using shared memory, minimizing global memory accesses,
and ensuring coalesced memory access patterns can significantly improve
performance.
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CUDA Events for Timing

2 GPGPU Computing and Dense Linear Algebra

An approach to measure kernel execution time is to use CUDA Events:

e Create events: cudaEventCreate
e Record events: cudaEventRecord

e Synchronize:
cudaEventSynchronize

e Elapsed time:
cudaEventElapsedTime
To calculate GFLOPS:
GFLOPS =

29/71

cudaEvent_t start, stop;

float ms;
cudaEventCreate(&start) ;
cudaEventCreate (&stop) ;
cudaEventRecord(start) ;

// Launch kernel
cudaEventRecord (stop) ;
cudaEventSynchronize (stop) ;
cudaEventElapsedTime (&ms, start,

2n

ms x 106

stop) ;



These are the results on my laptop (RTX 4060)

2 GPGPU Computing and Dense Linear Algebra

Execution Time (] better) Effective Bandwidth (1 better)
‘ ‘ ‘ 12394
0.3 . 0 ]
0.247 5
= E 1,000 +
£ 02t . <
QL i
£ 2 500
= 0.1} s 2
0.02 @ 102.1
0 ‘ — 0 L1 ‘
CPU GPU CPU GPU

Speedup: 12.14 x

Vector size: N = 22° elements (8.0 MB)
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The cuBLAS Library

2 GPGPU Computing and Dense Linear Algebra

cuBLAS is NVIDIA’s GPU-accelerated implementation of the Basic Linear Algebra
Subprograms (BLAS) library.
It provides highly optimized routines for dense linear algebra operations, including:
— Level 1 BLAS: Vector operations (e.g., DAXPY, DOT).
— Level 2 BLAS: Matrix-vector operations (e.g., GEMV).
— Level 3 BLAS: Matrix-matrix operations (e.g., GEMM).
CUBLAS leverages the full capabilities of NVIDIA GPUs, including:
— Efficient memory access patterns.
— Use of shared memory and registers.
— Optimized kernel launches and execution strategies.
It is widely used in scientific computing, machine learning, and other
high-performance applications requiring fast linear algebra computations.



Using cuBLAS

2 GPGPU Computing and Dense Linear Algebra

To ensure maximum compatibility with existing Fortran environments, the cuBLAS library
operates based on Column-Major storage and 1-based indexing.

Implications for C/C++ Developers:
e C and C++ utilize Row-Major storage by default.
e Consequently, native 2D array semantics (e.g., double A[rows] [cols]) cannot be
directly used with cuBLAS.
You can define two macros to help with indexing:

#define IDX2F(i,3,1d) ((((j)-1)*(1d))+((i)-1))
#define IDX2C(%,7,1d) (((7)*(1d))+(%))
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//A\V A couple of useful macros

2 GPGPU Computing and Dense Linear Algebra

Writing error check code is very repetitive. We can define a couple of macros to help us:
1) To wrap CUDA runtime API calls:

#define CHECK_CUDA(call) \
do { \
cudaError_t err = call; \
if (err != cudaSuccess) { \
forintf(stderr, "CUDA error Js:Jd: Js\n", \
__FILE _, __LINE _, cudaGetErrorString(err)); \
exit (EXIT FAILURE); \
} \

} while (0)

This macro checks the return status of a CUDA runtime API call and prints an error
message if the call fails.
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//A\V A couple of useful macros

2 GPGPU Computing and Dense Linear Algebra

Writing error check code is very repetitive. We can define a couple of macros to help us:

2) To wrap cuBLAS runtime API calls:

#define CHECK_CUBLAS(call) \
do { \
cublasStatus_t status = call; \
if (status != CUBLAS_STATUS_SUCCESS) { \
forintf(stderr, "cuBLAS error As:/d: jd\n", \
__FILE _, __LINE _, status); \
exit (EXIT FAILURE); \
F \

} while (0)

This macro checks the return status of a cuBLAS API call and prints an error message if the
call fails.
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cuBLAS example: DAXPY

2 GPGPU Computing and Dense Linear Algebra

To use cuBLAS the first thing we need to do is create a cuBLAS handle:

cublasHandle_t handle;
CHECK_CUBLAS (cublasCreate(&£handle));

This handle is used to manage the cuBLAS library context and resources.

Then we can call the cublasDaxpy function to perform the DAXPY operation:
CHECK_CUBLAS (cublasDaxpy (handle, n, &alpha, d_x, 1, d_y, 1));
At this point an interface to the DAXPY operation should be very familiar!

Finally, we need to destroy the cuBLAS handle to free resources:

cublasDestroy (handle) ;
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The cuBLAS DAXPY interface

2 GPGPU Computing and Dense Linear Algebra

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int inczx,
double *y, int incy);

handle cuBLAS library context.
n Number of elements in vectors x and y.
alpha Pointer to the scalar multiplier.
X Pointer to the input vector x.
incx Stride between elements in x (usually 1).
y Pointer to the input/output vectory.
incy Stride between elements in y (usually 1).
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The cuBLAS DAXPY interface

2 GPGPU Computing and Dense Linear Algebra

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int incx,
double *xy, int incy);

alpha Pointer to the scalar multiplier.

alpha and beta parameters can be passed by reference on the host or the device.
When the pointer mode is set to CUBLAS_POINTER_MODE_HOST:

e The scalars can be on the stack or heap (not managed memory).
e The kernels are launched with the value of the scalar.
e Host memory can be freed immediately after the call.
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The cuBLAS DAXPY interface

2 GPGPU Computing and Dense Linear Algebra

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int incx,
double *y, int incy);

alpha Pointer to the scalar multiplier.

alpha and beta parameters can be passed by reference on the host or the device.
When set to CUBLAS_POINTER_MODE_DEVICE:

e The scalars must be accessible on the device.
e Their values must not change until the kernel completes.

o Allows fully asynchronous execution, even if alpha is generated by a previous kernel
(common in iterative solvers).
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The cuBLAS DAXPY interface

2 GPGPU Computing and Dense Linear Algebra

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int incx,
double xy, int incy);

alpha Pointer to the scalar multiplier.

alpha and beta parameters can be passed by reference on the host or the device.
To set the pointer mode, use:

cublasSetPointerMode (handle, CUBLAS_POINTER_MODE_HOST);
The default mode is CUBLAS_POINTER_MODE_HOST.
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The cuBLAS 2-norm

2 GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDnrm2 function to compute the Euclidean norm
(2-norm) of a vector:

cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,
const double *x, int incx, double *result)

handle cuBLAS library context.
n Number of elements in vector x.
X Pointer to the input vector x.
incx Stride between elements in x (usually 1).

result Pointer to store the computed norm.
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The cuBLAS 2-norm

2 GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDnrm2 function to compute the Euclidean norm
(2-norm) of a vector:

cublasStatus_t cublasDnrm2(cublasHandle t handle, int n,
const double *x, int incx, double *result)

result Pointer to store the computed norm.

For the functions of this category, when the pointer mode is set to
CUBLAS_POINTER_MODE_HOST, these functions block the CPU, until the GPU has
completed its computation and the results have been copied back to the Host.
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The cuBLAS 2-norm

2 GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDnrm2 function to compute the Euclidean norm
(2-norm) of a vector:

cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,
const double *x, int incx, double *result)

result Pointer to store the computed norm.

When the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE, these functions
return immediately. This requires proper synchronization in order to read the result from
the host.

36/71



The cuBLAS GEMV operation

2 GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDgemv function to perform the matrix-vector
multiplication operation:

y < aop(A)x + By
The function signature is:

cublasStatus_t cublasDgemv(cublasHandle_t handle,
cublasOperation_t trans, int m, int n,

const double *alpha,
const double *A, int 1lda,
const double *x, int incx,
const double *beta,

double *y, int incy)
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The cuBLAS GEMV operation

2 GPGPU Computing and Dense Linear Algebra

handle cuBLAS library context.
trans Operation on matrix A (CUBLAS_OP_N, CUBLAS_0OP_T, CUBLAS_0P_C).
m,n Dimensions of matrix A (rows, columns).
alpha Pointer to the scalar multiplier for op(A)x.
A Pointer to the input matrix A.
Ida Leading dimension of matrix A (usually m).
X Pointer to the input vector x.
incx Stride between elements in x (usually 1).
beta Pointer to the scalar multiplier fory.
y Pointer to the input/output vectory.
incy Stride between elements in y (usually 1).
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4‘\\\ We can run a comparison with OpenBLAS

2 GPGPU Computing and Dense Linear Algebra

We can create and populate matrices/vectors on the host,

const size_t bytes_A = (size_t)m * n * sizeof (double);
const size_t bytes_x (size_t)n * sizeof (double);
const size_t bytes_y (size_t)m * sizeof (double);
double *h_A = (double *)malloc(bytes_A);

double *h_x (double *)malloc(bytes_x);

double *h_y = (double *)malloc(bytes_y);

double *h_y_cpu = (double *)malloc(bytes_y);

double *h_y_gpu = (double *)malloc(bytes_y);
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4‘\\\ We can run a comparison with OpenBLAS

2 GPGPU Computing and Dense Linear Algebra

We can create and populate matrices/vectors on the host,

for (int col = 0; col < n; col++) {
for (int row = 0; row < m; row++) {
h_Alcol * m + row] = 1.0 + (row + col) * le-6;

}

}

for (int i = 0; i < n; i++) {
h_x[i] = 1.0;

}

for (dnt i = 0; i < m; i++) {
h_y[i] = 2.0;
h_y_cpuli] = 2.0;

}
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4‘\\\ We can run a comparison with OpenBLAS

2 GPGPU Computing and Dense Linear Algebra

We can create and populate matrices/vectors on the host, copy them to the device,
double *d_A, *d_x, *d_y;

// Allocate device memory

CHECK_CUDA (cudaMalloc(&d_A, bytes_A));

CHECK_CUDA (cudaMalloc(&d_x, bytes_x));

CHECK_CUDA (cudaMalloc(&d_y, bytes_y));

// Copy data to device

CHECK_CUDA (cudaMemcpy(d_A, h_A, bytes_A, cudaMemcpyHostToDevice)) ;
CHECK_CUDA (cudaMemcpy(d_x, h_x, bytes_x, cudaMemcpyHostToDevice)) ;
CHECK_CUDA (cudaMemcpy(d_y, h_y, bytes_y, cudaMemcpyHostToDevice)) ;
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4‘\\\ We can run a comparison with OpenBLAS

2 GPGPU Computing and Dense Linear Algebra

We can create and populate matrices/vectors on the host, copy them to the device, and
run the cublasDgemv function
int m = 4096;
int n = 4096;
const double alpha = 2.0;
const double beta = 1.0;
CHECK_CUBLAS (cublasDgemv (handle, CUBLAS_OP_N, m, n, &alpha, d_A,
m, d_x, 1,
&beta, d_y, 1));

We run 10 warm-up iterations before timing the execution.

We then run 100 timed iterations to measure performance.

Finally, we copy the result back to the host for verification.
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?/A\$ We can run a comparison with OpenBLAS

2 GPGPU Computing and Dense Linear Algebra

We copy back the result to the host and verify correctness against OpenBLAS:
CHECK_CUDA (cudaMemcpy (h_y_gpu, d_y, bytes_y, cudaMemcpyDeviceToHost));
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4‘\\\ We can run a comparison with OpenBLAS

2 GPGPU Computing and Dense Linear Algebra

We copy back the result to the host and verify correctness against OpenBLAS:
CHECK_CUDA (cudaMemcpy (h_y_gpu, d_y, bytes_y, cudaMemcpyDeviceToHost));
cblas_dgemv(CblasColMajor, CblasNoTrans,m, n, alpha, h_A, m, h_x, 1, beta,
— h_y_cpu, 1);
// Verify correctness
int errors = 0O;
for (int i = 0; i < m && errors < 10; i++) {
double diff = fabs(h_y_cpulil - h_y_gpulil);
if (diff > 1e-8) {
fprintf (stderr, "Mismatch at %d: CPU %.12f GPU %.12f\n",
i, h_y_cpulil, h_y_gpulil);
errors++;
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Comparison with OpenBLAS (NVIDIA RTX 4060 GPU)

2 GPGPU Computing and Dense Linear Algebra

Execution Time (| better) Effective Bandwidth (1 better)
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Speedup of roughly 6.5x, saturating the GPU memory bandwidth at ~249 GBs—!.
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The cuBLAS GEMM operation

2 GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDgemm function to perform the matrix-matrix
multiplication operation:
C < aop(A)op(B) + 8C
The function signature is:
cublasStatus_t cublasDgemm(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,

const double *alpha,
const double *A, int 1lda,
const double *B, int 1db,
const double *beta,
double *C, int 1ldc)
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The cuBLAS GEMM operation

2 GPGPU Computing and Dense Linear Algebra

handle cuBLAS library context.
transa, transb Operations on matrices A and B (CUBLAS_OP_N, CUBLAS_OP_T,
CUBLAS_OP_C).
m,n,k Dimensions of the matrices.
alpha Pointer to the scalar multiplier for op(A) op(B).
A Pointer to the input matrix A.
Ida Leading dimension of matrix A (usually m).
B Pointer to the input matrix B.
Idb Leading dimension of matrix B (usually k).
beta Pointer to the scalar multiplier for C.
C Pointer to the input/output matrix C.
Idc Leading dimension of matrix C (usually m).
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Running a comparison with OpenBLAS
2 GPGPU Computing and Dense Linear Algebra

We can run a similar comparison as before, but this time using the cublasDgemm
function to perform matrix-matrix multiplication.

The process involves:

1.
2
3
4.
5

44/71

Creating and populating matrices on the host.

. Copying them to the device.
. Running the cublasDgemm function.

Copying back the result to the host.

. Verifying correctness against OpenBLAS.
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Interpreting DGEMM Performance Results

2 GPGPU Computing and Dense Linear Algebra

e A30: Near-Peak FP64 Performance
— Based on GA100 architecture with FP64 Tensor Cores.
— CcuBLAS DGEMM exploits Tensor Cores when matrix sizes and alignment allow.
— Measured performance (~8-10 TFLOPS) reaches 80-90% of theoretical FP64 Tensor
Core peak.
— Low memory bandwidth utilization confirms the kernel is compute-bound.
e A4o0: Limited by Scalar FP64 Units
— Based on GA102 architecture with no FP64 Tensor Cores.
— FPé64 throughput is limited to 1/64 of FP32 rate.
— Observed ~0.5 TFLOPS is consistent with the ~1.1 TFLOPS hardware peak.
— DGEMM performance is fundamentally constrained by narrow FP6é4 pipelines.
o Key Takeaway
— Large FP64 performance gap reflects architectural design choices.
— A30 is optimized for HPC and numerical linear algebra.
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cuSOLVER for LAPACK-like Workloads

2 GPGPU Computing and Dense Linear Algebra

e cuSolverDN is designed to solve dense linear systems of the form:
Ax=Db

where A € R™" b ¢ R", and x € R™.

e Factorizations provided:
— LU with partial pivoting for general matrices.
— QR factorization.
— Cholesky for symmetric/Hermitian positive definite matrices.
— LDL (Bunch-Kaufman) for symmetric indefinite matrices.
e Decompositions:

— Singular Value Decomposition (SVD).
— Bidiagonalization.
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cuSOLVER for LAPACK-like Workloads

2 GPGPU Computing and Dense Linear Algebra

e cuSolverDN is designed to solve dense linear systems of the form:
Ax=bD

where A € R™" p ¢ R", and x € R".

¢ Design Philosophy:
— Targets computationally intensive LAPACK routines.
— Provides an APl compatible with LAPACK.
— The main idea is to allows users to accelerate bottlenecks on the GPU while keeping
other parts of the code on the CPU.
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Solving a Linear System with cuSOLVERDN

2 GPGPU Computing and Dense Linear Algebra

To solve a linear system Ax = b using the cuSOLVERDN library, the process typically
involves two main steps, mirroring the LAPACK approach:

1. Factorization: Compute the LU factorization of the coefficient matrix A using
cusolverDnDgetrf. This decomposes Ainto P- L - U.

2. Solve: Solve the system using the computed factors with cusolverDnDgetrs. This
involves forward and backward substitutions.
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Solving a Linear System with cuSOLVERDN

2 GPGPU Computing and Dense Linear Algebra

To solve a linear system Ax = b using the cuSOLVERDN library, the process typically
involves two main steps, mirroring the LAPACK approach.

Main Bottlenecks on GPUs:

e Pivoting: The LU factorization requires partial pivoting for numerical stability. This
involves finding the pivot element (reduction) and swapping rows (irregular memory
access), which are sequential and memory-bound operations that hurt GPU
parallelism.

e Triangular Solves (TRSM): The forward and backward substitutions in getrs have
dependencies between rows/columns, limiting the available parallelism compared to
matrix multiplication (GEMM).
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cuSOLVERDN Performance Factorization Throughput

2 GPGPU Computing and Dense Linear Algebra

RTX 4060 vs OpenBLAS A30 vs Intel MKL
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cuSOLVERDN Performance Factorization Throughput

2 GPGPU Computing and Dense Linear Algebra

RTX 4060: Factorization Throughput A30: Factorization Throughput
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Interpreting cuSOLVERDN Performance Results

2 GPGPU Computing and Dense Linear Algebra

¢ Factorization (dgetrf):
— CcuSOLVERDN achieves significant speedups over CPU libraries (OpenBLAS, MKL) for LU
factorization.
— The GPU'’s parallelism effectively accelerates the computationally intensive parts of the
factorization.
— However, performance is still limited by pivoting and memory-bound operations.

e Solve (dgetrs):
— The solve step shows more modest speedups due to inherent sequential dependencies
in triangular solves.
— While GPUs can accelerate some parts, the limited parallelism restricts overall
performance gains.

e Overall Takeaway:
— CUSOLVERDN provides performance improvements for dense linear algebra tasks on
GPUs.

so;r T The effectiveness varies between factorization and solve phases.



The other cuSOLVERDN Routines

2 GPGPU Computing and Dense Linear Algebra

The cuSOLVERDN library also provides other LAPACK-like routines, each with its own
performance characteristics on GPUs:

¢ QR Factorization (dgeqrf): Similar performance characteristics to LU factorization,
with speedups over CPU libraries.

e Cholesky Factorization (dpotrf): Generally faster than LU due to the absence of
pivoting, achieving higher throughput on GPUs.

e SVD (dgesvd): More complex and computationally intensive, with performance gains
depending on matrix size and GPU capabilities.

¢ Bidiagonalization (dgebd2): Similar to SVD, with performance influenced by the
algorithmic complexity and data movement.
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The other cuSOLVERDN Routines

2 GPGPU Computing and Dense Linear Algebra

The cuSOLVERDN library also provides other LAPACK-like routines, each with its own
performance characteristics on GPUs:

¢ QR Factorization (dgeqrf)

e Cholesky Factorization (dpotrf)
e SVD (dgesvd)

¢ Bidiagonalization (dgebd2)

As we have said many times, it is crucial to:
© Profile your specific workload.
© Understand the performance characteristics of each routine on your target GPU!

© Test always on your Workloads!
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2 GPGPU Computing and Dense Linear Algebra

cuSOLVERMp: Distributed Dense Linear Algebra

cuSOLVERMp is the NVIDIA library for distributed-memory dense linear algebra, designed

to scale across multiple GPUs and nodes.

&= Multi-process, Multi-GPU:

— Follows the One process per GPU paradigm.
— Seamless integration with MPI applications.

<[> ScaLAPACK Compatibility:

<[> Cinterfaces designed to mirror ScaLAPACK.
/¥ Porting of legacy distributed CPU codes.

&5 High Performance:

— Uses NCCL (NVIDIA Collective Communication
Library) for inter-GPU communication.
— Tensor Core accelerated math kernels.

Q Tools: Built-in logging and tracing support.
52/71
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cuSOLVERMp: Workflow and Data Layout

2 GPGPU Computing and Dense Linear Algebra

Data Layout of Local Matrices
e cUSOLVERMp assumes that local matrices are stored in column-major format
(compatible with Fortran/LAPACK).

Workflow Overview

1. Create a NCCL communicator (NCCL Initialization).
Initialize the library handle: cusolverMpCreate ().
Initialize grid descriptors: cusolverMpCreateDeviceGrid ().
Initialize matrix descriptors: cusolverMpCreateMatrixDesc().
Query the host and device buffer sizes for a given routine.
Allocate host and device workspace buffers.
Execute the routine to perform the desired computation.
Synchronize local stream: cudaStreamSynchronize ().
9. Cleanup resources (workspaces, descriptors, handle, communicator).

©O N Ok wN
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cuSOLVERMp error control macro
2 GPGPU Computing and Dense Linear Algebra

Like for the other CUDA libraries, it is a good idea to define a macro for error checking:

#define CHECK_CUSOLVER_MP(call)
do {
cusolverStatus_t status = call;
if (status != CUSOLVER_STATUS_SUCCESS) {
forintf(stderr, "cusolverMp error Js:jd: Jd\n",
__FILE _, __LINE _, status);
exit (EXIT FAILURE);
}
} while (0)

This works exactly like the error checking macros we have seen for cuBLAS and
CcuSOLVERDN, but adapted for the cuSOLVERMp API.
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cuSOLVERMPp Initialization: Overview

2 GPGPU Computing and Dense Linear Algebra

The initialization process for cuSOLVERMp closely mirrors the distributed memory setup
we saw with ScaLAPACK/BLACS, but with the addition of GPU-specific communication

layers (NCCL).

ScaLAPACK / BLACS cuSOLVERMp
1. Initialize MPI. 1. Initialize MPI.
2. Initialize BLACS (Process Grid). 2. Set CUDA device context.
3. Create Context / descriptors. 3. Initialize NCCL (GPU Comms).
4. Create library handle & Grids.

Key Data Types:

ncclUniqueld id; // Unique <dentifier for NCCL comm
ncclComm_t comm; // NCCL communicator handle
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Step 1 & 2: MPI and Device Setup

2 GPGPU Computing and Dense Linear Algebra

Step 1: MPI Setup
Standard MPI initialization, just like any distributed application.

MPI_Init(nullptr, nullptr);

int rank, nranks;

MPI_Comm_size (MPI_COMM_WORLD, &nranks);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

Step 2: CUDA Device Setup
Assign a specific GPU to the MPI process (usually rank i gets GPU i (mod n)gpys).

const int local_device = getLocalDevice(); // e.g., rank J num_gpus
CUDA_CHECK (cudaSetDevice (local_device));
CUDA_CHECK (cudaFree(nullptr)); // Initialize CUDA context
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Step 3: NCCL Communicator Creation
2 GPGPU Computing and Dense Linear Algebra

This step is roughly equivalent to Cblacs_gridinit, but for the GPU interconnect.

ncclUniqueld id;
// Rank O generates the unique ID
if (rank == 0) {
NCCL_CHECK (ncclGetUniqueId(&id));
}
// Broadcast the ID to all ranks so they can join the same communicator
MPI_CHECK(MPI Bcast(&id, sizeof(id), MPI_BYTE, 0, MPI_COMM_WORLD));
// Initialize NCCL communicator
ncclComm_t comm;
NCCL_CHECK (ncclCommInitRank (&comm, nranks, id, rank));
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Step 4, 5 & 6: Handles and Grids

2 GPGPU Computing and Dense Linear Algebra

Step 4: Stream Creation

cudaStream_t stream = nullptr;
CUDA_CHECK (cudaStreamCreate (&stream)) ;

Step 5: Library Handle

cusolverMpHandle_t handle = nullptr;
CUSOLVER_CHECK (cusolverMpCreate (&handle, local_device, stream));

Step 6: Process Grid (Equivalent to BLACS Grid)

cusolverMpGrid_t grid = nullptr;

// Map columns of the process grid to columns of the matriz

CUSOLVER_CHECK (cusolverMpCreateDeviceGrid(handle, &grid, comm,
nprow, npcol, CUSOLVERMP_GRID_MAPPING_COL_MAJOR));
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Cleanup and Synchronization
2 GPGPU Computing and Dense Linear Algebra

Synchronization
Since cuSOLVERMp is asynchronous, sync the stream before checking results or exiting.

CUDA_CHECK (cudaStreamSynchronize (stream) ) ;

Cleanup: after we have done everything
Proper destruction order is crucial (reverse of initialization).

// Destroy cuSOLVERMp objects first
CUSOLVER_CHECK (cusolverMpDestroyGrid(grid)) ;
CUSOLVER_CHECK (cusolverMpDestroy (handle)) ;
// Destroy NCCL communicator

NCCL_CHECK (ncclCommDestroy (comm)) ;

// Clean up CUDA resources

CUDA_CHECK (cudaStreamDestroy(stream)) ;

// Finalize MPI

MPI_Barrier (MPI_COMM_WORLD) ;

MPI_Finalize();

59/71



\\"'»A
Matrix Management: Descriptors
2 GPGPU Computing and Dense Linear Algebra

w,

Just like in ScaLAPACK (where we use descinit), cuSOLVERMp requires matrix
descriptors to understand the data distribution (2D block-cyclic).
cusolverStatus_t cusolverMpCreateMatrixDesc(

cusolverMpMatrixDescriptor_t *descr,

cusolverMpGrid_t grid,

cudaDataType dataType, // CUDA_R_64F for double

int64_t M_A, int64_t N_A, // Global Dimensions
int64_t MB_A, int64_t NB_A, // Block sizes

uint32_t RSRC_A, uint32_t CSRC_A, // Origin (usually 0,0)
int64_t LLD_A); // Local Leading Dimension

e Parallel with ScaLAPACK: This is the direct equivalent of the array descriptor array
DESC_ (e.g., DESC_A).

e Defines how the global matrix is mapped to the process grid.
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Utility: Calculating Local Sizes

2 GPGPU Computing and Dense Linear Algebra

Before allocating device memory, we need to know how much memory the local portion
of the distributed matrix requires.
cuSOLVERMp provides a helper equivalent to ScaLAPACK’s NUMROC:

int64_t cusolverMpNUMROC(

int64_t n, // Global dimension (rows or cols)
int64_t nb, // Block size

uint32_t iproc, // My coordinate (row or col)
uint32_t isrcproc, // Source coordinate (usually 0)
uint32_t nprocs); // Total processes in dimension
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Utility: Calculating Local Sizes

2 GPGPU Computing and Dense Linear Algebra

Before allocating device memory, we need to know how much memory the local portion
of the distributed matrix requires.
cuSOLVERMp provides a helper equivalent to ScaLAPACK’s NUMROC:

int64_t m_local = cusolverMpNUMROC(M, MB, proc_row, O, nprow);
int64_t n_local = cusolverMpNUMROC(N, NB, proc_col, O, npcol);
// Allocate on GPU

CUDA_CHECK (cudaMalloc(&d_A, m_local * n_local * sizeof(double)));
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Data Distribution Utilities

2 GPGPU Computing and Dense Linear Algebra

To simplify testing and porting, cuSOLVERMp provides utilities to scatter/gather data
between a single host process and the distributed device memory.

cusolverMpMatrixScatterH2D

e Scatters a global matrix (on Host) to distributed matrices (on Device).
e Only for testing/debugging (not high performance).

cusolverMpMatrixScatterH2D (handle, M, N, d_A, IA, JA, descrA,
root, h_src, h_ldsrc);
cusolverMpMatrixGatherD2H

e Gathers a distributed matrix (from Device) to a global matrix (on Host).
e Useful for verifying results.
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Data Distribution Utilities

2 GPGPU Computing and Dense Linear Algebra

To simplify testing and porting, cuSOLVERMp provides utilities to scatter/gather data
between a single host process and the distributed device memory.

cusolverMpMatrixScatterH2D
e Scatters a global matrix (on Host) to distributed matrices (on Device).
e Only for testing/debugging (not high performance).
cusolverMpMatrixGatherD2H

e Gathers a distributed matrix (from Device) to a global matrix (on Host).
e Useful for verifying results.

cusolverMpMatrixGatherD2H (handle, M, N, d_A, IA, JA, descrA,
root, h_dst, h_lddst);
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//A\V Available Dense API

2 GPGPU Computing and Dense Linear Algebra

The available dense API are:
e cusolverMpGetrf which computes the LU factorization of a general matrix.
— cusolverMpGetrf_bufferSize which computes the size of the workspace needed
for cusolverMpGetrf.
e cusolverMpGetrs which solves a system of linear equations with a general matrix
using the LU factorization computed by cusolverMpGetrf.
— cusolverMpGetrs_bufferSize which computes the size of the workspace needed
for cusolverMpGetrs.
e cusolverMpPotrf which computes the Cholesky factorization of a symmetric
positive definite matrix.

— cusolverMpPotrf_bufferSize which computes the size of the workspace needed
for cusolverMpPotrf.
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//A\V Available Dense API

2 GPGPU Computing and Dense Linear Algebra

e cusolverMpPotrs which solves a system of linear equations with a symmetric
positive definite matrix using the Cholesky factorization computed by
cusolverMpPotrf.

— cusolverMpPotrs_bufferSize which computes the size of the workspace needed
for cusolverMpPotrs.

e cusolverMpGeqrf which computes the QR factorization of a general matrix.

— cusolverMpGeqrf_bufferSize which computes the size of the workspace needed
for cusolverMpGeqrf.

e cusolverMpOrmgr which multiplies a matrix by the orthogonal matrix Q from a QR
factorization computed by cusolverMpGeqrf.

— cusolverMpOrmqr_bufferSize which computes the size of the workspace needed
for cusolverMpOrmqr.
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//A\V Available Dense API

2 GPGPU Computing and Dense Linear Algebra

e cusolverMpGels which solves a system of linear equations with a general matrix
using the QR factorization computed by cusolverMpGeqrf.

— cusolverMpGels_bufferSize which computes the size of the workspace needed for
cusolverMpGels.
e cusolverMpSytrd which reduces a symmetric matrix to tridiagonal form (Schur
Decomposition).
— cusolverMpSytrd_bufferSize which computes the size of the workspace needed
for cusolverMpSytrd.
e cusolverMpStedc which computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.

— cusolverMpStedc_bufferSize which computes the size of the workspace needed
for cusolverMpStedc.
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//A\V Available Dense API

2 GPGPU Computing and Dense Linear Algebra

e cusolverMpOrmtr which multiplies a matrix by the orthogonal matrix Q from a
symmetric tridiagonal reduction computed by cusolverMpSytrd.
— cusolverMpOrmtr_bufferSize which computes the size of the workspace needed
for cusolverMpOrmtr.
e cusolverMpSyevd which computes all eigenvalues and, optionally, eigenvectors of a
symmetric matrix using the divide and conquer method.
— cusolverMpSyevd_bufferSize which computes the size of the workspace needed
for cusolverMpSyevd.
e cusolverMpSygst which reduces a symmetric-definite generalized eigenvalue
problem to standard form.

— cusolverMpSygst_bufferSize which computes the size of the workspace needed
for cusolverMpSygst.
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//A\V Available Dense API

2 GPGPU Computing and Dense Linear Algebra

e cusolverMpSygvd which computes all eigenvalues and, optionally, eigenvectors of a
symmetric-definite generalized eigenvalue problem.

— cusolverMpSygvd_bufferSize which computes the size of the workspace needed
for cusolverMpSygvd.

A\ Each of these routines has a corresponding _bufferSize function that allows you to
query the amount of workspace memory needed before performing the actual
computation.

This is crucial for efficient memory management in distributed GPU environments.
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4‘\\\ Weak Scaling (Large Matrix): Throughput

2 GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.

<[> We use the routine cusolverMpGetrf for cuSOLVERMp and PDGETRF for
ScalLAPACK.
& Configuration for nodes 1to 16:

— 4 Tasks per Node, 1 GPU per Task (on NVIDIA A30 GPUs)
— 4 Tasks per Node, 16 CPU cores per Task (Intel® Xeon® Gold 6338 CPU @ 2.00GHz)

N Matrix Size per Process: Nigear = 4096
N Matrix Size per Process: Nigeq = 16384
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?/A\$ Weak Scaling (Large Matrix): Throughput

2 GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.
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4‘\\\ Weak Scaling (Large Matrix): Throughput

2 GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.

<[> We use the routine cusolverMpGetrf for cuSOLVERMp and PDGETRF for
ScalLAPACK.
& Configuration for nodes 1to 16:

— 4 Tasks per Node, 1 GPU per Task (on NVIDIA A30 GPUs)
— 4 Tasks per Node, 16 CPU cores per Task (Intel® Xeon® Gold 6338 CPU @ 2.00GHz)

N Matrix Size per Process: Nigear = 4096
N Matrix Size per Process: Nigeq = 16384
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Interpreting the Distributed LU Results

2 GPGPU Computing and Dense Linear Algebra

The comparison emphasizes the different sweet spots for CPU and GPU clusters:

e Massive Throughput on Large Problems: For Njy.q = 16384, cuSOLVERMp is orders
of magnitude faster. The A30 GPUs exploit Tensor Cores to deliver over 14 P on
small rank counts, crushing the CPU performance. This confirms that for large-scale
dense problems, GPUs are the superior choice.

¢ The Latency penalty on Small Problems: For Nj,.; = 4096 distributed across many
ranks (e.g., 64), the GPU performance collapses.

— Computation is too fast to hide communication latency (pivoting, panel exchange).

— ScalAPACK on CPUs scales better here because the slower CPU compute allows for
better overlapping with communication, and CPUs generally handle fine-grained
dependencies (like pivoting) with less latency overhead relative to their compute speed.

e Efficiency: Weak scaling on GPUs requires keeping the problem size large to
maintain high efficiency. If the local matrix shrinks or stays constant but relatively
small (< 10k), the interconnect (PCle/NVLink) becomes the bottleneck.
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7[[\\ Wrapping up the course

3 Conclusions

In this course, we have covered:

v/ Some fundamentals of parallel computing on modern HPC systems
= A quick overview of computer architectures,
= The difference between Shared Memory and Distributed Memory systems,
IX The main programming models for each of these architectures (OpenMP and MPI),
<[> Programming in modern Fortran.

v/ The fundamentals of BLAS libraries:
IIX i the Shared Memory Context via OpenMP and CPU vectorization,
IIX in the Distributed Memory Context via MPI,
<[> in the GPU Context via CUDA.

v/ The fundamentals of NLA algorithms and libraries:
/¥ The LAPACK library for Shared Memory systems,
/¥ The ScalLAPACK library for Distributed Memory systems,
/¥ The cuSOLVER library for GPU-accelerated systems.
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4‘\\\ What remains to do?

3 Conclusions
We have covered a lot of ground, but there is still much more to explore in the world of
HPC and numerical linear algebra:

& There is the world of Sparse Linear Algebra that we have not touched upon.

& There are many more advanced algorithms and libraries to explore (e.g., MAGMA,
PLASMA, PSCToolkit, PETSc, Trilinos, etc.).

& Performance tuning and optimization for specific architectures is a deep field in itself.

& Emerging architectures (e.g., TPUs, FPGAs) and programming models (e.g., SYCL,
Kokkos) are worth exploring.

/" The way forward

On a shorter term, look for a problem that interests you, and try to implement and
optimize a solution using the tools and techniques we have discussed in this course!
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