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About this course: general information
Ŵ Introduction

First some bureaucratic information about the course:
• Course webpage: fdurastante.github.io/courses/hplaŵųŵŸ.html
• Lecture slides: fdurastante.github.io/courses/hplaŵųŵŸ.html#lectures

The exam will consist in a project work to be presented at the end of the course. This will
involve the implementation and performance analysis of some linear algebra algorithms,
or the performance analysis of existing libraries, possibly in relation to a specific
application. The choice of the project topic will also depend on your Ph.D. research topic,
so to make it more interesting and useful for you.
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What is Linear Algebra?
Ŵ Introduction

Linear Algebra is a branch of mathematics concerned with:
• Vector spaces and linear transformations
• Systems of linear equations,matrices, vectors
• Key concepts: determinants, eigenvalues, eigenvectors, singular values

Applications: computer graphics, machine learning, optimization, physics

Numerical Linear Algebra focuses on:
• Solving LA problems using numerical methods on computers
• Development of efficient, stable, and accurate algorithms
• Essential for large-scale problems where exact solutions are impractical
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Problem Ŵ: Linear Systems
Ŵ Introduction

Consider the Poisson equation (PDE):

−∆u = f in Ω, u = 0 on ∂Ω

Discretization approach:
• Divide domain into grid: N = n1 × n2 × n3 points
• Use finite difference approximation for derivatives
• Results in sparse linear system: Au = f

• A ∈ RN×N is sparse
• Most elements are zero
• N is typically very large
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Problem ŵ: Eigenvalue Problems
Ŵ Introduction

Find scalar λ and vector v such that:

Pv = λv

Example: Markov Chains
• Transition matrix P ∈ RN×N (Pi,j ≥ 0, rows sum to Ŵ)
• Evolution: pℓ+1 = Ppℓ
• Stationary distribution π satisfies:

π⊤ = π⊤P, π⊤1 = 1

• Finding π is an eigenvalue problem for large N
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Problem Ŷ: Matrix Equations
Ŵ Introduction

Sylvester equation: AX+ XB = C
Application: Model Reduction in Control Theory
LTI dynamical system:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t)

Balanced truncation approach:
Ŵ. Compute Gramians via Lyapunov equations:

AP+ PA⊤ + BB⊤ = 0 (controllability)

A⊤Q+ QA+ C⊤C = 0 (observability)

ŵ. Solve Sylvester equation: AT+ TS = B
Ŷ. Efficient algorithms needed for large dimensions
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Problem ŷ: Machine Learning
Ŵ Introduction

Linear Regression:
• Data: X ∈ Rm×n, targets: y ∈ Rm

• Find coefficients: minβ ∥Xβ − y∥22

Neural Networks:

• Weights as matrices: W1 ∈ Rn×h,W2 ∈ Rh×k

• Forward pass:

a1 = σ(XW1)

a2 = softmax(a1W2)

• Training relies on matrix operations
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Take Home Message
Ŵ Introduction

Key Point
Applied mathematics is fundamentally about solving combinations of linear algebra
problems.

Modern challenges:
• Ever larger problem sizes
• Need for reliable results in reasonable time
• Requirements: efficient, scalable, parallel algorithms

⇒ This motivates high-performance numerical linear algebra!
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Recommended Reading
Ŵ Introduction

Recommended books on Linear Algebra and Numerical Linear Algebra include:
• Golub and Van Loan [ŷ] - a classic covering matrix factorizations, eigenvalue

problems, and singular value decomposition.
• Other notable works: [ŵ], [Ż].
• Axler [Ŵ] offers an operative introduction to the theory of linear algebra.
• For comprehensive theory, see Horn and Johnson [Ÿ, Ź].

We will focus on numerical and implementation aspects, with references for deeper
theoretical insights.
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What does “large-scale” mean?
ŵ What does it mean large-scale?

In the previous section we have seen examples of problems in numerical linear algebra,
where a recurrent theme is that the problem sizes are large.

But how large is large?

The answer: It depends!
It depends on:

• The problem we are dealing with
• The algorithm we are using
• The hardware we are using
• The time we have to solve the problem
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What does “large-scale” mean?
ŵ What does it mean large-scale?

In the previous section we have seen examples of problems in numerical linear algebra,
where a recurrent theme is that the problem sizes are large.

But how large is large?
Furthermore, it’s a matter of when we are asking this question:

• ŵų years ago: different answer
• Today: different answer
• ŵų years from now: yet again different!
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Problem size: different perspectives
ŵ What does it mean large-scale?

The notion of “size” varies by problem type:

Linear systems:
• First approximation: number of unknowns
• Sparse matrices: combined information

— Number of non-zero elements
— Overall matrix dimensions

• Dense matrices: number of rows and columns
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Current capabilities
ŵ What does it mean large-scale?

Sparse linear systems:
• Solved with relative ease: several millions of unknowns
• Current frontier: hundreds of billions of unknowns

Eigenvalue problems:
• Compute few eigenvalues/eigenvectors
• Matrices with several millions of rows and columns

Matrix equations:
• More complicated situation
• Need to exploit special structure for large-scale problems
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Exploiting structure: low-rank solutions
ŵ What does it mean large-scale?

For large matrix equations, we need solutions with special structure.

Example: Sylvester equation with low-rank solution

T = T1T⊤2 , where T1 ∈ Rm×r, T2 ∈ Rn×r

with r ≪ m, n

Key principle
Exploiting clever structures in the problem permits us to solve problems of larger size
than we would be able to without these structures.

Computer science analogy: Building data structures that permit us to store and
manipulate large amounts of data more efficiently.
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Solving large problems: parallel computers
Ŷ Where do we solve such large problems?

To deal with problems which are large in the sense we have just discussed, we need to use
parallel computers.

Key idea
Parallel computers perform multiple calculations simultaneously by using multiple
processors or cores working together.
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Memory organization
Ŷ Where do we solve such large problems?

Parallel computers are classified by memory organization:

• Shared memory systems:
— All processors share common memory space
— Easy data access and communication
— Limited by memory size and contention

• Distributed memory systems:
— Each processor has local memory
— Communication via message passing
— Allows larger memory, but requires complex programming
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Parallel architectures
Ŷ Where do we solve such large problems?

Common parallel computing architectures:

• Multicore processors:
— Multiple cores on single chip
— Each core executes independent thread

• Clusters:
— Interconnected computers (nodes)
— Communication through network

• Supercomputers:
— Extremely powerful systems
— Thousands of processors working in parallel
— Designed for high-speed complex calculations
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The TOPŸųų list: topŸųų.org
Ŷ Where do we solve such large problems?

The TOPŸųų list ranks the Ÿųų most powerful supercomputers worldwide.

• Updated biannually (June and November)
• Ranks based on LINPACK benchmark performance
• Provides insights into trends in high-performance computing

Current leader (as of ŵųŵŸ): El Capitan (USA) with a performance of over Ŵ exaFLOP (Ŵų18

floating-point operations per second).

ŵų/Ÿŵ
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TOPŸųų List (June ŵųŵŸ) - Part Ŵ
Ŷ Where do we solve such large problems?

Rank System Cores Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kW)

Ŵ El Capitan, HPE Cray EXŵŸŸa, AMD
EPYC ŵŷC, DOE/NNSA/LLNL, United
States

ŴŴ,ųŶż,ŹŴŹ Ŵ,źŷŵ.ųų ŵ,źŷŹ.ŶŻ ŵż,ŸŻŴ

ŵ Frontier, HPE Cray EXŵŶŸa, AMD
EPYC ŹŷC, DOE/SC/ORNL, United
States

ż,ųŹŹ,ŴźŹ Ŵ,ŶŸŶ.ųų ŵ,ųŸŸ.źŵ ŵŷ,Źųź

Ŷ Aurora, HPE Cray EX, Intel Xeon
Max żŷźų, DOE/SC/ANL, United
States

ż,ŵŹŷ,ŴŵŻ Ŵ,ųŴŵ.ųų Ŵ,żŻų.ųŴ ŶŻ,ŹżŻ
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TOPŸųų List (June ŵųŵŸ) - Part ŵ
Ŷ Where do we solve such large problems?

Rank System Cores Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kW)

ŷ JUPITER Booster, BullSequana
XHŶųųų, NVIDIA GHŵųų, Eu-
roHPC/FZJ, Germany

ŷ,ŻųŴ,Ŷŷŷ źżŶ.ŷų żŶų.ųų ŴŶ,ųŻŻ

Ÿ Eagle, Microsoft NDvŸ, Xeon Plat-
inum ŻŷŻųC, Microsoft Azure,
United States

ŵ,ųźŶ,Źųų ŸŹŴ.ŵų ŻŷŹ.Żŷ —

Ź HPCŹ, HPE Cray EXŵŶŸa, AMD EPYC
ŹŷC, Eni S.p.A., Italy

Ŷ,ŴŷŶ,Ÿŵų ŷźź.żų ŹųŹ.żź Ż,ŷŹŴ
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TOPŸųų List (June ŵųŵŸ) - Part Ŷ
Ŷ Where do we solve such large problems?

Rank System Cores Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kW)

ź Supercomputer Fugaku, Fujitsu,
AŹŷFX ŷŻC ŵ.ŵGHz, RIKEN CCS,
Japan

ź,ŹŶų,ŻŷŻ ŷŷŵ.ųŴ ŸŶź.ŵŴ ŵż,Żżż

Ż Alps, HPE Cray EXŵŸŷn, NVIDIA
Grace źŵC, CSCS, Switzerland

ŵ,ŴŵŴ,Źųų ŷŶŷ.żų Ÿźŷ.Żŷ ź,Ŵŵŷ

ż LUMI, HPE Cray EXŵŶŸa, AMD EPYC
ŹŷC, EuroHPC/CSC, Finland

ŵ,źŸŵ,źųŷ Ŷźż.źų ŸŶŴ.ŸŴ ź,Ŵųź

Ŵų Leonardo, BullSequana XHŵųųų,
Xeon Platinum, EuroHPC/CINECA,
Italy

Ŵ,Żŵŷ,źŹŻ ŵŷŴ.ŵų ŶųŹ.ŶŴ ź,ŷżŷ
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High Performance Linpack (HPL) Benchmark
Ŷ Where do we solve such large problems?

The computers in this table are ranked according to Rmax, the maximum sustained
performance; but how is this measured? This is the High Performance Linpack (HPL)
benchmark, which is run according to the following rules:
Ŵ. Generate a (random) linear system Ax = b of size N and solve for x;
ŵ. Measure the time for the solution process T and define a computation rate R(N)

according to the formula

R =
2

3

N3

T
;

Ŷ. Let N grow and repeat the process, until you get the best possible execution rate
value Rmax.
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Importance of Linear Algebra in Benchmarking
Ŷ Where do we solve such large problems?

Linear algebra problems have been used to benchmark supercomputers for a very long
time, influencing their design in multiple ways.
Key observations:

• Supercomputers have a huge number of cores.
• Operating them consumes a lot of power.
• They are equipped with accelerators, specifically graphical processing units (GPUs).
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Sustained Performance and Historical Context
Ŷ Where do we solve such large problems?

The sustained rate of execution on the HPL benchmark shows that the number one
machine, El Capitan, is capable of executing 1.7× 1018 arithmetic operations per second!

• Linear algebra is a primary tool for benchmarking supercomputers.
• Dense linear algebra problems are compute-bound, enabling hardware to operate

close to peak performance.
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Evolution of HPL Benchmark
Ŷ Where do we solve such large problems?

The Linpack benchmark originated from tests in the LINPACK User’s Guide [Ŷ].
• It has evolved into a standardized benchmark for comparing computing systems.
• The current HPL benchmark allows vendors to choose problem size and software

configuration for optimal performance.
• Continuous interaction between supercomputing advances and linear algebra has

driven innovations in algorithms and software.

ŵź/Ÿŵ



The EuroHPC Joint Undertaking
Ŷ Where do we solve such large problems?

EuroHPC JU is a European initiative to develop a world-class supercomputing ecosystem
in Europe.

• Established in ŵųŴŻ
• Partnership between the European Union, European countries, and private sector
• Aims to provide access to high-performance computing resources for research,

industry, and public sector

Key objectives:
• Deploy and operate supercomputers in Europe
• Foster research and innovation in HPC technologies
• Support development of HPC applications across various sectors
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The EuroHPC Pre-exascale Machines
Ŷ Where do we solve such large problems?

• JUPITER (Germany) - First European exascale system
— NVIDIA GHŵųų Grace Hopper GPUs
— źżŶ.ŷ PFlop/s (Rmax)

• LUMI (Finland) - One of world’s fastest and most energy-efficient
— AMD Instinct MIŵŸųX GPUs
— Ŷźż.ź PFlop/s (Rmax)

• Leonardo (Italy) - General-purpose HPC system
— NVIDIA AŴųų GPUs
— ŵŷŴ.ŵ PFlop/s (Rmax)
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The EuroHPC Petascale Machines
Ŷ Where do we solve such large problems?

• MELUXINA (Luxembourg) - Modular supercomputing architecture
— NVIDIA AŴųų GPUs
— ŴŻ.ŵ PFlop/s (Rmax)

• Vega (Slovenia) - First EuroHPC system in Eastern Europe
— NVIDIA AŴųų GPUs
— Ź.ż PFlop/s (Rmax)

• Karolina (Czech Republic) - Accelerated computing platform
— NVIDIA AŴųų GPUs
— ŴŸ.ŵ PFlop/s (Rmax)

• Discoverer (Bulgaria) - Supporting research and innovation
— NVIDIA AŴųų GPUs
— Ŷ.ų PFlop/s (Rmax)

• MareNostrum Ÿ (Spain) - Upgrade of iconic BSC system
— NVIDIA Hopper GPUs
— ŶŴŷ.ų PFlop/s (Rmax)

ŶŴ/Ÿŵ
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Programming Distributed Memory Systems
ŷ What tools are we going to use?

In this course, we focus on distributed memory systems:

• Most common in High-Performance Computing (HPC)
• Composed of many nodes, each with local memory
• Communication via message-passing libraries (e.g., MPI)

Before diving into the programming model, let’s discuss the tools we’ll use to write
efficient parallel code.
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Tools for High-Performance Linear Algebra
ŷ What tools are we going to use?

Modern Fortran
• Long-standing language for scientific computing
• Well-suited for numerical computations
• Still widely used in scientific applications

Software Version Control: git
• Track changes to code
• Collaborate effectively with others
• Essential for team development
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Parallel Programming Tools
ŷ What tools are we going to use?

MPI, OpenMP, OpenACC, CUDA and other tools
• MPI (Message Passing Interface): Distributed memory parallelism
• OpenMP: Shared memory parallelism for many-core processors
• OpenACC and CUDA: Accelerator/GPU programming

— Modern supercomputers are equipped with GPUs
— Essential for leveraging full system capabilities

Job Scheduler: Slurm
• Manage execution of jobs on the cluster
• Resource allocation and job queuing
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What is Fortran?
ŷ What tools are we going to use?

Fortran (“Formula Translation”) is one of the oldest high-level programming languages:
• Originally developed in the ŴżŸųs by IBM
• Designed for scientific and engineering applications
• Easy translation of mathematical formulas into code

Modern versions include:
• Fortran żų, żŸ, ŵųųŶ, ŵųųŻ, ŵųŴŻ, ŵųŵŶ
• Features: modular programming, array operations, OOP, parallel computing

Note
Most concepts discussed can be ported to C/C++ or other compiled languages. For more
on Fortran, see fortran-lang.org and [ź].
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Why Fortran for HPC?
ŷ What tools are we going to use?

Key strengths:
• High performance in numerical computations
• Highly optimized for array and matrix operations
• Efficient machine code generation
• Preferred choice for HPC applications

Programming paradigms supported:
• Procedural, modular, and object-oriented programming
• Parallel programming features (coarrays, MPI, OpenMP)
• Scalable code for distributed and shared memory systems

Applications: Climate modeling, computational fluid dynamics, numerical linear algebra
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Fortran Compilers
ŷ What tools are we going to use?

Available compilers:
• GNU Fortran (gfortran) - Part of GCC
• Intel Fortran (ifort) - Optimized for Intel architectures
• Cray Fortran (ftn) - For Cray supercomputers
• LLVM Fortran (flang)
• PGI Fortran (pgfortran)
• NAG compiler (nagfor)

Our choice: gfortran
• Widely available and default on many systems
• Up to date with latest Fortran standards
• Free and open source
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Installing gfortran
ŷ What tools are we going to use?

Checking installation
To check if gfortran is installed:
gfortran --version

Installation options:
• Ubuntu/Debian:

sudo apt-get install gfortran
• macOS (via Homebrew):

brew install gcc
• Using Spack: Download from spack.io or GitHub

Ŷż/Ÿŵ
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Basic gfortran Usage
ŷ What tools are we going to use?

Basic compilation syntax:
gfortran -o output_file source_file.f90

Common options:
• -o output_file - Specify output executable name
• -Wall - Enable all compiler warnings
• -g - Generate debug information
• -O0, -O1, -O2, -O3 - Optimization levels
• -fcheck=all - Enable runtime checks
• -frecursive - Enable recursion
• -fPIC - Position-independent code for shared libraries
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Your First Fortran Program
ŷ What tools are we going to use?

Create a file hello.f90:
program hello

use iso_fortran_env, only: output_unit
implicit none
write(output_unit,'("Hello, World!")')

end program hello

Compile and run:
gfortran -o hello hello.f90
./hello

Output:
Hello, World!

Note: implicit none enforces explicit variable declaration (good practice!)
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What is Version Control?
ŷ What tools are we going to use?

Version control is a system that records changes to files over time:
• Recall specific versions later
• Track changes to files and code
• Enable collaboration without conflicts
• Revert to previous versions when needed

Benefits:
• Multiple developers work simultaneously
• Compare changes over time
• Collaborate more effectively
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Types of Version Control Systems
ŷ What tools are we going to use?

• Centralized Version Control Systems (CVCS)
— Central server stores the repository
— Developers check out files from central location
— Examples: Subversion (SVN), CVS
— Drawback: Server failure stops all work

• Distributed Version Control Systems (DVCS)
— Complete repository copy on each developer’s machine
— Enables offline work
— Better collaboration capabilities
— Examples: Git, Mercurial, Bazaar

ŷŶ/Ÿŵ



What is Git?
ŷ What tools are we going to use?

Git is a distributed version control system:
• Created by Linus Torvalds in ŵųųŸ for Linux kernel development
• Designed for speed and efficiency
• Handles projects from small to very large

Key features:
• Track changes to files
• Collaborate with others
• Manage different versions of codebase
• Powerful branching and merging capabilities

Current status: De facto standard for version control in software development
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Basic Git Workflow
ŷ What tools are we going to use?

Initialize a new repository:
git init my_project
cd my_project
Create or add files to the repository, e.g., hello.f90 Check repository status:
git status
Stage changes for commit:
git add hello.f90
Commit changes with a message:
git commit -m "Add hello.f90 program"
View commit history:
git log
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Cloning a Remote Repository or add a Remote
ŷ What tools are we going to use?

Clone a remote repository:
git clone <repository-url>
cd <repository-name>
Add a remote to an existing repository:
git remote add origin <repository-url>
Push local commits to remote:
git push origin main
Pull changes from remote repository:
git pull origin main
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Branching and Merging
ŷ What tools are we going to use?

Branching allows you to create a separate line of development:
• Isolate features or bug fixes
• Experiment without affecting the main codebase
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Branching and Merging
ŷ What tools are we going to use?

Merging combines changes from different branches:
• Integrate new features or fixes
• Resolve conflicts when changes overlap
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Branching and Merging: Example
ŷ What tools are we going to use?

Create a new branch:
git checkout -b new-feature
Make changes and commit:
git add .
git commit -m "Implement new feature"
Switch back to main branch:
git checkout main
Merge changes from new-feature branch:
git merge new-feature
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Services that use Git
ŷ What tools are we going to use?

Popular platforms for hosting Git repositories:
• GitHub (github.com)
• GitLab (gitlab.com)
• Bitbucket (bitbucket.org)

We also have a Gitea instance installed at the Math Department: git.phc.dm.unipi.it.

Exercise
Explore the features of the mentioned Git hosting platforms and create an account on
GitHub. This will require you to setup SSH keys for secure access to your repositories.
ssh-keygen -t ed25519 -C "your_email@example.com"
ssh-add ~/.ssh/id_ed25519
cat ~/.ssh/id_ed25519.pub
After you have done it, tell me the username and I’ll add you to the course organization.

ŷż/Ÿŵ
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Summary
Ÿ Summary

Key takeaways from this lecture:
• High-performance computing relies heavily on linear algebra
• The TOPŸųų list ranks the most powerful supercomputers using the HPL benchmark
• We will use Modern Fortran and Git for programming and version control

Next steps:
• Set up your Fortran development environment
• Familiarize yourself with Git and version control
• Explore CI/CD tools for automating workflows

Next lecture will cover: introduction to parallel computing from a theoretical standpoint,
including models and paradigms, but in relation to linear algebra problems.

Ÿų/Ÿŵ



References
Ź Bibliography

[Ŵ] S. J. Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. New
York: Springer, Ŵżżź. ISBN: ųŶŻźżŻŵŸŻŵ. URL: http://linear.axler.net/.

[ŵ] J. W. Demmel. Applied Numerical Linear Algebra. Philadelphia, PA: SIAM, Ŵżżź. ISBN:
ų-ŻżŻźŴ-ŶŻż-ź.

[Ŷ] J. J. Dongarra et al. LINPACK User’s Guide. Philadelphia, PA: Society for Industrial and
Applied Mathematics, Ŵżźż. ISBN: ų-ŻżŻźŴ-Ŵźŵ-X. DOI: 10.1137/1.9781611971811.

[ŷ] G. H. Golub and C. F. Van Loan.Matrix computations. Fourth. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, ŵųŴŶ,
pp. xiv+źŸŹ. ISBN: żźŻ-Ŵ-ŷŵŴŷ-ųźżŷ-ŷ; Ŵ-ŷŵŴŷ-ųźżŷ-ż; żźŻ-Ŵ-ŷŵŴŷ-ųŻŸż-ų.

[Ÿ] R. A. Horn and C. R. Johnson.Matrix analysis. Second. Cambridge University Press,
Cambridge, ŵųŴŶ, pp. xviii+ŹŷŶ. ISBN: żźŻ-ų-ŸŵŴ-ŸŷŻŵŶ-Ź.

ŸŴ/Ÿŵ

http://linear.axler.net/
https://doi.org/10.1137/1.9781611971811


References
Ź Bibliography

[Ź] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Corrected reprint of the ŴżżŴ
original. Cambridge University Press, Cambridge, Ŵżżŷ, pp. viii+Źųź. ISBN:
ų-ŸŵŴ-ŷŹźŴŶ-Ź.

[ź] M. Metcalf et al.Modern Fortran Explained: Incorporating Fortran ŴŲŴŵ. Źth ed.
Numerical Mathematics and Scientific Computation. Oxford, UK: Oxford University
Press, ŵųŵŷ. ISBN: żźŻ-ųŴżŻŻźŹŸŻŻ.

[Ż] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Ŵżżź.

Ÿŵ/Ÿŵ



High Performance Linear Algebra
Lecture ŵ: Performance Modeling and the Roofline Model
Ph.D. program in High Performance Scientific Computing
Fabio Durastante Pasqua D’Ambra Salvatore Filippone

November Ŵŷ, ŵųŵŸ — ż.ųų:ŴŴ.ųų

Ŵ/Źŷ

mailto:fabio.durastante@unipi.it


Summary of previous lecture
Ŵ Summary of previous lecture

In the previous lecture we have discussed the following topics:
• Introduction to High Performance Scientific Computing
• Overview of Linear Algebra and its importance in scientific computing
• The machines from the TOPŸųų list
• What tools are we going to use in this course

— Programming language: Fortran
— Software Versioning: Git and GitHub
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What is CI/CD?
ŵ Continuous Integration and Deployment (CI/CD)

Continuous Integration (CI) and Continuous Deployment (CD) are practices in software
development that automate the process of integrating code changes and deploying
applications.

Continuous Integration (CI):
• Developers frequently merge code changes into a shared repository
• Automated builds and tests run to detect issues early

Continuous Deployment (CD):
• Automatically deploys code changes to production after passing tests
• Ensures rapid delivery of new features and bug fixes
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Benefits of CI/CD
ŵ Continuous Integration and Deployment (CI/CD)

Key benefits:
• Early bug detection: Automated tests catch issues before they reach production
• Faster development cycles: Rapid integration and deployment of changes
• Improved collaboration: Teams work together more effectively with shared

codebase
• Higher quality software: Consistent testing and deployment processes

Popular CI/CD tools:
• GitHub Actions
• GitLab CI/CD
• Jenkins
• Travis CI
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An example of CI/CD with GitHub Actions
ŵ Continuous Integration and Deployment (CI/CD)

Setting up a simple CI workflow: we will use GitHub Actions to automatically build and
test our Fortran code whenever we push changes to the repository
First, ensure your Fortran project has a Makefile with appropriate build and test targets.
This can be as simple as:
all:

gfortran -o hello hello.f90
test:

./hello
We recall that aMakefile is a file that defines a set of tasks to be executed. It is commonly
used to automate the build process of software projects.
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Makefile basics
ŵ Continuous Integration and Deployment (CI/CD)

AMakefile consists of rules with the following structure:
target: dependencies

command
Example:
hello: hello.f90

gfortran -o hello hello.f90
Here, hello is the target, hello.f90 is the dependency, and the command compiles the
Fortran source file into an executable named hello.
For small projects, a simple Makefile like this is sufficient to automate the build and test
process. For larger projects, it is better to also have the Makefile programmatically
generated using tools like CMake or Autotools.
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Creating a workflow on GitHub Actions
ŵ Continuous Integration and Deployment (CI/CD)

GitHub Actions allows you to automate workflows directly in your GitHub repository.

Key components:
• Workflows: Automated processes defined in YAML files
• Jobs: A set of steps that execute on the same runner
• Steps: Individual tasks within a job (e.g., running commands, setting up

environments)
In GitHub, workflows are stored in the .github/workflows/ directory of your
repository as YAML (.yml, Yet Another Markup Language) files.
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An example of CI/CD with GitHub Actions
ŵ Continuous Integration and Deployment (CI/CD)

Create a file .github/workflows/ci.yml in your repository:
name: CI
on:

push:
branches:

- main
jobs:

build:
runs-on: ubuntu-latest
steps:

- name: Checkout code
uses: actions/checkout@v4

- name: Set up Fortran
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An example of CI/CD with GitHub Actions
ŵ Continuous Integration and Deployment (CI/CD)

run: |
sudo apt-get update
sudo apt-get install -y gfortran

- name: Test
run: make test

Explanation:
• Triggered on pushes to the main branch

on:
push:

branches:
- main

• Runs on the latest Ubuntu environment
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An example of CI/CD with GitHub Actions
ŵ Continuous Integration and Deployment (CI/CD)

• Defines a job named build with several steps:
— Checkout code from the repository

- name: Checkout code
uses: actions/checkout@v4

— Install gfortran
- name: Set up Fortran

run: |
sudo apt-get update
sudo apt-get install -y gfortran

— Build the project using make
- name: Build

run: make
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An example of CI/CD with GitHub Actions
ŵ Continuous Integration and Deployment (CI/CD)

— Run tests using make test
- name: Test

run: make test

You can change the “manual installation” of gfortran with a pre-built action from the
GitHub Marketplace, such as setup-fortran:

- name: Setup Fortran
uses: fortran-lang/setup-fortran@v1.8.0
with:

compiler: gcc
version: 'latest'
update-environment: true
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If everything has gone well:
ŵ Continuous Integration and Deployment (CI/CD)

From the top menu of your GitHub repository, click on the Actions tab. You should see
your workflow running, and if everything is set up correctly, it should complete
successfully, indicating that your Fortran code has been built and tested automatically.

Example: github.com/High-Performance-Linear-Algebra/hello-fortran-world
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Learning by doing:
ŵ Continuous Integration and Deployment (CI/CD)

Explore the setup-fortran action and modify the provided example workflow to include
additional steps, such as:

• Running on different operating systems (e.g., Windows, macOS)
• Running on different Fortran compilers (e.g., Intel Fortran, NVIDIA HPC SDK)

Question: How would you modify the Makefile so that it does not call gfortran directly,
but uses instead the compiler available in the environment?

Moving to CMake: To automate the search for the compiler, configuration, and building
of projects, a good practice is to use CMake.
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Further informations on the GitHub Actions
ŵ Continuous Integration and Deployment (CI/CD)

For more information on GitHub Actions, refer to the official documentation:
• GitHub Actions Documentation
• Introduction to GitHub Actions
• Workflow syntax for GitHub Actions

They can help you explore more advanced features and customize your CI/CD
workflowsm, such as:

• Running tests on multiple operating systems
• Integrating with other services
• Deploying applications automatically
• Setting up notifications for build status
• Deploying Documentation, artifacts, and more

ŴŸ/Źŷ
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General Parallel Programming Issues
Ŷ General Parallel Programming Issues

In this lecture we will discuss some general issues related to parallel programming:
• Performance metrics
• Scalability
• Speedup and Efficiency
• Amdahl’s and Gustafson’s Laws
• Programming Models
• Parallel Architectures
• Roofline Model
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What do we mean by parallelism?
Ŷ General Parallel Programming Issues

Definition
We call parallelism the ability to have multiple operations completing their execution at
the same time.

• “Operation” may mean a machine instruction, a floating-point operation, or
something else depending on context.

• In scientific/engineering applications, the key metric is often the number of
floating-point operations (FLOPs), typically the limiting factor for execution speed.
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What do we mean by parallelism?
Ŷ General Parallel Programming Issues

Keywords: FLOP and FLOP/s
A FLOP is a floating-point operation, typically an addition, subtraction, multiplication, or
division between two floating-point numbers. The number of FLOPs required to solve a
problem is often used as a measure of the problem’s computational complexity. The
amount of FLOP/s (floating-point operations per second) a computer can perform is a key
measure of its performance, and is often used to rank supercomputers (e.g., the TOPŸųų
list).
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Levels of parallelism in a computing system
Ŷ General Parallel Programming Issues

• Within a single machine instruction specifying multiple operations (e.g., SSE on xŻŹ,
fused multiply–add on many architectures).

• Within a single processor completing more than one instruction per clock cycle;
many modern RISC processors have multiple execution units and are superscalar.

• Within a single silicon chip hosting multiple CPUs;multicore processorsŴ, a core being
each complete CPU.

• Within a single computer containing multiple processors.
• Using multiple computers connected through some sort of communication device.

ŴThis usage is slightly confusing, since we are calling processor both a single CPU and a chip hosting
multiple cores; context should avoid confusion.
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Programmer’s perspective
Ŷ General Parallel Programming Issues

• The first two kinds of parallelism (single machine and single processor) are mostly
handled by the compiler and optimized libraries implementing heavy computational
kernels.

• They are almost transparent to application programmers.
• We will concentrate on the last three kinds of parallel computing systems:

— Single chip (multicore) systems.
— Single computer with multiple processors.
— Multiple computers connected by a network.
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Parallel systems: memory configurations
Ŷ General Parallel Programming Issues

In classifying high-performance parallel computers, the discriminating factor is the
memory subsystem configuration. Two main kinds:
Ŵ. Shared memory systems.
ŵ. Distributed memory systems.
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Flynn’s Taxonomy
Ŷ General Parallel Programming Issues

Overview
Since the early Ŵżźųs, the Flynn taxonomy [Ŵ, ŵ] has been the standard classification
scheme for computer architectures.

Four categories:
SISD Single Instruction Single Data
SIMD Single InstructionMultiple Data
MISD Multiple Instruction Single Data
MIMD Multiple InstructionMultiple Data
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Flynn’s Taxonomy: SISD
Ŷ General Parallel Programming Issues

Single Instruction Single Data
Sequential computers where a single stream of data is processed by a single stream of
instructions.

• Traditional von Neumann architecture
• One instruction operates on one data element at a

time
• No parallelism at the architecture level
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Flynn’s Taxonomy: SIMD
Ŷ General Parallel Programming Issues

Single Instruction Multiple Data
Vector processors capable of handling multiple data with a single instruction.

• Data presented in the form of a vector
• Notable example: Cray-Ŵ computer with vector

registers of length Źŷ
• Modern examples: SSE/AVX instructions on xŻŹ,

AltiVec on Power processors

ŵŷ/Źŷ



Flynn’s Taxonomy: MISD
Ŷ General Parallel Programming Issues

Multiple Instruction Single Data
Multiple instruction streams operating on the same data.

• No significant examples of such architectures have
been built

• Flynn classified ancient plug-board machines in this
category

• Some embedded devices use this for fault tolerance:
— Same instruction executed redundantly in multiple

streams
— Results verified for accordance
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Flynn’s Taxonomy: MIMD
Ŷ General Parallel Programming Issues

Multiple Instruction Multiple Data
Multiple instruction streams concurrently operate on different (sub)sets of data.

• The vast majority of parallel computers built in the
last Ŷų years

• Includes both:
— Shared memory multiprocessors
— Distributed memory multiprocessors

• Most flexible and powerful category
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Modern Supercomputers: Beyond Flynn
Ŷ General Parallel Programming Issues

• Flynn’s taxonomy still useful for rough categorization
• Modern landscape is much more complex
• Current supercomputers are hybrid combinations of different architectures

The Marenostrum Ÿ supercomputer at the Barcelona Supercomputing Center (BSC).
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Anatomy of a Modern Supercomputer
Ŷ General Parallel Programming Issues

A typical modern supercomputer consists of:
Ŵ. Multiple nodes connected through a network interconnect
ŵ. Multiple processors per node, possibly in NUMA configuration

— NUMA = Non-Uniform Memory Access

Ŷ. Multicore processors (multiple cores per processor)
ŷ. SIMD units per core

— SSE/AVX on xŻŹ
— AltiVec on Power processors
— Vector instructions of size ŵ or ŷ

Ÿ. Accelerators (e.g., GPUs)
— Own memory system
— Connected via PCI or high-speed interconnect (e.g., NVLink)
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Challenges in Modern HPC
Ŷ General Parallel Programming Issues

The Challenge
Exploiting the computational power of modern supercomputers demands:

• Programming models capable of matching their hierarchical structure
• Algorithms that can handle their heterogeneity
• Understanding of performance metrics for parallel programs

Coming up: Basic concepts of parallel programming and performance evaluation
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Performance metrics in parallel computing
Ŷ General Parallel Programming Issues

• Many alternatives exist: hardware architectures, programming paradigms,
applications.

• It is necessary to define metrics to evaluate the performance of a parallel system.

No single criterion fits all
• Computer scientist: pure algorithmic speed-up.
• Computational scientist: time to completion; maximum problem size that can be

analyzed.
• System administrator: maximize system utilization.
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Beware of benchmarks
Ŷ General Parallel Programming Issues

• No substitute for testing with the workload of interest.
• Benchmarks are indicators only as good as their relation to the intended usage.
• Procurement differs: single critical application vs computing center serving many

users.
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What do we mean by scalability?
Ŷ General Parallel Programming Issues

• A parallel system = implementation of a parallel algorithm on a given parallel
architecture.

• Scalability theory organizes performance evaluation while accounting for usage
aspects.

• We must choose appropriate metrics depending on goals and constraints.
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Questions a metric should answer
Ŷ General Parallel Programming Issues

• How do we measure the raw performance of a system?
• How do we compare measurements obtained on different machines?
• How does the metric respond to the programming paradigm employed?
• Do we want raw performance or value for money?

Note
Given the variety of questions, only general criteria exist; there is no single, precise
measurement procedure.
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Definitions of scalability
Ŷ General Parallel Programming Issues

• A parallel system is scalable if it delivers the same performance per processor while
increasing the number of processors and/or the problem size.

• A program is scalable if its performance improves when increasing the processors
employed from p− 1 to p.
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Workload, execution times, and I/O
Ŷ General Parallel Programming Issues

• Define problem sizeW as the number of basic operations for the best-known
sequential algorithm.

• Serial time Ts: start-to-end time on one processor.
• Parallel time Tp on p processors: time until the last processor completes.
• I/Omay be included or measured separately depending on goals; if I/O is essential,

consider parallel I/O.ŵ

How do we know what is the best sequential algorithm?
There exist a branch of computer science, called computational complexity theory, that studies the
inherent difficulty of computational problems and classifies them according to the resources
needed to solve them. However, in practice, we often rely on empirical performance
measurements and established benchmarks to determine the best-known algorithms for specific
problems.

ŵSee e.g. ROOT from CERN: root.cern and CAPIO: github.com/High-Performance-IO/capio.
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Execution-time models and benchmarking
Ŷ General Parallel Programming Issues

• Ts = f(W)

• Tp = f(W, p, arch)
• Absolute assessment is application-dependent; for example, the TOPŸųų rules

measure dense linear algebra factorization performance (remind the TOPŸųų list).
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Speed-up
Ŷ General Parallel Programming Issues

Definition
S(W, p) = Ts(W)/Tp(W, p)

• Linear: S = p

• Sub-linear: S < p

• Super-linear: S > p

Linear speed-up is the ideal target; in practice communication and overheads limit it.
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Why speed-up is often sub-linear
Ŷ General Parallel Programming Issues

• Startup costs
• Communication latency/bandwidth limits
• Synchronization overheads

Example: consider a workload withW operations and communication overhead C per
processor. The parallel time can be modeled as:

Tp(W, p) =
W
p

+ C · p

The speed-up is then:

S(W, p) =
W

W
p + C · p

=
p

1 + C·p2
W

With fixedW, the fraction of time spent communicating typically grows with p.
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When super-linear speed-up may occur
Ŷ General Parallel Programming Issues

Ŵ. Better use ofmemory hierarchy: partitioning reduces working set per process,
improving cache and memory behavior (coming back to this in a few slides).

ŵ. Search problems: parallel decomposition changes exploration order, finding
solutions earlier; sometimes even S > 1 on a single core if extra memory helps.

Memory hierarchy: In many computing systems, memory is organized in a hierarchy of
levels, each with different speeds and sizes. The fastest level is the CPU cache, followed by
main memory (RAM), and then slower storage devices like hard drives or SSDs. When a
problem is divided among multiple processors, each processor may work on a smaller
subset of the data, which can fit better into the faster levels of the memory hierarchy. This
improved data locality can lead to reduced memory access times and increased overall
performance, resulting in super-linear speed-up in some cases.
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When super-linear speed-up may occur
Ŷ General Parallel Programming Issues

Ŵ. Better use ofmemory hierarchy: partitioning reduces working set per process,
improving cache and memory behavior (coming back to this in a few slides).

ŵ. Search problems: parallel decomposition changes exploration order, finding
solutions earlier; sometimes even S > 1 on a single core if extra memory helps.

Note: Super-linear speed-up is rare and often specific to certain problem structures or
algorithmic techniques. For the linear algebra problems we will consider, it is highly
uncommon.
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Speed-up vs number of processors
Ŷ General Parallel Programming Issues

• Linear, sub-linear, and occasional super-linear
trends.

• For fixedW, the gap from linear typically widens
as p increases due to rising overheads.

popt p

linear

super−linear

sub−linear

S
pe

ed
−

up

Speed-up vs processors
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Speed-up vs problem size
Ŷ General Parallel Programming Issues

• Benefit only within a range [Wmin,Wmax].
• SmallW: communication dominates (S < 1).
• Peak nearWsat; then saturation.
• For very largeW, node memory pressure can

degrade performance sharply.

Wmin

1

W

S
pe

ed
−

up

Wsat maxW

Speed-up vs problem size
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Efficiency
Ŷ General Parallel Programming Issues

Definition

E(W, p) =
S(W, p)

p
,

or, substituting the definition of speed-up

E(W, p) =
S(W, p)

p
=

Ts(W)

Tp(W, p) · p

• Typically E in (Ŵ/p, Ŵ], excluding rare super-linear cases.
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Two models of scalability
Ŷ General Parallel Programming Issues

We can think of two complementary models of scalability:
• Amdahl’s law: fixed workloadW; increasing p.
• Gustafson’s law: scaleW with p to keep execution time constant.

For the first, the focus is on how speed-up degrades with more processors for a fixed
problem size. For the second, the focus is on how larger problems can be solved in the
same time as more processors are added.

Strong-scaling vs weak-scaling
• Strong-scaling: how Tp changes with p at fixedW (Amdahl).
• Weak-scaling: how Tp changes with p whenW scales with p (Gustafson).
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Amdahl’s model
Ŷ General Parallel Programming Issues

• Serial fraction fs: time inherently serial divided by Ts(W)

• Parallel fraction fp = 1− fs

Parallel time
Tp(W, p) = Ts(W) fs + Ts(W) fp/p
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Amdahl’s speed-up and limit
Ŷ General Parallel Programming Issues

Speed-up

S(W, p) = s(W)

p(W, p)
=

p
1 + (p− 1)fs

Asymptotic limit

lim
p→∞

S(W, p) = 1/fs

• Example: fs = 5%⇒ S ≤ 20 regardless of p.
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Implications of Amdahl’s law
Ŷ General Parallel Programming Issues

• Reducing the serial fraction fs is critical for absolute performance.
• At fixedW, added sync/comm overhead may cap speed-up even if all code paths are

parallelized.
• For many applications in large-scale linear algebra, we scaleW with p, making

Amdahl less constraining in practice.
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Gustafson’s law: scaled-speed perspective
Ŷ General Parallel Programming Issues

• With serial fraction α and parallel fraction (1− α), scale the parallel work with n
processors:

W(n) = αW+ (1− α) nW, S′n =
W(n)
W

= α+ (1− α) n

• Better reflects solving larger problems with more processors.
• Caveat: αmay change as the problem scales.

Putting it together
• Workload = serial part + parallel part + parallelization/communication overhead.
• Realistic speed-up estimates must include all three and are application dependent.
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Throughput vs parallel applications
ŷ Paradigms, models and tools for parallel programming

• Parallel machines may run many independent serial jobs to maximize throughput.
• Related to work-pool ideas but outside our main focus on single parallel applications.
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Paradigms, models, and tools
ŷ Paradigms, models and tools for parallel programming

Paradigm Logical structure imposed on a parallel algorithm.
Model How parallelism is expressed in code.
Tool Software instruments (compiler, libraries, etc.).

The right choice depends on both software and hardware; shifting abstraction levels is essential.
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Algorithmic paradigms (Ŵ/ŵ)
ŷ Paradigms, models and tools for parallel programming

Phase parallel Alternate independent compute
phases and synchronization.

Divide and conquer Recursively split into
subproblems; combine results.

Owner computes Partition data; each task processes
its own partition.

Phase parallel
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Algorithmic paradigms (Ŵ/ŵ)
ŷ Paradigms, models and tools for parallel programming
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Algorithmic paradigms (ŵ/ŵ)
ŷ Paradigms, models and tools for parallel programming

Master–worker A controller distributes work and
collects results.

Work pool Tasks pull jobs from a shared queue;
may generate new jobs.

PDE-based simulations often use phase-parallel +
owner-computes via domain decomposition. Design optimization
may mix master–worker with complex simulation kernels. Master–worker
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Programming models
ŷ Paradigms, models and tools for parallel programming

Implicit parallelism Compiler extracts parallelism; often low efficiency.
Data parallel Single control flow applied to partitioned data; logically shared memory

(e.g., HPF constructs like FORALL).
Message passing Processes interact by explicit messages; SPMD common; natural for

owner-computes; very flexible but programmer manages communication.
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Programming models
ŷ Paradigms, models and tools for parallel programming

Shared variable Logically shared memory with multiple control flows and private data;
attractive with compiler support via directives.

• Data-parallel HPF largely faded in practice.
• Message passing dominates for scalability to many nodes.
• Shared-memory models are effective, especially with compiler support.
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Programming tools for parallel computing
ŷ Paradigms, models and tools for parallel programming

Overview
This set of tools represents the backbone and provides the actual implementations of the
parallel programming models we will be using in this course to make Linear Algebra
algorithms run on parallel computers.

Four main tools:
MPI Message Passing Interface

OpenMP Open Multi-Processing
OpenACC Open Accelerators

CUDA Compute Unified Device Architecture
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MPI: Message Passing Interface
ŷ Paradigms, models and tools for parallel programming

What is MPI?
A standardized and portable message-passing system for process communication in
parallel computing environments.

Key features:
• Widely used in HPC applications
• Point-to-point and collective communication
• Synchronization primitives
• Data distribution mechanisms
• Natural fit for distributed memory systems
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MPI implementations
ŷ Paradigms, models and tools for parallel programming

• Multiple implementations exist, both open-source and commercial.
• Popular open-source implementations:

— MPICH: www.mpich.org
— Open MPI: www.open-mpi.org

• Commercial implementations often optimized for specific hardware, e.g., Cray MPI,
Intel MPI, IBM Spectrum MPI.

Note
MPI is a specification; different implementations may have varying performance
characteristics and features.

Same code different MPI implementations
The same MPI code can be compiled and run with different MPI implementations,
allowing flexibility and portability across various HPC systems (at least on paper).
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OpenMP: Shared Memory Parallelism
ŷ Paradigms, models and tools for parallel programming

What is OpenMP?
An API for multi-platform shared memory multiprocessing programming.

Key features:
• Compiler directives for parallel regions
• Library routines and environment variables
• Primary use: parallelizing loops and code sections
• Concurrent execution on multiple threads
• Ideal for intra-node parallelism

Info: www.openmp.org
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OpenACC: Directive-Based Accelerator Programming
ŷ Paradigms, models and tools for parallel programming

What is OpenACC?
A directive-based programming tool for heterogeneous systems (CPUs and GPUs).

Key features:
• High-level directives for parallelism
• Automatic data movement between host and device
• Easier offloading to accelerators
• Portable across different accelerator architectures

Info: www.openacc.org
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CUDA: NVIDIA GPU Programming
ŷ Paradigms, models and tools for parallel programming

What is CUDA?
A parallel computing platform and API developed by NVIDIA for general-purpose
computing on GPUs.

Key features:
• Direct access to GPU parallel processing power
• Low-level control over GPU resources
• Extensive libraries and tools ecosystem
• Specific to NVIDIA GPUs

Info: developer.nvidia.com/cuda-zone
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The MPI+X framework
ŷ Paradigms, models and tools for parallel programming

Combining tools
These programming tools are not mutually exclusive and can be used together in a single
application.

Common pattern: MPI+X
• MPI for inter-node communication
• X for intra-node parallelism, where X can be:

— OpenMP (CPU threads)
— OpenACC (directives for accelerators)
— CUDA (direct GPU programming)
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MPI+X: The current standard
ŷ Paradigms, models and tools for parallel programming

• Virtually all large-scale HPC libraries and applications are based on the MPI+X
framework

• Active research into alternatives to MPI+X exists
• In this course, we focus on MPI+X due to its widespread adoption

Research opportunity
Porting the ideas and algorithms we discuss to alternative frameworks could be an
interesting avenue of research.
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Summary of Lecture ŵ
Ÿ Conclusion and summary

Scalability concepts: speed-up, efficiency, Amdahl’s and Gustafson’s laws
Parallel programming paradigms: phase parallel, divide and conquer, owner computes,

master–worker, work pool
Programming models: implicit parallelism, data parallel, message passing, shared variable
Programming tools: MPI, OpenMP, OpenACC, CUDA: the MPI+X framework
Next up: Modern memory hierarchy and Roofline model: for performance analysis
Measuring memory bandwidth with STREAM benchmark, Intra-node parallelism with
OpenMP and starting the implementation of basic linear algebra kernels.
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Summary of previous lecture
Ŵ Summary of previous lecture

• Taxonomy of computer architectures
• Performance metrics: FLOP/s, speedup, efficiency, scalability
• Performance modeling: weak and strong scaling
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Modern Memory Hierarchy
ŵ The roofline model

• Computer architectures organized around amemory hierarchy
• Designed to balance speed, capacity, and cost

Memory Hierarchy Levels
Ŵ. Registers and cache (LŴ, Lŵ, LŶ) — extremely fast
ŵ. Main memory (RAM) — moderate speed
Ŷ. Secondary storage (SSD/HDD) — slower
ŷ. Tertiary storage — archival

Key parameter: Memory bandwidth — rate of data transfer between memory and
processor
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The Memory Wall
ŵ The roofline model

The Problem
Processor speeds have grown much faster than memory bandwidth improvements

• Memory wall: memory latency and bandwidth become the primary bottleneck
• Need tools to understand and visualize this limitation
• Enter: the Roofline Model [ź]
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The Roofline Model: Concept
ŵ The roofline model

Definition
A visual performance model relating computational throughput to memory bandwidth

Key hardware characteristics:
• Peak floating-point performance: Perf (FLOP/s)
• Peak memory bandwidth: BW (Bytes/s)

Key application characteristic:
• Operational Intensity (OI): FLOP/Byte
• Ratio of floating-point ops to bytes accessed from memory
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Roofline Model: The Relationship
ŵ The roofline model

Fundamental equation

Perf =
FLOP
s

=
FLOP
Byte

· Byte
s

= OI · BW

• Performance depends linearly on both OI and BW
• Plotted as log-log graph: performance vs operational intensity
• Creates a characteristic “roofline” shape
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Roofline Model: Visual Representation
ŵ The roofline model
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Understanding the Roofline Plot
ŵ The roofline model

Two regions:
Ŵ. Memory-bound (left)

— Linear increase with OI
— Limited by bandwidth

ŵ. Compute-bound (right)
— Horizontal line
— Limited by peak FLOP/s

Ridge point:
• Intersection of two regions
• Minimum OI to reach peak

performance
• In example: ŷ FLOP/Byte
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Using the Roofline Model
ŵ The roofline model

Applications:
• Analyze kernel performance on given architecture
• Identify performance bottlenecks
• Guide optimization efforts

Optimization strategy
Compare kernel’s OI to ridge point:

• Below ridge → memory-bound → improve data locality
• Above ridge → compute-bound → optimize computations
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Roofline and Linear Algebra Evolution
ŵ The roofline model

• Algorithmic optimization improves OI and data locality
• Example: Evolution of BLAS (Basic Linear Algebra Subprograms)

— Level Ŵ: vector operations (low OI)
— Level ŵ: matrix-vector operations (medium OI)
— Level Ŷ: matrix-matrix operations (high OI)

• Higher-level BLAS operations:
— Reuse data in fast memory
— Reduce memory traffic
— Approach compute-bound regime

More details on BLAS in upcoming lectures
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Measuring Memory Bandwidth: STREAM
ŵ The roofline model

STREAM Benchmark [ŷ, Ÿ]
Measures sustainable memory bandwidth (GB/s) for simple vector kernels

Four kernels:
COPY Copy vector from one location to another
SCALE Scale vector by constant factor
SUM Add two vectors

TRIAD Scaled vector addition

• Simple, easy to understand
• Provides reliable bandwidth measure
• Widely used in HPC community

Info: http://www.cs.virginia.edu/stream/
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Measuring Memory Bandwidth: Example
ŵ The roofline model

Let us run try the STREAM benchmark on your machine:
• Download the STREAM benchmark from http://www.cs.virginia.edu/stream/
mkdir -p stream && cd stream
wget -r -np -nH --cut-dirs=2 -e robots=off -R "index.html*" \

https://www.cs.virginia.edu/stream/FTP/Code/
• There is a Makefile provided; you can compile with make
• The standard configuration requires g77, but you can edit the Makefile to use
gfortran, or any other compiler you have available:
FF = gfortran
FFLAGS = -O2

• Run the benchmark by doing: ./stream_f.exe
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Example output of STREAM benchmark
ŵ The roofline model

----------------------------------------------
Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word

----------------------------------------------
----------------------------------------------
STREAM Version $Revision: 5.6 $
----------------------------------------------
Array size = 2000000
Offset = 0
The total memory requirement is 45 MB
You are running each test 10 times
--
The *best* time for each test is used
*EXCLUDING* the first and last iterations
----------------------------------------------
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Example output of STREAM benchmark
ŵ The roofline model

----------------------------------------------
Printing one line per active thread....
----------------------------------------------------
Your clock granularity/precision appears to be 1 microseconds
----------------------------------------------------

Function Rate (MB/s) Avg time Min time Max time
Copy: 19300.7949 0.0017 0.0017 0.0019
Scale: 16737.4645 0.0019 0.0019 0.0020
Add: 20691.3250 0.0024 0.0023 0.0025
Triad: 19599.5514 0.0025 0.0024 0.0025
----------------------------------------------------
Solution Validates!
----------------------------------------------------
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How to obtain correct results from STREAM
ŵ The roofline model

• Ensure the array size is large enough to exceed cache sizes
• Compile with optimizations enabled (e.g., -O2 or higher)
• Run multiple iterations and take the best time
• Validate results to ensure correctness

Note
Reported bandwidth may vary based on system load, compiler optimizations, and other
factors. Always run multiple trials for reliable measurements.
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How to obtain correct results from STREAM: Example
ŵ The roofline model

We can extract the right way to perform the test by looking at the size of the level Ŷ cache
of our machine and ensuring that the array size is large enough to exceed it. This number
can be found by running the command:

lscpu | grep "L3"
On my machine, this returns:
L3 cache: 36 MiB (1 instance)
So I should set the array size to be larger than ŶŹ MiB. Since each double-precision
number takes Ż bytes, I can calculate the minimum number of elements needed:

MIN_SIZE=$(echo "36 * 1024 * 1024 / 8" | bc)
echo $MIN_SIZE

This gives me ŷ,źŴŻ,Ÿżŵ elements. To be safe, I can set the array size to Ÿ,ųųų,ųųų
elements in the STREAM benchmark code before compiling and running it
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How to obtain correct results from STREAM: Modifying
the Makefile
ŵ The roofline model

Using awk
A nice way to automate the modification of the array size in the STREAM benchmark code
is to use awk to edit the source file directly from the command line.
L3CACHE=$(lscpu | awk -F: '/L3 cache/ {match($2, /[0-9]+/); print

substr($2, RSTART, RLENGTH)}')↪→

MIN_SIZE=$(echo "${L3CACHE} * 1024 * 1024 / 8" | bc)
echo $MIN_SIZE

Then, you can modify the FFLAGS variable in the Makefile to use the new array size:
FFLAGS="-O3 -march=native -mtune=native

-DSTREAM_ARRAY_SIZE=${MIN_SIZE}"↪→
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Measuring Peak Performance
ŵ The roofline model

Estimation formula

Peak FLOP/s = Cores× Clock (GHz)× FLOP/Cycle

Example: xŻŹ processor with AVXŵ
• Ż double-precision FLOP per cycle
• ŷ cores at Ŷ GHz
• Peak: 4× 3× 8 = 96 GFLOP/s

Note
This is theoretical peak; actual performance may be lower due to: bandwidth limitations,
cache misses, other overheads. It always best to get this number from the manufacturer
datasheet when possible.
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FromMoore’s Law to Parallelism
Ŷ Intra-node parallelism

• For decades, performance grew via Moore’s Law
— Higher clock frequencies
— Instruction Level Parallelism (ILP): pipelining, out-of-order execution, branch prediction

• Early ŵųųųs: this trend hit fundamental limits

Moore’s Law
Number of transistors on a microchip doubles approximately every two years, leading to
increased computational power and decreased relative cost (Gordon E. Moore, ŴżŹŸ)
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Hard Limits to ILP
Ŷ Intra-node parallelism

Concurrence Limit
• ILP techniques are sophisticated but

limited
• Modern processors: max ŷ-Ÿ

instructions per cycle
• Available concurrence is much larger

Power Limit
• Power consumption∝ frequency3

• Critical for mobile devices (battery life)
• Critical for supercomputers (operational

costs)
• TopŸųų systems: ∼Ŷų MW (small

town!)
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The Shift to Thread Level Parallelism (TLP)
Ŷ Intra-node parallelism

• Industry shifted from ILP to TLP techniques
• Birth ofmulticores / Chip Multi-Processors (CMP)
• Multiple independent cores on the same die
• Each core handles different instructions and data streams

Key Advantages
• Higher concurrence levels
• Power consumption∝ number of cores (linear)
• Lower frequency + more cores = better performance + less power
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The Multicore Era
Ŷ Intra-node parallelism

• Multicore processors are now ubiquitous
• Evolution driven by increasing core counts per chip
• Paradigm shift: parallel programming is essential

Performance no longer comes from faster cores,
but from more cores working together
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POWERŷ: first mainstream multicore (ŵųųŴ)
Ŷ Intra-node parallelism

• Two general-purpose cores on the same die
• Per-core private LŴ caches
• Shared Lŵ; off-chip shared LŶ
• Cores access DRAM via a shared memory

bus
• Template for many subsequent multicore

designs
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Modern CPU examples
Ŷ Intra-node parallelism

• AMD EPYC żŹŸŸP (ŵųŵŶ): żŹ cores, Ŵżŵ threads
• Intel Xeon wż-ŶŸżŸX (ŵųŵŷ): Źų cores, Ŵŵų threads
• Intel iż-ŴŷżųųHX (hybrid, ŵŷ cores / Ŷŵ threads)

— Ż P-cores (ŴŹ threads), each with dedicated Lŵ
— ŴŹ E-cores (ŴŹ threads), Lŵ shared across clusters of ŷ
— LŶ shared among all cores; LŴ private per core
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CPU cache hierarchy (LŴ, Lŵ, LŶ)
Ŷ Intra-node parallelism

• Caches use SRAM (fast, low latency, small, costly)
• DRAM in main memory is larger but slower
• Multi-level design balances speed, capacity, and cost
• LŴ: smallest/fastest, usually split I/D caches, per-core
• Lŵ: larger/slower than LŴ, per-core or per-cluster
• LŶ: largest on-chip, shared across cores
• Miss path: LŴ → Lŵ → LŶ → DRAM (increasing latency)

Exercise: topology
Use lscpu and the following command to inspect your CPU topology:
lstopo --no-attrs --no-factorize --no-collapse --no-cpukinds --no-legend

topology.pdf↪→
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Memory-bound vs compute-bound workloads
Ŷ Intra-node parallelism

Memory-bound
• Low arithmetic intensity; little/no data

reuse
• Performance limited by memory

bandwidth
• Parallel speedups saturate early
• Examples:

— SpMV:O(nnz) FLOPs onO(nnz) data
— BLAS-Ŵ: O(n) FLOPs onO(n) data
— BLAS-ŵ: O(n2) FLOPs onO(n2) data

Compute-bound
• High arithmetic intensity; strong data

reuse
• Performance limited by peak FLOP/s
• Scales well across cores (cache-friendly)
• Examples:

— BLAS-Ŷ (e.g., GEMM):O(n3) FLOPs on
O(n2) data

— Dense factorizations leveraging
BLAS-Ŷ
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Operational intensity and the memory wall
Ŷ Intra-node parallelism

• Example (EPYC żŹŸŸP): peak źŴų GFLOP/s vs ŹŴŷ GB/s bandwidth
• Roofline knee: źŴų/ŹŴŷ ≈ Ŵ.ŴŹ FLOP/byte

— OI < Ŵ.ŴŹ: memory-bound (bandwidth limits performance)
— OI > Ŵ.ŴŹ: compute-bound (FLOP/s limits performance)

• As core counts grow, static bandwidth limits memory-heavy kernels
• Remedies: improve cache reuse, increase bandwidth, or both
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Multiprogramming and processes
Ŷ Intra-node parallelism

• Modern systems support multiprogramming: many programs appear to run
concurrently.

• Microscopic view: you cannot executemore programs than available cores.
• Macroscopic view: time sharing makes many programs seem concurrent.
• A process is a running instance of a program plus its data.
• Processes are dynamic; multiple processes can run the same program.
• Each process has a private address space (its data are private).
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Processes and threads: visual
Ŷ Intra-node parallelism

Data area

Instruction
flow

• Code + private memory + execution
context.

• OS schedules processes on cores.
• No shared memory by default.

Data area

Instruction flows

• Execution streams within a process.
• Share address space and program data.
• Own stack and registers; often one per

core.
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Programming tools for threads
Ŷ Intra-node parallelism

• POSIX threads (pthreads): low-level API, fine-grained control, portable.
• OpenMP: high-level, directive-based, widely used in C/C++/Fortran.
• Typical workflow: start with OpenMP; use pthreads only when necessary.

Will start describing some OpenMP basics, and decline it in the context of linear algebra
routines.
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OpenMP: overview
Ŷ Intra-node parallelism

• De-facto standard API for shared-memory parallel programming.
• Languages: Fortran, C, C++; introduced in Ŵżżź.
• Maintained by the OpenMP Architecture Review Board (openmp.org).

Components: • Compiler directives (pragmas)
• Run-time library routines
• Environment variables

Directives behave as:
Ŵ. Actual instructions for OpenMP-aware compilers
ŵ. Comments for non-supporting compilers (keeps serial behavior)

ŶŸ/Ÿź
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Fork-join execution model
Ŷ Intra-node parallelism

• Serial region executed by a single
master thread.

• Hitting a parallel region: fork into
multiple threads.

• Threads share address space; may
coordinate via shared data.

• End of region: threads join back to
one thread.

Master

fork

Thread Ŵ Thread ŵ Thread Ŷ Thread ŷ

join

Master
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Original focus: loop parallelism
Ŷ Intra-node parallelism

• Split workload of loops (e.g., do) across threads.

Ŵ. Enter a loop/region: activate multiple threads and partition iterations.
ŵ. Threads may communicate via shared variables/memory.
Ŷ. On completion: synchronize; deactivate all but one thread and continue serially.

• Programming model: threads with shared logical address space.
• Natural fit for shared-memory systems; not mandated by the standard.
• Attempts to map the same model to distributed-memory exist, but limited success in

practice.
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OpenMP today
Ŷ Intra-node parallelism

• Standard evolves regularly; Ź.ų recently released, Ÿ.ŵ widely supported.
• Key additions:

— Irregular and data-driven workload dispatching
— Transformations to improve memory hierarchy usage and work sharing
— Support for SIMD extensions and accelerators

OpenMP in practice
• Will show concrete OpenMP code next.
• Often combined with MPI for hybrid/nested parallelism.
• Further reading: [Ŵ, ŵ, Ŷ, Ź]
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OpenMP example: let us start from an hello world
Ŷ Intra-node parallelism

The standard Fortran hello world program:
program hello

use, intrinsic :: iso_fortran_env,
only: output_unit↪→

write (output_unit, '("Hello,
world!")')↪→

end program hello

which can be compiled and run as:
gfortran -o hello hello.f90
./hello

Getting the output:
Hello, world!
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OpenMP example: let us start from an hello world
Ŷ Intra-node parallelism

The standard Fortran hello world program:
program hello

use, intrinsic :: iso_fortran_env,
only: output_unit↪→

write (output_unit, '("Hello,
world!")')↪→

end program hello

which can be compiled and run as:
gfortran -o hello hello.f90
./hello

Getting the output:
Hello, world!

We now want to implement the same
program using OpenMP, and getting an
output from each thread.
program hello

use, intrinsic :: iso_fortran_env,
only: output_unit↪→

use omp_lib
integer :: tid, nthreads
nthreads = omp_get_max_threads()
!$omp parallel private(tid)
tid = omp_get_thread_num()
write (output_unit, '("Hello, world!

from thread ", I0)') tid↪→

!$omp end parallel
end program hello
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Compiling the OpenMP hello world
Ŷ Intra-node parallelism

To compile the OpenMP version, we need to add the ‘-fopenmp‘ flag:
gfortran -o hello hello.f90 -fopenmp
./hello

Getting the output (on my Laptop):
Hello, world! from thread 3
Hello, world! from thread 20
Hello, world! from thread 31
Hello, world! from thread 1
Hello, world! from thread 2
Hello, world! from thread 5
Hello, world! from thread 7
...
Hello, world! from thread 29
Hello, world! from thread 16

• Each thread prints its ID.
• Order of output may vary due to thread

scheduling.
• By default, uses all available threads.
• Control number of threads via
OMP_NUM_THREADS=<num> environment
variable.

• Let us have a better look at the code, line by line.
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OpenMP hello world: code walkthrough
Ŷ Intra-node parallelism

program hello
use, intrinsic ::

iso_fortran_env, only:
output_unit

↪→

↪→

use omp_lib
integer :: tid, nthreads
nthreads =

omp_get_max_threads()↪→

!$omp parallel private(tid)
tid = omp_get_thread_num()
write (output_unit, '("Hello,

world! from thread ",
I0)') tid

↪→

↪→

!$omp end parallel
end program hello

• use omp_lib: imports OpenMP
functions/constants

• nthreads = omp_get_max_threads(): gets
max available threads

• !$omp parallel private(tid): starts
parallel region; each thread has private tid

• tid = omp_get_thread_num(): each thread
gets its unique ID

• !$omp end parallel: ends parallel region;
threads synchronize
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Compilation flag for other compilers
Ŷ Intra-node parallelism

• GCC / GFortran: -fopenmp
• Intel ICC / IFORT: -qopenmp or -openmp
• Clang / Flang: -fopenmp (requires OpenMP library)
• PGI / NVIDIA HPC SDK: -mp

Note
Ensure the compiler supports OpenMP and is properly configured.

Mixing compilers
There exist a few cases where mixing compilers is possible (e.g., Intel and GCC), but in
general it is not recommended to mix different compilers when dealing with OpenMP
code.
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Using CMake to build a Fortran project
Ŷ Intra-node parallelism

As we have seen from the previous slide, and from the question on managing different
compilers in the previous lecture, it is often useful to use a build system to manage the
complexity of building a project.

There exists several build systems:
Make / GNU Make / Autotools: classic, widely used, but low-level

https://www.gnu.org/software/make/
CMake: popular, cross-platform, higher-level

https://cmake.org/
Ninja: fast, modern, often used as a backend for CMake

https://ninja-build.org/
Meson: high-level, fast, modern

https://mesonbuild.com/
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Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.

Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.
ŷ. Create the CMakeLists.txt file:

touch CMakeLists.txt

ŷŷ/Ÿź



Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.
ŷ. Create the CMakeLists.txt file:

touch CMakeLists.txt

ŷŷ/Ÿź



Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.
ŷ. Create the CMakeLists.txt file:

touch CMakeLists.txt

ŷŷ/Ÿź



Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.

ŷ. Create the CMakeLists.txt file:
touch CMakeLists.txt

ŷŷ/Ÿź



Using CMake to build a Fortran project
Ŷ Intra-node parallelism

To build a project with CMake, the first step is represented by the creation of a
CMakeLists.txt file in the root directory of the project.
Let us go step by step through a minimal example.
Ŵ. Create a folder for the project and enter it:

mkdir hello_openmp
cd hello_openmp

ŵ. Create a git repository inside:
git init
git branch -m main

Ŷ. Create the Fortran source file hello.f90 with the OpenMP code seen before.
ŷ. Create the CMakeLists.txt file:

touch CMakeLists.txt

ŷŷ/Ÿź



Editing the CMakeLists.txt file
Ŷ Intra-node parallelism

The content of the CMakeLists.txt file should be as follows:
cmake_minimum_required(VERSION 3.23)

project(hello-openmp LANGUAGES Fortran)
find_package(OpenMP REQUIRED COMPONENTS

Fortran)↪→

# Executable from the single source file
add_executable(hello-openmp hello-openmp.f90)
# Link OpenMP
target_link_libraries(hello-openmp PRIVATE

OpenMP::OpenMP_Fortran)↪→

• Specify minimum CMake version
• Define project name and language
• Find OpenMP package for Fortran
• Add executable target
• Link OpenMP libraries to the target
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The CMake instructions explained
Ŷ Intra-node parallelism

The roject name and the programming language used, it also take further optional
arguments:

project(<PROJECT-NAME>
[VERSION

<major>[.<minor>[.<patch>[.<tweak>]]]]↪→

[COMPAT_VERSION
<major>[.<minor>[.<patch>[.<tweak>]]]]↪→

[SPDX_LICENSE <license-string>]
[DESCRIPTION <description-string>]
[HOMEPAGE_URL <url-string>]
[LANGUAGES <language-name>...])

Specify:
• project name
• version
• compatible version
• license (SPDX format)
• description
• homepage URL
• programming languages

used

ŷŹ/Ÿź
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The CMake instructions explained
Ŷ Intra-node parallelism

Another important command is igure external packages or libraries that the project
depends on.

find_package(<PackageName> [version] [EXACT]
[REQUIRED]↪→

[QUIET] [COMPONENTS components...]
[OPTIONAL_COMPONENTS components...]
[NO_DEFAULT_PATH])

You can pass suggestion on where to find the package
using the CMAKE_PREFIX_PATH environment variable or
the -DCMAKE_PREFIX_PATH=<path> option when
invoking CMake.

Specify:
• package name
• version
• whether it is required
• components to find
• whether to suppress

messages
• whether to avoid default

search paths
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The CMake instructions explained
Ŷ Intra-node parallelism

The next command is add_executable(), which is used to define an executable target:

add_executable(<name> [WIN32] [MACOSX_BUNDLE]
[EXCLUDE_FROM_ALL]
source1 source2 ... sourceN)

An executable target is a binary file that can be run on the
system, it can be created from one ormore source files.

Specify:
• target name
• platform-specific options
• whether to exclude from

default build
• source files

The last command is target_link_libraries(), which is used to specify libraries to
link against a target.

target_link_libraries(<target>
<PRIVATE|PUBLIC|INTERFACE> <item>...
[<PRIVATE|PUBLIC|INTERFACE> <item>...]...)

Specify:
• target name
• libraries to link
• linkage type
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Private, Public, and Interface linkage
Ŷ Intra-node parallelism

When using target_link_libraries(), you can specify the linkage type:
• PRIVATE: the library is used only for the target itself.
• PUBLIC: the library is used for both the target and any targets that link against it.
• INTERFACE: the library is used only for targets that link against the target, not for the

target itself.

Example
target_link_libraries(my_executable

PRIVATE libA
PUBLIC libB
INTERFACE libC)

In this example, libA is linked only to my_executable, libB is linked to both
my_executable and any targets that link against it, and libC is linked only to targets that
link against my_executable.
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Configuring and building
Ŷ Intra-node parallelism

To configure and build the project with CMake the steps are:
Ŵ. Create a build folder: mkdir build
ŵ. Move to the build folder and launch the cmake program

cd build
cmake .. # You could also try doing ccmake .. for an interactive configuration

Ŷ. Build the project using the generated build system, for example:
Make run make
Ninja run ninja

this will compile the code and generate the executable in the build folder.
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Make a commit
Ŷ Intra-node parallelism

If everything works, we can make a commit of the results.
it is a good idea to create a .gitignore file to avoid committing build artifacts.

For doing this, you run
touch .gitignore
and then with your favourite editor write inside it
build/
Everything which is listed here is going to be ignored by git.

Now we can add all the files
and make a commit:

ŸŴ/Ÿź



Make a commit
Ŷ Intra-node parallelism

If everything works, we can make a commit of the results.
it is a good idea to create a .gitignore file to avoid committing build artifacts.

For doing this, you run
touch .gitignore
and then with your favourite editor write inside it
build/
Everything which is listed here is going to be ignored by git. Now we can add all the files
and make a commit:
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git commit -m "Initial commit: OpenMP hello world with CMake"
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Continuous Integration (CI) with GitHub Actions
Ŷ Intra-node parallelism

We can adapt our last example of continuous integration (CI) with GitHub Actions from
the previous lecture to build and test our OpenMP project. We need to create a workflow
file in the .github/workflows folder.
Ŵ. Create the folders:

mkdir -p .github/workflows

ŵ. Create the workflow file:
touch .github/workflows/CI.yml

Ŷ. Edit the file (starting from the one seen in the previous lecture).
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Editing the CI.yml file
Ŷ Intra-node parallelism

The content of the CI.yml file should be as follows:

name: CI
on:

push:
branches:
- main

jobs:
build:

runs-on: ubuntu-latest
steps:
- name: Checkout code

uses: actions/checkout@v4
- name: Setup CMake (latest)

uses: lukka/get-cmake@latest
- name: Setup Fortran

uses: fortran-lang/setup-fortran@v1.8.0

• Define workflow name and
trigger on push to main branch

• Set up Ubuntu environment
• Checkout code, set up CMake

and Fortran compiler
with:

compiler: gcc
version: 'latest'
update-environment: true
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Editing the CI.yml file
Ŷ Intra-node parallelism

The content of the CI.yml file should be as follows:

- name: Configure (CMake)
run: cmake -S . -B build

-DCMAKE_BUILD_TYPE=Release↪→

- name: Build (CMake)
run: cmake --build build --config Release

-- -j↪→

- name: Run program
env:

OMP_NUM_THREADS: '4'
run: |

./build/hello-openmp || (echo
"Executable not found" && ls -la
build && exit 1)

↪→

↪→

• Configure and build project
using CMake

• Run the compiled OpenMP
program with ŷ threads
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Summary and Next Steps
ŷ Summary

• OpenMP is a widely used API for shared-memory parallel programming.
• It provides a simple and flexible way to parallelize code using compiler directives.
• CMake can be used to manage the build process of Fortran projects with OpenMP.

Next Steps
• The Basic Linear Algebra Subprograms (BLAS) provide standardized building blocks

for dense linear algebra operations.
• Using BLAS enables code reuse, portability, and performance optimizations across

different hardware architectures.
• Explore more advanced OpenMP features (e.g., task parallelism, SIMD).
• Use Fortran and OpenMP features to look through BLAS implementations.
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Motivation: Cholesky factorization example
Ŵ Building Blocks for Dense Linear Algebra

Symmetric Matrix
A matrix A ∈ Rn×n is called symmetric if A = A⊤, meaning that it is equal to its transpose.

Eigenvalue and Eigenvector
Given a square matrix A ∈ Rn×n, a non-zero vector v ∈ Rn is called an eigenvector of A if
there exists a scalar λ ∈ R such that:

Av = λv

The scalar λ is referred to as the eigenvalue corresponding to the eigenvector v. All
eigenvalues of a symmetric matrix are real.
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Motivation: Cholesky factorization example
Ŵ Building Blocks for Dense Linear Algebra

Positive Definite Matrix
A symmetric matrix A ∈ Rn×n is called positive definite if for all non-zero vectors x ∈ Rn:

x⊤Ax > 0

This implies that all eigenvalues of A are positive.

Examples of symmetric positive definite matrices
• Covariance/correlation matrices in statistics and machine learning.
• Normal equations: A⊤A from least squares; SPD if A has full column rank.
• Gram/kernel matrices: Kij = k(xi, xj) with strictly PD kernels (e.g., Gaussian/RBF).
• Precision (inverse covariance) matrices in Gaussian Markov random fields.
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Motivation: Cholesky factorization example
Ŵ Building Blocks for Dense Linear Algebra

• The Cholesky factorization is a method for decomposing a positive definite matrix A
into the product of an upper triangular matrix U and its transpose:

A = U⊤U

• It is useful for solving systems of linear equations, and inverting matrices.
• It is computationally efficient, requiring approximately 1

3n
3 operations for an n× n

matrix.

Theorem (Existence and uniqueness)
Every symmetric positive definite matrix A has a unique Cholesky factorization A = U⊤U,
where U is an upper triangular matrix with positive diagonal entries.
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Motivation: Cholesky factorization example
Ŵ Building Blocks for Dense Linear Algebra

Consider the Cholesky factorization A = U⊤U:

Algorithm
Ŵ: for j = 1 to n do
ŵ: for i = 1 to j− 1 do
Ŷ: uij ← 1

uii

(
aij −

∑i−1
k=1 ukiukj

)
ŷ: end for
Ÿ: ujj ←

√
ajj −

∑j−1
k=1 u

2
kj

Ź: end for

• Easy to translate to any language
• But…“reinventing the wheel”
• Similar patterns appear repeatedly
• Lots of code duplication
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The key observation
Ŵ Building Blocks for Dense Linear Algebra

Similar code patterns resurface over and over again
in linear algebra algorithms

Natural strategy
“Define a set of operators such that any algorithm

can be expressed as their application to the data at hand.”

• Some languages provide native operators (MATLAB, Fortran, Julia)
• Algorithms = sequences of primitive operator calls
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Benefits of standardized building blocks
Ŵ Building Blocks for Dense Linear Algebra

Ŵ. Code reuse
— Write once, use many times
— Amortize cost of high-quality implementation

ŵ. Standardized interfaces
— Explore alternative implementations
— Preserve overall code behavior

Ŷ. Architecture-aware optimizations
— Exploit cache hierarchies
— Use block/submatrix operations (not just vectors)

ŷ. Portability across systems
— Same interface, optimized per platform
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Scope of application
Ŵ Building Blocks for Dense Linear Algebra

• Cholesky is just one example
• Same reasoning applies to:

— Dense linear algebra (LU, QR, eigensolvers, …)
— Sparse linear algebra (SpMV, iterative solvers, …)
— Many other numerical algorithms

• Encapsulation enables:
— Performance tuning without changing user code
— Leveraging hardware accelerators (GPUs, vector units)
— Evolution of implementations over time

This is the foundation of BLAS and LAPACK
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The Basic Linear Algebra Subprograms (BLAS)
ŵ The Basic Linear Algebra Subprograms (BLAS)

• Set of low-level routines for common linear algebra operations
• Designed to be efficient and portable
• Building block for higher-level libraries (LAPACK, ScaLAPACK, PSBLAS, PETSc)
• Available in many programming languages (C, Fortran, Python)

Focus of this section
Dense BLAS: routines for dense matrices and vectors
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BLAS organization: three levels
ŵ The Basic Linear Algebra Subprograms (BLAS)

Level Ŵ: Vector operations
• Examples: dot product, vector addition, scaling
• Complexity: O(n)
• Memory-bound

Level ŵ: Matrix-vector operations
• Examples: matrix-vector multiplication, rank-Ŵ updates
• Complexity: O(n2)
• Memory-bound

Level Ŷ: Matrix-matrix operations
• Examples: matrix-matrix multiplication (GEMM)
• Complexity: O(n3)
• Compute-bound (high data reuse)
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Popular BLAS implementations
ŵ The Basic Linear Algebra Subprograms (BLAS)

OpenBLAS: Open-source implementation of BLAS and LAPACK
ATLAS: Automatically Tuned Linear Algebra Software; open-source, self-optimizing

Intel MKL: High-performance library optimized for Intel processors
cuBLAS: GPU-accelerated BLAS for NVIDIA GPUs
BLIS: Portable, high-performance, modern BLAS framework

Key takeaway
Same interface, different implementations⇒ performance portability
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Finding BLAS with CMake
ŵ The Basic Linear Algebra Subprograms (BLAS)

• CMake provides a built-in module to find BLAS libraries
• Use find_package(BLAS REQUIRED) to locate BLAS
• Link against the found BLAS library using
target_link_libraries(<target> PRIVATE ${BLAS_LIBRARIES})

• Information are available on the webpage: FindBLAS module documentation.

Example CMake snippet
find_package(BLAS REQUIRED)
target_link_libraries(<target> PRIVATE ${BLAS_LIBRARIES})
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Level Ŵ BLAS: Overview
Ŷ Level Ŵ BLAS: Vector operations
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Level Ŵ BLAS: Vector operations
Ŷ Level Ŵ BLAS: Vector operations

• Basic operations on vectors
• Examples:

— Dot product: DOT
— Vector addition: AXPY
— Scaling: SCAL
— Copy: COPY
— Norms: NRM2

• Memory-bound operations

Data types:
• s: single real
• d: double real
• c: single complex
• z: double complex

Naming convention: <data type><operation>
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AXPY: Definition
Ŷ Level Ŵ BLAS: Vector operations

AXPY (Add X times Y):
y← αx+ y

• α scalar, x, y vectors
• Level Ŵ BLAS (memory-bound)
The output vector y is overwritten
Widely used in numerical algorithms
(e.g., iterative methods)

Routine name: daxpy (double precision)
call daxpy(n, alpha, x, incx, y, incy)

• n: vector length
• alpha: scalar
• x, y: vectors
• incx, incy: strides (usually Ŵ)
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Fortran example (double precision)
Ŷ Level Ŵ BLAS: Vector operations

program axpy_example
use iso_fortran_env, only: int64, real64, output_unit
implicit none
integer(kind=int64), parameter :: n = 5
real(kind=real64) :: x(n), y(n), alpha
integer(kind=int64) :: i
! Initialize the vectors and scalar
x = [1.0, 2.0, 3.0, 4.0, 5.0]
y = [10.0, 20.0, 30.0, 40.0, 50.0]
alpha = 2.0
! Call the AXPY routine
call daxpy(n, alpha, x, 1, y, 1)
! Print the result
write(output_unit, '("Resulting vector y:")')
do i = 1, n

write(output_unit, '(F6.2)', advance='no') y(i)
end do
write(output_unit, '("")')
return

end program axpy_example
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Compiling (OpenBLAS)
Ŷ Level Ŵ BLAS: Vector operations

Install (Ubuntu): apt-get install libopenblas-dev
gfortran -o axpy_example axpy_example.f90 -lopenblas
./axpy_example

Sample output
Resulting vector y:
12.00 24.00 36.00 48.00 60.00

There are quite a few inconvenient things!
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An object oriented packaging
Ŷ Level Ŵ BLAS: Vector operations

Let us make an object oriented packaging of this BLAS operations using modern Fortran.
• Create a Git repository for our package
mkdir objblas
cd objblas
git init
git branch -m main

• Create a CMakeLists.txt file for our project with content
cmake_minimum_required(3.28)
project(objblas LANGUAGES Fortran)
find_package(BLAS REQUIRED)

• Create a directory which will contain the code:
mkdir src
touch src/blas.f90
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mkdir src
touch src/blas.f90
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An object oriented packaging
Ŷ Level Ŵ BLAS: Vector operations

We will now create a Fortran module, which will package the BLAS library we are going to
use, hence we write into the src/blas.f90 file the following:
module blas

use iso_fortran_env, only: real64, real32
implicit none

< interfaces >

contains

< implementations >

end module blas
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Let us start with the implementations
Ŷ Level Ŵ BLAS: Vector operations

subroutine daxpy_blas(alpha, x, y, incx, incy)
use iso_fortran_env, only: real64
implicit none
real(real64), intent(in) :: alpha
real(real64), intent(in) :: x(:)
real(real64), intent(inout) :: y(:)
integer, intent(in), optional :: incx, incy
! Local variables
integer :: incx_, incy_
incx_ = 1
incy_ = 1
if (present(incx)) incx_ = incx
if (present(incy)) incy_ = incy
call daxpy(size(x),alpha,x,incx_,y,incy_)

end subroutine daxpy_blas

• intent() tells the subroutine if the
argumenti is an input, an output, or
both,

• optional tells if the argument can be
omitted, and present checks if it has
been passed or not.

• We use size(x) to get the length of
the vector.

• We can write similar subroutines for the
other data types (single, complex,
double complex).
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Now the interfaces
Ŷ Level Ŵ BLAS: Vector operations

private

interface axpy
module procedure daxpy_blas
! Other data types procedures

end interface axpy

public :: axpy

privatemakes all the module
contents private by default,
public :: axpymakes the axpy
interface public.

• The interface block allows to define
multiple procedures with the same
name but different argument types.

• Here we define the interface for daxpy,
which maps to the implementation
daxpy_blas.

• We can add other procedures for
different data types (single, complex,
double complex).
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CMake configuration
Ŷ Level Ŵ BLAS: Vector operations

We need to tell CMake how to build our package, so we add the following lines to the
CMakeLists.txt file:
add_library(objblas src/blas.f90)
target_link_libraries(objblas PUBLIC BLAS::BLAS)

• add_library() creates a library target named objblas from the source file.
• target_link_libraries() links the BLAS libraries to our package.

Now we need to write a tester: we create a test directory and inside it a
CMakeLists.txt file and a axpy_test.f90 file and add the following lines to the
test/CMakeLists.txt file:
add_executable(test_axpy test/test_axpy.f90)
target_link_libraries(test_axpy PRIVATE objblas)
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Test program
Ŷ Level Ŵ BLAS: Vector operations

program test_axpy
use iso_fortran_env, only: real64,

output_unit↪→

use blas
implicit none
integer, parameter :: n = 10
real(real64) :: x64(n), y64(n),

alpha64↪→

x64 = [1,2,3,4,5,6,7,8,9,10]
y64 = 0.0_real64
alpha64 = 2.0_real64
call axpy(alpha64, x64, y64)
write(output_unit,*) "Double Precision

AXPY Result:"↪→

write(output_unit,*) y64
end program test_axpy

• We test the double precision AXPY
operations through the axpy interface.

• We initialize vectors and scalars, call the
axpymethod from our package, and
print the results.
This modular approach makes it easy to
extend and maintain the BLAS wrapper.

Exercise
Implement the single precision, complex,
and double complex versions of AXPY in the
blasmodule and test them in the test
program.
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AXPY: A Starting Point for Parallelism
Ŷ Level Ŵ BLAS: Vector operations

• AXPY is a simple routine, ideal for exploring parallelism
• The operation can be parallelized by splitting vectors into chunks
• Each chunk can be computed independently in parallel

OpenMP Parallelization
• OpenMP: API for shared memory parallel programming
• Uses compiler directives (special comments)
• Supports C, C++, and Fortran
• Portable and scalable for multi-core processors
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OpenMP AXPY Example
Ŷ Level Ŵ BLAS: Vector operations

program axpy_opm_example
use iso_fortran_env, only: int64, real64, output_unit
use omp_lib
implicit none
integer(kind=int64), parameter :: n = 5
real(kind=real64) :: x(n), y(n), alpha
integer(kind=int64) :: i
! Initialize the vectors and scalar
x = [1.0, 2.0, 3.0, 4.0, 5.0]
y = [10.0, 20.0, 30.0, 40.0, 50.0]
alpha = 2.0
! Write the OpenMP directive to parallelize the for loop
!$omp parallel do
do i = 1, n

y(i) = y(i) + alpha * x(i)
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OpenMP AXPY Example
Ŷ Level Ŵ BLAS: Vector operations

end do
!$omp end parallel do
! Print the result
write(output_unit, '("Resulting vector y:")')
do i = 1, n

write(output_unit, '(F6.2)', advance='no') y(i)
end do
write(output_unit, '("")')
! Return
return

end program axpy_opm_example

• Include OpenMP: use omp_lib
• Directive: !$omp parallel do
• Compiler spawns threads to distribute loop iterations
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Compiling with OpenMP
Ŷ Level Ŵ BLAS: Vector operations

Compile the OpenMP program:
gfortran -o axpy_omp_example axpy_omp_example.f90 -fopenmp
Run the program:
./axpy_omp_example

Controlling Thread Count
Set number of threads via environment variable:
export OMP_NUM_THREADS=4
./axpy_omp_example
Or in code: call omp_set_num_threads(4)
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Querying Thread Information
Ŷ Level Ŵ BLAS: Vector operations

Get the number of threads being used:
integer(kind=int64) :: nthreads
!$omp parallel
!$omp single

nthreads = omp_get_num_threads()
!$omp end single
!$omp end parallel
write(output_unit, '("Number of threads: ", I2)') nthreads

• Use omp_get_num_threads() to query
• !$omp single ensures only one thread updates
• Must be called within a parallel region
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Two Key Questions
Ŷ Level Ŵ BLAS: Vector operations

Ŵ. How are threads scheduled?
— How are loop iterations distributed among threads?

ŵ. Who owns what data?
— Which variables are shared vs. private?
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OpenMP Scheduling Policies
Ŷ Level Ŵ BLAS: Vector operations

Specified using schedule clause:
static: Equal-sized chunks (default)

static, chunk_size: Fixed chunk size
dynamic: Iterations assigned as threads become available
guided: Dynamic with decreasing chunk sizes

runtime: Determined by OMP_SCHEDULE environment variable
auto: Compiler decides

!$omp parallel do schedule(static, chunk_size)
do i = 1, n

y(i) = alpha * x(i) + y(i)
end do
!$omp end parallel do
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Data Sharing Clauses
Ŷ Level Ŵ BLAS: Vector operations

Control variable visibility between threads:
shared: Single instance visible to all threads

private: Each thread has its own uninitialized copy
firstprivate: Like private, but initialized from original
lastprivate: Private, with final value copied back

Example for AXPY:
!$omp parallel do shared(x, y, alpha) private(i) schedule(dynamic)
do i = 1, n

y(i) = alpha * x(i) + y(i)
end do
!$omp end parallel do
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Performance Measurement Strategy
Ŷ Level Ŵ BLAS: Vector operations

• Use omp_get_wtime() for accurate timing
• Run multiple iterations for reliable measurements
• Use sufficiently large problem sizes
• Read problem size from command line
• Use allocatable arrays for dynamic sizing

Compilation with optimization
gfortran -O3 -march=native -mtune=alderlake -o axpy_omp axpy_omp_time.f90 -fopenmp
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Timing Code Example
Ŷ Level Ŵ BLAS: Vector operations

do i = 1, 1000
elapsed_time = 0.0
t1 = omp_get_wtime() ! Start timer
!$omp parallel do shared(x, y, alpha) private(j) schedule(static)
do j = 1, n

y(j) = alpha * x(j) + y(j)
end do
!$omp end parallel do
t2 = omp_get_wtime() ! Stop timer
elapsed_time = elapsed_time + (t2 - t1)

end do
• Average over many iterations
• Use omp_get_wtime() instead of cpu_time
• Measure wall-clock time
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Performance Analysis: roofline model
Ŷ Level Ŵ BLAS: Vector operations

Let us analyze the performance of our OpenMP AXPY implementation using the roofline
model.

First the characteristics of the AXPY operation:
• AXPY operation: y← αx+ y
• Floating-point operations (FLOPs): 2n (Ŵ multiplication + Ŵ addition per element)
• Data movement: 3n (read x, read y, write y)
• Operational intensity: 2n

3×8n = 2
24 = 1

12 FLOPs/byte

To plot the roofline model, we need to measure/know:
• Peak computational performance (FLOPs/s)
• Memory bandwidth (bytes/s)
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Performance Analysis: roofline model
Ŷ Level Ŵ BLAS: Vector operations

On my CPU (Intel® Core™ iż-ŴŷżųųHX) I have:
• Peak performance: Żŷŷ.Ż GFLOPs (double precision)
• Memory bandwidth: Żż.Ź GB/s (measured with stream)

The operational intensity of AXPY is 1/12 FLOPs/byte, which is independent of n, this is a
clear indication of amemory-bound operation.

The memory-bound performance ceiling is given by:

Performancemax, memory-bound = Operational Intensity×Memory Bandwidth

=
1

12
× 89.6 GFLOPs ≈ 7.47 GFLOPs
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Measuring Performance
Ŷ Level Ŵ BLAS: Vector operations

After running the different AXPY implementation with a large vector size (e.g., slightly
larger than the LŶ cache size) and measuring the execution time, we can compute the
achieved performance:

Assuming we measured an execution time of t seconds, the achieved performance is:

Achieved Performance =
2n
t
FLOPs/s
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Measuring Performance
Ŷ Level Ŵ BLAS: Vector operations

After running the different AXPY implementation with a large vector size (e.g., slightly
larger than the LŶ cache size) and measuring the execution time, we can compute the
achieved performance:

Assuming we measured an execution time of t seconds, the achieved performance is:

Achieved Performance =
2n
t
FLOPs/s

do rep = 1, reps
y = 0.0_dp ! Reset y for each repetition
t0 = omp_get_wtime()
call daxpy(n, alpha, x, 1, y, 1)
t1 = omp_get_wtime() ! BLAS implementation
time_blas = time_blas + (t1 - t0)

end do
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Visualizing results
Ŷ Level Ŵ BLAS: Vector operations

I tested it my machine with n = 6000000 over 100 repetitions and obtained the following:
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Some caveats
Ŷ Level Ŵ BLAS: Vector operations

To obtain reasonable numbers from our implementations we need to enable compiler
optimizations:
gfortran -O3 -march=native -mtune=native

-O3 enables high-level optimizations
-march=native enables instructions for the host CPU
-mtune=native optimizes for the host CPU microarchitecture

If we want to enable them in our CMake project we need to add the following lines to the
CMakeLists.txt file:
set(CMAKE_Fortran_FLAGS_RELEASE "-O3 -march=native -mtune=native")
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
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Full example code
Ŷ Level Ŵ BLAS: Vector operations

The full example code for the OpenMP AXPY implementation with performance
measurement is available at:

github.com/High-Performance-Linear-Algebra/objblas/tree/main

As usual, it can be obtained by doing
git clone git@github.com:High-Performance-Linear-Algebra/objblas.git
cd objblas
and the example run by doing
mkdir build
cd build
cmake ..
make # or ninja
./axpy_perf
ŷŵ/Ÿŵ

https://github.com/High-Performance-Linear-Algebra/objblas/tree/main


Varying the number of threads
Ŷ Level Ŵ BLAS: Vector operations

We can analyze the performance of our OpenMP AXPY implementation by varying the
number of threads used.

• Set the number of threads using the OMP_NUM_THREADS environment variable
• Measure execution time and compute achieved performance for each thread count
• Plot performance vs. number of threads to visualize scaling behavior

Example command to run with different thread counts
export OMP_NUM_THREADS=4
./axpy_perf
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Implementation of the AXPY scaling driver
Ŷ Level Ŵ BLAS: Vector operations

Since we want to vary the number of threads, and we want to visualize the performance,
we can implement a simple bash script which will do the job for us.
#!/bin/bash
BUILD_DIR=../../build
THREADS=(1 2 4 8 16 32)
SIZES=(1000000 5000000 10000000 50000000 100000000)
repetitions=50

for size in "${SIZES[@]}"; do
for threads in "${THREADS[@]}"; do

export OMP_NUM_THREADS=$threads
echo "Running axpy_scaling with size=$size and threads=$threads"
$BUILD_DIR/axpy_scaling $size $repetitions

done
done
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Implementation of the AXPY scaling driver
Ŷ Level Ŵ BLAS: Vector operations

The axpy_scaling program needs to read the size and number of repetitions from the
command line, so we can implement it as follows:
integer :: reps, n
character(len=20) :: n_str, reps_str
if (command_argument_count() < 2) then

write(error_unit, *) 'Usage: axpy_scaling <problem_size> <repetitions>'
stop

end if
call get_command_argument(1, n_str)
call get_command_argument(2, reps_str)
read(n_str, *) n
read(reps_str, *) reps
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Implementation of the AXPY scaling driver
Ŷ Level Ŵ BLAS: Vector operations

We allocate the arrays dynamically:
real(dp), allocatable :: x(:), y(:)
real(dp) :: alpha
integer :: stat
! Allocate and initialize data
allocate(x(n), y(n),stat=stat)
if (stat /= 0) then

write(error_unit, *) 'Error allocating arrays of size ', n
stop

end if

x = [(real(i, dp), i = 1, n)]
y = 0.0_dp
alpha = 2.0_dp
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Implementation of the AXPY scaling driver
Ŷ Level Ŵ BLAS: Vector operations

Finally we can implement the timing loop as follows:

! Benchmark BLAS AXPY
time_blas = 0.0_dp
do rep = 1, reps

y = 0.0_dp
t0 = omp_get_wtime()
call daxpy(n, alpha, x, 1, y, 1)
t1 = omp_get_wtime()
time_blas = time_blas + (t1 - t0)

end do

! Benchmark OpenMP AXPY
time_omp = 0.0_dp
do rep = 1, reps

y = 0.0_dp
t0 = omp_get_wtime()
call axpy_omp(n, alpha, x, 1, y, 1)
t1 = omp_get_wtime()
time_omp = time_omp + (t1 - t0)

end do

We then compute the averages, and print the results to screen:
write(output_unit, *) 'Average time BLAS AXPY: ', time_blas/reps, ' seconds'
write(output_unit, *) 'Average time OpenMP AXPY: ', time_omp/reps, ' seconds'
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Writing to file for plotting
Ŷ Level Ŵ BLAS: Vector operations

It is convenient to write the results to a file for later plotting. We can do it as follows:
open(unit=10, file='axpy_scaling_results.csv', status='unknown',

action='write', position='append')↪→

write(10, '(I10,I10,1X,F15.6,F15.6)') n, nthreads, time_blas, time_omp
close(10)
• open opens a file for writing
• status='unknown' creates the file if it doesn’t exist, other possibilities for this
argument are 'old', 'new', and 'replace'

• position='append' adds data to the end of the file, other possibilities are
'rewind' and 'replace', which start writing from the beginning of the file, and
overwrite existing content.

• write formats and writes the data: problem size, thread count, and timings
• close closes the file
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Strong Scaling Results
Ŷ Level Ŵ BLAS: Vector operations
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Strong Scaling Results
Ŷ Level Ŵ BLAS: Vector operations
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Strong Scaling Results
Ŷ Level Ŵ BLAS: Vector operations
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Strong Scaling Results
Ŷ Level Ŵ BLAS: Vector operations
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Strong Scaling Results
Ŷ Level Ŵ BLAS: Vector operations
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Strong Scaling Results: Analysis
Ŷ Level Ŵ BLAS: Vector operations

• For small problem sizes (n = 106), execution time increases with more threads
— Thread creation overhead dominates computation
— Memory bandwidth not fully utilized

• For large problem sizes (n ≥ 5× 107), execution time decreases with more threads
— Computation becomes significant enough to benefit from parallelism
— Better amortization of parallel overhead
— Improved memory bandwidth utilization across cores

• Memory-bound nature persists:
— Scaling plateaus beyond Ż-ŴŹ threads
— Limited by memory bandwidth, not computation
— Multiple threads saturate available bandwidth

Rule of thumb
For memory-bound operations like AXPY, parallelism helps only when the problem size is
large enough to amortize threading overhead and saturate memory bandwidth.
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Exercises
ŷ Conclusions

What does it change if we use single precision instead of double precision?
Investigate weak scaling behavior by increasing problem size proportionally with the
number of threads.
Implement Continuous Integration (CI) for the repository using GitHub Actions.
We could test one BLAS implementation against another (e.g., OpenBLAS vs Intel
MKL) and one compiler against another (e.g., GCC vs Intel). How would you
implement this? A good idea would be to look at spack.io for package
management.
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Summary and next-steps
ŷ Conclusions

• We have created a Fortran module wrapping BLAS AXPY routines with a clean
interface.

• We implemented an OpenMP version of AXPY to explore parallelism.
• We analyzed performance using the roofline model, confirming AXPY is
memory-bound.

• We studied strong scaling behavior by varying thread counts and problem sizes.

Next Steps:
• Look at inner products (DOT), norms and their parallel implementations.
• Start exploring Level ŵ BLAS routines (matrix-vector operations).
• Look at more OpenMP pragmas and optimizations.
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Back from the past
Ŵ Back from the past

• Last time we have seen:
— Introduction to the general BLAS idea
— BLAS Level Ŵ: vector-vector operations
— Performance considerations

• Today we will continue with:
— BLAS Level Ŵ: DOT, NRMŵ and Givens rotations
— BLAS Level ŵ: GEMV
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DOT: Dot Product
ŵ BLAS Level Ŵ: DOT

Another important operation is the dot product, which is defined as:

c = x⊤y =
n∑

i=1

xiyi

• The dot product is a scalar product of two vectors
• Sum of the products of corresponding elements
• BLAS routine (double precision): ddot

c = ddot(n, x, incx, y, incy)
where incx and incy are the increments for the input vectors x and y.
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Fortran Functions: Declaration
ŵ BLAS Level Ŵ: DOT

• Functions return a single value
• Must declare return type
• Two ways to declare:

Method Ŵ: Classic Fortran style
real(real64) function my_function(x, y)

real(real64), intent(in) :: x, y
my_function = x + y

end function my_function
Method ŵ: Result clause
function my_function(x, y) result(z)

real(real64), intent(in) :: x, y
real(real64) :: z
z = x + y

end function my_function
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Fortran Functions: External Functions
ŵ BLAS Level Ŵ: DOT

• Some BLAS routines are external functions: compiled separately, no interface
• Must declare in calling program

program main
use iso_fortran_env, only: real64
implicit none
real(real64) :: ddot ! Declaration
real(real64) :: x(3), y(3), result
x = [1.0, 2.0, 3.0]
y = [4.0, 5.0, 6.0]
result = ddot(3, x, 1, y, 1)

end program main

Important
Without declaration and without implicit none, the compiler assumes ddot returns
real(real32), possibly causing errors.
Ź/ŷż



Fortran Functions vs Subroutines
ŵ BLAS Level Ŵ: DOT

Functions
• Return single value
• Used in expressions
• Example: ddot

c = ddot(n, x, 1, y, 1)

Subroutines
• Return via arguments
• Called with call
• Example: daxpy

call daxpy(n, a, x, 1, y, 1)

BLAS Convention
• Scalar results: functions (ddot, dnrm2)
• Vector/matrix results: subroutines (daxpy, dgemv)
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Passing Functions as Arguments
ŵ BLAS Level Ŵ: DOT

• Sometimes we need to pass a function to a subroutine
• Common in numerical algorithms (integration, optimization)
• Fortran provides mechanisms for this

Example Use Cases

• Numerical integration:
∫ b
a f(x)dx for different functions f,

• Root finding: find x such that f(x) = 0 for different functions f,
• Optimization: minimize f(x) for different functions f.
• Compute f(A)v for different functions f and matrix A.
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Method Ŵ: External Procedure
ŵ BLAS Level Ŵ: DOT

Classic Fortran approach (using external)—which is still valid today, but less safe and
should be avoided in modern code.

• external declares f as external function
• No type checking of arguments
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Method Ŵ: External Procedure
ŵ BLAS Level Ŵ: DOT

Classic Fortran approach (using external)—which is still valid today, but less safe and
should be avoided in modern code.

Step Ŵ: Define the function
real(real64) function my_func(x)

real(real64), intent(in) :: x
my_func = x**2

end function my_func

• external declares f as external function
• No type checking of arguments
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Method Ŵ: External Procedure
ŵ BLAS Level Ŵ: DOT

Classic Fortran approach (using external)—which is still valid today, but less safe and
should be avoided in modern code.

Subroutine that accepts function:
subroutine integrate(f, a, b, result)

real(real64), external :: f
real(real64), intent(in) :: a, b
real(real64), intent(out) :: result
! Integration code using f(x)
result = (b-a) * f((a+b)/2.0)

end subroutine integrate

• external declares f as external function
• No type checking of arguments
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Method Ŵ: External Procedure
ŵ BLAS Level Ŵ: DOT

Classic Fortran approach (using external)—which is still valid today, but less safe and
should be avoided in modern code.

Subroutine that accepts function:
subroutine integrate(f, a, b, result)

real(real64), external :: f
real(real64), intent(in) :: a, b
real(real64), intent(out) :: result
! Integration code using f(x)
result = (b-a) * f((a+b)/2.0)

end subroutine integrate

• external declares f as external function
• No type checking of arguments
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Method ŵ: Procedure Pointer (Modern Fortran)
ŵ BLAS Level Ŵ: DOT

The procedure in modern Fortran is to use procedure interfaces for type safety.

• procedure(interface_name) provides type safety
• Compiler checks function signature
• Recommended for modern code
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Method ŵ: Procedure Pointer (Modern Fortran)
ŵ BLAS Level Ŵ: DOT

The procedure in modern Fortran is to use procedure interfaces for type safety.

Define interface:
abstract interface

real(real64) function func_interface(x)
real(real64), intent(in) :: x

end function func_interface
end interface

• procedure(interface_name) provides type safety
• Compiler checks function signature
• Recommended for modern code
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Method ŵ: Procedure Pointer (Modern Fortran)
ŵ BLAS Level Ŵ: DOT

The procedure in modern Fortran is to use procedure interfaces for type safety.

Subroutine with procedure argument:
subroutine integrate(f, a, b, result)

procedure(func_interface) :: f
real(real64), intent(in) :: a, b
real(real64), intent(out) :: result
result = (b-a) * f((a+b)/2.0)

end subroutine integrate

• procedure(interface_name) provides type safety
• Compiler checks function signature
• Recommended for modern code
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Method ŵ: Procedure Pointer (Modern Fortran)
ŵ BLAS Level Ŵ: DOT

The procedure in modern Fortran is to use procedure interfaces for type safety.

Subroutine with procedure argument:
subroutine integrate(f, a, b, result)

procedure(func_interface) :: f
real(real64), intent(in) :: a, b
real(real64), intent(out) :: result
result = (b-a) * f((a+b)/2.0)

end subroutine integrate

• procedure(interface_name) provides type safety
• Compiler checks function signature
• Recommended for modern code
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Using the Function Argument
ŵ BLAS Level Ŵ: DOT

Calling the subroutine:
program main

use iso_fortran_env, &
only: real64

implicit none
real(real64) :: result
call integrate(my_func, &

0.0_real64, &
1.0_real64, result)

print *, "Result:", result

contains
real(real64) function &

my_func(x)
real(real64), &

intent(in) :: x
my_func = x**2

end function my_func
end program main

• Pass function name without parentheses
• Functionmustmatch expected signature, as defined by the abstract interface.
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DOT: Parallelization Strategy
ŵ BLAS Level Ŵ: DOT

Question
What kind of parallelism can we exploit?

• The dot product is a reduction operation
• Strategy:

• Good example for OpenMP parallelization

Thread Ŵ Thread ŵ Thread Ŷ

x = x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

p1 =
∑

xiyi p2 =
∑

xiyi p3 =
∑

xiyi

Reduction: c = p1 + p2 + p3

Ŵ. Split vectors into chunks
ŵ. Each thread computes local dot
Ŷ. Reduce partial sums
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DOT: Parallelization Strategy
ŵ BLAS Level Ŵ: DOT

Question
What kind of parallelism can we exploit?

• The dot product is a reduction operation
• Strategy:

— Split vectors into chunks
— Each thread computes local dot product
— Reduce partial sums to get final result

• Good example for OpenMP parallelization

Reduction operations
But how do we implement reductions in OpenMP?
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OpenMP Reduction Clause: Idea
ŵ BLAS Level Ŵ: DOT

Pattern: combine per-thread partial results into one final value.
• Syntax (loop form): !$omp parallel do reduction(op:var1,var2,...)
• Each listed variable gets:

Ŵ. private copy (initialized),
ŵ. local accumulation,
Ŷ. final merge.

• Avoid manual critical sections; scalable; fewer false sharing issues.
• Works for associative/commutative operations

floating point is not associative: order may changes result slightly!

Supported intrinsic operators (Fortran)
+ - * .and. .or. .xor. max min iand ior ieor
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Basic Examples
ŵ BLAS Level Ŵ: DOT

! Sum of an array
total = 0.0_real64 ! Initialize shared reduction variable; each

thread gets a private copy set to 0↪→

!$omp parallel do reduction(+:total)
do i = 1, n ! Iterations divided among threads

total = total + a(i) ! Each thread accumulates into its private
'total'↪→

end do ! Runtime combines all private totals
(addition) into the shared 'total'↪→
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Basic Examples
ŵ BLAS Level Ŵ: DOT

! Maximum over array
mval = -huge(mval) ! Initialize with very small value; private

copies get same initialization↪→

!$omp parallel do reduction(max:mval)
do i = 1, n ! Iterations executed in parallel

if (a(i) > mval) mval = a(i) ! Track local maximum in each thread
end do ! Runtime computes global max from all

thread-local maxima↪→
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Basic Examples
ŵ BLAS Level Ŵ: DOT

! Logical OR over flags
any_flag = .false. ! Identity for .or.; private copies start as

.false.↪→

!$omp parallel do reduction(.or.:any_flag)
do i = 1, n ! Parallel traversal of flags

any_flag = any_flag .or. flags(i) ! Accumulate local logical OR
end do ! Final any_flag is OR of all thread-local

results↪→
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What the Runtime Does
ŵ BLAS Level Ŵ: DOT

Ŵ. Creates one private copy per thread (initialized suitably).
ŵ. Executes loop chunks independently, updating private copies.
Ŷ. At implicit barrier: combines privates into the original variable: in unspecified order.

Initialization Rules
• +: zero; *: one; logical: identity; max/min: extreme values.
• Ensure you do NOT re-initialize inside the loop.

Numerical Note
Floating point reductions are order-dependent; expect tiny round-off differences vs serial.
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Common Pitfalls
ŵ BLAS Level Ŵ: DOT

• Forgetting initialization before the directive (needed for clarity; runtime overwrites).
• Writing to the reduction variable outside the loop: creates race conditions.
• Using non-associative custom operations without care (order not guaranteed).
• Large objects: reduction copies can be expensive; considermanual chunking or
atomic updates if contention low.
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Atomic Updates
ŵ BLAS Level Ŵ: DOT

Atomic updates protect a single read-modify-write operation on one scalar or array element so
that threads do not interleave it. In OpenMP add !$omp atomic before the assignment; only that
memory operation is serialized, not the whole loop.
When to use:
• Few conflicting updates (low contention).

• Irregular indices (e.g. histogram, sparse gather).

• Operation not available as a reduction.

Drawbacks: High contention degrades scalability;
for dense loops prefer a reduction (private copies +
final combine).
Rules: Single assignment only; limited set of
operators; protects exactly one memory location.

Example:

total = 0.0_real64
!$omp parallel do shared(total)
do i = 1, n

!$omp atomic
total = total + a(i)

end do
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Atomic with function calls
ŵ BLAS Level Ŵ: DOT

Example:
!$omp parallel do shared(total)
do i = 1, n

!$omp atomic
total = total + my_func(a(i))

end do

Function:
real(real64) function my_func(x)

real(real64), intent(in) :: x
my_func = x**2

end function my_func

• Function calls inside atomic regions can lead to undefined behavior if the function
itself is not thread-safe.

• Ensure that any function called within an atomic region does not modify shared state
or rely on non-thread-safe operations.

• It is only the update to the memory location of the variable total that will occur
atomically.
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Atomic with function calls
ŵ BLAS Level Ŵ: DOT

Example:
!$omp parallel do shared(total)
do i = 1, n

!$omp atomic
total = total + my_func(a(i))

end do

Function:
real(real64) function my_func(x)

real(real64), intent(in) :: x
!$omp critical (my_func_lock)

my_func = x**2
!$omp end critical (my_func_lock)
end function my_func

• If the application developer does not intend to permit the threads to execute
my_func at the same time, then the !$omp critical construct must be used
instead,

• the critical construct provides a means to ensure that multiple threads do not
attempt to update the same shared data simultaneously,

• When a thread encounters a critical construct, it waits until no other thread is
executing a critical region with the same name.
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DOT: OpenMP Implementation
ŵ BLAS Level Ŵ: DOT

program dot_omp
use iso_fortran_env, only: output_unit, real64
use omp_lib
implicit none
integer :: i
integer, parameter :: n = 10000
integer :: nthreads
real(real64) :: x(n), y(n)
real(real64) :: sum, c
real(real64) :: start_time, end_time
real(real64) :: ddot
!$omp parallel
!$omp single
nthreads = omp_get_num_threads()
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DOT: OpenMP Implementation
ŵ BLAS Level Ŵ: DOT

!$omp end single
!$omp end parallel
write(output_unit,'("Number of threads: ",I0)') nthreads
! Initialize arrays
x = 1.0
y = 2.0
c = 0.0
start_time = omp_get_wtime()
!$omp parallel do private(i) shared(x,y) reduction(+:c)
do i = 1, n

c = c + x(i) * y(i)
end do
!$omp end parallel do
end_time = omp_get_wtime()
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DOT: OpenMP Implementation
ŵ BLAS Level Ŵ: DOT

write(output_unit,'("Dot product: ",F0.2)') sum
write(output_unit,'("Time taken: ",E0.2)') end_time - start_time
! Check the result with blas
call cpu_time(start_time)
sum = ddot(n, x, 1, y, 1)
call cpu_time(end_time)
if (abs(c - sum) > 1.0e-12) then

write(output_unit,'("Abs. Error: ",F0.2)') abs(c - sum)
else

write(output_unit,'("Result is correct")')
end if
write(output_unit,'("BLAS time: ",E0.2)') end_time - start_time

end program dot_omp
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DOT: OpenMP Implementation
ŵ BLAS Level Ŵ: DOT

• !$omp parallel do creates parallel region
• reduction(+:c) clause for reduction variable
• Each thread has private copy of c
• Values combined at end of parallel region

Exercise
A possible exercise is to implement the ddot function using, instead of the reduction
clause, atomic or critical sections, and then compare the performance with the
reduction version.
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Back to the roofline model
ŵ BLAS Level Ŵ: DOT

• DOT operation: c =
∑n

i=1 xiyi
• Arithmetic: 2n flops (multiply + add per element)
• Memory traffic: 2n× 8 bytes (read xi and yi)
• Arithmetic intensity:

AI =
2n
16n

=
1

8
flops/byte

Memory Bound
DOT ismemory bound: performance limited bymemory bandwidth, not compute
capability.

• Peak performance: P = min(π, β × AI) = β × 1/8

• where β is memory bandwidth (GB/s) and π is peak compute (GFLOPS/s)
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NRMŵ: ŵ-Norm of a Vector
Ŷ BLAS Level Ŵ: NRMŵ

The ŵ-norm is defined as:

c = ∥x∥2 =

√√√√ n∑
i=1

x2i

BLAS routine: dnrm2
c = dnrm2(n, x, incx)
where incx is the increment for the input vector x.
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NRMŵ: OpenMP Implementation
Ŷ BLAS Level Ŵ: NRMŵ

Similar implementation to dot product:
c = 0.0
!$omp parallel do reduction(+:c) shared(x) private(i)
do i = 1, n

c = c + x(i)**2
end do
!$omp end parallel do
c = sqrt(c)

• Same reduction pattern
• Square root applied after parallel region
• Same declaration note applies to dnrm2
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Back to the roofline model
Ŷ BLAS Level Ŵ: NRMŵ

• NRMŵ operation: c =
√∑n

i=1 x
2
i

• Arithmetic: 2n flops (square + add per element)
• Memory traffic: n× 8 bytes (read xi)
• Arithmetic intensity:

AI =
2n
8n

=
1

4
flops/byte

Memory Bound
NRMŵ is alsomemory bound: performance limited bymemory bandwidth, not compute
capability.

• Peak performance: P = min(π, β × AI) = β × 1/4

• where β is memory bandwidth (GB/s) and π is peak compute (GFLOPS/s)
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Other Level Ŵ BLAS Routines
ŷ All the other Level Ŵ BLAS

• SCAL: Scale vector by a constant
y = αx,

• COPY: Copy vector x to y,
• SWAP: Swap vectors x and y,
• ASUM: Ŵ-norm of a vector,
• IAMAX: finds the index of the first element having maximum absolute value.

Exercise
Implement these routines using OpenMP parallelization, the OpenMP instruction seen so
far are sufficient for this purpose.
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Givens rotations
ŷ All the other Level Ŵ BLAS

Another important class of Level Ŵ BLAS routines are those implementing Givens rotations.
• Givens rotation zeroes elements in vectors/matrices.
• Used in QR factorization, least squares problems.
• Basic operation: [

c s
−s c

] [
a
b

]
=

[
r
0

]
where c = cos(θ), s = sin(θ).

BLAS routines: drotg (generate), drot (apply).
call drotg(a, b, c, s)
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Givens rotations
ŷ All the other Level Ŵ BLAS

Another important class of Level Ŵ BLAS routines are those implementing Givens rotations.
• Givens rotation zeroes elements in vectors/matrices.
• Used in QR factorization, least squares problems.
• Basic operation: [

c s
−s c

] [
a
b

]
=

[
r
0

]
where c = cos(θ), s = sin(θ).

BLAS routines: drotg (generate), drot (apply).
call drot(n, x, incx, y, incy, c, s)
This applies the rotation to vectors x and y.
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Givens rotations: example
ŷ All the other Level Ŵ BLAS

program givens_example
use iso_fortran_env, only: real64
implicit none
real(real64) :: a, b, c, s
a = 3.0_real64
b = 4.0_real64
call drotg(a, b, c, s)
print *, "Givens rotation parameters:"
print *, "c =", c, ", s =", s

end program givens_example
• This program computes the Givens rotation parameters for the vector (3, 4).
• The output will show the cosine and sine values used in the rotation.
• These parameters can then be used to zero out one of the elements in a vector or
matrix.
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Using Givens rotations to zero out elements
ŷ All the other Level Ŵ BLAS

Example: Zeroing out elements in a vector
subroutine zero_givens(x, c, s)

use iso_fortran_env, only: real64
real(real64), intent(inout) :: x(:)
real(real64), allocatable,

intent(out) :: c(:), s(:)↪→

integer :: n, i
real(real64) :: a, b, cc, ss
n = size(x)
if (n <= 1) then

allocate(c(0), s(0))
return

end if
allocate(c(n-1), s(n-1))

• This subroutine takes a vector x and
computes Givens rotations to zero out
all elements except the first one.

• It allocates arrays c and s to store the
cosine and sine values of the
rotations.

• For each element in the vector (from
the second to the last), it computes
the Givens rotation parameters using
drotg.

• It then applies the rotation to the pair
of elements x(1) and x(i) using drot.
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Using Givens rotations to zero out elements
ŷ All the other Level Ŵ BLAS

Example: Zeroing out elements in a vector

do i = 2, n
a = x(1)
b = x(i)
! build Givens for (a,b)
call drotg(a, b, cc, ss)
c(i-1) = cc
s(i-1) = ss
! Apply rotation to the 2-vector

[x(1); x(i)] using BLAS drot↪→

call drot(1, x(1:1), 1, x(i:i),
1, cc, ss)↪→

end do
end subroutine zero_givens

• This subroutine takes a vector x and
computes Givens rotations to zero out
all elements except the first one.

• It allocates arrays c and s to store the
cosine and sine values of the
rotations.

• For each element in the vector (from
the second to the last), it computes
the Givens rotation parameters using
drotg.

• It then applies the rotation to the pair
of elements x(1) and x(i) using drot.
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Level ŵ BLAS Overview
ŷ All the other Level Ŵ BLAS

• Level ŵ BLAS routines perform matrix-vector operations.

• These routines are essential for many numerical algorithms, including solving linear
systems and eigenvalue problems.
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The GEMV Routine
ŷ All the other Level Ŵ BLAS

• One of the most important Level ŵ BLAS routines is GEMV (General Matrix-Vector
multiplication).

• It computes the operation:
y = αAx+ βy

where A is a matrix, x and y are vectors, and α and β are scalars.
• GEMV is widely used in various applications, including solving linear systems and
performing transformations.
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GEMV: BLAS Interface
ŷ All the other Level Ŵ BLAS

y = αAx+ βy

• Routine: dgemv (double precision)
• Prototype:

call dgemv(trans, m, n, alpha, A, lda, x, incx, beta, y, incy)
! trans = 'N','T','C'; lda = leading dimension of A

• Column-major storage; lda = first dimension of A as declared.
• Increments allow strided access (usually Ŵ).
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GEMV: Example Program
ŷ All the other Level Ŵ BLAS

program gemv_blas
use iso_fortran_env, only: real64, output_unit, error_unit
implicit none
integer :: m, n, lda
real(real64) :: alpha, beta
real(real64), allocatable :: A(:,:), x(:), y(:)
character(len=100) :: m_str, n_str
real(real64) :: start_time, end_time, elapsed_time
integer :: i,j,info
! Read m and n from command line arguments
if (command_argument_count() < 2) then

write(error_unit, '("Usage: gemv_blas <m> <n>")')
stop
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GEMV: Example Program
ŷ All the other Level Ŵ BLAS

end if
call get_command_argument(1, m_str, status=info)
call get_command_argument(2, n_str, status=info)
if (info /= 0) then

write(error_unit, '("Error reading command line arguments")')
stop

end if
read(m_str, *) m
read(n_str, *) n
! set parameters
lda = m
alpha = 1.0d0
beta = 1.0d0
allocate(A(lda, n), x(n), y(m),stat=info)
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GEMV: Example Program
ŷ All the other Level Ŵ BLAS

if (info /= 0) then
write(error_unit, '("Error allocating memory")')
stop

end if
! Initialize matrix A and vectors x and y
do i = 1, m

do j = 1, n
A(i, j) = real(i + j, kind=real64)

end do
end do
do i = 1, n

x(i) = real(i, kind=real64)
end do
do i = 1, m
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GEMV: Example Program
ŷ All the other Level Ŵ BLAS

y(i) = real(i, kind=real64)
end do
! Compute the matrix-vector product using BLAS gemv
call cpu_time(start_time)
call dgemv('N', m, n, alpha, A, lda, x, 1, beta, y, 1)
call cpu_time(end_time)
elapsed_time = end_time - start_time
write(output_unit, '("BLAS dgemv time: ", E0.6)') elapsed_time
! Free allocated memory
deallocate(A, x, y, stat=info)
if (info /= 0) then

write(error_unit, '("Error deallocating memory")')
stop
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GEMV: Example Program
ŷ All the other Level Ŵ BLAS

end if
end program gemv_blas
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Organizing Implementations
ŷ All the other Level Ŵ BLAS

• Place multiple GEMV variants in a module for reuse.
module gemvmod

use iso_fortran_env
use omp_lib
implicit none
private
public :: gemv_openmp_n, gemv_openmp_n_block

contains
! Implementations follow
⟨ see next slides ⟩

end module gemvmod
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Parallel Formulation
ŷ All the other Level Ŵ BLAS

yi = α

n∑
j=1

Aijxj + βyi, i = 1, . . . ,m

• Natural outer-loop parallelism over rows i (independent updates).
• Uses dot products: reuse optimized ddot.

Thread Ŵ

Thread ŵ

Thread Ŷ

Thread ŷ

A

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

x

x1

x2

x3

× +β y

y1

y2

y3

y4

=

y1

y2

y3

y4
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Variant Ŵ: Parallel Over Rows
ŷ All the other Level Ŵ BLAS

subroutine gemv_openmp_n(m, n, alpha, A, lda, x, beta, y)
use iso_fortran_env, only: real64
use omp_lib
implicit none
integer, intent(in) :: m, n, lda
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda,*), x(*)
real(real64), intent(inout) :: y(*)
real(real64) :: ddot
integer :: i
real(real64) :: temp
!$omp parallel do private(i,temp) shared(m,n,A,x,y,alpha,beta)
do i = 1, m
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Variant Ŵ: Parallel Over Rows
ŷ All the other Level Ŵ BLAS

temp = ddot(n, A(i,1:n), 1, x, 1)
y(i) = alpha*temp + beta*y(i)

end do
!$omp end parallel do

end subroutine

Strided row access in column-major layout: less cache-friendly.

Memory Access Patterns: Cache Misses
Accessing data in a non-contiguous manner can lead to cache misses, as the CPU cache is
optimized for spatial locality. When data is accessed sequentially, it is more likely to be present in
the cache, leading to faster access times. However, when data is accessed in a strided or
non-contiguous manner, it can result in cache misses, as the required data may not be present in
the cache, leading to slower access times due to fetching data from main memory.
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Variant Ŵb: Dynamic Scheduling
ŷ All the other Level Ŵ BLAS

subroutine gemv_openmp_n_block(m, n, alpha, A, lda, x, beta, y)
use iso_fortran_env, only: real64
use omp_lib
implicit none
integer, intent(in) :: m, n, lda
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda,*), x(*)
real(real64), intent(inout) :: y(*)
real(real64) :: ddot, temp
integer :: i
!$omp parallel do schedule(dynamic,32) private(i,temp) &
!$omp shared(m,n,A,x,y,alpha,beta)
do i = 1, m
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Variant Ŵb: Dynamic Scheduling
ŷ All the other Level Ŵ BLAS

temp = ddot(n, A(i,1:n), 1, x, 1)
y(i) = alpha*temp + beta*y(i)

end do
!$omp end parallel do

end subroutine

• Dynamic chunks mitigate load imbalance; chunk size tunable.

OpenMP schedule clause: chunk size reminder
• Syntax: !$omp do schedule(kind[,chunk])

• chunk=max iterations handed to a thread each time it receives work.

• dynamic[,c]: Threads pull blocks of size c from a queue until done. Good for irregular
work; more overhead. Default c often = Ŵ if omitted.
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OpenMP schedule clause: chunk size effects
ŷ All the other Level Ŵ BLAS

• Rule of thumb: pick c so that per-chunk work dominates scheduling cost.
— Too small: higher scheduling overhead, more contention.
— Too large: potential load imbalance (idle threads at end).

!$omp parallel do
schedule(static,64)↪→

do i = 1, n
work(i)

end do

• Static scheduling with
large chunks.

• Low scheduling
overhead, but potential
load imbalance.

!$omp parallel do
schedule(dynamic,8)↪→

do i = 1, n
work(i)

end do

• Dynamic scheduling
with small chunks.

• Better load balance,
but higher overhead.

!$omp parallel do
schedule(guided,4)↪→

do i = 1, n
work(i)

end do

• Guided scheduling with
minimum chunk size.

• Balances load and
overhead adaptively.
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OpenMP schedule clause: chunk size effects
ŷ All the other Level Ŵ BLAS

• Rule of thumb: pick c so that per-chunk work dominates scheduling cost.
— Too small: higher scheduling overhead, more contention.
— Too large: potential load imbalance (idle threads at end).

Tip
Benchmark several chunk sizes; optimal values depend on loop body cost variability and
hardware.
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Summary and Next Lecture
Ÿ Summary and next lecture

• OpenMP reductions simplify parallel accumulation patterns.
• Atomic updates provide fine-grained synchronization for low-contention cases.
• Level Ŵ BLAS routines (DOT, NRMŵ) arememory-bound.
• Level ŵ BLAS routines (GEMV) involve matrix-vector operations; parallelism can be
exploited over rows.

• Memory access patterns significantly impact performance; consider data layout and
access order.

Next lecture
• Investigate better memory access patterns for GEMV.
• Level Ŷ BLAS: Matrix-Matrix operations (GEMM).
• Blocking techniques for cache efficiency.
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Back from the past
Ŵ Back from the past

• Last time we have seen:
— BLAS Level Ŵ: DOT, NRMŵ and Givens rotations
— BLAS Level ŵ: GEMV a first look

• Today we will continue with:
— BLAS Level ŵ: GEMV: better memory access patterns
— BLAS Level Ŷ: GEMM
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Last lecture
ŵ BLAS Level ŵ: GEMV continued

We have implemented two variants of the GEMV kernel, in the following module:
module gemvmod

use iso_fortran_env
use omp_lib
implicit none
private
public :: gemv_openmp_n, gemv_openmp_n_block

contains
! Implementations in the last lecture

end module gemvmod

• gemv_openmp_n: simple OpenMP parallelization over rows,
• gemv_openmp_n_block: blocked version with OpenMP parallelization over blocks

of rows.
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GEMV: limitations of the previous implementations
ŵ BLAS Level ŵ: GEMV continued

Both implementations have a limitation: they access the matrix A in column-major
order, which is not cache friendly.
We can improve the memory access pattern by changing the way we parallelize the
computation.

Instead of parallelizing over rows, we can parallelize over columns.

Ÿ/Źż



GEMV: limitations of the previous implementations
ŵ BLAS Level ŵ: GEMV continued

Both implementations have a limitation: they access the matrix A in column-major
order, which is not cache friendly.
We can improve the memory access pattern by changing the way we parallelize the
computation.
Instead of parallelizing over rows, we can parallelize over columns.

Ÿ/Źż



GEMV: limitations of the previous implementations
ŵ BLAS Level ŵ: GEMV continued

Both implementations have a limitation: they access the matrix A in column-major
order, which is not cache friendly.
We can improve the memory access pattern by changing the way we parallelize the
computation.
Instead of parallelizing over rows, we can parallelize over columns.

Ay x

m

n

=

We express the matrix-vector product as a linear
combination of the columns of A:

y = x1a:,1 + x2a:,2 + · · ·+ xna:,n

From an operative point of view, this means
swapping the two loops in the naïve implementation.
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GEMV: parallelization over columns
ŵ BLAS Level ŵ: GEMV continued

The matrix A is stored in column-major order, this allows A to be read sequentially,
optimizing memory access.
Each element of the vector x is loaded into registers and reused efficiently.
The vector y is accessed in every iteration, but if its size is smaller than the cache
capacity, it can be reused at the cache level.

y = beta * y ! Update y with beta * y
!$omp parallel do private(i) shared(A, x, alpha) reduction(+:y)
do i = 1, n

call daxpy(m, alpha*x(i), A(1:m,i), 1, y, 1)
end do
!$omp end parallel do
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Limitation of the column-wise parallelization
ŵ BLAS Level ŵ: GEMV continued

The column-wise parallelization has a limitation:
— The number of columns nmay be small compared to the number of available threads,
— Array reductions are expensive: each thread needs to maintain a private copy of the

output vector y and then reduce them at the end of the computation,
— For largem, maintaining multiple copies of y can exceed cache capacity

To overcome this limitation, we can use a blocked version of the column-wise
parallelization.
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output vector y and then reduce them at the end of the computation,
— For largem, maintaining multiple copies of y can exceed cache capacity

To overcome this limitation, we can use a blocked version of the column-wise
parallelization.

Ay x

m

n

=

• This is a good approach if the matrix A is large enough,
and it allows us to take advantage of the cache hierarchy.
The code is similar, but we need to add an outer loop that
iterates over the blocks of the matrix A.
This is an example of divide-and-conquer approach:
— we divide the problem into smaller subproblems,
— solve each subproblem by a sequential GEMV operation.
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Divide and conquer GEMV code
ŵ BLAS Level ŵ: GEMV continued

! scale y by beta
y = beta * y
!$omp parallel default(none) &
!$omp shared(A, x, y, m, n, lda, alpha, n_x_, n_y_) &
!$omp private(i,j,ti,mb,nb,yloc)
allocate(yloc(m))
yloc = 0.0_real64
! Tile the i–j loops; collapse for better load balance
!$omp do collapse(2) schedule(static)
do i = 1, m, n_x_

do j = 1, n, n_y_
mb = min(n_x_, m - i + 1) ! handle edge tiles

Ż/Źż



Divide and conquer GEMV code
ŵ BLAS Level ŵ: GEMV continued

nb = min(n_y_, n - j + 1)
! perform the small GEMV into the thread--local yloc

call dgemv('N', mb, nb, alpha, &
A(i, j), lda, &
x(j), 1, &
1.0_real64, yloc(i), 1)

end do
end do
!$omp end do
! Safely accumulate thread--local yloc into global y
do ti = 1, m

!$omp atomic
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Divide and conquer GEMV code
ŵ BLAS Level ŵ: GEMV continued

y(ti) = y(ti) + yloc(ti)
end do
deallocate(yloc)
!$omp end parallel

We need to choose appropriate block sizes n_x_ and n_y_.
We need to handle edge tiles when the matrix dimensions are not multiples of the
block sizes.
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Description of the code
ŵ BLAS Level ŵ: GEMV continued

We allocate a private copy of the output vector yloc for each thread.
We tile the i-j loops, and we use the !collapse(2) clause to parallelize over the
tiles.
For each tile, we call a sequential dgemv to compute the partial result into the
private yloc.
Finally, we safely accumulate the private copies into the global output vector y using
an !atomic operation.

Compile
We can add the module to our main project objblas:
add_library(objblas src/blas.f90 src/blasOMP.f90 src/gemvmod.f90)
target_link_libraries(objblas PUBLIC BLAS::BLAS OpenMP::OpenMP_Fortran)
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Roofline Model Refresher
ŵ BLAS Level ŵ: GEMV continued

We analyze GEMV

y = αAx+ βy, A ∈ Rm×n, x ∈ Rn, y ∈ Rm

• Floating–point ops (precise):

2mn︸︷︷︸
Ax

+ m︸︷︷︸
βy scale

+ m︸︷︷︸
final add

= 2mn+ 2m ≈ 2mn (mn ≫ m).

• Bytes moved (no reuse):

8mn︸︷︷︸
A

+ 8n︸︷︷︸
x

+ 16m︸︷︷︸
y read+write

= 8mn+ 8n+ 16m.

• Operational intensity:

I =
2mn+ 2m

8mn+ 8n+ 16m
≈ 2mn

8mn+ 8n+ 16m
.
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Roofline Model Refresher
ŵ BLAS Level ŵ: GEMV continued

We analyze GEMV

y = αAx+ βy, A ∈ Rm×n, x ∈ Rn, y ∈ Rm

Platform (Intel® Core™ iż–ŴŷżųųHX, approximate):
• Peak DP FLOPs≈ ų.Ż–ų.ż TFLOP/s
• Sustained memory bandwidth≈ Żż.Ź GB/s
• Cache sizes:

L1d: 896 KiB (24 instances)
L1i: 1,3 MiB (24 instances)
L2: 32 MiB (12 instances)
L3: 36 MiB (1 instance)

Use roofline: Attainable GFLOP/s =min(Peak, Bandwidth×I).
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Cache-Aware Problem Size Selection
ŵ BLAS Level ŵ: GEMV continued

Goal: choose (m,n) to exercise cache vs. memory bandwidth. Working set (no temporal
reuse):

W(m, n) = 8mn+ 8n+ 16m bytes.

Hierarchy (per core / shared, simplified):
• LŴd: Ŷŵ–ŷŻ KiB
• Lŵ (per P-core): ŵ MiB; E-core cluster: ŷ MiB
• LLC (LŶ): ŶŹ MiB shared
• DRAM: Żż.Ź GB/s sustained

We classify regimes using full matrix footprint vs. cache levels (or effective tiled working
set).
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Representative Matrix Sizes
ŵ BLAS Level ŵ: GEMV continued

LŴ-working-set (fully fits when tiled):
• Example global size: m = n = Źŷ
• Full A: Źŷ2 ∗ 8B = 32KiB; x+ yoverhead ≈ ŵ KiB
• Entire working set≈ Ŷŷ KiB (fits in ŷŻ KiB LŴd)

Lŵ/LLC-resident (fits in LLC, not LŴ):
• m = n = ŵųųų
• A: Ŷŵ MB; x + y≈ ų.ųŶŵ MB
• Fits in ŶŹ MB LŶ; stresses LLC bandwidth / latency

DRAM-bound:
• m = n = ŵųųųų
• A: Ŷ.ŵ GB; exceeds LLC; compulsory DRAM traffic
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Tile Size Selection (bm, bn)
2 BLASLevel2 : GEMVcontinued

Tile footprint (data needed per tile GEMV assuming contiguous columns):

F(bm, bn) = 8 bmbn + 8 bn + 16 bm bytes.

Guidelines:
• Minimize capacity misses for A; keep (portion of) y hot.
• Reuse x entries across all rows of the tile.
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Tile Size Selection (bm, bn)
2 BLASLevel2 : GEMVcontinued

LŴ tile:

bm = bn = 32 ⇒ F ≈ 8 · 1024 + 8 · 32 + 16 · 32 ≈ 8192 + 256 + 512 ≈ 8.96 KiB.

Lŵ tile:
bm = bn = 256 ⇒ F ≈ 512 KiB+ vector overhead ≈ 513 KiB.

Large / DRAM-stress tile:

bm = bn = 512 ⇒ F ≈ 2MiB.

Pick (bm,bn) so multiple thread–private y tiles fit without eviction.
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Operational Intensity Examples
ŵ BLAS Level ŵ: GEMV continued

For square casem = n:

I(n) =
2n2 + 2n

8n2 + 8n+ 16n
=

2n2 + 2n
8n2 + 24n

.

As n → ∞: I → 2
8 = 0.25 FLOP/Byte.

Examples (rounded):

• n = 64: I ≈ 0.24

• n = 2000: I ≈ 0.25

• n = 20000: I ≈ 0.25

Conclusion: GEMV remains memory-bound on modern CPUs (low intensity). Optimization focuses
on:

• Reducing data traffic (tiling, avoiding redundant y copies)

• Prefetch-friendly sequential column access

• Minimizing reduction overhead
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Performance Expectation vs. Roofline
ŵ BLAS Level ŵ: GEMV continued

Given peak P and bandwidth B:

Boundmemory = B · I, Boundcompute = P.

With I ≈ 0.25, B = 89.6 GB/s:

Memory bound ≈ 22.4 GFLOP/s ≪ P.

Thus:
• Optimized GEMV should approach ŵų–ŵŵ GFLOP/s.
• Large deviations imply poor locality or bandwidth saturation issues.
• Parallel scaling limited once bandwidth saturated.

Use roofline to validate improvement of column-wise and tiled implementations.
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Results and Observations
ŵ BLAS Level ŵ: GEMV continued

Small (LŴ) Medium (LLC) Large (DRAM)
0

10

20

30

Configuration

GF
LO

PS

BLAS DGEMV OpenMP Row OpenMP Col OpenMP Tiled
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Measured performance: consistency check
ŵ BLAS Level ŵ: GEMV continued

Matrix sizes used (matches earlier size slide):

Small: m = n = 64, Medium: m = n = 2000, Large: m = n = 20000.

Arithmetic intensity (AI) for square case

I(n) =
2n2 + 2n
8n2 + 24n

−−−→
n→∞

0.25 FLOP/Byte.

Concrete values:
I(64) ≈ 0.243, I(2000) ≈ 0.250, I(20000) ≈ 0.250.

DRAM roofline (bandwidth B = Żż.Ź GB/s):

Rmem = B · I ≈ 21.8–22.4 GFLOP/s (all sizes).

Observed (from bar chart):
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Measured performance: consistency check
ŵ BLAS Level ŵ: GEMV continued

• Small (Źŷ): BLAS ŴŶ.Ŷ GF/s (≈ŹŴ% of DRAM roof); OMP row ų.ŹŻ; OMP col Ŵ.źŴ; OMP tiled ų.ŷŻ.

• Medium (ŵųųų): BLAS ŵŶ.ŷ; OMP col ŶŶ.ŷ; OMP tiled ŵų.Ÿ (some values exceed DRAM roof).

• Large (ŵųųųų): BLAS Ŵź.Ŵ; OMP col Ŵź.Ż; OMP tiled ŴŹ.ŵ (all below DRAM roof).

Flags:

• Column-wise medium case exceeds simple DRAM roof⇒model underestimates attainable
due to cache reuse.

• Small case far below roof⇒ kernel overhead+ underutilization dominate.

• Large case memory-bound as expected.
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Why some results exceed the DRAM roofline
ŵ BLAS Level ŵ: GEMV continued

The ŵŵ GF/s bound assumes pure DRAM streaming. It is not a universal ceiling.

Ŵ. Cache residency blocking:

— Medium matrix (ŵųųų×ŵųųų): A = Ŷŵ MB fits in LLC (ŶŹ MB)⇒many accesses served
from LŶ after first pass.

— Effective bandwidth becomes LŶ (hundreds GB/s) not DRAM⇒ higher feasible GFLOP/s.

ŵ. Reuse pattern (column-wise outer-product):

— Reuses each column of A sequentially with daxpy; x(j) stays in registers; y streamed
once per column.

Ŷ. Simplified bytes-moved model overcounts:

— Counts full read of A, x, y each repetition; ignores temporal locality of x and partial y
residency.
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Why some results exceed the DRAM roofline
ŵ BLAS Level ŵ: GEMV continued

ŷ. Library optimizations:

— Vendor BLAS uses micro-kernels, software prefetching, packing improving cache-line
reuse.

Ÿ. Timing / FLOP accounting alignment:

— FLOPs formula correct (ŵmn + ŵm), but if beta=ų path or fused operations shorten
memory traffic, effective intensity rises.

Conclusion: Use a multi-ceiling roofline (LŴ/Lŵ/LŶ/DRAM) to interpret results; DRAM roof alone is
insufficient for cached regimes.
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Behavior of implementation variants
ŵ BLAS Level ŵ: GEMV continued

• Row-wise (ddot per row):
— Very small per-thread work; function-call overhead; poor vector length; limited ILP →

low GFLOP/s.

• Column-wise (daxpy per column / outer-product form):
— Long contiguous daxpy operations → good SIMD utilization; favorable sequential

column access; high cache reuse → best performance.

• Tiled version (current):
— Private yloc per thread then atomic add for each element → m atomics per thread →

heavy serialization.
— Tile scheduling + allocation overhead further reduces throughput.

• BLAS:
— Hand-tuned kernels, packing, minimized write-allocate misses, balanced threading.

Key bottleneck now: reduction scheme in tiled kernel (atomics) rather than GEMV arithmetic.
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OpenMP SIMD Directive
ŵ BLAS Level ŵ: GEMV continued

The !$omp simd directive instructs the compiler to vectorize the following loop using SIMD
(Single Instruction, Multiple Data) instructions.

!$omp simd
do i = istart, iend

y(i) = y(i) + alpha * A(i,j) * xj
end do

Key features:

Enables automatic vectorization: multiple operations executed simultaneously

Utilizes CPU vector registers (e.g., AVX-ŸŴŵ on modern Intel/AMD)

No thread creation overhead — purely instruction-level parallelism

Can combine with thread parallelism: !$omp parallel do simd

Performance impact: ŷ×–Ż× speedup typical with AVXŵ/AVX-ŸŴŵ for suitable loops.
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OpenMP SIMD Directive
ŵ BLAS Level ŵ: GEMV continued

The !$omp simd directive instructs the compiler to vectorize the following loop using SIMD
(Single Instruction, Multiple Data) instructions.

!$omp simd
do i = istart, iend

y(i) = y(i) + alpha * A(i,j) * xj
end do

Requirements for effective SIMD:

• Contiguous memory access (unit stride)

• No loop-carried dependencies

• Simple loop body (FMA-friendly operations)

• Alignment helps but not strictly required

Performance impact: ŷ×–Ż× speedup typical with AVXŵ/AVX-ŸŴŵ for suitable loops.
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

Goals: (Ŵ) column-major streaming of A, (ŵ) reuse x(j) in registers, (Ŷ) avoid per-thread full y copies
+ atomic reduction.

subroutine gemv_openmp_blocked(m, n, alpha, A, lda, x, beta, y)
use iso_fortran_env, only: real64
use omp_lib
implicit none
integer, intent(in) :: m, n, lda
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda,*), x(*)
real(real64), intent(inout) :: y(*)
integer :: i, j, tid, nth, istart, iend, base
real(real64) :: xj
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

! Parallel scale y by beta (write each element once)
!$omp parallel default(none) shared(m,y,beta) private(i)
!$omp do schedule(static)
do i = 1, m

y(i) = beta * y(i)
end do
!$omp end do
!$omp end parallel

!$omp parallel default(none) shared(m,n,A,lda,x,y,alpha) &
!$omp private(tid,nth,istart,iend,j,i,xj,base)
tid = omp_get_thread_num()
nth = omp_get_num_threads()
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

! Contiguous row partition among threads
base = (tid * m) / nth
istart = base + 1
iend = ((tid + 1) * m) / nth

do j = 1, n
xj = x(j)
!$omp simd
do i = istart, iend

y(i) = y(i) + alpha * A(i,j) * xj
end do

end do

ŵŻ/Źż



Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

!$omp end parallel
end subroutine gemv_openmp_blocked

Key differences vs previous tiled version:

• Eliminates thread-private full copies (yloc) and expensive atomic accumulation.

• Each thread updates a disjoint contiguous slice of y: no write-sharing, no reduction.

• Outer loop over columns preserves sequential (contiguous) access to A(:,j) in
column-major layout.

• Reuses scalar x(j) across whole row block (likely register-resident).
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

Why this helps:

• Reduction overhead removed → lower synchronization cost.

• Contiguous row blocks reduce TLB pressure and improve prefetch.

• !$omp simd on inner loop encourages vectorization across rows.

Trade-offs / limits:

• Parallelism tied to m (number of rows). If m < threads utilization poor.

• Load balance assumes uniform cost per row; acceptable for dense A.

• Still memory-bound; each A(i,j) touched exactly once; intensity capped at ų.ŵŸ FLOP/Byte.
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

Possible refinements:

• Hybrid blocking: partition rows, then process columns in chunks to keep y slice hot in cache.

• Use micro-kernel (unroll + FMA) for inner loop; block rows in multiples of SIMD width.

• If n very large, manual software prefetch on upcoming A(i,j+pf).

• Replace scalar update with small packed panel (register block of A).

When to prefer earlier tiled + reduction approach:

• When n (columns) is huge and mmoderately small: tiling over columns can improve x reuse
granularity.

• When fusing multiple GEMVs sharing the same y (batch / multi-right-hand-side emulation).
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Improved GEMV (row-partitioned, column-streaming, no
atomics)
ŵ BLAS Level ŵ: GEMV continued

Summary: This variant removes the dominant bottleneck (atomic reduction) while retaining
cache-friendly column streaming over A(:,j) and register reuse of x(j), approaching vendor
dgemv behavior when m is large enough for thread scaling.
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TRSV: Triangular Solve with Vector
ŵ BLAS Level ŵ: GEMV continued

Not all Level ŵ BLAS operations parallelize well!
• TRSV solves triangular systems Ax = b where A is:

Lower triangular

A =


a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann



Upper triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann


Sequential dependency: must solve for xi before xi+1 (forward) or xi−1 (backward)
Options exist: iterative methods for sparse matrices, specialized parallel algorithms
(covered later)
Design principle: Avoid triangular solves in parallel algorithms when possible!
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TRSV: Triangular Solve with Vector
ŵ BLAS Level ŵ: GEMV continued

subroutine fwd_subs(A, b, x)
implicit none
integer :: i, j, n
real(real64), intent(in) :: A(:,:)
real(real64), intent(in) :: b(:)
real(real64), intent(out) :: x(size(b))
n = size(b)
x(1) = b(1)/A(1,1)
do i = 2, n

x(i) = b(i)
do j = 1, i-1

x(i) = x(i) - A(i,j)*x(j)
end do
x(i) = x(i)/A(i,i)

end do
end subroutine fwd_subs

Backward substitution algorithm.Ŷŷ/Źż



TRSV: Triangular Solve with Vector
ŵ BLAS Level ŵ: GEMV continued

subroutine bwd_subs(A, b, x)
implicit none
integer :: i, j, n
real(real64), intent(in) :: A(:,:)
real(real64), intent(in) :: b(:)
real(real64), intent(out) :: x(size(b))
n = size(b)
x(n) = b(n)/A(n,n)
do i = n-1, 1, -1

x(i) = b(i)
do j = i+1, n

x(i) = x(i) - A(i,j)*x(j)
end do
x(i) = x(i)/A(i,i)

end do
end subroutine bwd_subs

Forward substitution algorithm.Ŷŷ/Źż
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BLAS Level Ŷ: Overview
Ŷ BLAS Level Ŷ

• Level Ŷ BLAS define operators that involve matrices
• Key operations:

GEMM Computes C = αAB+ βC
SYRŵK Computes symmetric rank-ŵ update C = αAB⊤ + αBA⊤ + βC

• For n× nmatrices: O(n3) arithmetic operations with O(n2) data accesses
Excellent arithmetic intensity compared to Level Ŵ and ŵ!
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GEMM: General Matrix Multiply
Ŷ BLAS Level Ŷ

Mathematical formulation

C = αAB+ βC

• A and B can optionally be transposed or conjugated
• All three matrices may be strided
• Standard matrix multiplication: α = 1.0, β = 0.0

Element-wise formulation:

Cij = α

k∑
l=1

AilBlj + βCij, i = 1, . . . ,m, j = 1, . . . , n
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GEMM: BLAS Interface
Ŷ BLAS Level Ŷ

call dgemm(transa, transb, m, n, k, alpha, A, lda,
B, ldb, beta, C, ldc)

Parameters:
• transa, transb: transposition options for A and B

• m, n, k: matrix dimensions
• alpha, beta: scalar multipliers
• lda, ldb, ldc: leading dimensions
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DGEMM: Example Usage
Ŷ BLAS Level Ŷ

program gemm_blass
use iso_fortran_env, only: real64, output_unit, error_unit
implicit none
character(len=100) :: n_str, m_str, k_str
integer :: n, m, k, info
real(real64), allocatable :: a(:,:), b(:,:), c(:,:)
! Read from command line arguments n, m, k
if (command_argument_count() < 3) then

write(error_unit, *) "Usage: gemm_blass n m k"
stop

end if
call get_command_argument(1, n_str)
call get_command_argument(2, m_str)
call get_command_argument(3, k_str)
read(n_str, *) n
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DGEMM: Example Usage
Ŷ BLAS Level Ŷ

read(m_str, *) m
read(k_str, *) k
! Check if n, m, k are positive integers
if (n <= 0 .or. m <= 0 .or. k <= 0) then

write(error_unit, '("n = ",I0,", m = ",I0,", k = ",I0," must be positive
integers")') n,m,k↪→

stop
else

write(output_unit, '("n = ",I0,", m = ",I0,", k = ",I0)') n,m,k
end if
! Allocate matrices
allocate(a(n,k), b(k,m), c(n,m), stat=info)
if (info /= 0) then

write(error_unit, *) "Error allocating matrices"
stop
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DGEMM: Example Usage
Ŷ BLAS Level Ŷ

end if
! Initialize matrices
call random_number(a)
call random_number(b)
call random_number(c)
! Perform matrix multiplication using BLAS
call dgemm('N', 'N', n, m, k, 1.0d0, a, n, b, k, 1.0d0, c, n)
! Free matrices
deallocate(a, b, c, stat=info)
if (info /= 0) then

write(error_unit, *) "Error deallocating matrices"
stop

end if
end program gemm_blass
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Naïve Implementation: (i, j, l) ordering
Ŷ BLAS Level Ŷ

subroutine matmul_ijl(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)
integer :: i, j, l
do i = 1, m

do j = 1, n
C(i,j) = beta * C(i,j)
do l = 1, k

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)
end do

end do
end do

end subroutine matmul_ijl
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Naïve Implementation: (i, j, l) ordering
Ŷ BLAS Level Ŷ

Direct formula-to-code translation
Poor memory access pattern for column-major storage

A

n

k

B

k

m

C

n

m

row of A
column of B

C(i, j)

=×
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Loop Reordering: (j, i, l) ordering
Ŷ BLAS Level Ŷ

subroutine matmul_jil(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)
integer :: i, j, l
do j = 1, m

do i = 1, n
C(i,j) = beta * C(i,j)
do l = 1, k

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)
end do

end do
end do

end subroutine matmul_jil
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Loop Reordering: (j, i, l) ordering
Ŷ BLAS Level Ŷ

Better: accesses C in column-major order
∼ŵ.Ź× faster than (i, j, l) ordering
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Optimal Loop Ordering: (j, l, i)
Ŷ BLAS Level Ŷ

Why (j, l, i) is best for Fortran column-major layout:

Innermost loop (i):

— Reads A(i, l) and C(i, j) contiguously (unit stride)
— Maximizes cache-line utilization

Middle loop (l):

— B(l, j) constant, kept in register
— Sequential access to columns of A and B

Outer loop (j):

— Computes each column of C in turn
— Good spatial locality

Key principle: Loop order matters! Memory access pattern dominates performance.
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Optimal Implementation: (j, l, i) ordering
Ŷ BLAS Level Ŷ

subroutine matmul_jli(n,m,k,alpha,A,B,beta,C)
use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: n, m, k
real(real64), intent(in) :: alpha, A(n,k), B(k,m), beta
real(real64), intent(inout) :: C(n,m)
integer :: i, j, l
C = beta * C
do j = 1, n

do l = 1, k
do i = 1, m

C(i,j) = C(i,j) + alpha * A(i,l) * B(l,j)
end do

end do
end do

end subroutine matmul_jli
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Optimal Implementation: (j, l, i) ordering
Ŷ BLAS Level Ŷ

Unit-stride access on all arrays

∼Ŵ.Ÿ× faster than (j, i, l),∼ŷ× faster than (i, j, l)

A (m× k)

A(
:,
l)

B (k× n)

B(
:,
j)

B(l, j)

C (m× n)

C(
:,
j)

C(:, j) + = α A(:, l) B(l, j)

Outer: j
Middle: l
Inner: i

A(:, l) B(:, j) B(l, j) C(:, j) updated
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Performance Comparison (n = 103, avg. over Ŵųų runs)
Ŷ BLAS Level Ŷ
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(j, l, i) achieves źŶ% of OpenBLAS performances
BLAS still faster: uses blocking, packing, micro-kernels
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Performance Comparison (n = 103, avg. over Ŵųų runs)
Ŷ BLAS Level Ŷ
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Parallel DGEMMwith OpenMP
Ŷ BLAS Level Ŷ

We now want to parallelize our DGEMM operation using OpenMP.
A good starting point is to start from our optimal sequential implementation (loop
order (j, l, i))

We just write the triple loop as before, and add OpenMP directives to parallelize the
outer loops:
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Parallel DGEMMwith OpenMP
Ŷ BLAS Level Ŷ

We now want to parallelize our DGEMM operation using OpenMP.
A good starting point is to start from our optimal sequential implementation (loop
order (j, l, i))
We just write the triple loop as before, and add OpenMP directives to parallelize the
outer loops:
!$omp parallel default(none) shared(C,beta,m,n) private(i,j)
!$omp do schedule(static)
do j = 1, n

!$omp simd
do i = 1, m

C(i,j) = beta * C(i,j)
end do

end do
!$omp end do
⟨ Continues on the next slide ⟩
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Parallel DGEMMwith OpenMP
Ŷ BLAS Level Ŷ

We now want to parallelize our DGEMM operation using OpenMP.
We just write the triple loop as before, and add OpenMP directives to parallelize the
outer loops:
!$omp do collapse(2) schedule(static) default(none) &
!$omp shared(A,B,C,alpha,m,n,k) private(i,j,l,blj)
do j = 1, n

do l = 1, k
blj = alpha * B(l,j)
!$omp simd
do i = 1, m

C(i,j) = C(i,j) + A(i,l) * blj
end do

end do
end do
!$omp end do
!$omp end parallel
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OpenMP SIMD Pragma
Ŷ BLAS Level Ŷ

• The !$omp simd directive is used to instruct the compiler to vectorize the loop that
follows it.

• This pragma allows the compiler to generate SIMD (Single Instruction, Multiple Data)
instructions, which can process multiple data points in parallel.

• It is particularly useful in loops where iterations are independent, allowing for
significant performance improvements on modern processors.

• Example usage:
!$omp simd
do i = 1, m

C(i,j) = C(i,j) + A(i,l) * blj
end do

• In this example, the loop iterations can be executed simultaneously, leveraging the
capabilities of the CPU’s vector units.
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What did we gain?
Ŷ BLAS Level Ŷ
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We used OpenMP to parallelize our optimal
sequential DGEMM implementation

• Tested on matrices of size n = 2560,
averaged over ŵų runs, using Ŷŵ
threads.
Achieved a speedup of∼ź.źŸ× over the
sequential version.
Still slower than vendor BLAS
implementation.
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Tiled DGEMM
Ŷ BLAS Level Ŷ

To improve cache utilization, we can implement a tiled version of DGEMM.
Divide the matrices into smaller sub-matrices (tiles) that fit into the cache.
This reduces cache misses and improves data locality.

A (m× k) B (k× n) C (m× n)

Ctile(I,J) + = Atile(I,L) Btile(L,J)

m

k

k

n

m

n

A(I, L) tile
B(L, J) tile
C(I, J) tile (updated)
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Tiled DGEMM Implementation
Ŷ BLAS Level Ŷ

subroutine dgemm_tiled(m, n, k, alpha, A, lda, B, ldb, beta, C, ldc, tile_m,
tile_n, tile_k)↪→

use iso_fortran_env, only: real64
implicit none
integer, intent(in) :: m, n, k, lda, ldb, ldc
integer, intent(in), optional :: tile_m, tile_n, tile_k
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda, *)
real(real64), intent(in) :: B(ldb, *)
real(real64), intent(inout) :: C(ldc, *)
! Local variables
integer :: i, j, l, ii, jj, ll
integer :: ts_m, ts_n, ts_k
integer :: i_end, j_end, l_end
real(real64) :: temp
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Tiled DGEMM Implementation
Ŷ BLAS Level Ŷ

! Set tile sizes (default 64)
ts_m = 64
ts_n = 64
ts_k = 64
if (present(tile_m)) ts_m = tile_m
if (present(tile_n)) ts_n = tile_n
if (present(tile_k)) ts_k = tile_k

! Scale C by beta
do j = 1, n

do i = 1, m
C(i,j) = beta * C(i,j)

end do
end do
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Tiled DGEMM Implementation
Ŷ BLAS Level Ŷ

! Tiled matrix multiplication with non-square tiles
do jj = 1, n, ts_n

j_end = min(jj + ts_n - 1, n)
do ll = 1, k, ts_k

l_end = min(ll + ts_k - 1, k)
do ii = 1, m, ts_m

i_end = min(ii + ts_m - 1, m)

! Multiply tile
do j = jj, j_end

do l = ll, l_end
temp = alpha * B(l,j)
do i = ii, i_end

C(i,j) = C(i,j) + A(i,l) * temp
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Tiled DGEMM Implementation
Ŷ BLAS Level Ŷ

end do
end do

end do

end do
end do

end do

end subroutine dgemm_tiled
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Tiled DGEMM: Implementation Notes
Ŷ BLAS Level Ŷ

Key design choices:
Tile size selection: Default Źŷ×Źŷ×Źŷ tiles
— Balances LŴ/Lŵ cache capacity vs. parallelism granularity
— Overridable via optional arguments for tuning

Edge handling: min() ensures correct partial tiles at boundaries
Loop nest structure:
— Outer Ŷ loops (jj, ll, ii): tile iteration
— Inner Ŷ loops (j, l, i): computation within tile
— Maintains optimal (j,l,i) ordering for cache-friendly access

Beta scaling: Applied once before tiling to avoid redundant operations

Temporal reuse: Each tile of C accumulates contributions from multiple A/B tile pairs,
improving cache hit rate

Parallelization opportunity: Outer tile loops are independent.
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Exercise: tuning tiled DGEMM
Ŷ BLAS Level Ŷ

An exercise for you to try at home!
Ŵ. Write a driver program to test the performance of the tiled DGEMM implementation.
ŵ. Experiment with different tile sizes (e.g., Ŷŵ, Źŷ, ŴŵŻ) to see how they affect

performance.
Ŷ. Measure execution time and compute performance (GFLOP/s) for various matrix

sizes (e.g., ŸŴŵ, Ŵųŵŷ, ŵųŷŻ).
ŷ. Compare the performance of your tiled DGEMM with the non-tiled version and with

a vendor BLAS implementation.
Ÿ. Analyze the results and determine the optimal tile size for your specific hardware.
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Tiled DGEMMwith OpenMP
Ŷ BLAS Level Ŷ

We can further enhance our tiled DGEMM implementation by adding OpenMP directives
to parallelize the outer tile loops.

This allows multiple tiles to be computed simultaneously, leveraging multi-core
processors.
We add OpenMP pragmas to the outer loops iterating over tiles.
To hope for good performance, make sure to choose
— tile sizes that provide enough work per thread to amortize threading overhead,
— tile sizes that divide the matrix dimensions exactly to avoid load imbalance.
— If not, we would need to implement dynamic scheduling or handle edge cases carefully

to avoid loss of performance.
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

subroutine dgemm_tiled_openmp(m, n, k, alpha, A, lda, B, ldb, beta, C, ldc, &
tile_m, tile_n, tile_k)
use iso_fortran_env, only: real64
implicit none

integer, intent(in) :: m, n, k, lda, ldb, ldc
integer, intent(in), optional :: tile_m, tile_n, tile_k
real(real64), intent(in) :: alpha, beta
real(real64), intent(in) :: A(lda, *)
real(real64), intent(in) :: B(ldb, *)
real(real64), intent(inout) :: C(ldc, *)

integer :: ts_m, ts_n, ts_k
integer :: ii, jj, ll
integer :: i, j, l
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

integer :: i_end, j_end, l_end
integer :: ib, jb
real(real64) :: tmp

! ---- MAXIMUM tile sizes (adjust safely for your CPU cache) ----
integer, parameter :: MAX_TS_M = 128
integer, parameter :: MAX_TS_N = 128

! Local tile buffer, fixed size (thread-private due to OpenMP)
real(real64) :: Cbuf(MAX_TS_M, MAX_TS_N)

! Default tile sizes
ts_m = 64
ts_n = 64
ts_k = 64
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

if (present(tile_m)) ts_m = min(tile_m, MAX_TS_M)
if (present(tile_n)) ts_n = min(tile_n, MAX_TS_N)
if (present(tile_k)) ts_k = tile_k

!$omp parallel default(none) &
!$omp shared(m,n,k,ts_m,ts_n,ts_k,A,B,C,alpha,beta,lda,ldb,ldc) &
!$omp private(ii,jj,ll,i,j,l,i_end,j_end,l_end,ib,jb,Cbuf,tmp)
!$omp do collapse(2) schedule(static)
do jj = 1, n, ts_n

do ii = 1, m, ts_m
! Work tile bounds
i_end = min(ii + ts_m - 1, m)
j_end = min(jj + ts_n - 1, n)

ib = i_end - ii + 1 ! actual tile height
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

jb = j_end - jj + 1 ! actual tile width
! -------------------------------
! Load and scale C tile: Cbuf = beta * C
! -------------------------------
do j = 1, jb

do i = 1, ib
Cbuf(i, j) = beta * C(ii + i - 1, jj + j - 1)

end do
end do
! -------------------------------
! Accumulate over all K tiles
! -------------------------------
do ll = 1, k, ts_k

l_end = min(ll + ts_k - 1, k)
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

do l = ll, l_end
do j = 1, jb

! scalar needed for whole column
tmp = alpha * B(l, jj + j - 1)

!$omp simd
do i = 1, ib

Cbuf(i, j) = Cbuf(i, j) + A(ii + i - 1, l) * tmp
end do

end do
end do

end do
! -------------------------------
! Write tile back to C
! -------------------------------
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Tiled DGEMMwith OpenMP: implementation
Ŷ BLAS Level Ŷ

do j = 1, jb
do i = 1, ib

C(ii + i - 1, jj + j - 1) = Cbuf(i, j)
end do

end do

end do
end do
!$omp end do
!$omp end parallel

end subroutine dgemm_tiled_openmp
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Tiled DGEMMwith OpenMP: Implementation Notes
Ŷ BLAS Level Ŷ

Key improvements over sequential tiled version:
Thread-private tile buffer: Each thread allocates Cbuf(MAX_TS_M, MAX_TS_N) on its stack
— Eliminates write conflicts to shared C during accumulation
— Local buffer has better cache affinity than scattered C updates

Collapsed parallelization: !$omp do collapse(2) over (jj, ii) tile indices
— Increases parallel grain count: (n/ts_n) * (m/ts_m) independent tasks
— Better load balance when n or m is small relative to thread count

Three-stage tile computation:
Ŵ. Load & scale: Cbuf = beta * C(tile)
ŵ. Accumulate: Loop over ll (K-tiles), perform Cbuf += alpha * A(tile) * B(tile)
Ŷ. Write-back: C(tile) = Cbuf

Minimizes memory traffic to global C: two passes instead of O(k/ts_k) read-modify-writes

Innermost SIMD: !$omp simd on row loop within tile maximizes ILP
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Tiled DGEMMwith OpenMP: Trade-offs
Ŷ BLAS Level Ŷ

Memory considerations:
Stack pressure: Each thread needs 8 * MAX_TS_M * MAX_TS_N bytes
— Example: MAX_TS_M = MAX_TS_N = 128⇒ ŴŵŻ KB/thread
— Ŷŵ threads⇒ ŷ MB total (acceptable on modern systems)
— May need ulimit -s unlimited or adjust stack size limits

Cache optimization: Cbuf stays hot in LŴ/Lŵ during K-loop accumulation
— Temporal reuse: each Cbuf element updated k/ts_k times without eviction
— Reduces Cmemory traffic by factor of k/ts_k

Performance tuning:
Choose ts_m, ts_n to balance:
— Tile buffer fits in Lŵ cache (ts_m * ts_n * 8 bytes≲ Lŵ size)
— Enough tiles for good thread utilization: (m/ts_m)*(n/ts_n) >= num_threads * 4

ts_k primarily affects A/B reuse, less critical than ts_m/ts_n
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Performance Comparison: Tiled vs. Tiled+OpenMP
Ŷ BLAS Level Ŷ

Test configuration: m = n = k = 2560, Ŷŵ threads, tile sizes 64× 64× 64
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Final remarks and conclusions
Ŷ BLAS Level Ŷ

Observations:
OpenMP tiling achieves∼ź.Ŵ× speedup over sequential tiled version
Reaches∼ŵŴ% of vendor BLAS performance (reasonable for educational
implementation)
Remaining gap due to:
Register blocking: further subdividing tiles to fit in CPU registers
Micro-kernels: hand-optimized inner loops using assembly or intrinsics
Prefetching: software prefetch instructions to hide memory latency

Packing: reorganizing data in contiguous buffers to improve cache access
patterns
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Summary of Lecture Ź
ŷ Conclusions

• We completed our study of the DGEMV operation.
• We explored the implementation of DGEMM from basic triple-loop to optimized tiled

and parallel versions.
• We analyzed performance using the Roofline model, highlighting the importance of

operational intensity.
• We discussed key optimization techniques such as loop ordering, tiling, and OpenMP

parallelization.
• We provided a foundation for further exploration into high-performance computing

and numerical linear algebra.
Next up: start pushing outside the frontier of a single CPU: distributed memory
parallelism with MPI!
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Before the time-skip
Ŵ Before the time-skip

• We have seen in the first half of the course:
— The basic concepts of parallel computing
— The main architectures for parallel computing
— The main programming models for parallel computing

• We have introduced the BLAS libraries for linear algebra computations
— We have seen the Level Ŵ, Level ŵ and Level Ŷ BLAS operations
— We have discussed the performance of BLAS operations on shared memory

architectures
— Explored the OpenMP programming model
— Employed the roofline model to analyze the performance of BLAS operations

And now to boldly go out of shared memory architectures…
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Distributed memory machines
ŵ Distributed memory machines

• In distributed memory machines, each processor has its own private memory
• Processors communicate by passing messages through a network
• Examples of distributed memory machines:

— Clusters of workstations connected by a high-speed network,
— Massively parallel supercomputers (e.g., the machines of the TOPŸųų list)

• Programming models for distributed memory machines:
— Message Passing Interface (MPI)
— Partitioned Global Address Space (PGAS) languages (e.g., Coarray Fortran)
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Nodes
ŵ Distributed memory machines

• A distributed memory machine is composed of
multiple nodes

• Each node contains one or more processors (CPUs)
and its own private memory

• Nodes are connected by a high-speed network that
allows them to communicate with each other

• Each node can run one or more processes that
execute the parallel program

• Each node can have one or more accelerators (e.g.,
GPUs) to offload computations
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General information on networks
ŵ Distributed memory machines

• In distributed memory machines, communication between processors occurs
through a network

• Network performance is characterized by two key parameters:
— Latency (α): time to send a message of zero length
— Bandwidth (β): inverse of time to send one byte of data

• The time to send a message of size n bytes is modeled as:

Tcomm(n) = α+
n
β

• Latency is typically measured in microseconds (µs)
• Bandwidth is typically measured in gigabits per second (Gbit s−1)
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What determines these parameters?
ŵ Distributed memory machines

α Depends almost entirely on the operating system stack. To minimize latency: avoid
TCP/IP protocols

β Depends on both the operating system stack and the physical communication device
hardware

Key insight: Low latency requires careful software optimization, while high bandwidth
depends on specialized hardware (e.g., InfiniBand).
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Some examples from the market
ŵ Distributed memory machines

InfiniBand High Dynamic Range (HDR) ŵųŴŻ:
• Latency: <0.6 µs
• Bandwidth: 200Gbit s−1

The InfiniBand technology is widely used in
high-performance computing clusters, and it
is the network technology used in many
TOPŸųų supercomputers.

There are different vendors for Infiniband
network adapters, e.g., Mellanox (now part
of NVIDIA):
• NVIDIA/Mellanox Compatible AOC ŵųm
InfiniBand HDR Active Optical Cable:
żŴų USD,

• NVIDIA/Mellanox
MCXŹŸŶŴųŸA-HDAT-SP ConnectX®-Ź
InfiniBand Adapter Card, HDR/ŵųųG:
ŴųŹż USD,

• NVIDIA MQMŻźųų-HSŵF Quantum HDR
InfiniBand Switch, ŷų x HDR QSFPŸŹ
Ports: ŴźŸŶŻ USD.
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Some examples from the market
ŵ Distributed memory machines

Newer InfiniBand standard exists, but are not yet widely used in HPC clusters
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The TOPŸųų supercomputer situation
ŵ Distributed memory machines

From the November ŵųŵŸ TOPŸųų listŴ, the distribution of interconnects used in the top
Ÿųų supercomputers is as follows:

ŸŸ.ŷ

Ŷŷ.ŵ
Ÿ.Ż
ŵ.ŷŴ.Ź
ų.Ź

InfiniBand
Gigabit Ethernet
OmniPath
Custom Interconnects
Proprietary Networks
Ethernet

Ŵhttps://www.top500.org/lists/top500/2025/11/
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Should we care about network topology?
ŵ Distributed memory machines

In large distributed memory machines, the network topology can have a significant
impact on the performance of parallel applications.

• Different topologies have different
characteristics in terms of latency,
bandwidth, and scalability.

• Common network topologies include:
— Fat-tree,
— Torus,
— Hypercube,
— Dragonfly.

• The choice of network topology can affect
the performance of collective
communication operations.
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Should we care about network topology?
ŵ Distributed memory machines

In large distributed memory machines, the network topology can have a significant
impact on the performance of parallel applications.

• Different topologies have different
characteristics in terms of latency,
bandwidth, and scalability.

• Common network topologies
• The choice of network topology can affect
the performance of collective
communication operations.

On the implementation side, we usually do not have to care, and think of the network as
a black box with given latency and bandwidth.
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An example: the Leonardo supercomputer Dragonfly+
ŵ Distributed memory machines

At top level, there are ŵŶ cells fully connected in
a dragonfly topology,
Locally, intra-cell routers are organized in a
bipartite graph
— in which a first tier is directly connected to

servers (leaf routers)
— and a second tier (spine routers) is equally

provisioned with down-links.

See the full description in: Turisini, Cestarti, Amati.
“LEONARDO A Pan-European Pre-Exascale Supercomputer
for HPC and AI applications”, Vol. ż No. Ŵ (ŵųŵŷ): Journal of
large-scale research facilities.

Dragonfly topology of the internal
network. Green is used for Booster
cells, blue for Data-Centric cells,

pink for the I/O.
Ŵŵ/ŷż



Leonardo supercomputer: Network specifications
ŵ Distributed memory machines

• Network Technology: ŵųų Gbps InfiniBand HDR (Mellanox/NVIDIA)
Switch latency: żų nanoseconds port-to-port

— Message rate: Ŷżų million messages/second per port
Total switches: ŻŵŶ QMŻźųų units

• Node-level adapter: ConnectX-Ź (CXŹ) card
— ŵųų million messages per second capacity
— 600 ns latency per Network Interface Card (NIC)
— PCIe Genŷ on Ŷŵ lanes

• Maximum inter-node latency: 3 µs
— Dominated by NIC delays: 1.2 µs
— Fiber segments: 1m (NIC to leaf), 5m (leaf to spine), 20m (spine to spine)

• External connectivity: ŷ gateway routers with Ethernet-InfiniBand translators
— 1.6 Tbit s−1 per unit, 6.4 Tbit s−1 aggregated
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Message Passing Interface (MPI)
Ŷ How do we program such a machine?

• TheMessage Passing Interface (MPI) is the de facto standard for programming
distributed memory machines

• MPI provides a set of functions for:
— Point-to-point communication (send/receive messages between two processes)
— Collective communication (broadcast, scatter, gather, reduce, etc.)
— Process management (creating and terminating processes)

• MPI is implemented as a library that can be used with different programming
languages (C, C++, Fortran)

• There are several implementations of MPI
— MPICH https://www.mpich.org/
— OpenMPI https://www.open-mpi.org/
— MVAPICH https://mvapich.cse.ohio-state.edu/

• The current stable version is ŷ.Ŵ, and work is underway to define version Ÿ.ų.
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What is exactly MPI?
Ŷ How do we program such a machine?

“MPI (Message-Passing Inter-
face) is a message-passing library
interface specification.”

All parts of this definition are significant.
See: https://www.mpi-forum.org/docs/
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MPI: Key aspects
Ŷ How do we program such a machine?

• Message-passing model: Data moves from the address space of one process to
another through cooperative operations

• Specification, not implementation: Multiple implementations exist (MPICH,
OpenMPI, MVAPICH)

• Library interface: Operations expressed as functions, subroutines, or methods in C
and Fortran

• Extensions: Collective operations, remote-memory access, dynamic process
creation, parallel I/O
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MPI basic concepts
Ŷ How do we program such a machine?

An MPI program is composed of multiple processes that run concurrently on different
processors
• Each process has a unique identifier called rank
• The total number of processes is called the size of the communicator
• The main communicator is called MPI_COMM_WORLD, which includes all processes
• Processes can communicate by sending and receiving messages using MPI functions

Why message passing?
• Each process has its own private address space
• Other processes cannot access data directly
• Processes must cooperate to exchange data through messages
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An MPI hello world program in Fortran
Ŷ How do we program such a machine?

Let us write a simple MPI program that prints “Hello, World!” from each process, we write
a file called mpi_hello.f90 with the following content:
program mpi_hello

use mpi
use iso_fortran_env, only: output_unit
implicit none
integer :: ierr, rank, size

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
write(output_unit, *) 'Hello from process', rank, 'of', size
call MPI_Finalize(ierr)

end program mpi_hello

Ŵż/ŷż



Let us look at it line by line
Ŷ How do we program such a machine?

use mpi

This line includes the MPI module, which contains the definitions of MPI functions
and constants

call MPI_Init(ierr)

This line initializes the MPI environment, must be called before any other MPI
function

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

This line gets the rank of the current process in the communicator
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

This line gets the total number of processes in the communicator
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Let us look at it line by line
Ŷ How do we program such a machine?

write(output_unit, *) 'Hello from process', rank, 'of', size

This line prints a message from each process, including its rank and the total size
call MPI_Finalize(ierr)

This line finalizes the MPI environment, must be called at the end of the program

The program declares three integer variables:
— rank: to store the rank of the current process
— size: to store the total number of processes
— ierr: to store the error code returned by MPI functions

The variable ierr is used to capture error codes from MPI functions, and should be
used for error handling in a production code.
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Compiling and running the MPI program
Ŷ How do we program such a machine?

To compile the MPI program, we need to have installed an MPI implementation (e.g.,
MPICH, OpenMPI, MVAPICH).
On an Ubuntu system, we can install OpenMPI with the following command:

sudo apt-get install libopenmpi-dev openmpi-bin openmpi-common

If you are using Spack to manage your software, you can install OpenMPI with:
spack install openmpi
spack load openmpi

In a system with multiple MPI implementations, make sure to load the correct one
using module load or spack load.
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Compiling and running the MPI program
Ŷ How do we program such a machine?

All these implementations provide a wrapper compiler that simplifies the compilation
process by automatically including the necessaryMPI headers and linking against theMPI
libraries.

For example, using OpenMPI, we can compile the program with the following command:
mpifort -o mpi_hello mpi_hello.f90
If you are using MPICH or MVAPICH, the command is the same.
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Compiling and running the MPI program
Ŷ How do we program such a machine?

If you want to investigate what the wrapper compiler is doing behind the scenes:
mpifort --show:me

This will display the actual compilation command, e.g., on my machine it shows:
/usr/bin/gfortran -I/opt/spack/opt/spack/linux-skylake/openmpi-4.1.8/include

-I/opt/spack/opt/spack/linux-skylake/openmpi-4.1.8/lib
-L/opt/spack/opt/spack/linux-skylake/openmpi-4.1.8/lib
-L/opt/spack/opt/spack/linux-skylake/hwloc-2.12.2/lib
-L/opt/spack/opt/spack/linux-skylake/libevent-2.1.12/lib -Wl,-rpath
-Wl,/opt/spack/opt/spack/linux-skylake/openmpi-4.1.8/lib -Wl,-rpath
-Wl,/opt/spack/opt/spack/linux-skylake/hwloc-2.12.2/lib -Wl,-rpath
-Wl,/opt/spack/opt/spack/linux-skylake/libevent-2.1.12/lib -lmpi_usempif08
-lmpi_usempi_ignore_tkr -lmpi_mpifh -lmpi

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

showing that it is using gfortran as the underlying compiler, and including the necessary
MPI headers and libraries from Spack.
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Compiling and running the MPI program
Ŷ How do we program such a machine?

To run the MPI program, we use the mpirun or mpiexec command, specifying the
number of processes with the -n option:
mpirun -n 4 ./mpi_hello
This command runs the mpi_hello program with ŷ processes, and we should see output
similar to:
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4
Note that the order of the output may vary, as the processes run concurrently.
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Finding MPI via CMake
Ŷ How do we program such a machine?

To find and use MPI in a CMake project, we can use the FindMPImodule provided by
CMake, i.e., we can add the following lines to our CMakeLists.txt file:
find_package(MPI REQUIRED COMPONENTS Fortran)
This command searches for an installed MPI implementation and sets the necessary
variables to use MPI in our project.

To compile an MPI program, we need to link against the MPI libraries and include the MPI
headers. We can do this by adding the following lines to our CMakeLists.txt file:
add_executable(mpi_hello mpi_hello.f90)
target_link_libraries(mpi_hello MPI::MPI_Fortran)
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The fallacies of distributed computing
Ŷ How do we program such a machine?

There are some common misconceptions about distributed computing that can lead to
poor performance and scalability

• These misconceptions are known as the fallacies of
distributed computing:
ŵ. The network is reliable
Ż. Latency is zero
Ŵ. Bandwidth is infinite
ŷ. The network is secure
Ŷ. Topology doesn’t change
Ÿ. There is one administrator
Ź. Transport cost is zero
ź. The network is homogeneous

• It is important to be aware of these fallacies when designing
and implementing distributed applications

L. Peter Deutsch
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Working on a cluster/shared machine with MPI
Ŷ How do we program such a machine?

To work on a cluster or shared machine with MPI, we typically need to follow these steps:
• Connect to the cluster using SSH
• Load the MPI module using module load or spack load
Compile the MPI program using the MPI wrapper compiler (e.g., mpifort, mpicc)

• Submit the MPI job to the job scheduler (e.g., SLURM, PBS, LSF) using a job script
• Monitor the job status and retrieve the output files

The compile step may have to be done on compute nodes, depending on the cluster
configuration.
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The SLURM job scheduler
Ŷ How do we program such a machine?

SLURM (Simple Linux Utility for Resource Management) is a popular job scheduler used in
many HPC clusters.
• SLURM manages the allocation of resources (e.g., nodes, CPUs, memory) for jobs
submitted by users

• Users submit jobs to SLURM using a job script that specifies the resources required
and the commands to execute

• SLURM schedules jobs based on resource availability and job priorities
• Users can monitor the status of their jobs using SLURM commands (e.g., squeue,

sacct)
• Once a job is completed, users can retrieve the output files generated by their jobs

ŵż/ŷż



SLURM glossary
Ŷ How do we program such a machine?

node: A single physical or virtual machine in the cluster
task: A single instance of a program running on a node
job: A collection of tasks that are submitted to SLURM for execution

partition: A group of nodes with similar characteristics (e.g., hardware, software)
allocation: A reservation of resources (nodes, CPUs, memory) for a job

script: A file that contains the commands to execute a job, along with SLURM
directives

interactive session: A temporary allocation of resources for interactive use (e.g.,
debugging, testing, compilation)

We usually have a number of tasks per node, depending on the number of available
CPUs/cores, and a number of CPUs per task, depending on the number of threads we
want to use per task.
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Running an interactive session with SLURM
Ŷ How do we program such a machine?

To run an interactive session with SLURM, we can use the salloc command, specifying
the resources we need:
salloc -N 1 -n 4 --cpus-per-task=2 --time=01:00:00 --partition=cl1
This command requests an interactive session with:
• Ŵ nodes (-N 1),
• ŷ tasks (-n 4),
• ŵ CPUs per task (--cpus-per-task=2),
• a time limit of Ŵ hour (--time=01:00:00),
• on the cl1 partition (--partition=cl1).
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Running an interactive session with SLURM
Ŷ How do we program such a machine?

To run an interactive session with SLURM, we can use the salloc command, specifying
the resources we need:
salloc -N 1 -n 4 --cpus-per-task=2 --time=01:00:00 --partition=cl1
Which will print on screen something like:
salloc: Pending job allocation 20864
salloc: job 20864 queued and waiting for resources
salloc: job 20864 has been allocated resources
salloc: Granted job allocation 20864
After a while, when the resources are allocated, we will get a shell prompt on the
compute node.
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Running an interactive session with SLURM
Ŷ How do we program such a machine?

Another option to run an interactive session is to use the srun command with the --pty
option:
srun --pty -N 1 -n 4 --cpus-per-task=2 --time=01:00:00 --partition=cl1 bash
This command has the same effect as the previous one, but it directly starts a bash shell
on the compute node.

If the cluster supports it, you can also use ssh to connect directly to a compute node for
interactive work (after allocating resources with salloc), but this is less common.
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Preparing a SLURM job script for MPI
Ŷ How do we program such a machine?

An example of a SLURM job script launch.sh for running an MPI program:

#!/bin/bash
#SBATCH --job-name=mpi_hello
#SBATCH --output=mpi_hello.out
#SBATCH --error=mpi_hello.err
#SBATCH --nodes=2
#SBATCH --ntasks=4
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=1
#SBATCH --time=01:00:00
#SBATCH --partition=cl2

The script starts with a shebang line
(#!/bin/bash) to specify the shell to use
The #SBATCH directives specify the job:
— job name (--job-name),
— output file (--output),
— error file (--error),
— number of nodes (--nodes),
— number of tasks (--ntasks),
— tasks per node (--ntasks-per-node),
— CPUs per task (--cpus-per-task),
— time limit (--time),
— partition (--partition).
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Output files options in SLURM job scripts
Ŷ How do we program such a machine?

The --output and --error options in SLURM job scripts specify the files where the
standard output and standard error streams of the job will be redirected.
By default, if these options are not specified, SLURM will create output files named
slurm-<jobid>.out in the directory where the job was submitted.
You can customize the names of these files using the --output and --error options,
together with some special placeholders:
• %j: Job ID
• %N: Node name
• %n: Task ID
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Preparing a SLURM job script for MPI + OpenMP
Ŷ How do we program such a machine?

If we want to use OpenMP in addition to MPI, we need to set the number of threads per
process using the OMP_NUM_THREADS environment variable in the job script:
export OMP_NUM_THREADS=4
This line should be added before the command that runs the MPI program.

It is crucial to ensure that OMP_NUM_THREADS does not exceed the total number of
available CPU cores on the allocated nodes to avoid oversubscription, i.e., the number of
threads should be less than or equal to the number passsed to --cpus-per-task.
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The execution command in SLURM job scripts
Ŷ How do we program such a machine?

To run the MPI program in the SLURM job script, we use the srun command:
srun ./mpi_hello
This command launches the MPI program mpi_hello using the resources allocated by
SLURM.

It is important to use srun instead of mpirun or mpiexec in SLURM job scripts, as
srun is integrated with SLURM and ensures proper resource allocation and management;
in many clusters mpirun and mpiexec are disabled or not recommended.
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Submitting the SLURM job script and checking job status
Ŷ How do we program such a machine?

To submit the SLURM job script, we use the sbatch command:
sbatch launch.sh
This command submits the job script launch.sh to SLURM for execution.

To check the status of the submitted job, we can use the squeue command:
squeue -u your_username
This command lists all the jobs submitted by the user your_username, showing their job
IDs, statuses, and other information.
If the job is running or completed, we can check the output and error files specified in the
job script.
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The Toeplitz cluster at DMPISA
ŷ The Toeplitz cluster at DMPISA

• The Toeplitz cluster is a distributed memory machine available at DMPISA for
high-performance computing tasks

• It consists of multiple nodes, each equipped with powerful processors and a
significant amount of memory

• The nodes are connected by a 10Gbit s−1/25Gbit s−1 network providing
communication between nodes

• The cluster is managed using the SLURM job scheduler, which allows users to submit
and manage their jobs effectively

• Users can access the cluster remotely via SSH and utilize MPI for parallel
programming
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Specifications of the Toeplitz cluster at DMPISA
ŷ The Toeplitz cluster at DMPISA

• The Toeplitz cluster consists of ż nodes:
— ŷ AMD EPYC źźŹŶ nodes: ŵ threads per core, Źŷ cores per socket, ŵ sockets, 2 TB of

memory ( 1.96 TB usable).
— ŷ Intel Xeon EŸ-ŵŹŸų vŷ at 2.20GHz nodes: ŵ threads per core, Ŵŵ cores per socket, ŵ

sockets, 256GB of memory ( 250GB usable).
— Ŵ Intel Xeon EŸ-ŵŹŷŶ vŷ at 3.40GHz node: ŵ threads per core, Ź cores per socket, ŵ

sockets, 128GB of memory ( 125GB usable).
• Network connectivity:

— The first ŷ AMD nodes are connected via fiber at 25Gbit s−1.
— The remaining nodes use Intel Ethernet Controller XŸŷų-ATŵ Ŵų-Gigabit NICs over

copper, with a 10Gbit s−1 switch.
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Accessing the Toeplitz cluster
ŷ The Toeplitz cluster at DMPISA

Once you receive your account credentials, you can log in to the cluster with the
command:
ssh username@toeplitz.cs.dm.unipi.it
At the first connection, you will be asked to accept the machine’s fingerprint.

If you intend to use services with a graphical interface on the remote machine, you need
to request SSH to forward the XŴŴ server by adding the -X option to the previous
command.
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Setting up SSH key authentication
ŷ The Toeplitz cluster at DMPISA

In general, it is useful to connect via SSH key. A key can be generated on your system by
following the instructions given by:
ssh-keygen

Important: Set a passphrase for the generated key.
You can use the ssh-key we generated for GitHub if you want to.

Once the procedure is complete, you must copy the key to the remote machine with:
ssh-copy-id username@toeplitz.cs.dm.unipi.it
Every subsequent login from your machine will not require a password; the first login
from your machine in each session will require the passphrase.
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Partitions on Toeplitz
ŷ The Toeplitz cluster at DMPISA

Toeplitz contains three different partitions:

Partition Description Time Limit Nodes Node List

gpu ŵ threads/core, ŴŵŻ threads/socket infinite ŷ gpu0[1-4]
ŵ sockets, ŷ NVIDIA Aŷų (ŷŻGB RAM)

cl1 ŵ threads/core, Ź cores/socket infinite Ŵ lnx1
ŵ sockets

cl2 ŵ threads/core, Ŵŵ cores/socket infinite ŷ lnx[2-5]
ŵ sockets

all All nodes in the cluster infinite ż lnx[1-5],
gpu0[1-4]
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Software management on Toeplitz
ŷ The Toeplitz cluster at DMPISA

The software management on the cluster is performed using Spack, a package manager
for supercomputers.
• Simplifies installation and management of scientific software
• Not tied to a specific programming language
• Allows creating software stacks in Python or R, linking to libraries in C, C++, or Fortran
• Easily switch compilers or program for specific microarchitectures
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Environment Modules on Toeplitz
ŷ The Toeplitz cluster at DMPISA

Environment Modules is a tool that simplifies shell initialization and allows users to
modify their environment during the session.
To view available modules:
module avail
Modules are named with the following pattern:
programname/version-compiler-version
Example output:
anaconda3/2021.05-gcc-12.2.0 openmpi/4.1.4-gcc-12.2.0
cmake/3.23.3-gcc-12.2.0 openblas/0.3.20-gcc-12.2.0
gcc/12.2.0 valgrind/3.19.0-oneapi-2022.1.0
intel-oneapi-compilers/2022.1.0

All loaded modules must refer to the same compiler for a consistent environment.

ŷŸ/ŷż



Loading and managing modules
ŷ The Toeplitz cluster at DMPISA

Load modules:
module load programname1/version-compiler-version

programname2/version-compiler-version↪→

Remove modules:
module unload programname1/version-compiler-version
Revert to original state:
module purge
View active modules:
module list
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Anaconda on Toeplitz
ŷ The Toeplitz cluster at DMPISA

For installing and managing Python environments we use Anaconda.
• Anaconda is a Python environment designed to work with multiple isolated
environments

• Each environment can contain different versions of software and modules
• This approach minimizes conflicts and undesired interactions between different
projects

Best practices when starting a new project:
• Create a new environment (do not use the base environment)
• Install required software in the new environment
• Use the $SCRATCH directory for environments (more storage than home)
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Anaconda on Toeplitz
ŷ The Toeplitz cluster at DMPISA

Quick start guide:
module load anaconda3
conda create -p $SCRATCH/my-env-project
conda activate $SCRATCH/my-env-project

For subsequent uses, simply reload the module and activate the environment. Install
packages with:
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch

-c nvidia↪→
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Conclusions and next steps
Ÿ Conclusions

We have:
Introduced distributed memory machines and MPI programming
Explained how to compile and run MPI programs on a cluster
Presented the Toeplitz cluster at DMPISA and its software management

Next steps:
Explore communication routines in MPI
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Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

• Durign the last lecture we have introduced the basics of parallel programming using
theMessage Passing Interface (MPI) paradigm.

• We have discussed the main features of MPI and we have seen how to setup a simple
MPI environment.

• We have also discussed the usage of SLURM to handle queues on HPC systems.
Today we will continue our discussion on MPI by introducing some of the most used MPI
functions.
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Point-to-Point Communication
ŵ Message Passing Interface (MPI)

• Send and Receive operations between pairs of processes
• Essential building block for distributed algorithms
• Two main types: Blocking and Non-blocking
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Blocking Send and Receive
ŵ Message Passing Interface (MPI)

program point_to_point
use mpi
implicit none
integer :: rank, size, ierr, status(MPI_STATUS_SIZE)
integer :: send_data, recv_data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

if (rank == 0) then
send_data = 42
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Blocking Send and Receive
ŵ Message Passing Interface (MPI)

call MPI_Send(send_data, 1, MPI_INTEGER, 1, 0, &
MPI_COMM_WORLD, ierr)

else if (rank == 1) then
call MPI_Recv(recv_data, 1, MPI_INTEGER, 0, 0, &

MPI_COMM_WORLD, status, ierr)
print *, 'Received:', recv_data

end if

call MPI_Finalize(ierr)
end program point_to_point
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Blocking Send and Receive
ŵ Message Passing Interface (MPI)

Let us analyze the code line by line:
• MPI_Init: Initialize the MPI environment
• MPI_Comm_rank: Get the rank of the calling process in the communicator
• MPI_Comm_size: Get the total number of processes in the communicator
• MPI_Send: Locally Blocking send operation
• MPI_Recv: Blocking receive operation
• MPI_Finalize: Clean up the MPI environment

A call is said to be blocking if the function does not return control to the calling process
until the operation is complete.

• MPI_Send returns only after the data has been copied out of the send buffer
• MPI_Recv returns only after the data has been received and placed in the receive

buffer
• This can lead to inefficiencies if processes are waiting for each other! However,

blocking calls are often simpler to implement and reason about.
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Arguments of the MPI Send/Receive
ŵ Message Passing Interface (MPI)

The argument of the Send call are:
• send_data: starting address of the send buffer
• 1: number of elements to send
• MPI_INTEGER: datatype of each element
• 1: rank of the destination process
• 0: message tag (used to identify messages)
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Send function is:
call MPI_Send(send_data, counter, datatype, dest, tag, comm, ierr)
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Arguments of the MPI Send/Receive
ŵ Message Passing Interface (MPI)

The argument of the Receive call are:
• recv_data: starting address of the receive buffer
• 1: number of elements to receive
• MPI_INTEGER: datatype of each element
• 0: rank of the source process
• 0: message tag (used to identify messages)
• MPI_COMM_WORLD: communicator
• status: status object (contains information about the received message)
• ierr: error code

The prototype of the MPI_Recv function is:
call MPI_Recv(recv_data, counter, datatype, source, tag, comm, status, ierr)
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Arguments of the MPI Send/Receive
ŵ Message Passing Interface (MPI)

The argument of the Receive call are:
• recv_data: starting address of the receive buffer
• 1: number of elements to receive
• MPI_INTEGER: datatype of each element
• 0: rank of the source process
• 0: message tag (used to identify messages)
• MPI_COMM_WORLD: communicator
• status: status object (contains information about the received message)
• ierr: error code

The status object can be used to retrieve additional information about the received
message, such as the actual number of elements received or the source of the message.
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MPI Datatypes
ŵ Message Passing Interface (MPI)

MPI provides a variety of predefined datatypes to represent different kinds of data. The
following table lists them:

Fortran Type MPI Datatype

INTEGER MPI_INTEGER
REAL MPI_REAL
DOUBLE PRECISION MPI_DOUBLE_PRECISION
COMPLEX MPI_COMPLEX
DOUBLE COMPLEX MPI_DOUBLE_COMPLEX
LOGICAL MPI_LOGICAL
CHARACTER MPI_CHAR
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Questions
ŵ Message Passing Interface (MPI)

What happens if we run the code with Ŵ process only? What if we run it with more
than ŵ processes?
What happens if the sender and receiver have mismatched tags or datatypes?
How can we handle errors in MPI calls?

The program will hang if there is only Ŵ process, as the receiver will wait indefinitely
for a message that will never arrive. If run with more than ŵ processes, only ranks ų
and Ŵ will participate in the communication; other ranks will do nothing.
Mismatched tags or datatypes will lead to errors or unexpected behavior. The
receiver may not receive the intended message, leading to data corruption or
program crashes.
MPI functions return an error code that can be checked after each call. Additionally,
MPI provides error handling routines to manage errors more gracefully.
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MPI Error Handling
ŵ Message Passing Interface (MPI)

• Every MPI function returns an error code in the ierr variable
• ierr == MPI_SUCCESS indicates successful execution
• Error codes can be converted to human-readable messages using
MPI_Error_string

integer :: ierr
character(len=MPI_MAX_ERROR_STRING) :: error_string
integer :: error_len

call MPI_Send(data, 1, MPI_INTEGER, dest, tag, comm, ierr)
if (ierr /= MPI_SUCCESS) then

call MPI_Error_string(ierr, error_string, error_len, ierr)
print *, 'Error: ', error_string(1:error_len)
call MPI_Finalize(ierr)
stop

end if
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MPI Error Handling
ŵ Message Passing Interface (MPI)

• Every MPI function returns an error code in the ierr variable
• ierr == MPI_SUCCESS indicates successful execution
• Error codes can be converted to human-readable messages using
MPI_Error_string

Always check error codes after critical MPI calls
Use MPI_Error_string to get descriptive error messages
Call MPI_Finalize before terminating on error
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Deadlock in MPI
ŵ Message Passing Interface (MPI)

• A deadlock occurs when processes are
blocked indefinitely, waiting for events
that will never occur

• Common cause: circular waiting
patterns in blocking send/receive
operations

• Example: Two processes each waiting
to receive before sending

ŴŶ/ŷŻ



Deadlock Example: Circular Wait
ŵ Message Passing Interface (MPI)

program deadlock_example
use mpi
implicit none
integer :: rank, size, ierr, status(MPI_STATUS_SIZE)
integer :: data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

if (rank == 0) then
! Rank 0: First receive, then send
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Deadlock Example: Circular Wait
ŵ Message Passing Interface (MPI)

call MPI_Recv(data, 1, MPI_INTEGER, 1, 0, &
MPI_COMM_WORLD, status, ierr)

call MPI_Send(data, 1, MPI_INTEGER, 1, 0, &
MPI_COMM_WORLD, ierr)

else if (rank == 1) then
! Rank 1: First receive, then send (same pattern!)
call MPI_Recv(data, 1, MPI_INTEGER, 0, 0, &

MPI_COMM_WORLD, status, ierr)
call MPI_Send(data, 1, MPI_INTEGER, 0, 0, &

MPI_COMM_WORLD, ierr)
end if
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Deadlock Example: Circular Wait
ŵ Message Passing Interface (MPI)

call MPI_Finalize(ierr)
end program deadlock_example

• Rank ų calls MPI_Recv first and waits for data from rank Ŵ
• Rank Ŵ calls MPI_Recv first and waits for data from rank ų
• Both processes are now blocked, each waiting for the other to send
• Neither process can proceed⇒ deadlock!

Rank ų Rank Ŵ
waiting for

waiting for
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Solution Ŵ: Order Communication
ŵ Message Passing Interface (MPI)

if (rank == 0) then
! Rank 0: Send first, then receive
call MPI_Send(data, 1, MPI_INTEGER, 1, 0, MPI_COMM_WORLD, ierr)
call MPI_Recv(data, 1, MPI_INTEGER, 1, 0, MPI_COMM_WORLD, status, ierr)

else if (rank == 1) then
! Rank 1: Receive first, then send (opposite order)
call MPI_Recv(data, 1, MPI_INTEGER, 0, 0, MPI_COMM_WORLD, status, ierr)
call MPI_Send(data, 1, MPI_INTEGER, 0, 0, MPI_COMM_WORLD, ierr)

end if

• Break the circular dependency by using different orderings
• Rank ų sends first, so rank Ŵ’s receive completes
• Rank Ŵ can then send, so rank ų’s receive completes
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Non-Blocking Communication
ŵ Message Passing Interface (MPI)

integer :: request
! Start non-blocking send
call MPI_Isend(send_data, 1, MPI_INTEGER, 1, 0, &

MPI_COMM_WORLD, request, ierr)
! Do computation while message is in transit
! ...
! Wait for completion
call MPI_Wait(request, status, ierr)

• MPI_Isend: initiate non-blocking send operation
• Returns immediately without waiting for the send to complete
• Enables overlap of communication and computation
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Non-Blocking Communication
ŵ Message Passing Interface (MPI)

integer :: request
! Start non-blocking receive
call MPI_Irecv(recv_data, 1, MPI_INTEGER, 0, 0, &

MPI_COMM_WORLD, request, ierr)
! Do computation while waiting for message
! ...
! Wait for completion
call MPI_Wait(request, status, ierr)

• MPI_Irecv: initiate non-blocking receive operation
• Returns immediately without waiting for the message to arrive
• MPI_Wait: blocks until the operation completes and data is available
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The request argument and the wait commands
ŵ Message Passing Interface (MPI)

• The request argument is an integer that uniquely identifies the operation
• It is used to track the status of the operation and is required for completion routines

like MPI_Wait
• MPI_Wait blocks the calling process until the specified non-blocking operation

completes
• It takes the request handle and a status object as arguments
• The status object can provide information about the completed operation, such as

the source, tag, and error code
If we have multiple non-blocking operations, we can use MPI_Waitall to wait for all of
them to complete:
call MPI_Waitall(count, request_array, status_array, ierr)
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Solution ŵ: Use Non-Blocking Operations
ŵ Message Passing Interface (MPI)

integer :: req_send, req_recv
integer :: status_array(MPI_STATUS_SIZE, 2)

! Both ranks initiate sends and receives simultaneously
call MPI_Isend(data, 1, MPI_INTEGER, 1-rank, 0, MPI_COMM_WORLD, &

req_send, ierr)
call MPI_Irecv(data, 1, MPI_INTEGER, 1-rank, 0, MPI_COMM_WORLD, &

req_recv, ierr)
! Wait for both operations to complete
call MPI_Waitall(2, (/req_send, req_recv/), &

status_array, ierr)
• Non-blocking operations return immediately
• Both sends and receives can progress independently
• MPI runtime handles message buffering and ordering
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Buffered Communication
ŵ Message Passing Interface (MPI)

• Standard mode (default): MPI decides whether
to buffer or not

• Buffered mode: User provides explicit buffer for
send operations

• Useful when you want guaranteed buffering
without relying on MPI’s internal buffers

• Allows more predictable behavior in certain
scenarios

Standard Send

MPI Buffer

Receive Buffer

maybe

if buffered

Standard Mode
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Buffered Communication
ŵ Message Passing Interface (MPI)

• Standard mode (default): MPI decides whether
to buffer or not

• Buffered mode: User provides explicit buffer for
send operations

• Useful when you want guaranteed buffering
without relying on MPI’s internal buffers

• Allows more predictable behavior in certain
scenarios

Buffered Send

User Buffer

Receive Buffer

guaranteed

on demand

Buffered Mode
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MPI Buffered Send
ŵ Message Passing Interface (MPI)

integer :: buffer_size, provided_size
integer, allocatable :: buffer(:)

! Determine required buffer size
call MPI_Pack_size(1, MPI_INTEGER, MPI_COMM_WORLD, buffer_size, ierr)
buffer_size = buffer_size + MPI_BSEND_OVERHEAD
allocate(buffer(buffer_size))

! Attach the buffer to MPI
call MPI_Buffer_attach(buffer, buffer_size, ierr)

! Now use MPI_Bsend instead of MPI_Send
call MPI_Bsend(data, 1, MPI_INTEGER, dest, tag, MPI_COMM_WORLD, ierr)
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MPI Buffered Send
ŵ Message Passing Interface (MPI)

! Detach buffer when done
call MPI_Buffer_detach(buffer, buffer_size, ierr)
deallocate(buffer)

• MPI_Bsend: buffered send operation
• MPI_Buffer_attach: attach user-provided buffer
• MPI_Buffer_detach: detach buffer (must wait for all sends to complete)
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Solution Ŷ: Use Buffered Send
ŵ Message Passing Interface (MPI)

integer :: buffer_size
integer, allocatable :: buffer(:)

call MPI_Pack_size(1, MPI_INTEGER, MPI_COMM_WORLD, buffer_size, ierr)
buffer_size = buffer_size + MPI_BSEND_OVERHEAD
allocate(buffer(buffer_size))

call MPI_Buffer_attach(buffer, buffer_size, ierr)

! Both ranks can now safely use Bsend
call MPI_Bsend(data, 1, MPI_INTEGER, 1-rank, 0, MPI_COMM_WORLD, ierr)
call MPI_Recv(data, 1, MPI_INTEGER, 1-rank, 0, MPI_COMM_WORLD, &

status, ierr)
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Solution Ŷ: Use Buffered Send
ŵ Message Passing Interface (MPI)

call MPI_Buffer_detach(buffer, buffer_size, ierr)
deallocate(buffer)

• MPI_Bsend copies data to user buffer immediately and returns
• Eliminates deadlock by guaranteeing buffering before receive is called
• Requires explicit buffer management overhead
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Collective Communications
ŵ Message Passing Interface (MPI)

• Collective communication are operations that involve all processes in a
communicator.

• Examples include broadcasting, gathering, scattering, and reducing data.
• These operations are essential for synchronizing data among processes.

Rank ų

Rank Ŵ Rank ŵ
Rank Ŷ

data datadata

Broadcast

Rank ŴRank ŵ Rank Ŷ

Rank ų
d = (d1, d2, d3)

d1d2 d3

Gather
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Collective Communications
ŵ Message Passing Interface (MPI)

• Collective communication are operations that involve all processes in a
communicator.

• Examples include broadcasting, gathering, scattering, and reducing data.
• These operations are essential for synchronizing data among processes.

Rank ų

Rank Ŵ Rank ŵ
Rank Ŷ

data datadata

Broadcast

Rank ŴRank ŵ Rank Ŷ

Rank ų
d = (d1, d2, d3)

d1d2 d3

Scatter
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Broadcast Operation
ŵ Message Passing Interface (MPI)

• The broadcast operation sends data from one process (the root) to all other
processes in the communicator.

• Useful for distributing initial data or parameters.
program mpi_broadcast

use mpi
implicit none
integer :: rank, size, ierr
integer :: data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

ŵź/ŷŻ



Broadcast Operation
ŵ Message Passing Interface (MPI)

if (rank == 0) then
data = 100 ! Root process initializes data

end if

! Broadcast data from root process (rank 0) to all processes
call MPI_Bcast(data, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

print *, 'Process', rank, 'received data:', data

call MPI_Finalize(ierr)
end program mpi_broadcast
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Broadcast Operation
ŵ Message Passing Interface (MPI)

The arguments of the MPI_Bcast function are:
• buffer: starting address of the buffer to be broadcasted
• 1: number of elements to broadcast
• MPI_INTEGER: datatype of each element
• 0: rank of the root process
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Bcast function is:
call MPI_Bcast(buffer, counter, datatype, root, comm, ierr)
The value of buffer is significant only at the root process during the call; all other
processes will receive the broadcasted value into their own buffer variable.
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Gather Operation
ŵ Message Passing Interface (MPI)

• The gather operation collects data from all processes and sends it to a root process.
• Useful for aggregating results from multiple processes.

program mpi_gather
use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data, recv_data(4)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

send_data = rank + 1 ! Each process sends its rank + 1
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Gather Operation
ŵ Message Passing Interface (MPI)

! Gather data at root process (rank 0)
call MPI_Gather(send_data, 1, MPI_INTEGER, recv_data, 1, MPI_INTEGER,

0, MPI_COMM_WORLD, ierr)↪→

if (rank == 0) then
print *, 'Root process received data:', recv_data

end if

call MPI_Finalize(ierr)
end program mpi_gather
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Gather Operation
ŵ Message Passing Interface (MPI)

The arguments of the MPI_Gather function are:
• send_buffer: starting address of the send buffer
• 1: number of elements sent by each process
• MPI_INTEGER: datatype of each element
• recv_buffer: starting address of the receive buffer (only significant at root)
• 1: number of elements received from each process
• MPI_INTEGER: datatype of each element
• 0: rank of the root process
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Gather function is:
call MPI_Gather(send_buffer, send_count, send_datatype, &

recv_buffer, recv_count, recv_datatype, &
root, comm, ierr)
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Scatter Operation
ŵ Message Passing Interface (MPI)

• The scatter operation distributes data from a root process to all other processes.
• Useful for distributing chunks of data for parallel processing.

program mpi_scatter
use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data(4), recv_data
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
if (rank == 0) then

send_data = (/10, 20, 30, 40/) ! Root process initializes data
end if
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Scatter Operation
ŵ Message Passing Interface (MPI)

! Scatter data from root process (rank 0) to all processes
call MPI_Scatter(send_data, 1, MPI_INTEGER, recv_data, 1, MPI_INTEGER,

0, MPI_COMM_WORLD, ierr)↪→

print *, 'Process', rank, 'received data:', recv_data
call MPI_Finalize(ierr)

end program mpi_scatter
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Scatter Operation
ŵ Message Passing Interface (MPI)

The arguments of the MPI_Scatter function are:
• send_buffer: starting address of the send buffer (only significant at root)
• 1: number of elements sent to each process
• MPI_INTEGER: datatype of each element
• recv_buffer: starting address of the receive buffer
• 1: number of elements received by each process
• MPI_INTEGER: datatype of each element
• 0: rank of the root process
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Scatter function is:
call MPI_Scatter(send_buffer, send_count, send_datatype, &

recv_buffer, recv_count, recv_datatype, &
root, comm, ierr)
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MPI_Gatherv Operation
ŵ Message Passing Interface (MPI)

• The gatherv operation collects variable amounts of data from each process to a root
process.

• Useful when processes have different amounts of data to contribute.
program mpi_gatherv

use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data(10), recv_data(25)
integer :: send_count, recv_counts(4), displs(4)

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
! Each process sends different amount of data
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MPI_Gatherv Operation
ŵ Message Passing Interface (MPI)

send_count = rank + 1
send_data(1:send_count) = rank
! Root process specifies how much to receive from each process
recv_counts = (/1, 2, 3, 4/)
displs = (/0, 1, 3, 6/) ! Displacements in receive buffer
call MPI_Gatherv(send_data, send_count, MPI_INTEGER, &

recv_data, recv_counts, displs, MPI_INTEGER, &
0, MPI_COMM_WORLD, ierr)

if (rank == 0) then
print *, 'Root received data:', recv_data(1:10)

end if

call MPI_Finalize(ierr)
end program mpi_gatherv
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MPI_Scatterv Operation
ŵ Message Passing Interface (MPI)

• The scatterv operation distributes variable amounts of data from a root process to all
processes.

• Useful for load balancing when processes need different data sizes.
program mpi_scatterv

use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data(10), recv_data(10)
integer :: send_counts(4), displs(4), recv_count

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
if (rank == 0) then
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MPI_Scatterv Operation
ŵ Message Passing Interface (MPI)

send_data = (/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/)
end if
! Root specifies how much to send to each process
send_counts = (/1, 2, 3, 4/)
displs = (/0, 1, 3, 6/) ! Displacements in send buffer
recv_count = rank + 1
call MPI_Scatterv(send_data, send_counts, displs, MPI_INTEGER, &

recv_data, recv_count, MPI_INTEGER, &
0, MPI_COMM_WORLD, ierr)

print *, 'Process', rank, 'received:', recv_data(1:recv_count)
call MPI_Finalize(ierr)

end program mpi_scatterv
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MPI_Gatherv and MPI_Scatterv Parameters
ŵ Message Passing Interface (MPI)

MPI_Gatherv
• send_buffer: data to send
• send_count: amount sent by this

process
• recv_counts: array of receive counts

per process
• displs: array of displacements in

receive buffer

MPI_Scatterv
• send_counts: array of send counts per

process
• displs: array of displacements in send

buffer
• recv_buffer: buffer to receive data
• recv_count: amount received by this

process
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Reduce Operation
ŵ Message Passing Interface (MPI)

• The reduce operation combines data from all processes and sends the result to a
root process.

• Commonly used for summing values or finding maximum/minimum.
program mpi_reduce

use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data, recv_data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

send_data = rank + 1 ! Each process sends its rank + 1

! Reduce data at root process (rank 0) using sum operation
call MPI_Reduce(send_data, recv_data, 1, MPI_INTEGER, MPI_SUM, 0, MPI_COMM_WORLD, ierr)

if (rank == 0) then
print *, 'Root process received reduced data (sum):', recv_data

end if

call MPI_Finalize(ierr)
end program mpi_reduce

ŷŴ/ŷŻ



Reduce Operation Arguments
ŵ Message Passing Interface (MPI)

The arguments of the MPI_Reduce function are:
• send_buffer: starting address of the send buffer
• 1: number of elements to reduce
• MPI_INTEGER: datatype of each element
• MPI_SUM: reduction operation (MPI_SUM, MPI_MAX, MPI_MIN, etc.)
• 0: rank of the root process
• MPI_COMM_WORLD: communicator
• ierr: error code

The prototype of the MPI_Reduce function is:
call MPI_Reduce(send_buffer, recv_buffer, counter, datatype, op, root,

comm, ierr)↪→

The reduce buffer is only significant at the root process.
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MPI Reduction Operations
ŵ Message Passing Interface (MPI)

MPI provides several built-in reduction operations:

Operation Description Operation Description

MPI_SUM Sum of values MPI_MAX Maximum value
MPI_PROD Product of values MPI_MIN Minimum value
MPI_MAXLOC Maximum value and its

location (rank)
MPI_MINLOC Minimum value and its lo-

cation (rank)
MPI_LAND Logical AND MPI_BAND Bitwise AND
MPI_LOR Logical OR MPI_BOR Bitwise OR
MPI_LXOR Logical XOR MPI_BXOR Bitwise XOR
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MPI Collective — Reduce
ŵ Message Passing Interface (MPI)

You can also define your own custom reduction operations. This is done using the
call MPI_Op_create(user_function, commute, op, ierr)
where the user-defined function has the interface:
subroutine user_function(invec, inoutvec, len, datatype)

implicit none
integer :: len
integer :: datatype
! invec and inoutvec are assumed-size arrays
! Operation: inoutvec = invec op inoutvec

end subroutine user_function
The operation op is assumed to be associative; if commute == .false. the order of the
operands must be forced in ascending process rank order, see the naive implementation
example in the MPI standard document for details.
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MPI Collective — Reduce
ŵ Message Passing Interface (MPI)

What is the output of a collective communication?

Collective features
• If the underlying operation is not associative, the results cannot be the same with

different number of processes;
• If the collective is implemented without enforcing ordering, even two successive runs

on the same machine will give different outputs.

Warnings
• Never test a floating point result for exact match;
• Never expect a specific value from different machine configurations;
• Always use the result of a collective to govern global application behaviour;
• Always test results for appropriate bounds.
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Allreduce Operation
ŵ Message Passing Interface (MPI)

Combines data from all processes and distributes the result to all processes:
program mpi_allreduce

use mpi
implicit none
integer :: rank, size, ierr
integer :: send_data, recv_data

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

send_data = rank + 1

ŷŹ/ŷŻ



Allreduce Operation
ŵ Message Passing Interface (MPI)

! All processes receive the result
call MPI_Allreduce(send_data, recv_data, 1, MPI_INTEGER, &

MPI_SUM, MPI_COMM_WORLD, ierr)

print *, 'Process', rank, 'received:', recv_data

call MPI_Finalize(ierr)
end program mpi_allreduce

• Useful when all processes need the reduced result
• No root process specification needed
• Commonly used in iterative algorithms (e.g., convergence checks, orthogonalization

coefficients)
• May be a bottleneck at scale due to synchronization requirements
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Conclusions and next steps
Ŷ Conclusions

We have covered:
Point-to-point communication (blocking, non-blocking, buffered)
Collective communication (broadcast, gather, scatter, reduce)

Next steps:
Investigate the cost of communication in parallel applications
Measuring time, and putting barriers
Explore few advanced MPI features (derived datatypes, communicators)
Reuse and adapt code examples for our linear algebra tasks
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Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

• Durign the last lecture we have introduced the basics of parallel programming using
theMessage Passing Interface (MPI) paradigm.

• We have discussed the main features of MPI and we have seen how to setup a simple
MPI environment.

• We have also discussed the usage of SLURM to handle queues on HPC systems.
Today we will continue our discussion on MPI by introducing some of the most used MPI
functions.
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Table of Contents
ŵ Message Passing Interface (MPI)

▶Message Passing Interface (MPI)
Timing and barriers
The Cost of Communication

Ping-Pong Test for Point-to-Point Communication
The cost of collective communications

▶ Restarting with BLAS: Level Ŵ routines
How do we distribute vectors?
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MPI Timers
ŵ Message Passing Interface (MPI)

• MPI_Wtime() returns a double-precision wall-clock time in seconds
• MPI_Wtick() returns the resolution of MPI_Wtime()
• Suitable for measuring elapsed time of code regions (not CPU time)
• Call MPI_Init before and MPI_Finalize after using timers

CPU time vs Wall-clock time
CPU time measures the time a CPU spends executing a program, while wall-clock time
measures the real-world elapsed time from start to finish, including waiting times and
delays. Tomeasure performance in parallel computing, wall-clock time is often more
relevant as it reflects the actual time users experience.
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Example: Timing a Loop
ŵ Message Passing Interface (MPI)

program timing_example
use mpi
implicit none
integer :: ierr, rank, nprocs, i
real(kind=8) :: t0, t1, elapsed

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)

call MPI_Barrier(MPI_COMM_WORLD, ierr) ! synchronize start
t0 = MPI_Wtime()
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Example: Timing a Loop
ŵ Message Passing Interface (MPI)

do i = 1, 10**7
call random_seed() ! dummy work

end do

call MPI_Barrier(MPI_COMM_WORLD, ierr) ! synchronize end
t1 = MPI_Wtime()

elapsed = t1 - t0
print '(A,I3,A,F8.4)', 'Rank ', rank, ' elapsed: ', elapsed

call MPI_Finalize(ierr)
end program timing_example
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Barriers and Timing Best Practices
ŵ Message Passing Interface (MPI)

• Barriers (MPI_Barrier) force all ranks to synchronize
• Use barriers to align start/end of timed regions; avoid overuse
• Prefer MPI_Reduce (e.g., MPI_MAX) to collect max elapsed time across ranks
• Run multiple iterations and average to smooth variability

ź/Ÿų



Example: Timing with Reduction
ŵ Message Passing Interface (MPI)

program timing_reduce
use mpi
implicit none
integer :: ierr, rank, root
real(kind=8) :: t0, t1, tlocal, tmax

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
root = 0
call MPI_Barrier(MPI_COMM_WORLD, ierr)
t0 = MPI_Wtime()
call MPI_Bcast(tlocal, 1, MPI_DOUBLE_PRECISION, root, MPI_COMM_WORLD,

ierr)↪→
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Example: Timing with Reduction
ŵ Message Passing Interface (MPI)

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t1 = MPI_Wtime()

tlocal = t1 - t0
call MPI_Reduce(tlocal, tmax, 1, MPI_DOUBLE_PRECISION, MPI_MAX, root,

MPI_COMM_WORLD, ierr)↪→

if (rank == root) then
print *, 'Max elapsed across ranks: ', tmax

end if

call MPI_Finalize(ierr)
end program timing_reduce
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The Cost of Communication
ŵ Message Passing Interface (MPI)

• Communication overhead increases with the number of processes
• Two main components: latency and bandwidth

— Latency: time to initiate a message (startup cost)
— Bandwidth: data transfer rate once communication starts

• Total communication time: Tcomm = α+ N
β

— α: latency (message startup cost)
— β: reciprocal of the bandwidth
— N: message size in bytes
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

The fist measure we can do is to evaluate the scaling of point-to-point communication
costs with respect to the number of MPI ranks.

An idea is to implement a simple
benchmark that implements a
ping-pong test between two MPI ranks,
where rank ų sends a message to rank
n− 1, which immediately sends it back.

The time taken for this round-trip communication is measured and reported.
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

program test_mpi_pingpong
use mpi
implicit none
integer :: ierr, rank, nprocs
integer :: n, i, niter
real(kind=8), allocatable :: sendbuf(:), recvbuf(:)
real(kind=8) :: t_start, t_end, t_local, t_avg, t_max
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)
! -----------------------------
! Fixed problem size (strong scaling)
! -----------------------------
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

n = 1000000 ! number of double-precision elements
niter = 100 ! number of repetitions
allocate(sendbuf(n), recvbuf(n))
sendbuf = 1.0d0
recvbuf = 0.0d0

We perform a warm-up phase to avoid measuring initial overheads,
! Warm-up (not timed)
if (rank == 0) then

call MPI_Send(sendbuf, n, MPI_DOUBLE_PRECISION, nprocs-1, 0,
MPI_COMM_WORLD, ierr)↪→

call MPI_Recv(recvbuf, n, MPI_DOUBLE_PRECISION, nprocs-1, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr)↪→

else if (rank == nprocs-1) then
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

call MPI_Recv(recvbuf, n, MPI_DOUBLE_PRECISION, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE, ierr)↪→

call MPI_Send(sendbuf, n, MPI_DOUBLE_PRECISION, 0, 0, MPI_COMM_WORLD,
ierr)↪→

end if
call MPI_Barrier(MPI_COMM_WORLD, ierr)

then we perform the ping-pong test for a number of iterations, measuring the time taken
for each round-trip communication.
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

t_local = 0.0d0
do i = 1, niter

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t_start = MPI_Wtime()
if (rank == 0) then

call MPI_Send(sendbuf, n, MPI_DOUBLE_PRECISION, nprocs-1, 0,
MPI_COMM_WORLD, ierr)↪→

call MPI_Recv(recvbuf, n, MPI_DOUBLE_PRECISION, nprocs-1, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr)↪→

else if (rank == nprocs-1) then
call MPI_Recv(recvbuf, n, MPI_DOUBLE_PRECISION, 0, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr)↪→

call MPI_Send(sendbuf, n, MPI_DOUBLE_PRECISION, 0, 0,
MPI_COMM_WORLD, ierr)↪→
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

end if
t_end = MPI_Wtime()
t_local = t_local + (t_end - t_start)

end do
t_avg = t_local / niter

Finally, we compute the average time and bandwidth, reporting the results from rank ų.
! Take the maximum time across all ranks
call MPI_Reduce(t_avg, t_max, 1, MPI_DOUBLE_PRECISION, MPI_MAX, 0,

MPI_COMM_WORLD, ierr)↪→

if (rank == 0) then
print *, "MPI Ping-Pong strong scaling test"
print *, "Message size (MB): ", n * 8.0d0 / 1.0d6
print *, "MPI ranks : ", nprocs
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

print *, "Avg Ping-Pong time (s): ", t_max
print *, "Avg Bandwidth (GB/s): ", (n * 8.0d0 * 2.0d0) / (t_max *

1.0d9)↪→

print *, "Avg Bandwidth (GBit/s): ", (n * 8.0d0 * 8.0d0 * 2.0d0) /
(t_max * 1.0d9)↪→

end if
deallocate(sendbuf, recvbuf)
call MPI_Finalize(ierr)

end program test_mpi_pingpong
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We recall that the bandwidth is computed as the total data transferred (send + receive)
divided by the time taken, i.e.,

Bandwidth ≈ N× 2

Tcomm

where N is the message size in bytes and Tcomm is the average time taken for the
ping-pong communication.
We have an array of size n double-precision elements, so the message size in bytes is
N = n× 8 bytes, and the total data transferred in the ping-pong test is N× 2 bytes and
we multiply by Ż to convert to bits.
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

To run this benchmark on a HPC system with SLURM, we use the Amelia cluster at
IAC-CNR.

This is a machine whose nodes are equipped with Intel Xeon Gold ŹŶŶŻ processors (Ŷŵ
cores per socket, ŵ sockets per node), connected via an InfiniBand HDRŵųų network with
a theoretical peak bandwidth of 200Gbit s−1.
We write a SLURM script to run the benchmark with different numbers of MPI ranks,

#!/bin/bash
#SBATCH --job-name=pingpong_strong_64ppn
#SBATCH --nodes=7
#SBATCH --ntasks-per-node=64
#SBATCH --time=00:20:00
#SBATCH --partition=prod-gn
#SBATCH --mem=900Gb
#SBATCH --output=pingpong_%j.out
#SBATCH --error=pingpong_%j.errŴż/Ÿų



Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We load the necessary modules and compile the Fortran code using mpifort,
module load intel/gcc-12.2.1/openmpi-4.1.6
And then use bash loops to run the benchmark with different numbers of MPI ranks,
for NODES in $(seq 1 7); do

NTASKS=$((NODES * 64))
echo "Running Ping-Pong with:"
echo " Nodes : $NODES"
echo " Tasks : $NTASKS (64 per node)"
mpirun --bind-to core --map-by ppr:64:node --mca btl ^openib --mca pml

ucx -x UCX_NET_DEVICES='mlx5_0:1' -np $NTASKS ./pingpong↪→

done
The script can be submitted to the SLURM queue using the command:
sbatch runner-pingpong.sh.
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We have passed several options to mpirun to optimize the communication performance:
• --bind-to core: binds each MPI process to a specific CPU core to reduce context

switching and improve cache utilization.
• --map-by ppr:64:node: maps Źŷ MPI processes per node, ensuring an even

distribution of processes across the available nodes.
• --mca btl ^openib: disables the OpenIB BTL (Byte Transfer Layer) to avoid

potential issues with certain InfiniBand configurations.
• --mca pml ucx: selects the UCX (Unified Communication X) PML (Point-to-Point

Messaging Layer) for improved performance on high-speed networks.
• -x UCX_NET_DEVICES='mlx5_0:1': specifies the network devices to be used by

UCX for communication, optimizing data transfer over the InfiniBand network.
The last three options are relevant only to the specific network configuration of the

Amelia cluster, thus they might not be necessary on other systems.
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We have passed several options to mpirun to optimize the communication performance:
• --bind-to core: binds each MPI process to a specific CPU core to reduce context

switching and improve cache utilization.
• --map-by ppr:64:node: maps Źŷ MPI processes per node, ensuring an even

distribution of processes across the available nodes.
• --mca btl ^openib: disables the OpenIB BTL (Byte Transfer Layer) to avoid

potential issues with certain InfiniBand configurations.
• --mca pml ucx: selects the UCX (Unified Communication X) PML (Point-to-Point

Messaging Layer) for improved performance on high-speed networks.
• -x UCX_NET_DEVICES='mlx5_0:1': specifies the network devices to be used by

UCX for communication, optimizing data transfer over the InfiniBand network.
The first two options are important for what we are doing, because they ensure that

we really use the network as expected.
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Scaling Communication Costs: Point-to-Point Example
ŵ Message Passing Interface (MPI)

We increase the number of MPI ranks from Źŷ to ŷŷŻ (ź nodes with Źŷ ranks each).
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The average ping-pong bandwidth approaches the theoretical peak bandwidth of the
InfiniBand HDRŵųų network (200Gbit s−1).
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Exercise
ŵ Message Passing Interface (MPI)

There are a number of possible exercises you can do to further explore the ping-pong
benchmark
Ŵ. Vary the message size and perform linear regression to estimate the latency and

bandwidth parameters (α and β) of the communication model.
ŵ. Implement a similar benchmark using non-blocking communication (e.g.,

MPI_Isend and MPI_Irecv).
Ŷ. Benchmark what happens when you use MPI ranks on different nodes versus on the

same node.
ŷ. Explore the impact of different MPI implementations (e.g., OpenMPI vs MPICH vs

Intel MPI) on communication performance.
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The problem of collective communications
ŵ Message Passing Interface (MPI)

Let’s review the idea of the Broadcast operation. Algorithmically, we can implement it as:
if (my_rank == 0) then

do i = 1, p-1
call MPI_Send(a, 1, MPI_REAL, i, tag, MPI_COMM_WORLD, ierr)

end do
else

call MPI_Recv(a, 1, MPI_REAL, 0, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE, ierr)↪→

end if

• This is a collective communication since all processes participate in its
implementation;

• Just from a software engineering perspective, it makes sense to encapsulate it in a
function: the MPI_Bcast.
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How much does it cost?
ŵ Message Passing Interface (MPI)

• With fast networks, cost for Ŵ float
is dominated by latency α;

• Cost of this algorithm is therefore

T(p) ≈ α · (p− 1)

or, linear in p.
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Can we do any better?
ŵ Message Passing Interface (MPI)

Let’s make some assumptions about the network:
• The cost of communication between any two network nodes is uniform, and is given

by α+ N/β;
• In particular, it is possible to send a message between any two nodesŴ

• The network is capable of sustaining multiple messages (noisy topology) at the same
time, provided pairs of nodes involved in the messages do not overlap.

The latter assumption is especially important: we can improve communication if we can
have multiple messages “flying” through the network at the same time.

ŴHistorically there existed networks where only neighbouring nodes could exchange messages
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Tree broadcast — simple minded
ŵ Message Passing Interface (MPI)
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Tree broadcast — simple minded
ŵ Message Passing Interface (MPI)

Assume processes are numbered from Ŵ:
• Each process i (except Ŵ) receives from ⌊(p− 1)/2⌋;
• Each process such that 2i <= p sends first to process 2i, then to process 2i+ 1.

Cost:
T(p) ≈ 2 log(p),

or logarithmic in p. To be precise, with p > 1 then

T(p) =


0 for p = 1

2 · (k− 1) + 1 for p = 2k, k > 0

2 · ⌊log2(p)⌋ otherwise
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Tree broadcast — Recursive Doubling
ŵ Message Passing Interface (MPI)
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Tree broadcast — Recursive Doubling
ŵ Message Passing Interface (MPI)

• Consider that there are p processes with root ų;
• Set K the minimum power of ŵ such that K ≥ p;
• Process ų sends to process K/2;
• Divide the processes in two groups: from ų to K/2− 1, and from K/2 to
min(p− 1,K− 1);

• Apply recursively to:
— Processes ų to K/2− 1 with root ų;
— Processes K/2 tomin(p− 1,K− 1) with root K/2.

Cost:
T(p) = ⌈log(p)⌉,

or logarithmic in p.
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Collective communications
ŵ Message Passing Interface (MPI)

Considerations for collective communications:
• Their functionality can be defined in terms of simple loops;
• There exist much better implementations;
• The optimal implementation for a given collective depends on:

— The operation;
— The network interface;
— The network topology;
— The amount of data.

A good MPI implementation will switch internally among different algorithms where
appropriate (another advantage of encapsulating the collective)

Let us try and take some measurements of the broadcast operation to see how its cost
scales with the number of MPI ranks.
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Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

program test_mpi_bcast_latency
use mpi
implicit none

integer :: ierr, rank, nprocs
integer :: root
integer :: n, i, niter
real(kind=8), allocatable :: buffer(:)
real(kind=8) :: t_start, t_end, t_local, t_avg, t_max

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)
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Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

root = 0
! Small message size for latency measurement
n = 1 ! single element for pure latency
niter = 10000 ! more iterations for better statistics
allocate(buffer(n))
if (rank == root) then

buffer = 1.0d0
else

buffer = 0.0d0
end if
! Warm-up (not timed)
call MPI_Bcast(buffer, n, MPI_DOUBLE_PRECISION, root, MPI_COMM_WORLD,

ierr)↪→
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Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t_local = 0.0d0
call MPI_Barrier(MPI_COMM_WORLD, ierr)
t_start = MPI_Wtime()
do i = 1, niter

call MPI_Bcast(buffer, n, MPI_DOUBLE_PRECISION, root,
MPI_COMM_WORLD, ierr)↪→

end do
t_end = MPI_Wtime()

t_local = t_local + (t_end - t_start)
t_avg = (t_end - t_start) / niter
! Take the maximum latency across all ranks
call MPI_Reduce(t_avg, t_max, 1, MPI_DOUBLE_PRECISION, MPI_MAX, root,

MPI_COMM_WORLD, ierr)↪→
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Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

if (rank == root) then
print *, "MPI_Bcast latency test"
print *, "MPI ranks : ", nprocs
print *, "Avg Bcast latency (us): ", t_max * 1.0d6

end if
deallocate(buffer)
call MPI_Finalize(ierr)

end program test_mpi_bcast_latency
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Scaling Communication Costs: Broadcast Example
ŵ Message Passing Interface (MPI)

We run the benchmark on the Amelia cluster at IAC-CNR, (ŵų nodes with Źŷ ranks each).
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The observed MPI_Bcast latency shows a non-monotonic scaling trend as the number of
MPI ranks increases.
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Interpreting Broadcast Scaling Behavior
ŵ Message Passing Interface (MPI)

This behavior is expected and reflects the internal algorithm selection.

• Ŵ node (Źŷ ranks): Extremely low latency due to shared-memory communication.
• ŵ–Ŷ nodes (ŴŵŻ–Ŵżŵ ranks): Transition to inter-node communication with efficient

tree-based collectives.
• ŷ–Ÿ nodes (ŵŸŹ–Ŷŵų ranks): Sudden increase in latency caused by algorithm

switching and network contention.
• Ź–ź nodes (ŶŻŷ–ŷŷŻ ranks): Stabilization as MPI switches to scalable hierarchical

broadcast algorithms.

Overall, broadcast latency is dominated by collective startup costs rather than message
size, and is strongly influenced by communicator size, topology awareness, and algorithm
thresholds.
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Restarting with BLAS: Level Ŵ routines
Ŷ Restarting with BLAS: Level Ŵ routines

The first operation we are going to considere are the level-Ŵ BLAS routines, which we
recall are vector-vector operations.

• Vector scaling: y← αy (DSCAL)
• Vector addition: y← y+ αx (DAXPY)
• Vector dot product: α← xTy (DDOT)
• Vector norm: α← ∥x∥2 (DNRM2)

In our model, each process holds a local portion of the vectors, this means that for a
vector of size N distributed over P processes, each process holds a local vector of size N/P.
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How do we distribute vectors?
Ŷ Restarting with BLAS: Level Ŵ routines

The basic idea can be represented with an easy picture:

Proc ų Proc Ŵ Proc ŵ Proc Ŷ Proc ŷ Proc Ÿ Proc Ź Proc ź

Full Vector of Size N divided across P = 8 Processes

This permits us to:
• Perform local computations on each process independently;
• Know what data is stored where with a closed-form formula:

Process p holds elements
[
p · N

P
, (p+ 1) · N

P
− 1

]
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Implementing vector distribution
Ŷ Restarting with BLAS: Level Ŵ routines

To implement this distribution in code, we need to:
• Initialize MPI and get the rank and size of the communicator;
• Determine the global vector size N and compute the local size N/P;
• Allocate local arrays for each process to hold its portion of the vector;

The inizialization code looks always the same:
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)

To compute the local size and allocate the local vector we can use a simple-minded block
distribution.
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Implementing vector distribution: block distribution
Ŷ Restarting with BLAS: Level Ŵ routines

Assuming N is divisible by P, the local size is simply:

Nlocal =
N
P

In the general case, we can compute the local size as:

Nlocal =

⌊
N+ P− 1− p

P

⌋
where p is the rank of the process. This formula ensures that the last process gets any
remaining elements if N is not perfectly divisible.
We can implement this as a function:

function compute_local_size(N, P, p) result(n_local)
integer, intent(in) :: N, P, p
integer :: n_local
n_local = (N + P - 1 - p) / P

end function compute_local_sizeŷŵ/Ÿų



Implementing Level-Ŵ BLAS: a type for distributed vectors
Ŷ Restarting with BLAS: Level Ŵ routines

The first thing we need to do is to create a distributed vector datytpe, this can be done
using the object-oriented functionalities of Fortran:
type :: mpi_ddistributed_vector

integer :: n_local(1) ! number of local elements
integer :: n_global ! total number of global elements
integer :: comm ! MPI communicator
real(real64), allocatable :: data(:) ! local data array

end type mpi_ddistributed_vector
The type encapsulates all necessary information about the distributed vector, including
local size, global size, communicator, and local data array.
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Implementing Level-Ŵ BLAS: type-bound procedures
Ŷ Restarting with BLAS: Level Ŵ routines

In Fortran a type can have type-bound procedures, which are functions or subroutines
associated with the type. Thesere are declared within the contains section of the type
definition.
type :: mpi_ddistributed_vector

<Type members>
contains

<Type bound procedure are declared here>
end type mpi_ddistributed_vector

For our distributed vector type, we need to start by implementing:
• A constructor to initialize the distributed vector;
• A destructor to free resources;
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Implementing Level-Ŵ BLAS: Constructor
Ŷ Restarting with BLAS: Level Ŵ routines

The constructor initializes the distributed vector by computing the local size, allocating
the local data array, and setting the global s ize and communicator.

We add the following type-bound procedure to the type:
procedure, pass(this) :: dinit
The implementation of the constructor is then inserted in che contains part
subroutine dinit(this, comm, n_global)
use mpi
use iso_fortran_env, only: error_unit
implicit none
class(mpi_ddistributed_vector), intent(inout) :: this
integer, intent(in) :: comm
integer, intent(in) :: n_global

end subroutine dinit
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Implementing Level-Ŵ BLAS: Constructor
Ŷ Restarting with BLAS: Level Ŵ routines

The type constructor has a default variable this that refers to the instance of the type
being initialized.

integer :: ierr, rank, nprocs
this%comm = comm
this%n_global = n_global
call MPI_Comm_rank(this%comm, rank, ierr)
call MPI_Comm_size(this%comm, nprocs,

ierr)↪→

this%n_local =
compute_local_size(this%n_global,
nprocs, rank)

↪→

↪→

allocate(this%data(this%n_local),
stat=ierr)↪→

• We assign the communicator and global
size to the type members;

• We get the rank and size of the
communicator;

• We compute the local size using the
previously defined function;

• We allocate the local data array based
on the computed local size.

We should also include error handling for the allocation.
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Implementing Level-Ŵ BLAS: Constructor (error handling)
Ŷ Restarting with BLAS: Level Ŵ routines

The error handling for the allocation can be done by checking the status of the allocation.
if (ierr /= 0) then

write(error_unit, *) "Error allocating local data array on rank ", rank
call MPI_Abort(this%comm, ierr, ierr)

end if
The MPI_Abort function is called to terminate the MPI program if the allocation fails,
ensuring that all processes are informed of the error, and that the program fails and exits
gracefully.
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Implementing Level-Ŵ BLAS: Destructor
Ŷ Restarting with BLAS: Level Ŵ routines

The destructor is responsible for freeing the resources allocated to the distributed vector.
We add use the final keyword in the type bound procedures to define the
destructor:
final :: dfinalize
The implementation of the destructor is then inserted in che contains part
subroutine dfinalize(this)

type(mpi_ddistributed_vector), intent(inout) :: this
if (allocated(this%data)) then

deallocate(this%data)
end if

end subroutine dfinalize
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The creation and destruction of distributed vectors
Ŷ Restarting with BLAS: Level Ŵ routines

With the constructor and destructor defined, we can now create and destroy distributed
vector instances easily.
integer :: n_global, rank, ierr
type(mpi_ddistributed_vector) :: x
call MPI_Init(ierr)
n_global = 1000000 ! Total number of elements
call x%dinit(MPI_COMM_WORLD, n_global)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
if (rank == 0) then

write(output_unit, *) "MPI ranks : ", nprocs
write(output_unit, *) "Global vector size : ", n_global

end if
call MPI_Barrier(MPI_COMM_WORLD, ierr)
write(output_unit, *) "Rank ", rank, ": Local vector size : ", x%n_local
call MPI_Finalize(ierr)
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Conclusions and next steps
ŷ Conclusions and next steps

Today we have:
Reviewed the concept of communication costs in MPI;
Implemented a point-to-point ping-pong benchmark to measure communication
latency and bandwidth;
Explored the scaling behavior of collective communications using a broadcast
benchmark;
Introduced the concept of distributed vectors and how to implement them in Fortran
using object-oriented programming.

Next steps:
Implement Level-Ŵ BLAS operations (vector scaling, addition, dot product, norm) for
distributed vectors;
Explore Level-ŵ and Level-Ŷ BLAS operations
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Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

Up to now we have seen:
How to implement basic MPI programs in Fortran,
Environement setup for MPI development,
Point-to-point and collective communication,
How to distribute vectors across MPI ranks,

We are now ready to implement distributed linear algebra routines, we will start from the
Level-Ŵ BLAS.
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Table of Contents
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Last time we had implemented a distributed vector type
ŵ Distributed Level-Ŵ BLAS

We have constructed the following distributed vector type:
type :: mpi_ddistributed_vector

integer :: n_local ! number of local elements
integer :: n_global ! total number of global elements
integer :: comm ! MPI communicator
real(real64), allocatable :: data(:) ! local data array

contains
procedure, pass(this) :: dinit
final :: dfinalize

end type mpi_ddistributed_vector
We have now to enrich this type with the Level-Ŵ BLAS operations.
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Level Ŵ: the scaling operation
ŵ Distributed Level-Ŵ BLAS

The first Level-Ŵ BLAS operation we are going to implement is the vector scaling:

y← α y, α ∈ R, y ∈ RN.

This operation is embarrassingly parallel, since each element of the vector can be scaled
independently from the others.

We can therefore implement this operation as amethod of the distributed vector type, as
before we add the method signature to the type definition:
type :: mpi_ddistributed_vector
...

contains
...
procedure, pass(this) :: dscal_dist

end type mpi_ddistributed_vector
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Level Ŵ: the scaling operation
ŵ Distributed Level-Ŵ BLAS

Then we can implement the method using the BLAS dscal routine on the local data:
subroutine dscal_dist(this, alpha)

implicit none
class(mpi_ddistributed_vector), intent(inout) :: this
real(real64), intent(in) :: alpha
call dscal(this%n_local, alpha, this%data, 1)

end subroutine dscal_dist
We remind that the dscal routine has the following signature:
dscal(n, alpha, x, incx)
where n is the number of elements to scale, alpha is the scaling factor,
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Compiling and linking the distributed BLAS library
ŵ Distributed Level-Ŵ BLAS

To compile and link the distributed BLAS library we need to link against both the MPI
library and the BLAS library. The compilation command is:

mpifort -c -I<path_to_blas_include> mpi_ddistributed_vector.f90 -o
mpi_ddistributed_vector.o↪→

and the linking command is:
mpifort mpi_ddistributed_vector.o -L<path_to_blas_lib>

-l<blas_library_name> -o libmpi_ddistributed_blas.a↪→

As usual, it is convenient to create a Makefile or even better a CMakeLists.txt to
automate the compilation and linking process. For the latter we need to look for both MPI
and BLAS using the find_package() command.
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Compiling and linking the distributed BLAS library
ŵ Distributed Level-Ŵ BLAS

This is an example of a CMakeLists.txt file to compile and link the distributed BLAS
library:
cmake_minimum_required(VERSION 3.10)
project(mpi_ddistributed_blas LANGUAGES Fortran)
find_package(MPI REQUIRED COMPONENTS Fortran)
find_package(BLAS REQUIRED)

add_library(mpi_ddistributed_blas mpi_ddistributed_vector.f90)
target_link_libraries(mpi_ddistributed_blas MPI::MPI_Fortran

BLAS::BLAS)↪→
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Level Ŵ: the axpy operation
ŵ Distributed Level-Ŵ BLAS

The second Level-Ŵ BLAS operation we are going to implement is the axpy operation:

y← α x+ y, α ∈ R, x, y ∈ RN.

This operation is again embarrassingly parallel, since each element of the vectors can be
updated independently from the others.
The implementation pathway is the same as before, we add the method signature to the
type definition:

type :: mpi_ddistributed_vector
...

contains
...
procedure, pass(this) :: daxpy_dist

end type mpi_ddistributed_vector
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Level Ŵ: the axpy operation
ŵ Distributed Level-Ŵ BLAS

Then we can implement the method using the BLAS daxpy routine on the local data, but
before we have two checks to perform:

Check that the vector x is distributed over the same communicator as this,
Check that the local sizes of the two vectors are the same.

The communicator check can be performed using the MPI_Comm_compare routine:
MPI_Comm_compare(comm1, comm2, result, ierr)
and then check that result == MPI_IDENT.
The local size check is simply an if statement on the n_local attribute of the two
vectors.
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Level Ŵ: the axpy operation
ŵ Distributed Level-Ŵ BLAS

subroutine daxpy_dist(this, alpha, x)
implicit none
class(mpi_ddistributed_vector), intent(inout) :: this
real(real64), intent(in) :: alpha
class(mpi_ddistributed_vector), intent(in) :: x
integer :: ierr, are_comm_compatible
if (this%n_local /= x%n_local) then

write(error_unit, *) "Error: Local sizes do not match in daxpy_dist"
call MPI_Abort(this%comm, 1, ierr)

end if
call MPI_Comm_compare(this%comm, x%comm, are_comm_compatible, ierr)
if (are_comm_compatible /= MPI_IDENT) then

write(error_unit, *) "Error: Communicators do not match in daxpy_dist"
call MPI_Abort(this%comm, 1, ierr)

end if
call daxpy(this%n_local, alpha, x%data, 1, this%data, 1)

end subroutine daxpy_dist
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Level Ŵ: the scalar product
ŵ Distributed Level-Ŵ BLAS

The third Level-Ŵ BLAS operation we are going to implement is the scalar product:

α = x⊤y =

N∑
i=1

xiyi, x, y ∈ RN.

This operation is not embarrassingly parallel, since we need to reduce the contributions
from all the processes to compute the final result.

We can therefore implement this operation as amethod of the distributed vector type, as
before we add the method signature to the type definition:
type :: mpi_ddistributed_vector
...

contains
...
procedure, pass(this) :: ddot_dist

end type mpi_ddistributed_vector
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Level Ŵ: the scalar product
ŵ Distributed Level-Ŵ BLAS

Then we can implement the method using the BLAS ddot routine on the local data, but
before we have two checks to perform:

Check that the vector x is distributed over the same communicator as this,
Check that the local sizes of the two vectors are the same.

And we have to perform a global reduction of the local contributions to compute the final
result, but we have a decision to make:

Do we want to return the result to all processes?
Do we want to return the result only to the root process?
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Level Ŵ: the scalar product
ŵ Distributed Level-Ŵ BLAS

The prototype to delegate the choice of the reduction strategy to the user is:
subroutine ddot_dist(this, x, result, rank)

implicit none
class(mpi_ddistributed_vector), intent(in) :: this
class(mpi_ddistributed_vector), intent(in) :: x
integer, intent(in), optional :: rank
real(real64), intent(out) :: result

end subroutine ddot_dist
If the user provides the rank argument, then the result is returned only to the specified
rank, otherwise it is returned to all ranks.
We can then implement the method using the BLAS ddot routine on the local data and
then performing the reduction using MPI_Reduce or MPI_Allreduce.
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Level Ŵ: the scalar product
ŵ Distributed Level-Ŵ BLAS

The two checks are the same as before, and we don’t rewrite them here, then we
compute the local dot product:
local_dot = ddot(this%n_local, this%data, 1, x%data, 1)
and then we perform the reduction:
if (present(rank)) then

call MPI_Reduce(local_dot, result, 1, MPI_REAL8, MPI_SUM, rank,
this%comm, ierr)↪→

else
call MPI_Allreduce(local_dot, result, 1, MPI_REAL8, MPI_SUM,

this%comm, ierr)↪→

end if
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Level Ŵ: the norm operation
ŵ Distributed Level-Ŵ BLAS

The fourth Level-Ŵ BLAS operation we are going to implement is the vector norm:

∥x∥2 =
√
x⊤x =

(
N∑

i=1

x2i

)1/2

, x ∈ RN.

This operation is similar to the scalar product, since we need to reduce the contributions
from all the processes to compute the final result.

We can therefore implement this operation as amethod of the distributed vector type, as
before we add the method signature to the type definition:
type :: mpi_ddistributed_vector
...

contains
...
procedure, pass(this) :: dnrm2_dist

end type mpi_ddistributed_vector
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Level Ŵ: the norm operation
ŵ Distributed Level-Ŵ BLAS

Then we can implement the method using the BLAS dnrm2 routine on the local data, and
then performing a global reduction of the local contributions to compute the final result,
using the same strategy as before.

The prototype of the method is:
subroutine dnrm2_dist(this, result, rank)

implicit none
class(mpi_ddistributed_vector), intent(in) :: this
integer, intent(in), optional :: rank
real(real64), intent(out) :: result

end subroutine dnrm2_dist
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Level Ŵ: the norm operation
ŵ Distributed Level-Ŵ BLAS

The local norm computation is performed using the dnrm2 routine:
local_norm = dnrm2(this%n_local, this%data, 1)**2
and then we perform the reduction:
if (present(rank)) then

call MPI_Reduce(local_norm, result, 1, MPI_REAL8, MPI_SUM, rank,
this%comm, ierr)↪→

else
call MPI_Allreduce(local_norm, result, 1, MPI_REAL8, MPI_SUM,

this%comm, ierr)↪→

end if
Finally we take the square root of the result to obtain the final norm, if we are on the root
process (or on all processes if no root was specified).

ŴŻ/ŷź



Level Ŵ: the norm operation
ŵ Distributed Level-Ŵ BLAS

The final step is to take the square root of the result:
if (present(rank)) then

if (myrank == rank) then
result = sqrt(global_sum)

end if
else

result = sqrt(global_sum)
end if

With this we have completed the implementation of the Level-Ŵ BLAS operations for our
distributed vector type.
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Performance considerations for Level-Ŵ BLAS
ŵ Distributed Level-Ŵ BLAS

The Level-Ŵ BLAS operations we have implemented are allmemory-bound, since they
require a lot of data movement compared to the number of floating-point operations
performed.

In a distributed memory setting, the performance of these operations is further limited by
the communication overhead introduced by the MPI routines used for data distribution
and reduction.

Let us try to analyze the performance of the
• axpy,
• dot product,
• norm.

What models can we use?
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Distributed axpy performance model
ŵ Distributed Level-Ŵ BLAS

The distributed axpy operation requires:
Reading the local parts of vectors x and y from memory,
Writing the updated local part of vector y to memory.

Therefore, the total data movement is:

Data Movement = 2 · nlocal · sizeof(realŹŷ).

The number of floating-point operations is:

FLOPs = 2 · nlocal.

Thus, the operational intensity is:

I =
FLOPs

Data Movement
=

2 · nlocal
2 · nlocal · sizeof(realŹŷ)

=
1

sizeof(realŹŷ)
.

This has not changed from the shared memory case.
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The communication cost in distributed axpy
ŵ Distributed Level-Ŵ BLAS

In addition to the memory access costs, the distributed axpy operation incurs a
communication cost due to the distribution of vectors across MPI processes.

However, since the axpy operation is embarrassingly parallel, there is no need for
inter-process communication during the computation itself.

Therefore, the communication cost is negligible for the axpy operation, and the
performance is primarily determined by the memory bandwidth of the local memory.

Let us run some experiments to confirm this.
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axpy performance bechmark
ŵ Distributed Level-Ŵ BLAS

We can write a single benchmark program to test the performance of the distributed axpy
operation for both strong and weak scaling.
We read the type of experiment from the command line arguments:
if (rank == 0) then

call get_command_argument(1, scaling_type)
call get_command_argument(2, arg_buffer)
read(arg_buffer, *) n_size_input

if (trim(scaling_type) /= 'strong' .and. trim(scaling_type) /= 'weak') then
write(error_unit, '(A)') "Error: scaling_type must be 'strong' or 'weak'"
call MPI_Abort(MPI_COMM_WORLD, 1, ierr)

end if
end if
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axpy performance bechmark
ŵ Distributed Level-Ŵ BLAS

Then we set the global vector size based on the scaling type:
! Broadcast arguments to all ranks
call MPI_Bcast(scaling_type, 20, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
call MPI_Bcast(n_size_input, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

! Compute global size based on scaling type
if (trim(scaling_type) == 'strong') then

n_global = n_size_input
else ! weak scaling

n_global = n_size_input * nprocs
end if

Recall: strong scalingmeans fixed problem size, weak scalingmeans fixed problem size
per process.
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axpy performance bechmark
ŵ Distributed Level-Ŵ BLAS

We are now ready to create the distributed vectors and run the benchmark:
! Initialize vectors and data
call x%dinit(MPI_COMM_WORLD, n_global)
call y%dinit(MPI_COMM_WORLD, n_global)
x%data = 1.0_real64
y%data = 2.0_real64
call MPI_Barrier(MPI_COMM_WORLD, ierr)
call y%daxpy_dist(alpha, x) ! Warmup run
call MPI_Barrier(MPI_COMM_WORLD, ierr)
! Timing runs
start_time = MPI_Wtime()
do i = 1, num_trials

call y%daxpy_dist(alpha, x)
end do
end_time = MPI_Wtime()
elapsed_time = (end_time - start_time) / num_trials
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axpy performance bechmark
ŵ Distributed Level-Ŵ BLAS

Finally we gather the results:
! Gather timing statistics
call MPI_Reduce(elapsed_time, max_time, 1, MPI_REAL8, MPI_MAX, 0, MPI_COMM_WORLD, ierr)
call MPI_Reduce(elapsed_time, min_time, 1, MPI_REAL8, MPI_MIN, 0, MPI_COMM_WORLD, ierr)
call MPI_Reduce(elapsed_time, avg_time, 1, MPI_REAL8, MPI_SUM, 0, MPI_COMM_WORLD, ierr)
Which we can then print from the root process:
avg_time = avg_time / nprocs
write(output_unit, *)
write(output_unit, '(A, I12)') "Global vector size: ", n_global
write(output_unit, '(A, I12)') "Local vector size: ", x%n_local
write(output_unit, '(A, F12.6, A)') "Average time: ", avg_time * 1000, " ms"
write(output_unit, '(A, F12.6, A)') "Min time: ", min_time * 1000, " ms"
write(output_unit, '(A, F12.6, A)') "Max time: ", max_time * 1000, " ms"
write(output_unit, '(A, F12.2, A)') "Throughput: ", &

(n_global * 3.0_real64 * 8.0_real64) / (avg_time * 1.0e9), " GB/s"
write(output_unit, '(A, F12.2, A)') "Performance: ", &

(n_global * 2.0_real64) / (avg_time * 1.0e9), " GFLOP/s"
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axpy performance experiment setup
ŵ Distributed Level-Ŵ BLAS

We run the benchmark on the AMELIA cluster at IAC-CNR, which is the same we used to
measure network performance.
#!/bin/bash
#SBATCH --job-name=axpy_scaling_64ppn
#SBATCH --nodes=20
#SBATCH --ntasks-per-node=64
#SBATCH --time=00:30:00
#SBATCH --partition=prod-gn
#SBATCH --mem=900Gb
#SBATCH --output=axpy_%j.out
#SBATCH --error=axpy_%j.err

# Load Intel oneAPI modules
module load intel/oneapi/intel_MKL-2023.2.0 intel/oneapi/intel_MPI-2023.2.0
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axpy performance experiment setup
ŵ Distributed Level-Ŵ BLAS

For the strong scaling we launch the benchmark:
N_GLOBAL_STRONG=100000 # fixed total vector size
echo " STRONG SCALING TEST"
echo " Global vector size = ${N_GLOBAL_STRONG}"
for NODES in $(seq 1 20); do

NTASKS=$((NODES * 64))
echo
echo "Strong scaling run:"
echo " Nodes : $NODES"
echo " MPI ranks: $NTASKS"
echo " N_global : $N_GLOBAL_STRONG"
mpirun -np $NTASKS ./mpi_axpy_scaling strong $N_GLOBAL_STRONG
echo "----------------------------------------"

done
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axpy performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS
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axpy performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS
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Strong scaling analysis
ŵ Distributed Level-Ŵ BLAS

The strong scaling results show that the execution time decreases as we increase the
number of MPI ranks, which is the expected behavior. However, the rate of decrease
slows down significantly after ŵŸŹ ranks.

Key observations:
From Źŷ to ŵŸŹ ranks: execution time decreases from ų.ŹŴŹ ms to ų.ŶŷŶ ms (≈ 45%
reduction),
From ŵŸŹ to ŴŵŻų ranks: execution time decreases from ų.ŶŷŶ ms to ų.ŵŵų ms
(≈ 36% reduction).

This indicates that we are approaching the communication and memory bandwidth
limits of the system.
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Strong scaling efficiency
ŵ Distributed Level-Ŵ BLAS

The performance per rank (in GFLOP/s) shows a significant improvement from Źŷ to Ŷŵų
ranks, increasing from≈ 324 GFLOP/s to≈ 845 GFLOP/s.

Beyond Ŷŵų ranks, the performance stabilizes around żųų GFLOP/s with minor
fluctuations.

This behavior is typical for memory-bound operations:
Initial improvement due to better cache utilization and memory bandwidth
saturation,
Plateau effect due to the inherent memory bandwidth limitation of individual
compute nodes.
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Strong scaling saturation
ŵ Distributed Level-Ŵ BLAS

The saturation in performance suggests that we have reached the memory bandwidth
limit of the underlying hardware at approximately żųų GFLOP/s.

This is consistent with the memory-bound nature of the axpy operation, where:
The operational intensity is very low (I = 1/8 for Źŷ-bit floats),
The computation is limited by memory bandwidth, not floating-point performance.

Further improvements would require either:
Increasing the problem size (to improve cache reuse), and let’s do it!
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axpy performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS
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axpy performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS
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axpy performance experiment: weak scaling setup
ŵ Distributed Level-Ŵ BLAS

For the weak scaling we launch the benchmark:
N_LOCAL_WEAK=1562 # local size per MPI rank
echo " WEAK SCALING TEST"
echo " Local vector size per rank = ${N_LOCAL_WEAK}"
for NODES in $(seq 1 20); do

NTASKS=$((NODES * 64))
N_GLOBAL_WEAK=$((NTASKS * N_LOCAL_WEAK))
echo
echo "Weak scaling run:"
echo " Nodes : $NODES"
echo " MPI ranks: $NTASKS"
echo " N_global : $N_GLOBAL_WEAK (${N_LOCAL_WEAK} per rank)"
mpirun -np $NTASKS ./mpi_axpy_scaling weak $N_LOCAL_WEAK
echo "----------------------------------------"

done
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axpy performance experiment: weak scaling
ŵ Distributed Level-Ŵ BLAS
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axpy performance experiment: weak scaling
ŵ Distributed Level-Ŵ BLAS
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Weak Scaling Results Analysis
ŵ Distributed Level-Ŵ BLAS

The weak scaling results for the distributed axpy operation demonstrate that as we
increase the number of MPI ranks while maintaining a constant local vector size per rank,
the execution time remains relatively stable at approximately ų.Ÿ ms.

From Źŷ to ŴŵŻų ranks: execution time fluctuates between ų.ŸŴ and ų.ŹŴ ms, showing
excellent stability,
The performance in GFLOP/s scales nearly linearly with the number of ranks,
indicating efficient distributed memory utilization,
This demonstrates that the embarrassingly parallel nature of the axpy operation is
preserved in the distributed implementation.

This behavior is ideal for weak scaling scenarios, where the problem size grows
proportionally with the number of processes. The stable execution time confirms that
there is no significant communication overhead in the distributed axpy operation.
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Weak Scaling Performance Insights
ŵ Distributed Level-Ŵ BLAS

The weak scaling results for the distributed axpy operation highlight several key insights:
The constant local computation time across all ranks confirms that the distributed
axpy implementation has negligible communication overhead,
The linear increase in total GFLOP/s (from≈ 328 to≈ 7807 GFLOP/s) demonstrates
perfect computational scaling,
The local memory bandwidth utilization remains constant, indicating that each rank
operates independently without interference from inter-process communication.

Overall, the weak scaling results validate that the distributed axpy operation is well-suited
for large-scale parallel computations, with minimal communication overhead and
excellent scalability properties.
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Scaling of the dot product and norm operations
ŵ Distributed Level-Ŵ BLAS

We can now investigate the scaling behavior of the dot product and norm operations,
which involve global reductions and are therefore expected to exhibit different scaling
characteristics compared to the axpy operation.

The dot product and norm operations require communication between MPI processes to
aggregate local results, which can introduce significant overhead, especially as the
number of processes increases.

We will analyze both strong and weak scaling for these operations to understand their
performance limits.
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Writing the benchmark
ŵ Distributed Level-Ŵ BLAS

The initial part of the benchmark program is similar to the axpy benchmark, decide the
scaling type and set the global vector size accordingly. The main difference is in the timing

section, where we replace the axpy call with either the dot product or norm call:
call x%dinit(MPI_COMM_WORLD, n_global)
call y%dinit(MPI_COMM_WORLD, n_global)
x%data = 1.0_real64
y%data = 2.0_real64
call MPI_Barrier(MPI_COMM_WORLD, ierr)
call x%ddot_dist(y, dot_value)
call MPI_Barrier(MPI_COMM_WORLD, ierr)
start_time = MPI_Wtime()
do i = 1, num_trials

call x%ddot_dist(y, dot_value)
end do
end_time = MPI_Wtime()
elapsed_time = (end_time - start_time) / num_trials
Ŷż/ŷź



ddot performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS
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ddot performance experiment: strong scaling
ŵ Distributed Level-Ŵ BLAS
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Strong Scaling Analysis: MPI DDOT (Nglobal = 107)
ŵ Distributed Level-Ŵ BLAS

The strong scaling results for the distributed dot product reveal interesting behavior
patterns:

Initial strong scaling (Źŷ–ŸźŹ ranks): Execution time decreases from ų.ŵŴŵ ms to
ų.ųŵų ms, showing nearly ideal scaling behavior.
Peak performance (ŸŴŵ–ŸźŹ ranks): Approximately Ŵųųų GFLOP/s, indicating efficient
local computation and reduction.
Performance degradation (źųŷ+ ranks): Significant variability and performance
drops appear, suggesting communication overhead dominates.

The critical observation is that performance becomes unstable beyond ŸźŹ ranks, with
execution time fluctuating between ų.ųŵų ms and ų.ųŻź ms.
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Understanding the Scaling Breakdown
ŵ Distributed Level-Ŵ BLAS

Why does performance degrade at high
rank counts?

Local vector size: nlocal = 107

Nranks

At ŴŵŻų ranks: nlocal ≈ 7800 elements
Too small for effective cache utilization

Communication cost dominates:
MPI reduction becomes a bottleneck
Synchronization overhead exceeds
computation time
Network latency not fully hidden by
computation

Key insight: Unlike embarrassingly parallel axpy, dot product requires global
synchronization via MPI_Allreduce, which becomes increasingly expensive as rank count
grows.
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Recommendations for Practical Use
ŵ Distributed Level-Ŵ BLAS

Optimal configuration: ŵŸŹ–ŸźŹ ranks with problem size N ≥ 106 per rank
— Maintains local vector size large enough for efficient computation
— Communication overhead remains manageable

Weak scaling preferred: For dot product and norm operations, weak scaling
(constant work per rank) provides better performance predictability
Avoid extreme decomposition: Do not distribute to more ranks than necessary;
overhead grows quadratically with rank count for global reductions
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ddot performance experiment: weak scaling
ŵ Distributed Level-Ŵ BLAS
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ddot performance experiment: weak scaling
ŵ Distributed Level-Ŵ BLAS
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Weak Scaling of Distributed DDOT with MPI_Allreduce
ŵ Distributed Level-Ŵ BLAS

Setup: Each MPI rank maintains a fixed local vector of ŴŸŹŵ elements. The global dot
product requires MPI_Allreduce to aggregate local contributions across all ranks.
Execution time behavior:
— Scales well up to≈Ŷŵų ranks with gradual time increase
— Significant spikes at ŶŻŷ–ŷŷŻ and Ŵųŵŷ+ ranks indicate communication bottlenecks
— Variability suggests network congestion and synchronization overhead

Performance scaling:
— Peak performance≈ŴŸų GFLOP/s around żŹų ranks
— Drops align with execution time spikes, confirming communication dominates
— Unlike axpy, performance is latency-bound, not compute-bound
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Weak Scaling of Distributed DDOT with MPI_Allreduce
ŵ Distributed Level-Ŵ BLAS

Key insight: At high rank counts, each rank’s local vector is too small to hide the cost
of the global all-reduce operation. The computation time becomes negligible
compared to synchronization overhead.

Communication avoiding algorithms
To mitigate these issues, research has moved towards communication-avoiding
algorithms that try to reduce the number of global synchronizations required, for
example by restructuring computations to perform more local work before
communicating, or by reformulating algorithms to reduce the frequency of reductions.
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Conclusion and next steps
Ŷ Conclusion and next steps

We have
Implemented Level-Ŵ BLAS operations for distributed vectors using MPI,
Analyzed performance characteristics for axpy, dot product, and norm,
Identified scaling limits due to communication overhead in reduction operations

Next steps:
Explore Level-ŵ and Level-Ŷ BLAS operations in distributed settings.
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Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

We have
Described the Message Passing Interface (MPI) programming model,
Implemented Level-Ŵ BLAS operations for distributed vectors using MPI,
Analyzed performance characteristics for axpy, dot product, and norm,
Identified scaling limits due to communication overhead in reduction operations

Next steps:
• Discuss data distribution strategies for distributed matrices,
• Implement Level-ŵ BLAS operations for distributed matrices and vectors,
• Explore the Level-ŵ and Level-Ŷ BLAS operations in distributed settings.
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ŵ Distributed matrices

▶ Distributed matrices
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Distributed matrices
ŵ Distributed matrices

When dealing with large matrices that cannot fit into the memory of a single node, we
need to distribute the matrix across multiple nodes of our distributed-memory
environment.

How can we do that?
we have already partially addressed this question when discussing the construction
of matrix-vector products and matrix-matrix products in a shared-memory context;
we have discussed this for the case of distributed vectors last time.
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Key concerns in data layout
ŵ Distributed matrices

When choosing a data layout for dense matrix computations on distributed-memory
systems, we must consider:

Load Balance
• Split work evenly among processors
• Avoid idle processors during

computation

Computational Efficiency
• Utilize Level Ŷ BLAS on local data
• Leverage memory hierarchy

These requirements often conflict and require careful trade-offs!
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ŴD Block Column Distribution
ŵ Distributed matrices

Pų PŴ Pŵ PŶ

Characteristics:
• Each process stores one block of

contiguous columns
• Column k goes to process ⌊(k− 1)/nc⌋
mod P

Problems:
• Poor load balance: once columns are

completed, processes become idle
• Not suitable for matrix operations like

Gaussian elimination
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ŴD Cyclic Column Distribution
ŵ Distributed matrices

Pų PŴ Pŵ PŶ Pų PŴ Pŵ PŶ

Characteristics:
• Column k assigned to process (k− 1)
mod P

• Single columns are interleaved across
processes

Advantages:
• Better load balance
• Good work distribution

Problems:
• Cannot use Level ŵ/Ŷ BLAS efficiently

(only single columns)
• Poor memory hierarchy utilization
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ŴD Block-Cyclic Column Distribution
ŵ Distributed matrices

Pų Pų PŴ PŴ Pŵ Pŵ PŶ PŶ

Characteristics:
• Choose block size NB
• Column block k assigned to process
⌊(k− 1)/NB⌋ mod P

Advantages:
• Reasonable load balance
• Can use Level ŵ/Ŷ BLAS locally

Problems:
• Serial bottleneck: factorization occurs

on one process
• Limited parallelism in factorization step
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ŵD Block-Cyclic Distribution
ŵ Distributed matrices

(ų,ų) (ų,Ŵ)

(Ŵ,ų) (Ŵ,Ŵ)

Processors in Pr × Pc grid

Characteristics:
• Arrange P processes in Pr × Pc

rectangular grid
• Block size parameters: MB× NB

• Block (i, j) goes to process
(i mod Pr, j mod Pc)

Advantages:
• Excellent load balance
• Allows Pc-fold parallelism in columns
• Can use Level ŵ/Ŷ BLAS
• Good scalability

This is the standard layout used by ScaLAPACK! But how do we implement it?
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Comparison of Distribution Strategies
ŵ Distributed matrices

Strategy Load Balance BLAS Use Scalability Complexity

ŴD Block Poor Good Bad Simple
ŴD Cyclic Good Poor Fair Simple
ŴD Block-Cyclic Fair Fair Fair Moderate
ŵD Block-Cyclic Excellent Good Excellent Complex

Key Trade-offs:
• Load balance vs. computational efficiency
• Simple schemes vs. scalability
• The ŵD block-cyclic strategy achieves the best overall balance
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Implementing the ŵD Block-Cyclic Distribution
ŵ Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (ŵD block-cyclic):
• Communicator with P = Pr × Pc processes
• Global matrix of sizeM× N
• Process grid of size Pr × Pc
• Block sizeMB× NB
• Source process (Rsrc, Csrc)
• Use ų-based global indices: i0 = i− 1, j0 = j− 1

• Global block indices:
br =

⌊
i0
MB

⌋
, bc =

⌊
j0
NB

⌋
ŴŴ/Ÿż



Implementing the ŵD Block-Cyclic Distribution
ŵ Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (ŵD block-cyclic):
• Communicator with P = Pr × Pc processes
• Global matrix of sizeM× N
• Process grid of size Pr × Pc
• Block sizeMB× NB
• Source process (Rsrc, Csrc)
• Use ų-based global indices: i0 = i− 1, j0 = j− 1

• Owning process:

pr = (br − Rsrc) mod Pr, pc = (bc − Csrc) mod Pc

ŴŴ/Ÿż



Implementing the ŵD Block-Cyclic Distribution
ŵ Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (ŵD block-cyclic):
• Communicator with P = Pr × Pc processes
• Global matrix of sizeM× N
• Process grid of size Pr × Pc
• Block sizeMB× NB
• Source process (Rsrc, Csrc)
• Use ų-based global indices: i0 = i− 1, j0 = j− 1

• Local block indices:

ℓr =

⌊
br − Rsrc

Pr

⌋
, ℓc =

⌊
bc − Csrc

Pc

⌋
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Implementing the ŵD Block-Cyclic Distribution
ŵ Distributed matrices

We need to map global matrix indices to local storage on each process.

Global to Local Index Mapping (ŵD block-cyclic):
• Communicator with P = Pr × Pc processes
• Global matrix of sizeM× N
• Process grid of size Pr × Pc
• Block sizeMB× NB
• Source process (Rsrc, Csrc)
• Use ų-based global indices: i0 = i− 1, j0 = j− 1

• Local indices (Ŵ-based, Fortran):

local_row = ℓr ·MB+ (i0 mod MB) + 1

local_col = ℓc · NB+ (j0 mod NB) + 1
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Building a descriptor for the ŵD process grid
ŵ Distributed matrices

To implement the ŵD block-cyclic distribution, we need a descriptor that contains:

• Global matrix dimensions M, N
• Block sizes MB, NB
• Process grid dimensions P_r, P_c
• Leading dimension of local arrays
• Starting indices for submatrices, they are usually called RSRC and CSRC parameters

specify the starting process coordinates for the distribution, and are typically set to 0.

This descriptor will be used in all distributed matrix operations to correctly map global
indices to local storage. We can build it as a Fortran derived type.
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Fortran Descriptor Type
ŵ Distributed matrices

type :: descriptor
integer :: comm ! MPI communicator
integer :: M ! Global number of rows
integer :: N ! Global number of columns
integer :: MB ! Block size in rows
integer :: NB ! Block size in columns
integer :: P_r ! Number of process rows
integer :: P_c ! Number of process columns
integer :: LLD ! Leading dimension of local array
integer :: RSRC ! Row source process
integer :: CSRC ! Column source process

end type descriptor
This structure encapsulates all necessary information for managing the ŵD block-cyclic
distribution of matrices across a process grid.
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But how do we init the descriptor?
ŵ Distributed matrices

To initialize the descriptor, we can create an initialization procedure that sets all the fields
based on the global matrix size, block sizes, and process grid dimensions.

• This procedure will be called once at the beginning of the program to set up the
descriptor.

• It will compute the leading dimension of the local arrays based on the block sizes and
process grid.

• The process coordinates (pr, pc)must be provided to correctly map back to global
indices, they can be retrieved from the MPI rank.
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But how do we init the descriptor?
ŵ Distributed matrices

subroutine init(desc, comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC)
class(descriptor), intent(out) :: desc
integer, intent(in) :: comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC
desc%comm = comm
desc%M = M
desc%N = N
desc%MB = MB
desc%NB = NB
desc%P_r = P_r
desc%P_c = P_c
desc%RSRC = RSRC
desc%CSRC = CSRC
desc%LLD = ((M + P_r * MB - 1) / (P_r * MB)) * MB

end subroutine init
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A distributed matrix type
ŵ Distributed matrices

We now need to build a distributed matrix type that uses the descriptor to manage its
data.

This can be done by defining a Fortran derived type that contains:

• The local array to store the matrix data,
• The descriptor for the matrix distribution,
• Type-bound procedures for the BLAS matrix operations.
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Distributed Matrix Type Definition
ŵ Distributed matrices

We can define the distributed matrix type as follows:
type :: distributed_matrix

real, allocatable :: local_data(:,:) ! Local matrix storage
type(descriptor) :: desc ! Descriptor for distribution

contains
<Type bound procedures for matrix operations go here>

end type distributed_matrix

We don’t need to add more fields, as the descriptor contains all necessary information
about the global matrix, and the size of the local is in the desc%NB and desc%MB fields.
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The distributed GEMV operation
ŵ Distributed matrices

The first Level-ŵ BLAS operation we can implement is the distributed matrix-vector
product (GEMV):

y← αAx+ βy

where A is a distributed matrix, and x and y are distributed vectors.

Key Steps:
• Each process computes its local contribution to the matrix-vector product.
• A global reduction is performed to combine the local results into the final vector y.

But how do we distribute the vectors x and y?

We can use a ŴD block distribution for the vectors to align with the matrix
distribution.
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The distributed GEMV operation
ŵ Distributed matrices

The first Level-ŵ BLAS operation we can implement is the distributed matrix-vector
product (GEMV):

y← αAx+ βy

where A is a distributed matrix, and x and y are distributed vectors.

Key Steps:
• Each process computes its local contribution to the matrix-vector product.
• A global reduction is performed to combine the local results into the final vector y.

But how do we distribute the vectors x and y?
We can use a ŴD block distribution for the vectors to align with the matrix
distribution.
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Distributed GEMV Implementation
ŵ Distributed matrices

We can visualize the distributed GEMV operation with a block cyclic distributed matrix,
and a ŴD block distributed vector as in the following diagram:

A x y

=

y = Ax, A ∈ RN×N, x, y ∈ RN×1
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Vector Distribution
ŵ Distributed matrices

• Column vector: x ∈ RN×1

• Descriptor parameters:
— M = N
— N = 1
— NB = 1

• Block-cyclic distribution in rows only
• Only process column 0 stores vector data x

(0, 0)

(1, 0)
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What communications are needed for GEMV?
ŵ Distributed matrices

We can represent the distributed GEMV operation as follows:
A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33



x0
x1
x2
x3

 =


A00x0 + A01x1 + A02x2 + A03x3
A10x0 + A11x1 + A12x2 + A13x3
A20x0 + A21x1 + A22x2 + A23x3
A30x0 + A31x1 + A32x2 + A33x3


This means that:

• All processes with processo column 0 need x0
• All processes with processo column 1 need x1
• All processes with processo column 2 need x2
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What is the right communication function?
ŵ Distributed matrices

To implement the required communication pattern, we can use:

• We need to broadcast the vector segments x0, x1, x2, x3 along the process columns.

x0 → (0, 0), (1, 0), (2, 0), (3, 0)

x1 → (0, 1), (1, 1), (2, 1), (3, 1)

x2 → (0, 2), (1, 2), (2, 2), (3, 2)

x3 → (0, 3), (1, 3), (2, 3), (3, 3)

• We need a communicator for each process column to perform these broadcasts.
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Building communicators for GEMV
ŵ Distributed matrices

We need to create communicators for the process rows and columns:
dims(1) = P_r ! Define process grid dimensions
dims(2) = P_c
periods(1) = .false.
periods(2) = .false.
! Create Cartesian communicator
call MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, .true., cart_comm,

ierr)↪→

! Split into row and column communicators
call MPI_Comm_rank(cart_comm, cart_rank, ierr)
call MPI_Cart_coords(cart_comm, cart_rank, 2, coords, ierr)
call MPI_Comm_split(cart_comm, coords(1), coords(2), row_comm, ierr)
call MPI_Comm_split(cart_comm, coords(2), coords(1), col_comm, ierr)

These communicators allow us to perform broadcasts and reductions efficiently along the
rows and columns of the processŵŶ/Ÿż



Details and signature of the new MPI functions
ŵ Distributed matrices

The subroutine MPI_Cart_create has signature:
call MPI_Cart_create(comm_old, ndims, dims, periods, reorder,

comm_cart, ierr)↪→

where:
• comm_old: input communicator (e.g., MPI_COMM_WORLD)
• ndims: number of dimensions (ŵ for a ŵD grid)
• dims: array specifying the size of each dimension
• periods: array specifying whether each dimension is periodic
• reorder: logical flag to allow process rank reordering
• comm_cart: output Cartesian communicator
• ierr: error code
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Details and signature of the new MPI functions
ŵ Distributed matrices

The subroutine MPI_Cart_create has signature:
call MPI_Cart_create(comm_old, ndims, dims, periods, reorder,

comm_cart, ierr)↪→

This subroutine creates a Cartesian communicator based on the specified dimensions and
periodicity, i.e., a ŵD grid of processes.
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Details and signature of the new MPI functions
ŵ Distributed matrices

The subroutine MPI_Comm_split has signature:
call MPI_Comm_split(comm, color, key, newcomm, ierr)
where:

• comm: input communicator
• color: integer that determines the new communicator grouping
• key: integer that determines the rank ordering in the new communicator
• newcomm: output new communicator
• ierr: error code
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Details and signature of the new MPI functions
ŵ Distributed matrices

The subroutine MPI_Comm_split has signature:
call MPI_Comm_split(comm, color, key, newcomm, ierr)
This subroutine splits an existing communicator into multiple new communicators based
on the color parameter, allowing for the creation of row and column communicators
from the Cartesian grid.
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An example of communicator creation and splitting
ŵ Distributed matrices

program communicator_example
use mpi
use iso_fortran_env, only: output_unit
implicit none
integer :: ierr, rank, size
integer :: cart_comm, row_comm, col_comm
integer :: dims(2), coords(2)
logical :: periods(2)
integer :: myx, myy
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
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An example of communicator creation and splitting
ŵ Distributed matrices

! Define process grid dimensions
dims(1) = 2 ! Number of process rows
dims(2) = size / 2 ! Number of process columns
periods(1) = .false.
periods(2) = .false.

! Create Cartesian communicator
call MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, .true.,

cart_comm, ierr)↪→

call MPI_Cart_coords(cart_comm, rank, 2, coords, ierr)
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An example of communicator creation and splitting
ŵ Distributed matrices

! Split into row and column communicators
call MPI_Comm_split(cart_comm, coords(1), coords(2), row_comm,

ierr)↪→

call MPI_Comm_split(cart_comm, coords(2), coords(1), col_comm,
ierr)↪→

! Print ranks in each communicator for verification
call MPI_Comm_rank(row_comm, myx, ierr)
call MPI_Comm_rank(col_comm, myy, ierr)
write(output_unit, *) 'Global Rank:', rank, 'Row Comm Rank:', myx,

'Col Comm Rank:', myy↪→

call MPI_Finalize(ierr)
end program communicator_example
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An example of communicator creation and splitting
ŵ Distributed matrices

We can compile and run this program with ŷ processes:

mpifort -o communicator_example communicator_example.f90
mpirun -np 4 ./communicator_example
The result will be something like:

Global Rank: 3 Row Comm Rank: 1 Col Comm Rank: 1
Global Rank: 0 Row Comm Rank: 0 Col Comm Rank: 0
Global Rank: 1 Row Comm Rank: 1 Col Comm Rank: 0
Global Rank: 2 Row Comm Rank: 0 Col Comm Rank: 1
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Packaging these communicators in our descriptor
ŵ Distributed matrices

To facilitate the use of these communicators in our distributed matrix operations, we can
add them as fields in our descriptor type:
type :: descriptor

integer :: comm ! MPI communicator
integer :: M, N ! Global number of rows/columns
integer :: MB, NB ! Block size in rows/columns
integer :: P_r, P_c ! Number of process rows/columns
integer :: LLD ! Leading dimension of local array
integer :: RSRC, CSRC ! Row, Column source process
integer :: cart_comm, row_comm, col_comm ! Cached communicators
integer :: myrow, mycol

end type descriptor
And modify the initialization routine to set these fields accordingly.
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Modifying the descriptor init to include communicators
ŵ Distributed matrices

We can modify the init subroutine to create and store the communicators in the
descriptor:
subroutine init(desc, comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC)

implicit none
class(descriptor), intent(out) :: desc
integer, intent(in) :: comm, M, N, MB, NB, P_r, P_c, RSRC, CSRC
! Local variables
integer :: ierr, dims(2), coords(2)
integer :: size
logical :: periods(2)
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Modifying the descriptor init to include communicators
ŵ Distributed matrices

! standard initialization (same as before)
desc%comm = comm
desc%M = M
desc%N = N
desc%MB = MB
desc%NB = NB
desc%P_r = P_r
desc%P_c = P_c
desc%RSRC = RSRC
desc%CSRC = CSRC
desc%LLD = ((M + P_r * MB - 1) / (P_r * MB)) * MB
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Modifying the descriptor init to include communicators
ŵ Distributed matrices

To create the Cartesian, row, and column communicators, we need to check if the
distribution is really of a ŵD nature (i.e., Pr > 1 or Pc > 1):
! Create Cartesian communicators: created for any 2D/1D distribution
if ( P_r > 1 .or. P_c > 1 ) then

! Define process grid dimensions
dims(1) = P_r
dims(2) = P_c
periods(1) = .false.
periods(2) = .false.
call MPI_Cart_create(comm, 2, dims, periods, .true.,

desc%cart_comm, ierr)↪→

if ( ierr /= MPI_SUCCESS ) then
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Modifying the descriptor init to include communicators
ŵ Distributed matrices

print *, 'Error creating Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if
if ( desc%cart_comm == MPI_COMM_NULL ) then
desc%row_comm = MPI_COMM_NULL
desc%col_comm = MPI_COMM_NULL
desc%my_row = -1
desc%my_col = -1
return

end if
call MPI_Comm_rank(desc%cart_comm, rank, ierr)
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Modifying the descriptor init to include communicators
ŵ Distributed matrices

if ( ierr /= MPI_SUCCESS ) then
print *, 'Error getting rank in Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if

call MPI_Cart_coords(desc%cart_comm, rank, 2, coords, ierr)
if ( ierr /= MPI_SUCCESS ) then

print *, 'Error getting coordinates in Cartesian communicator'
call MPI_Abort(comm, ierr, stat)
stop

end if
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Modifying the descriptor init to include communicators
ŵ Distributed matrices

desc%my_row = coords(1)
desc%my_col = coords(2)

! Split into row and column communicators
call MPI_Comm_split(desc%cart_comm, coords(1), coords(2),

desc%row_comm, ierr)↪→

call MPI_Comm_split(desc%cart_comm, coords(2), coords(1),
desc%col_comm, ierr)↪→

else
! For 1D distributions, use the original communicator
desc%cart_comm = comm
desc%row_comm = comm
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Modifying the descriptor init to include communicators
ŵ Distributed matrices

desc%col_comm = comm
desc%my_row = 0
desc%my_col = 0

end if
end subroutine init

• This modification ensures that each distributed matrix has access to the necessary
communicators for efficient parallel operations.

• The process coordinates myrow and mycol are also stored for easy reference.
• We have added error checks to ensure the communicator creation is successful.
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Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

Now that we have the communicators set up, we also need to implement the global to
local and local to global index mapping functions.

These functions are useful to query and write specific elements of the distributed matrix.
subroutine global_to_local(desc, i_global, j_global, &
p_r, p_c, i_local, j_local)
implicit none
class(descriptor), intent(in) :: desc
integer, intent(in) :: i_global, j_global
integer, intent(out) :: p_r, p_c
integer, intent(out) :: i_local, j_local

integer :: ig, jg ! 0-based global element indices
integer :: ib, jb ! absolute block indices
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Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

integer :: off_i, off_j ! offset inside block (0-based)
integer :: first_b_r, first_b_c
integer :: lbr, lbc ! local block indices

! Convert to 0-based element indices
ig = i_global - 1
jg = j_global - 1
! Absolute block indices
ib = ig / desc%MB
jb = jg / desc%NB
! Offsets inside their blocks
off_i = mod(ig, desc%MB)
off_j = mod(jg, desc%NB)
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Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

! Owning process coordinates (0..P_r-1, 0..P_c-1)
p_r = mod(ib - desc%RSRC, desc%P_r)
p_c = mod(jb - desc%CSRC, desc%P_c)
! First absolute block index assigned to that process
first_b_r = mod(desc%RSRC + p_r, desc%P_r)
first_b_c = mod(desc%CSRC + p_c, desc%P_c)
! Local block index on owning process (non-negative)
lbr = (ib - first_b_r) / desc%P_r
lbc = (jb - first_b_c) / desc%P_c
! Local 1-based indices in Fortran storage
i_local = lbr * desc%MB + off_i + 1
j_local = lbc * desc%NB + off_j + 1

end subroutine global_to_local
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Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

While the converse mapping is given by:
subroutine local_to_global(desc, p_r, p_c, &
i_local, j_local, &
i_global, j_global)
implicit none
class(descriptor), intent(in) :: desc
integer, intent(in) :: p_r, p_c
integer, intent(in) :: i_local, j_local
integer, intent(out) :: i_global, j_global

integer :: il, jl ! 0-based local indices
integer :: lbr, lbc ! local block indices
integer :: off_i, off_j ! offset inside local block
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Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

integer :: first_b_r, first_b_c
integer :: ib, jb ! absolute block indices

! Convert to 0-based local indices
il = i_local - 1
jl = j_local - 1
! Local block indices and offsets (0-based)
lbr = il / desc%MB
lbc = jl / desc%NB
off_i = mod(il, desc%MB)
off_j = mod(jl, desc%NB)
! First absolute block index assigned to (p_r,p_c)
first_b_r = mod(desc%RSRC + p_r, desc%P_r)
first_b_c = mod(desc%CSRC + p_c, desc%P_c)
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Global to Local and Local to Global Index Mapping
ŵ Distributed matrices

! Reconstruct absolute block indices
ib = first_b_r + lbr * desc%P_r
jb = first_b_c + lbc * desc%P_c
! Convert back to 1-based global indices
i_global = ib * desc%MB + off_i + 1
j_global = jb * desc%NB + off_j + 1

end subroutine local_to_global

Which can be used as needed in our distributed matrix operations.
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The prototype of the distributed GEMV subroutine
ŵ Distributed matrices

We have now done all the necessary preparations to implement the distributed GEMV.
The prototype of the distributed GEMV subroutine can be defined as follows:
subroutine gemv_distributed(mat, x, alpha, y, beta)

class(distributed_matrix), intent(in) :: mat
class(distributed_matrix), intent(in) :: x
class(distributed_matrix), intent(inout) :: y
real(wp), intent(in) :: alpha, beta

end subroutine gemv_distributed
Where:

• mat is the distributed matrix A,
• x and y are the distributed input and output vectors, respectively,
• alpha and beta are scalars for the operation y = αAx+ βy.
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Temporary storage for the broadcasted vector
ŵ Distributed matrices

We need to create a temporary storage for the broadcasted vector segments, and to
reduce the code redundancy, we can define a local variable for the descriptor of the
matrix:
type(descriptor) :: desc
integer :: mloc, nloc, ierr, stat
real(wp), allocatable :: xbuf(:), y_partial(:), y_local(:)

desc = mat%desc
mloc = size(mat%local_data, 1)
nloc = size(mat%local_data, 2)

When do we need to allocate the temporary buffer xbuf?
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Temporary storage for the broadcasted vector
ŵ Distributed matrices

We need to allocate the temporary buffer xbuf on all processes:
allocate(xbuf(nloc), stat=stat)
if (stat /= 0) then

print *, 'Error allocating xbuf'
call MPI_Abort(mat%desc%comm, stat, ierr)

end if
However, only the processes in the source column of the vector need to copy their local
data into this buffer:
if (desc%my_row == desc%RSRC) then

xbuf = x%local_data(:,1)
end if
And now we are ready to perform the broadcast along the process rows.
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Executing the broadcast down the process columns
ŵ Distributed matrices

The call is
call MPI_Bcast(xbuf, nloc, MPI_REAL8, desc%RSRC, desc%col_comm, ierr)
where:

• xbuf is the temporary buffer for the broadcasted vector segment, it contains the
local portion of the vector on the source process and will be filled on all other
processes,

• nloc is the size of the local portion of the vector,
• MPI_REAL8 is the MPI datatype for double precision real numbers,
• desc%RSRC is the row source process for the vector—the process which owns the

local data to be broadcasted,
• desc%col_comm is the column communicator.
• ierr is the error code.
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Executing the local GEMV
ŵ Distributed matrices

We now have the necessary data to perform the local GEMV operation:

ypartial = αAlocalxbuf

allocate(y_partial(mloc), stat=stat)
if (stat /= 0) then

print *, 'Error allocating y_partial'
call MPI_Abort(mat%desc%comm, stat, ierr)

end if
call dgemv('N', mloc, nloc, alpha, mat%local_data, mloc, xbuf, 1,

0.0_wp, y_partial, 1)↪→

Now on each process we have the local contribution to the output vector y.
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Reducing the partial results along process columns
ŵ Distributed matrices

The last two step are
Ŵ. Reduce the partial results along the process columns,
ŵ. Scale and update the output vector y.

The reduction can be performed using:
if (desc%my_row == desc%RSRC) then
allocate(y_local(mloc), stat=stat)

if (stat /= 0) then
print *, 'Error allocating y_local'
call MPI_Abort(mat%desc%comm, stat, ierr)

end if
end if
call MPI_Reduce(y_partial, y_local, mloc, MPI_REAL8, MPI_SUM,

mat%desc%RSRC, mat%desc%col_comm, ierr)↪→
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Reducing the partial results along process columns
ŵ Distributed matrices

The last two step are
Ŵ. Reduce the partial results along the process columns,
ŵ. Scale and update the output vector y.

The scaling and update of the output vector can be done using:
if (desc%my_row == desc%RSRC) then

! Scale existing y by beta
y%local_data(:,1) = beta * y%local_data(:,1)
! Add the reduced result
y%local_data(:,1) = y%local_data(:,1) + y_local
deallocate(y_local)

end if
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Let’s summarize the distributed GEMV implementation
ŵ Distributed matrices

Ŵ. Create communicators for process rows and columns.
ŵ. In the distributed GEMV subroutine:

ŵ.Ŵ Allocate a temporary buffer for the broadcasted vector segment.
ŵ.ŵ Copy local vector data into the buffer on the source process.
ŵ.Ŷ Broadcast the vector segment along the process columns.
ŵ.ŷ Perform the local GEMV operation to compute the partial result.
ŵ.Ÿ Reduce the partial results along the process columns.
ŵ.Ź Scale and update the output vector on the source process.

As you can see, implementing distributed GEMV requires careful management of data
distribution and communication patterns to ensure efficiency and correctness in a parallel
computing environment.
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Running a test
ŵ Distributed matrices

We can now run a test of our distributed GEMV implementation by computing:

y = 1.0Ax+ 0.0 y, with {(A)i,j = 1.0}ni,j=1, x = 1.

program test_distributed_gemv
use mpi
use distributed_gemv
use iso_fortran_env, only: wp => real64
implicit none
integer :: ierr, rank, world_size, colrank, rowrank
! Matrix size
integer, parameter :: M = 900, N = 900
! Matrix descriptor
type(descriptor) :: desc_matrix, desc_vector
type(distributed_matrix) :: mat, x, y
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Running a test
ŵ Distributed matrices

! Check variables
integer :: i
logical :: correct

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, world_size, ierr)

! Create a descriptor for a square matrix distributed over a 3x3 process grid
call desc_matrix%init(MPI_COMM_WORLD, M, N, M/3, N/3, 3, 3, 0, 0)
! Initialize distributed matrix
call mat%init_matrix(desc_matrix, 1.0_wp)

! Create a distributed vector (which is an M x 1 distributed matrix)
call desc_vector%init(MPI_COMM_WORLD, M, 1, M/3, 1, 3, 1, 0, 0)
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Running a test
ŵ Distributed matrices

call x%init_matrix(desc_vector, 1.0_wp)
call y%init_matrix(desc_vector, 0.0_wp)

! Perform distributed matrix-vector multiplication
call mat%gemv_distributed(x, 1.0_wp, y, 0.0_wp)

! Check results: we are multiplying a matrix of ones by a vector of ones
! So the result should be a vector of size M with all entries equal to N
! we need to check only the local part of y only on the ranks that own data
correct = .true.
call MPI_Comm_rank(desc_matrix%col_comm, colrank, ierr)

if (colrank == 0) then
do i = 1, size(y%local_data, 1)

if (y%local_data(i,1) /= real(N, wp)) then
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Running a test
ŵ Distributed matrices

correct = .false.
exit

end if
end do
if (correct) then

print *, 'Test passed: Distributed GEMV result is correct on rank', rank,
'colrank', colrank↪→

else
print *, 'Test failed: Distributed GEMV result is incorrect on rank', rank,

'colrank', colrank↪→

end if
end if

call MPI_Finalize(ierr)
end program test_distributed_gemv
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We compile and run the test
ŵ Distributed matrices

We can compile and run the test program using:
mpifort -o distributed_gemv distributed_gemv.f90 -lopenblas

And then run the program with ż processes (ŶxŶ grid):
mpirun -np 9 ./distributed_gemv

Which should output:
Test passed: Distributed GEMV result is correct on rank 2 colrank 0
Test passed: Distributed GEMV result is correct on rank 0 colrank 0
Test passed: Distributed GEMV result is correct on rank 1 colrank 0
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Run another test
ŵ Distributed matrices

We can run another test with a non unifor vector x:
if (colrank == 0) then
y%local_data(:,1) = 1.0_wp
! Reinitialize x to have values ((rank-1)*(N/3)+1):(rank)*(N/3)
do i = 1, size(x%local_data, 1)
x%local_data(i,1) = real((rowrank+1)*(N/3)+i, wp)
! write(*,*) 'Rank', rank, 'x local(', i, ') =', x%local_data(i,1)

end do
end if
And perform the distributed GEMV again:
call mat%gemv_distributed(x, 1.0_wp, y, 1.0_wp)
The expected result is now:

yi =
N∑
j=1

Ai,jxj + yi =
N∑
j=1

1.0 · xj + 1.0 =

N∑
j=1

xj =
N(N+ 1)

2
+ 1.0 = 405451.0
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Check the result of the second test
ŵ Distributed matrices

correct = .true.
if (colrank == 0) then

do i = 1, size(y%local_data, 1)
if (y%local_data(i,1) /= real(N*(N+1), wp)/2.0+1.0) then

correct = .false.
exit

end if
end do
if (correct) then

print *, 'Test passed: Distributed GEMV with beta=1.0 result is
correct on rank', rank, 'colrank', colrank↪→

else
print *, 'Test failed: Distributed GEMV with beta=1.0 result is

incorrect on rank', rank, 'colrank', colrank↪→

end if
end if
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Run and check the second test
ŵ Distributed matrices

We can now run the modified test program again:
mpirun -np 9 ./distributed_gemv
Which should output:
Test passed: Distributed GEMV with beta=1.0 result is correct on rank 1

colrank 0↪→

Test passed: Distributed GEMV with beta=1.0 result is correct on rank 2
colrank 0↪→

Test passed: Distributed GEMV with beta=1.0 result is correct on rank 0
colrank 0↪→
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Summary, conclusions, and outlook
Ŷ Summary, conclusions, and outlook

We have seen:
How to implement a descriptor for distributed matrices,
How to create communicators for process rows and columns,
How to implement a distributed GEMV operation using MPI communication routines

Next steps are:
Explore the ScaLAPACK library for distributed linear algebra,
Implement distributed matrix-matrix multiplication (GEMM),
Investigate the performance of distributed operations.
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Last time on High Performance Linear Algebra
Ŵ Last time on High Performance Linear Algebra

We have
We have implemented the basic routines for distributed matrices and vectors,
We have implemented Level-Ŵ BLAS operations for distributed matrices and vectors,
We have implemented the GEMV operation for distributed matrices and vectors.

The plan for today is to:
• Introduce ScaLAPACK,
• Implement the Level-Ŷ BLAS operation GEMM for distributed matrices.
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Table of Contents
ŵ PBLAS and ScaLAPACK

▶ PBLAS and ScaLAPACK
The BLACS library
The PBLAS operations
The distributed Matrix-Matrix multiplication
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The PBLAS and ScaLAPACK libraries
ŵ PBLAS and ScaLAPACK

What we have done so far is to implement some of the routines of the PBLAS library,
which is the distributed memory version of the BLAS library.

• ScaLAPACK is designed to mirror LAPACK, relying on a Parallel BLAS (PBLAS) interface
that stays close to BLAS.

• Only one substantially new PBLAS routine is added: distributed matrix transposition.
Goal: Provide a distributed-memory standard like BLAS for shared memory.

ŵD block-cyclic layout
• PBLAS matrices use a ŵD block-cyclic distribution.
• Distribution parameters are stored in an array descriptor—instead than in the
modern object-oriented style we have used.
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The PBLAS and ScaLAPACK libraries
ŵ PBLAS and ScaLAPACK

What we have done so far is to implement some of the routines of the PBLAS library,
which is the distributed memory version of the BLAS library.

• ScaLAPACK is designed to mirror LAPACK, relying on a Parallel BLAS (PBLAS) interface
that stays close to BLAS.

• Only one substantially new PBLAS routine is added: distributed matrix transposition.
Goal: Provide a distributed-memory standard like BLAS for shared memory.

ŵD block-cyclic layout
• PBLAS matrices use a ŵD block-cyclic distribution.
• Distribution parameters are stored in an array descriptor—instead than in the
modern object-oriented style we have used.
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Distributed matrix descriptors
ŵ PBLAS and ScaLAPACK

Descriptor fields
Ŵ. Number of rows
ŵ. Number of columns
Ŷ. Row block size (Section ŵ.Ÿ)
ŷ. Column block size (Section ŵ.Ÿ)
Ÿ. Process row of first row
Ź. Process column of first column
ź. BLACS context
Ż. Leading dimension of the local array
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BLACS contexts
ŵ PBLAS and ScaLAPACK

A BLACS context defines a communication universe.

• Each distributed matrix is associated with a BLACS context.
• Different contexts allow independent communication universes.
• All descriptors in a PBLAS call must share the same context.
• This allows modularity in programs using multiple distributed matrices.

In ourmodern implementation, we can think of the BLACS context as an object storing the
MPI communicator and the process grid information.
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BLAS vs PBLAS: DGEMM vs PDGEMM
ŵ PBLAS and ScaLAPACK

Comparing two routines for matrix-matrix multiplication

BLAS
CALL DGEMM(TRANSA, TRANSB, M, N, K,

ALPHA, A(IA, JA), LDA,
B(IB, JB), LDB, BETA,
C(IC, JC), LDC)

PBLAS
CALL PDGEMM(TRANSA, TRANSB, M, N, K,

ALPHA, A, IA, JA, DESC_A,
B, IB, JB, DESC_B, BETA,
C, IC, JC, DESC_C)

• DGEMM uses A(IA, JA) to specify the submatrix.
• PDGEMM requires IA, JA, and DESC_A to locate the global submatrix.
• The same applies to B and C with DESC_B and DESC_C.
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We still need an MPI communicator!
ŵ PBLAS and ScaLAPACK

In order to create a BLACS context, we first
need to create anMPI communicator.
call MPI_Init(ierr)
call MPI_Comm_size(MPI_COMM_WORLD,

nprocs, ierr)↪→

call MPI_Comm_rank(MPI_COMM_WORLD,
myrank, ierr)↪→

The generic structure of a BLACS application
is as follows:
Ŵ. Initialize MPI
ŵ. Initialize BLACS
Ŷ. Create a process grid
ŷ. Query process coordinates
Ÿ. Perform communication
Ź. Destroy grid and exit BLACS
ź. Finalize MPI
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We still need an MPI communicator!
ŵ PBLAS and ScaLAPACK

integer :: ictxt, nprow, npcol
call blacs_get(-1, 0, ictxt)
call blacs_gridinit(ictxt, 'R',

nprow, npcol)↪→

Where
• ictxt is the BLACS context identifier,
• blacs_get initializes the BLACS
system,

• blacs_gridinit creates a process
grid with nprow rows and npcol
columns.

The generic structure of a BLACS application
is as follows:
Ŵ. Initialize MPI
ŵ. Initialize BLACS
Ŷ. Create a process grid
ŷ. Query process coordinates
Ÿ. Perform communication
Ź. Destroy grid and exit BLACS
ź. Finalize MPI

Ż/ŸŹ



We still need an MPI communicator!
ŵ PBLAS and ScaLAPACK

We can then query the process coordinates
in the grid:
integer :: myrow, mycol
call blacs_gridinfo(ictxt, nprow,

npcol, myrow, mycol)↪→

Where
• myrow is the row coordinate of the
process,

• mycol is the column coordinate of the
process.

The generic structure of a BLACS application
is as follows:
Ŵ. Initialize MPI
ŵ. Initialize BLACS
Ŷ. Create a process grid
ŷ. Query process coordinates
Ÿ. Perform communication
Ź. Destroy grid and exit BLACS
ź. Finalize MPI
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Row major vs Column major
ŵ PBLAS and ScaLAPACK

The two common ways to map a ŴD array to a ŵD array are:

! Row major mapping
index = (i-1)*ncols + (j-1) + 1

ų Ŵ ŵ Ŷ

ŷ Ÿ Ź ź

Ż ż Ŵų ŴŴ

! Column major mapping
index = (j-1)*nrows + (i-1) + 1

ų Ŷ Ź ż

Ŵ ŷ ź Ŵų

ŵ Ÿ Ż ŴŴ

Row major:
call blacs_gridinit(ictxt, 'R', nprow, npcol)
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Row major vs Column major
ŵ PBLAS and ScaLAPACK

The two common ways to map a ŴD array to a ŵD array are:

! Row major mapping
index = (i-1)*ncols + (j-1) + 1

ų Ŵ ŵ Ŷ
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! Column major mapping
index = (j-1)*nrows + (i-1) + 1

ų Ŷ Ź ż

Ŵ ŷ ź Ŵų

ŵ Ÿ Ż ŴŴ

Column major:
call blacs_gridinit(ictxt, 'C', nprow, npcol)
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A complete example of initialization
ŵ PBLAS and ScaLAPACK

integer :: ierr, nprocs, myrank
integer :: ctxt, nrows, ncols, myrow, mycol
integer :: info
! Initialize MPI
call MPI_Init(ierr)
call MPI_Comm_size(MPI_COMM_WORLD, nprocs, ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)
! Initialize BLACS
call blacs_get(-1, 0, ctxt)
! Create a process grid
nrows = int(sqrt(real(nprocs)))
ncols = nprocs / nrows
call blacs_gridinit(ctxt, 'C', nrows, ncols)
! Query process coordinates
call blacs_gridinfo(ctxt, nrows, ncols, myrow, mycol)
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If we compile and execute this code
ŵ PBLAS and ScaLAPACK

Compiling with
mpifort -o blacs_init blacs_init.f90 -lscalapack
And executing with
mpirun -np 4 ./blacs_init
We could obtain the following output:
BLACS grid: 2 x 2
Processor 3 is at (1,1)
Processor 0 is at (0,0)
Processor 1 is at (1,0)
Processor 2 is at (0,1)

(ų,ų) (ų,Ŵ)

(Ŵ,ų) (Ŵ,Ŵ)
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Where to find BLACS, PBLAS, and ScaLAPACK
ŵ PBLAS and ScaLAPACK

• BLACS, PBLAS, and ScaLAPACK are usually provided as part of high-performance
linear algebra libraries such as
— Intel MKL,
— AMD ACML,
— Netlib ScaLAPACK.

• The latter can also be built from source code available from the Netlib repository:
— http://www.netlib.org/scalapack/

They can be installed via Spack as well:
spack install netlib-scalapack
or
spack install intel-oneapi-mkl
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PBLAS operations
ŵ PBLAS and ScaLAPACK

The PBLAS library provides distributed memory implementations of the Level-Ŵ, Level-ŵ,
and Level-Ŷ BLAS operations.

• Level-Ŵ PBLAS operations include vector-vector operations such as P?AXPY.
• Level-ŵ PBLAS operations include matrix-vector operations such as P?GEMV.
• Level-Ŷ PBLAS operations include matrix-matrix operations such as P?GEMM.

We can now try using the P?GEMV operation, and try to measure its performance.
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The P?GEMV operation
ŵ PBLAS and ScaLAPACK

The P?GEMV operation computes the matrix-vector product

y← αAx+ βy,

where A is a distributed matrix, and x and y are distributed vectors.

• The operation is called via the PDGEMV routine.
• The routine requires the descriptors of the distributed matrix and vectors.

The routine signature is as follows:
CALL PDGEMV(TRANS, M, N, ALPHA, A, IA, JA, DESC_A, X, IX, 1, DESC_X,

BETA, Y, IY, 1, DESC_Y)
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The P?GEMV operation: parameters
ŵ PBLAS and ScaLAPACK

CALL PDGEMV(TRANS, M, N, ALPHA, A, IA, JA, DESC_A, X, IX, 1, DESC_X,
BETA, Y, IY, 1, DESC_Y)

• TRANS specifies whether to use A or AT,
• M and N are the number of rows and columns of A,
• ALPHA and BETA are scalars,
• A is the local array containing the local pieces of A,
• IA and JA are the row and column indices of the first element of the submatrix of A,
• DESC_A is the descriptor of A,
• X is the local array containing the local pieces of x,
• IX is the index of the first element of the subvector of x,
• DESC_X is the descriptor of x,
• Y is the local array containing the local pieces of y,
• IY is the index of the first element of the subvector of y,
• DESC_Y is the descriptor of y.
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Testing PDGEMV
ŵ PBLAS and ScaLAPACK

To test the PDGEMV routine, we can write a simple Fortran program that:
Ŵ. Build the test program and link against ScaLAPACK.
ŵ. Run with a square number of MPI ranks.
Ŷ. Choosem, n, and block size nb via command-line arguments.

Then we can call PDGEMV to perform the matrix-vector multiplication.

The code to compile and run the test program is something on the lines of:
mpifort -O3 -o test_pdegemv test_pdegemv.f90 -lscalapack
mpirun -np 4 ./test_pdegemv 4000 4000 128
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Reading command-line arguments
ŵ PBLAS and ScaLAPACK

We can read command-line arguments in Fortran as follows:
m = 4000
n = 4000
nb = 128
nreps = 10

arg_count = command_argument_count()
if (arg_count >= 1) then

call get_command_argument(1, arg)
read(arg, *) m

end if
if (arg_count >= 2) then

call get_command_argument(2, arg)
read(arg, *) n

end if

if (arg_count >= 3) then
call get_command_argument(3, arg)
read(arg, *) nb

end if
if (arg_count >= 4) then

call get_command_argument(4, arg)
read(arg, *) nreps

end if

Which allows us to setm, n, nb, and the
number of repetitions nreps for the
matrix-vector multiplication.
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Initializing distributed environment
ŵ PBLAS and ScaLAPACK

We use the init code shown before to initialize MPI and BLACS.
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, world_rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, world_size, ierr)
nprocs_per_dim = int(sqrt(dble(world_size)))
if (nprocs_per_dim * nprocs_per_dim /= world_size) then

if (world_rank == 0) then
print *, 'Error: number of processes must be a perfect square.'

end if
call MPI_Finalize(ierr)
stop 1

end if
and check that the number of processes is a perfect square.
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Initializing distributed environment
ŵ PBLAS and ScaLAPACK

Then the BLACS initialization follows:
call blacs_get(-1, 0, ictxt)
nprow = nprocs_per_dim
npcol = nprocs_per_dim
call blacs_gridinit(ictxt, 'R', nprow, npcol)
call blacs_gridinfo(ictxt, nprow, npcol, myrow, mycol)

if (myrow == -1 .or. mycol == -1) then
call blacs_exit(1)
call MPI_Finalize(ierr)
stop 1

end if
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Creating distributed matrices and vectors
ŵ PBLAS and ScaLAPACK

We can now create the distributed matrix A and vectors x and y:
mloc = numroc(m, nb, myrow, 0, nprow)
nloc = numroc(n, nb, mycol, 0, npcol)
lldA = max(1, mloc)

xloc = numroc(n, nb, myrow, 0, nprow)
yloc = numroc(m, nb, myrow, 0, nprow)
lldX = max(1, xloc)
lldY = max(1, yloc)
Where we use NUMROC to compute the local sizes of the distributed arrays.
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The NUMROC utility
ŵ PBLAS and ScaLAPACK

The NUMROC utility computes the number of rows or columns of a distributed matrix or
vector owned by a given process.
integer function numroc(n, nb, iproc, isrcproc, nprocs)
Where
• n is the global number of rows or columns,
• nb is the block size,
• iproc is the coordinate of the process in the grid,
• isrcproc is the coordinate of the process owning the first row or column,
• nprocs is the number of processes in the grid dimension.
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Creating the descriptors
ŵ PBLAS and ScaLAPACK

The descriptors for the distributed matrix and vectors for ScaLAPACK are variables of type
integer, defined as arrays of size ż.
integer :: descA(9), descX(9), descY(9)
We can initialize them as follows:
call descinit(descA, m, n, nb, nb, 0, 0, ictxt, lldA, info)
call descinit(descX, n, 1, nb, 1, 0, 0, ictxt, lldX, info)
call descinit(descY, m, 1, nb, 1, 0, 0, ictxt, lldY, info)

We should always check the value of info after each call to descinit, e.g.,
if (info /= 0) then

if (world_rank == 0) print *, 'descinit error: ', info
call MPI_Abort(MPI_COMM_WORLD, info, ierr)

end if

ŵŵ/ŸŹ



Allocate and fill the local arrays
ŵ PBLAS and ScaLAPACK

Next, we allocate and fill the local arrays:
allocate(A(lldA, max(1, nloc)))
allocate(X(lldX, max(1, numroc(1, 1, mycol, 0, npcol))))
allocate(Y(lldY, max(1, numroc(1, 1, mycol, 0, npcol))))
Where we use again the numroc utility to compute the local sizes of the vectors.
We fill the matrix A with:
if (mloc > 0 .and. nloc > 0) then

do j = 1, nloc
col_global = indxl2g(j, nb, mycol, 0, npcol)
do i = 1, mloc

row_global = indxl2g(i, nb, myrow, 0, nprow)
A(i, j) = dble(row_global + col_global) / dble(m + n)

end do
end do

end if
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Allocate and fill the local arrays
ŵ PBLAS and ScaLAPACK

Next, we allocate and fill the local arrays:
allocate(A(lldA, max(1, nloc)))
allocate(X(lldX, max(1, numroc(1, 1, mycol, 0, npcol))))
allocate(Y(lldY, max(1, numroc(1, 1, mycol, 0, npcol))))
Where we use again the numroc utility to compute the local sizes of the vectors.
We fill the vectors x, and y with:
if (xloc > 0) then

do i = 1, xloc
row_global = indxl2g(i, nb, myrow, 0, nprow)
X(i, 1) = 1.0d0 + dble(row_global) / dble(n)

end do
end if
if (yloc > 0) Y(1:yloc, 1) = 0.0d0
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Timing and synchronization
ŵ PBLAS and ScaLAPACK

• Use MPI_Barrier to synchronize before and after PDGEMV.
• Measure elapsed time with MPI_Wtime.

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t0 = MPI_Wtime()
do i = 1, nreps

call pdgemv('N', m, n, alpha, A, 1, 1, descA, X, 1, 1, descX, 1, beta, Y,
1, 1, descY, 1)↪→

end do
call MPI_Barrier(MPI_COMM_WORLD, ierr)
t1 = MPI_Wtime()
elapsed_time = (t1 - t0)
As usual, this the elapsed_time contains the total time for nreps repetitions of the
matrix-vector multiplication on each process.
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Computing the performance
ŵ PBLAS and ScaLAPACK

We take the worst-case time across all processes:
call MPI_Reduce(elapsed_time, max_elapsed, 1, MPI_DOUBLE_PRECISION,

MPI_MAX, 0, MPI_COMM_WORLD, ierr)↪→

Then, on rank 0, we can compute the measurements:
if (myrow == 0 .and. mycol == 0) then
gflops = (2.0d0 * dble(m) * dble(n) * dble(nreps)) / max_elapsed / 1.0d9
avg_time = max_elapsed / dble(nreps)
avg_gflops = (2.0d0 * dble(m) * dble(n)) / avg_time / 1.0d9
print *, 'PDGEMV m=', m, ' n=', n, ' nb=', nb, ' procs=', world_size, '

reps=', nreps↪→

print *, 'Total time (s)=', max_elapsed, ' Total GFLOPS=', gflops
print *, 'Avg time (s)=', avg_time, ' Avg GFLOPS=', avg_gflops

end if
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GFLOPS calculation for PDGEMV
ŵ PBLAS and ScaLAPACK

We can compute the number of floating-point operations for the matrix-vector
multiplication as follows:

FLOPS = 2 ·m · n

Thus, the performance in GFLOPS can be computed as:

gflops = (2.0d0 * dble(m) * dble(n) * dble(nreps)) / max_elapsed / 1.0d9
Where nreps is the number of repetitions of the multiplication.

Similarly, the worst-case performance per repetition is:
avg_gflops = (2.0d0 * dble(m) * dble(n)) / avg_time / 1.0d9
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Finalizing the distributed environment
ŵ PBLAS and ScaLAPACK

Finally, we need to finalize BLACS and MPI:
if (allocated(A)) deallocate(A)
if (allocated(X)) deallocate(X)
if (allocated(Y)) deallocate(Y)
call blacs_gridexit(ictxt)
call blacs_exit(0)
We don’t need to call MPI_Finalize explicitly, as it is called inside the blacs_gridexit.

We are finally done, and we can compile and run our test program. As for the case in the
other lectures, we plan on running it on the Amelia cluster at IAC-CNR. Hence, we use the
Intel Oneapi compilers, and link against Intel MKL—which provides BLACS, PBLAS, and
ScaLAPACK.
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Running script
ŵ PBLAS and ScaLAPACK

The script to run the test program on Amelia is written as follows:
#!/usr/bin/env bash
#SBATCH --nodes=@NODES@
#SBATCH --ntasks=@TASKS@
#SBATCH --cpus-per-task=@THREADS@
#SBATCH --partition=prod-gn
#SBATCH --time=01:00:00
#SBATCH --mem=950Gb
#SBATCH --job-name=pdegemv_weak

export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
cd /ifs/hpc/home/fdurastante/scalapacktest/launchscripts/
mpirun -np @TASKS@ ./../build/test_pdegemv @N@ @N@ @NB@ 2>&1 >

../logfiles/pdegenmv/log_t@TASKS@.log↪→
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Running script explanation
ŵ PBLAS and ScaLAPACK

The script uses SLURM directives to request resource and has a number of placeholders:
• @NODES@: number of nodes to use,
• @TASKS@: number of MPI tasks to use,
• @THREADS@: number of threads per task,
• @N@: size of the matrix and vectors,
• @NB@: block size.

We use an auxiliary script to replace the placeholders and submit the job to SLURM:
./genscript.sh launch_pdegenmv.sh
Where genscript.sh replaces the placeholders and produces the launch files.
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The genscript.sh auxiliary script
ŵ PBLAS and ScaLAPACK

The auxiliary script genscript.sh is as follows:
#!/bin/sh
TEMPLATE="$1"
TASKS_PER_NODE=64
THREADS_PER_TASK=1
N_LOCAL=4000
NB=128
# Perfect-square task counts up to 20 nodes * 64 tasks/node = 1280 tasks
TASKS_LIST="64 144 256 400 576 900 1024 1156"
for TASKS in $TASKS_LIST; do

# Compute number of nodes (ceiling division)
NODES=$(( (TASKS + TASKS_PER_NODE - 1) / TASKS_PER_NODE ))
PROCS_PER_DIM=$(LC_NUMERIC=C echo "scale=0; sqrt($TASKS)" | bc -l)
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The genscript.sh auxiliary script
ŵ PBLAS and ScaLAPACK

N=$((N_LOCAL * PROCS_PER_DIM))
OUTFILE="outscript_t${TASKS}.sh"
sed \

-e "s/@NODES@/${NODES}/g" \
-e "s/@TASKS@/${TASKS}/g" \
-e "s/@THREADS@/${THREADS_PER_TASK}/g" \
-e "s/@N@/${N}/g" \
-e "s/@NB@/${NB}/g" \
"$TEMPLATE" > "$OUTFILE"

chmod +x "$OUTFILE"
echo "Generated $OUTFILE (tasks=$TASKS, nodes=$NODES,

threads=$THREADS_PER_TASK, N=$N, NB=$NB)"↪→

done
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The genscript.sh auxiliary script
ŵ PBLAS and ScaLAPACK

The script iterates over a list of perfect-square task counts

np = 64, 144, 256, 400, 576, 900, 1024, 1156,

computes the number of nodes required, the problem size N, and replaces the
placeholders in the template script using sed.

The sed command replaces each placeholder with the corresponding value, its general
form being:
sed -e "s/@PLACEHOLDER@/value/g" input_template > output_script

Where @PLACEHOLDER@ is replaced with value in the input_template, and the result is
saved in output_script.
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The genscript.sh auxiliary script
ŵ PBLAS and ScaLAPACK

We run the genscript.sh script as follows:
chmod +x genscript.sh
./genscript.sh launch_pdegemv.sh
Which produces the following output:
Generated outscript_t64.sh (tasks=64, nodes=1, threads=1, N=32000, NB=128)
Generated outscript_t144.sh (tasks=144, nodes=3, threads=1, N=48000, NB=128)
Generated outscript_t256.sh (tasks=256, nodes=4, threads=1, N=64000, NB=128)
Generated outscript_t400.sh (tasks=400, nodes=7, threads=1, N=80000, NB=128)
Generated outscript_t576.sh (tasks=576, nodes=9, threads=1, N=96000, NB=128)
Generated outscript_t900.sh (tasks=900, nodes=15, threads=1, N=120000, NB=128)
Generated outscript_t1024.sh (tasks=1024, nodes=16, threads=1, N=128000, NB=128)
Generated outscript_t1156.sh (tasks=1156, nodes=19, threads=1, N=136000, NB=128)

We can then submit each generated script to SLURM with:
sbatch outscript_t??.sh
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Analyzing the results
ŵ PBLAS and ScaLAPACK

Źŷ Ŵŷ
ŷ

ŵŸ
Ź

ŷų
ų

Ÿź
Ź

żų
ų

Ŵų
ŵŷ
ŴŴ
ŸŹ

0.26

0.28

0.3

Number of Processes

Ti
m
e
(s
)

Źŷ Ŵŷ
ŷ

ŵŸ
Ź

ŷų
ų

Ÿź
Ź

żų
ų

Ŵų
ŵŷ
ŴŴ
ŸŹ

102

103

Number of Processes

GF
LO
PS

We can see that the time remains roughly constant as we increase the number of
processes, while the performance increases accordingly N =, NB =.
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The distributed Matrix-Matrix multiplication
ŵ PBLAS and ScaLAPACK

• We will consider the formation of the matrix products

C = αAB+ βC

C = αABT + βC

C = αATB+ βC

C = αATBT + βC

• These are the special cases implemented in the sequential BLAS GEMM.
• Assume each matrix X has dimensionsmX × nX, with X ∈ {A, B, C}.
• Dimensions must be compatible; we take C ∈ Rm×n and the inner dimension k.
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Back on the data distribution
ŵ PBLAS and ScaLAPACK

• We consider ŵD data decompositions;
• The ŴD case is obtained by setting one grid dimension to Ŵ.
• Given X ∈ {A, B, C}m×n on an r× c process grid, we partition:

X =

 X00 · · · X0(c−1)
...

...
X(r−1)0 · · · X(r−1)(c−1)


• Submatrix Xij is assigned to process Pij.
• Xij has sizemX

i × nXj , with
∑

im
X
i = m and

∑
j n

X
j = n.

• Each algorithm variant enforces row/column compatibility in these dimensions: For
this operation to be well-defined, we requiremA = m, nA = mB = k, and nB = n.
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Forming C = αAB+ βC
ŵ PBLAS and ScaLAPACK

For simplicity, we take α = 1 and β = 0 in our description.
If aij, bij, and cij denote the (i, j) element of the matrices, respectively, then the elements
of C are given by

cij =
k∑

l=1

ailblj.

Notice that:
rows of C are computed from rows of A, and columns of C
We hence restrict our data decomposition so that rows of A and C are assigned to the
same row of nodes and columns of B and C are assigned to the same column of
nodes.
Hence,mC

i = mA
i and nCj = nBj .
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Basic parallel algorithm (as we have seen for the
OpenMP case)
ŵ PBLAS and ScaLAPACK

• Compute Cij as a sequence of rank-one updates.
• Assign block row Ãi to process row i.
• Assign block column B̃j to process column j.

Ãi =
(
a(0)i a(1)i · · · a(k−1)

i

)
, B̃j =


b(0)Tj

b(1)Tj
...

b(k−1)T
j


Cij =

k−1∑
t=0

a(t)i b(t)Tj
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Rank-one update view
ŵ PBLAS and ScaLAPACK

Each step t:
• broadcasts a(t)i along process row i.

• broadcasts b(t)j along process column j.
Perform
• Local update on Pij: Cij ← Cij + a(t)i b(t)Tj .

C(t+1)
ij = C(t)ij + a(t)i b(t)Tj

Ŵ: Cij ← 0
ŵ: for ℓ = 0, . . . , k− 1 do
Ŷ: broadcast a(ℓ)i within my row
ŷ: broadcast b(ℓ)j within my column

Ÿ: Cij ← Cij + a(ℓ)i b(ℓ)Tj
Ź: end for

Now we can analyze the cost of this algorithm, both in terms of computation and
communication.
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Algorithm cost: minimum spanning tree broadcast
ŵ PBLAS and ScaLAPACK

To analyze the cost of this basic algorithm, we make some simplifying assumptions:

mC
i = mA

i = m/r, nCj = nBj = n/c,

nAi = k/c, mB
j = k/r.

Since relatively little data is involved during each broadcast we assume a
minimum-spanning-tree broadcast.

Minimum-Spanning-Tree Broadcast
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ŵ PBLAS and ScaLAPACK

To analyze the cost of this basic algorithm, we make some simplifying assumptions:

mC
i = mA

i = m/r, nCj = nBj = n/c,

nAi = k/c, mB
j = k/r.

Since relatively little data is involved during each broadcast we assume a
minimum-spanning-tree broadcast.

Minimum-Spanning-Tree Broadcast
A minimum-spanning-tree (MST) broadcast minimizes latency by organizing the broadcast
in log(p) stages, where p is the number of processes.
• Stage ų: Process ų sends to process Ŵ
• Stage Ŵ: Processes ų,Ŵ send to processes ŵ,Ŷ
• Stage ŵ: Processes ų,Ŵ,ŵ,Ŷ send to processes ŷ,Ÿ,Ź,ź
• And so on…ŷų/ŸŹ



Algorithm cost: minimum spanning tree broadcast
ŵ PBLAS and ScaLAPACK

To analyze the cost of this basic algorithm, we make some simplifying assumptions:

mC
i = mA

i = m/r, nCj = nBj = n/c,

nAi = k/c, mB
j = k/r.

Since relatively little data is involved during each broadcast we assume a
minimum-spanning-tree broadcast.

Minimum-Spanning-Tree Broadcast
Cost model for MST broadcast of data size S to p processes:

Tbcast = ⌈log2(p)⌉ · (α+ S · β)

Where:
• α and β are the latency and the inverse bandwidth (per unit data),
• Each stage involves one message transmission for= ⌈log2(p)⌉ total stages.ŷų/ŸŹ



Cost model (detailed)
ŵ PBLAS and ScaLAPACK

The cost of the algorithm (per panel) is therefore

k
[
2mn
p

γ + ⌈log(c)⌉
(
α+

m
r
β
)
+ ⌈log(r)⌉

(
α+

n
c
β
)]

.

The three terms inside the square brackets correspond to
• 2mn/p γ: local rank-one update,
• ⌈log(c)⌉ (α+ m/rβ): row broadcast of A,
• ⌈log(r)⌉ (α+ n/cβ): column broadcast of B.

Hence the total time is

T(m, n, k, p) =
2mnk
p

γ + k
(
⌈log(c)⌉+ ⌈log(r)⌉

)
α+ ⌈log(c)⌉mk

r
β + ⌈log(r)⌉nk

c
β
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Scalability analysis
ŵ PBLAS and ScaLAPACK

The cost T(m, n, k, p) compares to the sequential time 2mnk γ.

To study scalability, setm = n = k, r = c =
√
p (assume p power of two).

From T(m, n, k, p) the estimated speedup is

S(n, p) =
2n3γ

2n3
p γ + n log(p)α+ log(p) n2√

pβ
=

p

1 + p log(p)
2n2

α
γ +

√
p log(p)
2n

β
γ

.

The corresponding parallel efficiency is

E(n, p) =
S(n, p)

p
=

1

1 + p log(p)
2n2

α
γ +

√
p log(p)
2n

β
γ

=
1

1 + O
(
p log p
n2

)
+ O

(√
p log p
n

) .
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Scalability insight
ŵ PBLAS and ScaLAPACK

• Speedup improves with√p process grids.
• Efficiency degrades slowly with log(p) broadcast costs.
• Increasing n with√p keeps memory per process fixed.

E(n, p) =
1

1 + O
(
p log(p)

n2

)
+ O

(√
p log(p)
n

)
Scalability insight

Ignoring the log(p) term, which grows very slowly when p is reasonably large, we notice
the following: If we increase p and we wish to maintain efficiency, we must increase n
with√p. Sincememory requirements grow with n2, and physical memory grows linearly
with p as nodes are added.
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Scalability insight
ŵ PBLAS and ScaLAPACK

• Speedup improves with√p process grids.
• Efficiency degrades slowly with log(p) broadcast costs.
• Increasing n with√p keeps memory per process fixed.

E(n, p) =
1

1 + O
(
p log(p)

n2

)
+ O

(√
p log(p)
n

)
Scalability insight

We conclude that the method is scalable in the following sense:
“If we maintain memory use per node, this algorithm will maintain efficiency, if log(p) is
treated as a constant.”
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Moving to the pipelined algorithm
ŵ PBLAS and ScaLAPACK

We will present the benefits of pipelining computations and communications.

Let us consider implementing the broadcast as passing of a message around the logical
ring that forms the row or column.
subroutine RING_Bcast(data, count, type, root, comm)
implicit none
integer, intent(in) :: count, type, root, comm
real(kind=real64), intent(inout) :: data(*)
! Local variables
integer :: me, np, next, prev, ierr
call MPI_Comm_rank(comm, me, ierr)
call MPI_Comm_size(comm, np, ierr)
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Moving to the pipelined algorithm
ŵ PBLAS and ScaLAPACK

if ( me /= root ) then
prev = mod(me - 1 + np, np)
call MPI_Recv(data, count, type, prev, MPI_ANY_TAG, comm,

MPI_STATUS_IGNORE, ierr)↪→

end if
if ( mod(me + 1, np) /= root ) then
next = mod(me + 1, np)
call MPI_Send(data, count, type, next, 0, comm, ierr)

end if
end subroutine RING_Bcast
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Moving to the pipelined algorithm
ŵ PBLAS and ScaLAPACK

In this case, the time complexity becomes:
The time required for both the first column of Ar−1 and the first row of Bc−1 to reach
process (r− 1, c− 1):

(c− 1)
(
α+

m
r
β
)
+ (r− 1)

(
α+

n
c
β
)

The time for performing the local update and passing the messages along the pipeŵ
The time for the final messages (initiated at process (r− 1, c− 1)) to reach the end
of the pipe
the time for the final update at the node at the end of the pipe (process
(r− 1, c− 2) or (r− 2, c− 1))
Summing all contributions, we obtain:
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m
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n
c
β
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m
r
β
)
+ (r− 2)
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n
c
β
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ŵ PBLAS and ScaLAPACK

In this case, the time complexity becomes:
The time required for both the first column of Ar−1 and the first row of Bc−1 to reach
process (r− 1, c− 1)

The time for performing the local update and passing the messages along the pipe
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+
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Moving to the pipelined algorithm
ŵ PBLAS and ScaLAPACK

In this case, the time complexity becomes:
The time required for both the first column of Ar−1 and the first row of Bc−1 to reach
process (r− 1, c− 1)

The time for performing the local update and passing the messages along the pipe
The time for the final messages (initiated at process (r− 1, c− 1)) to reach the end
of the pipe
the time for the final update at the node at the end of the pipe (process
(r− 1, c− 2) or (r− 2, c− 1))
Summing all contributions, we obtain:

=
2mn(k+ 1)

p
γ + (k+ 2c− 3)

(
α+

m
r
β
)
+ (k+ 2r− 3)

(
α+

n
c
β
)
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Comparing the two approaches
ŵ PBLAS and ScaLAPACK

For theminimum-spanning-tree broadcast we had a cost of

T(m, n, k, p) =
2mnk
p

γ + k
(
⌈log(c)⌉+ ⌈log(r)⌉

)
α+ ⌈log(c)⌉mk

r
β + ⌈log(r)⌉nk

c
β,

For the pipelined ring broadcast we have a cost of

T(m, n, k, p) =
2mn(k+ 1)

p
γ + (k+ 2c− 3)

(
α+

m
r
β
)
+ (k+ 2r− 3)

(
α+

n
c
β
)
,

Notice that for large k, the “log” factors we had in the tree approach are removed.
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Scalability of the pipelined approach
ŵ PBLAS and ScaLAPACK

To establish the scalability, we again analyse the case wherem = n = k and r = c =
√
p.

This changes the complexity to approximately
2n3

p
γ + 2(n+ 2

√
p− 3)

(
α+

n
√
p
β

)
.

The speedup is

S(n, p) =
2n3γ

2n3
p γ + 2(n+ 2

√
p− 3)

(
α+ n√

pβ
) ≈ p

1 + p
n2α+

√
p
n β

The corresponding efficiency is

E(n, p) =
S(n, p)

p
=

1

1 + O
( p
n2
)
+ O

(√
p
n

)
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Scalability of the pipelined approach
ŵ PBLAS and ScaLAPACK

To establish the scalability, we again analyse the case wherem = n = k and r = c =
√
p.

The speedup is

S(n, p) =
2n3γ

2n3
p γ + 2(n+ 2

√
p− 3)

(
α+ n√

pβ
) ≈ p

1 + p
n2α+

√
p
n β

The corresponding efficiency is

E(n, p) =
S(n, p)

p
=

1

1 + O
( p
n2
)
+ O

(√
p
n

)
The log(p) term has disappeared and the method is again scalable in the sense that if we
maintain memory use per node, this algorithm will maintain efficiency.
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Blocking to further improve performance
ŵ PBLAS and ScaLAPACK

We can reformulate the algorithm to use matrix-matrix multiplcations, instead of
rank-one updates.

Memory acces bandwidth
Recall that matrix-matrix multiplications have a much higher computational intensity
(flops per memory access), hence they better exploit memory hierarchies and achieve
higher performance on modern architectures.

• From the previous explanation, we change that each panel of A and B consist now of
a block of columns/rows.

• An additional advantage of blocking is that it reduces the number of messages
incurred⇒ lower latency cost/communication overhead.
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Some practical considerations
ŵ PBLAS and ScaLAPACK

• Choose nb to balance computation and communication.
• Square-ish grids minimize communication volume.
• Use optimized local BLAS for the inner GEMM.
• Synchronize only for timing, not for correctness.

• The routine is called via PDGEMM.
• A, B, and C are distributed with ŵD block-cyclic layout.

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, IA, JA, DESC_A,
B, IB, JB, DESC_B,
BETA, C, IC, JC, DESC_C)
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PDGEMM parameters
ŵ PBLAS and ScaLAPACK

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, IA, JA, DESC_A,
B, IB, JB, DESC_B,
BETA, C, IC, JC, DESC_C)

• M, N, K define the sizes of C, A, and B.
• IA, JA and IB, JB select submatrices.
• DESC_A, DESC_B, DESC_C hold distribution metadata.
• ALPHA and BETA are scalars.
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Creating descriptors for PDGEMM
ŵ PBLAS and ScaLAPACK

Assume A ∈ Rm×k, B ∈ Rk×n, C ∈ Rm×n.
call descinit(descA, m, k, nb, nb, 0, 0, ictxt, lldA, info)
call descinit(descB, k, n, nb, nb, 0, 0, ictxt, lldB, info)
call descinit(descC, m, n, nb, nb, 0, 0, ictxt, lldC, info)

• Block sizes are typically identical for all matrices.
• lld* are the local leading dimensions.
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Calling PDGEMM
ŵ PBLAS and ScaLAPACK

call MPI_Barrier(MPI_COMM_WORLD, ierr)
t0 = MPI_Wtime()
do i = 1, nreps

call pdgemm('N', 'N', m, n, k, alpha, A, 1, 1, descA, &
B, 1, 1, descB, beta, C, 1, 1, descC)

end do
call MPI_Barrier(MPI_COMM_WORLD, ierr)
t1 = MPI_Wtime()
elapsed_time = t1 - t0

• Synchronize before and after to measure wall-clock time.
• nreps improves timing stability.
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GFLOPS for PDGEMM
ŵ PBLAS and ScaLAPACK

The operation count for GEMM is

FLOPS = 2 ·m · n · k.

gflops = (2.0d0 * dble(m) * dble(n) * dble(k) * dble(nreps)) &
/ max_elapsed / 1.0d9

avg_time = max_elapsed / dble(nreps)
avg_gflops = (2.0d0 * dble(m) * dble(n) * dble(k)) / avg_time / 1.0d9

• Use the max time across processes for a conservative metric.
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PDGEMM performance example
ŵ PBLAS and ScaLAPACK
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Conclusions, summary, and next steps
Ŷ Conclusions, summary, and next steps

Today we have:
Discussed the distributed matrix-vector multiplication and its scalability.
Discussed the distributed matrix-matrix multiplication and its scalability.
Presented practical aspects of using ScaLAPACK routines.

Next time:
We will discuss more complex parallel algorithms for linear algebra.
We will stat looking into GPU acceleration.
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A recap of the previous lectures and today’s plan
Ŵ Last time on High Performance Linear Algebra

We have
Reviewed the basic concepts of shared memory programming with OpenMP,
Reviewed the basic concepts of distributed memory programming with MPI,
We have discussed the BLAS for dense matrices and vectors:

All three levels of the BLAS in shared memory,
All three levels of the BLAS in distributed memory.

The plan for the next two lectures is to:
• Look at the LAPACK library for dense linear algebra in shared memory,
• Look at the ScaLAPACK library for dense linear algebra in distributed memory.

ŵ/Źŵ



Table of Contents
ŵ LAPACK: Linear Algebra PACKage

▶ LAPACK: Linear Algebra PACKage
Systems of linear equations

Storage schemes
Least-Squares Problems

Generalized Linear Least Squares Problems
Eigenproblems and Singular Value Decomposition

Symmetric Eigenproblems (SEP)
Nonsymmetric Eigenproblems (NEP)
Singular Value Decomposition (SVD)
Generalized Symmetric Definite Eigenproblems (GSEP)
Generalized Nonsymmetric Eigenproblems (GNEP)
Generalized Singular Value Decomposition (GSVD)

The Computational Routines
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LAPACK: Linear Algebra PACKage
ŵ LAPACK: Linear Algebra PACKage

• LAPACK is a software library for numerical linear algebra that provides routines for:
— solving systems of linear equations,
— least squares problems,
— eigenvalue problems,
— singular value decomposition,
— and other related problems.

• It is designed to be efficient on modern computer architectures, taking advantage of
cache memory and vectorization.

• LAPACK is written in Fortran and is widely used in scientific computing applications.
• It is built on top of the BLAS (Basic Linear Algebra Subprograms) library, which
provides low-level routines for performing basic linear algebra operations.
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LAPACK: solving systems of linear equations
ŵ LAPACK: Linear Algebra PACKage

Two types of driver routines are provided for solving systems of linear equations:
• a simple driver (name ending -SV), which solves the system AX = B by factorizing A
and overwriting B with the solution X;

• an expert driver (name ending -SVX), which can also perform the following functions
(some of them optionally):
— solve A⊤X = B or AHX = B (unless A is symmetric or Hermitian);
— estimate the condition number of A, check for near-singularity, and check for pivot

growth;
— refine the solution and compute forward and backward error bounds;
— equilibrate the system if A is poorly scaled.

The expert driver requires roughly twice as much storage as the simple driver in
order to perform these extra functions.
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LAPACK: solving systems of linear equations
ŵ LAPACK: Linear Algebra PACKage

Two types of driver routines are provided for solving systems of linear equations:
• a simple driver (name ending -SV), which solves the system AX = B by factorizing A
and overwriting B with the solution X;

• an expert driver (name ending -SVX), which can also perform the following functions
(some of them optionally):
— solve A⊤X = B or AHX = B (unless A is symmetric or Hermitian);
— estimate the condition number of A, check for near-singularity, and check for pivot

growth;
— refine the solution and compute forward and backward error bounds;
— equilibrate the system if A is poorly scaled.

Different driver routines are provided to take advantage of special properties or
storage schemes of the matrix A, for example, if A is symmetric, triangular, banded,
or tridiagonal.
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LAPACK: the simple drivers ?GESV
ŵ LAPACK: Linear Algebra PACKage

For a general (non-symmetric, non-Hermitian) matrix A, the simple driver routine to solve
the system AX = B is ?GESV, where the ? is the data-type placeholder.
SUBROUTINE ?GESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )

INTEGER N, NRHS, LDA, LDB, INFO
INTEGER IPIV( * )
? A( LDA, * ), B( LDB, * )

END SUBROUTINE ?GESV

N is the order of the matrix A,
NRHS is the number of right hand sides (the number of columns of B),
A is the coefficient matrix A (on entry) and its LU factorization (on exit),
IPIV is an integer array of pivot indices,
B is the right hand side matrix B (on entry) and the solution matrix X (on exit),
INFO is an integer output variable that indicates success or failure of the routine.
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LAPACK: the simple drivers DGESV
ŵ LAPACK: Linear Algebra PACKage

Let us look at an example of usage of the simple driver DGESV to solve a system of linear
equations.
A classical source of dense linear systems is the discretization of integral equations:∫ b

a
K(x, y)u(y)dy = f(x), x ∈ [a, b].

Using a quadrature rule with nodes yj and weights wj, we can approximate the integral as
n∑

j=1

wjK(xi, yj)u(yj) ≈ f(xi), i = 1, . . . , n,

which leads to the linear system

Au = f, Aij = wjK(xi, yj).
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Discretization of a Stable Volterra Equation
ŵ LAPACK: Linear Algebra PACKage

We consider the Volterra integral equation of the second kind:

u(s)−
∫ s

0
(s− t)u(t)dt = sin(s), s ∈ [0, 1].

We discretize the domain into n nodes si = i−1
n−1 with step size h = 1

n−1 . Using the
composite trapezoidal rule, the integral is approximated for each node si:∫ si

0
(si − t)u(t)dt ≈

i∑
j=1

wij(si − tj)u(tj), tj = sj,

where the weights are wij =
h
2 for the endpoints (j = 1, i) and wij = h otherwise.

This leads to a lower triangular linear system (I− A)u = f:

ui −
i∑

j=1

Aijuj = fi, Aij = wij(si − tj), i = 1, . . . , n.
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LAPACK: writing the function building the matrix A and b
ŵ LAPACK: Linear Algebra PACKage

We need to write a function that builds the matrix A and the right-hand side vector b.
subroutine build_system( n_size, mat, rhs, xplot_vec, sol_vec )

use iso_fortran_env, only: dp => real64
integer, intent(in) :: n_size
real(dp), intent(out) :: mat(n_size,n_size), rhs(n_size), xplot_vec(n_size),

sol_vec(n_size)↪→

end subroutine build_system

n_size is the size of the system,
mat is the matrix A,
rhs is the right-hand side vector b,
xplot_vec is the vector of x coordinates for plotting,
sol_vec is the vector of the exact solution for comparison.
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LAPACK: writing the function building the matrix A and b
ŵ LAPACK: Linear Algebra PACKage

The implementation of the function is as follows:
integer :: i, j
real(dp) :: s_i, t_j, h

h = 1.0_dp / real(n_size - 1, dp)
mat = 0.0_dp
!$omp parallel do private(i,j,s_i,t_j) shared(mat,rhs,xplot_vec,sol_vec,h)
do i = 1, n_size

s_i = real(i-1, dp) * h
rhs(i) = sin(s_i) ! f(s)
xplot_vec(i) = s_i ! x coordinates for plotting
sol_vec(i) = 0.5*sinh(s_i) + 0.5*sin(s_i)
mat(i,i) = 1.0_dp ! Identity part: x(s)
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LAPACK: writing the function building the matrix A and b
ŵ LAPACK: Linear Algebra PACKage

do j = 1, i
t_j = real(j-1, dp) * h ! Kernel K(s, t) = s - t
if (j == 1 .or. j == i) then

mat(i,j) = mat(i,j) - (s_i - t_j) * (h / 2.0_dp)
else

mat(i,j) = mat(i,j) - (s_i - t_j) * h
end if

end do
end do
!$omp end parallel do

We initialize the matrix and vectors,
We use OpenMP to parallelize the outer loop over i,
We compute the entries of the matrix A and the right-hand side vector b.

ŴŴ/Źŵ



LAPACK: the solution step
ŵ LAPACK: Linear Algebra PACKage

The remaining part of the program uses the LAPACK routine DGESV to solve the linear
system, after reading the matrix size from the command line and using the
build_system subroutine to create the matrix and right-hand side vector.
program linear_system_solve

use, intrinsic :: iso_fortran_env, only: wp => real64, error_unit
implicit none
character(len=20) :: arg
integer :: n, info
real(wp), allocatable :: A(:,:), b(:), x(:), xplot(:), sol(:)
integer, allocatable :: ipiv(:)

! Read matrix size from command line arguments
if (command_argument_count() < 1) then
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LAPACK: the solution step
ŵ LAPACK: Linear Algebra PACKage

write(error_unit, *) "Usage: linear_system_solve <matrix_size>"
stop 1

end if
call get_command_argument(1, arg)
read(arg, *) n

! Allocate arrays
allocate(A(n,n), b(n), x(n), xplot(n), sol(n), ipiv(n))

! Initialize matrix A and vector b
call build_system(n, A, b, xplot, sol)
! Solve the linear system A*x = b using LAPACK
x = b
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LAPACK: the solution step
ŵ LAPACK: Linear Algebra PACKage

call dgesv(n, 1, A, n, ipiv, x, n, info)

! Output the solution vector x to file "solution.out"
open(unit=10, file="solution.out", status="replace", action="write",

iostat=info)↪→

if (info /= 0) then
write(error_unit, *) "Error opening output file"
stop 1

end if
write(10, '(A)') "x computed exact"
do n = 1, size(x)

write(10, '(E24.16,E24.16,E24.16)') xplot(n), x(n), sol(n)
end do
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LAPACK: the solution step
ŵ LAPACK: Linear Algebra PACKage

close(10)

! Deallocate arrays
deallocate(A, b, x, xplot, sol, ipiv)
stop 0

The program reads the matrix size from command line arguments,
Allocates the necessary arrays,
Calls the build_system subroutine to initialize the matrix and vector,
Uses DGESV to solve the linear system,
Outputs the computed solution and exact solution to a file for comparison.
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Visualization of the solution of the integral equation
ŵ LAPACK: Linear Algebra PACKage

Computing the solution with n = 100 nodes and plotting the numerical solution against
the exact solution:
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A remark on integral equations and dense linear systems
ŵ LAPACK: Linear Algebra PACKage

• For large-scale problems, storing and manipulating dense matrices can be
memory-intensive and computationally expensive.

• However, the matrices arising from integral equations often have special structures
that can be exploited:
— Low-rank approximations: The matrix may be well-approximated by a low-rank matrix,

reducing storage and computation.
— Hierarchical matrices (H-matrices): Exploit block-wise low-rank structure for efficient

storage and computation.
— Sparse representations: Using techniques like the Fast Multipole Method (FMM) to

avoid explicit matrix construction.

• These alternative storage formats can significantly reduce memory requirements and
computational complexity compared to standard dense matrix representations.
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LAPACK: the other linear system routines
ŵ LAPACK: Linear Algebra PACKage

Type of matrix Operation Single precision Double precision
and storage scheme real complex real complex

General simple driver SGESV CGESV DGESV ZGESV
expert driver SGESVX CGESVX DGESVX ZGESVX

General band simple driver SGBSV CGBSV DGBSV ZGBSV
expert driver SGBSVX CGBSVX DGBSVX ZGBSVX

General tridiagonal simple driver SGTSV CGTSV DGTSV ZGTSV
expert driver SGTSVX CGTSVX DGTSVX ZGTSVX

Sym./Herm. pos. def. simple driver SPOSV CPOSV DPOSV ZPOSV
expert driver SPOSVX CPOSVX DPOSVX ZPOSVX
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LAPACK: the other linear system routines
ŵ LAPACK: Linear Algebra PACKage

Type of matrix Operation Single precision Double precision
and storage scheme real complex real complex

Sym./Herm. pos. def. simple driver SPPSV CPPSV DPPSV ZPPSV
(packed) expert driver SPPSVX CPPSVX DPPSVX ZPPSVX

Sym./Herm. pos. def. simple driver SPBSV CPBSV DPBSV ZPBSV
band expert driver SPBSVX CPBSVX DPBSVX ZPBSVX

Sym./Herm. pos. def. simple driver SPTSV CPTSV DPTSV ZPTSV
tridiagonal expert driver SPTSVX CPTSVX DPTSVX ZPTSVX

Sym./Herm. indefinite simple driver SSYSV CHESV DSYSV ZHESV
expert driver SSYSVX CHESVX DSYSVX ZHESVX
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LAPACK: the other linear system routines
ŵ LAPACK: Linear Algebra PACKage

Type of matrix Operation Single precision Double precision
and storage scheme real complex real complex

Complex symmetric simple driver CSYSV ZSYSV
expert driver CSYSVX ZSYSVX

Sym./Herm. indefinite simple driver SSPSV CHPSV DSPSV ZHPSV
(packed) expert driver SSPSVX CHPSVX DSPSVX ZHPSVX

Complex symmetric simple driver CSPSV ZSPSV
(packed) expert driver CSPSVX ZSPSVX

The table summarizes the LAPACK routines for solving systems of linear equations for
various types of matrices and storage schemes.
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LAPACK: storage schemes
ŵ LAPACK: Linear Algebra PACKage

Generally, LAPACK supports different storage schemes for matrices to optimize memory
usage and computational efficiency. The main storage schemes are:
• Full storage: The entire matrix is stored in a two-dimensional array. This is the most
straightforward representation but can be inefficient for large matrices.

• Banded storage: Only the non-zero bands of a banded matrix are stored,
• Packed storage: Only the non-zero elements of symmetric or Hermitian matrices are
stored in a one-dimensional array,

We have already seen examples of full storage, let us briefly discuss the other storage
schemes.
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LAPACK: banded storage scheme
ŵ LAPACK: Linear Algebra PACKage

In the banded storage scheme, only the non-zero bands of a banded matrix are stored in
a compact form.
A banded matrix has non-zero elements only within a certain bandwidth around the main
diagonal.

KL is the number of subdiagonals (non-zero elements below the main diagonal),
KU is the number of superdiagonals (non-zero elements above the main diagonal),
LDAB is the leading dimension of the array AB, which must be at least 2*KL+KU+1,
AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)

For example, a matrix with KL = 1 (one subdiagonal) and KU = 2 (two superdiagonals)
would be stored in a compact form requiring only 2× 1 + 2 + 1 = 5 rows instead of
storing the full matrix.
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LAPACK: banded storage scheme example.
ŵ LAPACK: Linear Algebra PACKage

Consider the following banded matrix A with
KL = 1 and KU = 2:

A =


a11 a12 a13 0 0
a21 a22 a23 a24 0
0 a32 a33 a34 a35
0 0 a43 a44 a45
0 0 0 a54 a55



In banded storage, this matrix would be
stored in the array AB as follows:

AB =


0 0 a13 a24 a35
a12 a23 a34 a45 0
a11 a22 a33 a44 a55
a21 a32 a43 a54 0


Here,

the first row contains the second superdiagonal,
the second row contains the first superdiagonal,
the third row contains the main diagonal,
the fourth row contains the first subdiagonal.
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LAPACK: banded storage scheme example.
ŵ LAPACK: Linear Algebra PACKage

Consider the following banded matrix A with
KL = 1 and KU = 2:

A =


a11 a12 a13 0 0
a21 a22 a23 a24 0
0 a32 a33 a34 a35
0 0 a43 a44 a45
0 0 0 a54 a55



In banded storage, this matrix would be
stored in the array AB as follows:

AB =


0 0 a13 a24 a35
a12 a23 a34 a45 0
a11 a22 a33 a44 a55
a21 a32 a43 a54 0


Here,

the first row contains the second superdiagonal,
the second row contains the first superdiagonal,
the third row contains the main diagonal,
the fourth row contains the first subdiagonal.
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LAPACK: banded storage scheme example.
ŵ LAPACK: Linear Algebra PACKage

Consider the following banded matrix A with
KL = 1 and KU = 2:

A =


a11 a12 a13 0 0
a21 a22 a23 a24 0
0 a32 a33 a34 a35
0 0 a43 a44 a45
0 0 0 a54 a55



In banded storage, this matrix would be
stored in the array AB as follows:

AB =


0 0 a13 a24 a35
a12 a23 a34 a45 0
a11 a22 a33 a44 a55
a21 a32 a43 a54 0


Here,

the first row contains the second superdiagonal,
the second row contains the first superdiagonal,
the third row contains the main diagonal,
the fourth row contains the first subdiagonal.
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LAPACK: banded storage scheme example.
ŵ LAPACK: Linear Algebra PACKage

Consider the following banded matrix A with
KL = 1 and KU = 2:

A =


a11 a12 a13 0 0
a21 a22 a23 a24 0
0 a32 a33 a34 a35
0 0 a43 a44 a45
0 0 0 a54 a55



In banded storage, this matrix would be
stored in the array AB as follows:

AB =


0 0 a13 a24 a35
a12 a23 a34 a45 0
a11 a22 a33 a44 a55
a21 a32 a43 a54 0


Here,

the first row contains the second superdiagonal,
the second row contains the first superdiagonal,
the third row contains the main diagonal,
the fourth row contains the first subdiagonal.
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LAPACK: routine for banded storage
ŵ LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with banded storage is ?GBSV
for the simple driver and ?GBSVX for the expert driver.

These routines take as input the banded matrix in the compact form,
They perform LU factorization with partial pivoting to solve the system efficiently,
They are particularly useful when dealing with large banded matrices, as they reduce
memory usage and computational time compared to full storage methods.

SUBROUTINE ?GBSV( N, NRHS, KL, KU, AB, LDAB, IPIV, B, LDB, INFO )
INTEGER N, NRHS, KL, KU, LDAB, LDB, INFO
INTEGER IPIV( * )
? AB( LDAB, * ), B( LDB, * )

END SUBROUTINE ?GBSV
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LAPACK: routine for banded storage
ŵ LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with banded storage is ?GBSV
for the simple driver and ?GBSVX for the expert driver.

These routines take as input the banded matrix in the compact form,
They perform LU factorization with partial pivoting to solve the system efficiently,
They are particularly useful when dealing with large banded matrices, as they reduce
memory usage and computational time compared to full storage methods.

On exit, details of the factorization: U is stored as an upper triangular band matrix with
KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the
factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
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LAPACK: the tridiagonal case
ŵ LAPACK: Linear Algebra PACKage

A special case of banded matrices is the tridiagonal matrix, which has non-zero elements
only on the main diagonal and the first sub- and super-diagonals.
The LAPACK routine for solving systems of linear equations with tridiagonal matrices is
?GTSV for the simple driver and ?GTSVX for the expert driver.
SUBROUTINE ?GTSV( N, NRHS, DL, D, DU, B, LDB, INFO )

INTEGER N, NRHS, LDB, INFO
? DL( * ), D( * ), DU( * ), B( LDB, * )

END SUBROUTINE ?GTSV

DL is the subdiagonal elements of size N-1,
D is the main diagonal elements of size N,
DU is the superdiagonal elements of size N-1.
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Lapack: packed storage scheme
ŵ LAPACK: Linear Algebra PACKage

In the packed storage scheme, only the non-zero elements of symmetric or Hermitian
matrices are stored in a one-dimensional array. This is particularly useful for large
symmetric or Hermitian matrices, as it reduces memory usage significantly.

For a symmetric matrix, only the upper or lower triangular part needs to be stored, as the
other part can be inferred due to symmetry.

The packed storage format stores the elements column-wise (or row-wise) in a
one-dimensional array,
This format is efficient for both storage and computation, especially when combined
with LAPACK routines designed to work with packed storage.
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LAPACK: routine for packed storage
ŵ LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is ?PPSV
for the simple driver and ?PPSVX for the expert driver.
SUBROUTINE ?PPSV( UPLO, N, NRHS, AP, B, LDB, INFO )

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP( * ), B( LDB, * )

END SUBROUTINE ?PPSV

UPLO indicates whether the upper or lower triangular part of the matrix is stored,
AP is the one-dimensional array containing the packed storage of the matrix.
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LAPACK: routine for packed storage
ŵ LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is ?PPSV
for the simple driver and ?PPSVX for the expert driver.
SUBROUTINE ?PPSV( UPLO, N, NRHS, AP, B, LDB, INFO )

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP( * ), B( LDB, * )

END SUBROUTINE ?PPSV
UPLO indicates whether the upper or lower triangular part of the matrix is stored,
AP is the one-dimensional array containing the packed storage of the matrix.

If UPLO = 'U', the upper triangular part of the matrix is stored column-wise in AP as
follows:

AP = [a11, a12, a22, a13, a23, a33, . . . , a1N, a2N, . . . , aNN]
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LAPACK: routine for packed storage
ŵ LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is ?PPSV
for the simple driver and ?PPSVX for the expert driver.
SUBROUTINE ?PPSV( UPLO, N, NRHS, AP, B, LDB, INFO )

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP( * ), B( LDB, * )

END SUBROUTINE ?PPSV
UPLO indicates whether the upper or lower triangular part of the matrix is stored,
AP is the one-dimensional array containing the packed storage of the matrix.

If UPLO = 'L', the lower triangular part of the matrix is stored column-wise in AP as
follows:

AP = [a11, a21, a22, a31, a32, a33, . . . , aN1, aN2, . . . , aNN]
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LAPACK: routine for packed storage
ŵ LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is ?PPSV
for the simple driver and ?PPSVX for the expert driver.
SUBROUTINE ?PPSV( UPLO, N, NRHS, AP, B, LDB, INFO )

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP( * ), B( LDB, * )

END SUBROUTINE ?PPSV
UPLO indicates whether the upper or lower triangular part of the matrix is stored,
AP is the one-dimensional array containing the packed storage of the matrix.
N is the order of the matrix,
NRHS is the number of right hand sides,
B is the right hand side matrix.
LDB is the leading dimension of the array B.
INFO is an integer output variable that indicates success or failure of the routine.
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LAPACK: routine for packed storage
ŵ LAPACK: Linear Algebra PACKage

The LAPACK routine for solving systems of linear equations with packed storage is ?PPSV
for the simple driver and ?PPSVX for the expert driver.
SUBROUTINE ?PPSV( UPLO, N, NRHS, AP, B, LDB, INFO )

CHARACTER UPLO
INTEGER N, NRHS, LDB, INFO
? AP( * ), B( LDB, * )

END SUBROUTINE ?PPSV
On exit, the solution matrix X overwrites the right hand side matrix B.

The routine uses the Cholesky factorization to solve the system efficiently while taking
advantage of the packed storage format. The factor U or L from the Cholesky factorization
A = U⊤U or A = LL⊤, in the same storage format as A.
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LAPACK: Linear Least Squares Problems
ŵ LAPACK: Linear Algebra PACKage

The linear least squares problem is:

minimize
x

∥b− Ax∥2

where A is anm-by-nmatrix, b is a givenm element vector, and x is the n element
solution vector.

In the most usual casem ≥ n and rank(A) = n, the solution to the problem is unique, and
the problem is referred to as finding a least squares solution to an overdetermined system
of linear equations.
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LAPACK: Linear Least Squares Problems
ŵ LAPACK: Linear Algebra PACKage

The linear least squares problem is:

minimize
x

∥b− Ax∥2

where A is anm-by-nmatrix, b is a givenm element vector, and x is the n element
solution vector.

Whenm < n and rank(A) = m, there are infinitely many solutions x that exactly satisfy
b− Ax = 0. In this case, it is useful to find the unique solution x which minimizes ∥x∥2,
referred to as finding a minimum norm solution to an underdetermined system of linear
equations.
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LAPACK: Linear Least Squares Problems
ŵ LAPACK: Linear Algebra PACKage

The linear least squares problem is:

minimize
x

∥b− Ax∥2

where A is anm-by-nmatrix, b is a givenm element vector, and x is the n element
solution vector.

In the general case when rank(A) < min(m, n) (i.e., Amay be rank-deficient), we seek the
minimum norm least squares solution x which minimizes both ∥x∥2 and ∥b− Ax∥2.
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LAPACK: Driver routines for least squares problems
ŵ LAPACK: Linear Algebra PACKage

The driver routine DGELS solves the linear least squares problem assuming
rank(A) = min(m, n), i.e., A has full rank.

It finds a least squares solution of an overdetermined system whenm > n,
It finds a minimum norm solution of an underdetermined system whenm < n,
It uses QR or LQ factorization of A,
It allows A to be replaced by A⊤ (or AH if A is complex).

For rank-deficient matrices, several routines are available:
• DGELSY— uses complete orthogonal factorization,
• DGELSS— uses singular value decomposition (SVD),
• DGELSD— uses divide-and-conquer SVD (faster for large problems).
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LAPACK: LLS driver routines summary
ŵ LAPACK: Linear Algebra PACKage

Operation Single precision Double precision
real complex real complex

Solve LLS using QR or LQ SGELS CGELS DGELS ZGELS
Solve LLS using COF SGELSY CGELSY DGELSY ZGELSY
Solve LLS using SVD SGELSS CGELSS DGELSS ZGELSS
Solve LLS using DC-SVD SGELSD CGELSD DGELSD ZGELSD

All routines can handle multiple right hand sides stored as columns of B and X.
Each right hand side is solved independently, i.e., we do not find:

argmin ∥B− AX∥22.

Ŷų/Źŵ



LLS: The different algorithms
ŵ LAPACK: Linear Algebra PACKage

• QR and LQ factorization: A = QR or A = LQ with Q orthogonal and R (or L)
triangular.
— Suitable for full-rank matrices,
— Efficient for both overdetermined and underdetermined systems,
— Utilizes orthogonal transformations to minimize numerical errors,
— Cost: O(mn2) form ≥ n and O(nm2) form < n.

• Complete Orthogonal Factorization (COF): A = Q
[
R11 R12
0 0

]
PT, with Q orthogonal,

P a permutation matrix, and R11 upper triangular, and R12 dense,
— Handles rank-deficient matrices,
— Decomposes A into orthogonal and triangular matrices,
— Provides a stable solution even when A is ill-conditioned,
— Cost: O(mn2) form ≥ n and O(nm2) form < n.
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LLS: The different algorithms
ŵ LAPACK: Linear Algebra PACKage

• Singular Value Decomposition (SVD): A = UΣVT, with U and V orthogonal and Σ
diagonal,
— Robust method for rank-deficient matrices,
— Decomposes A into singular values and vectors,
— Minimizes the effect of small singular values on the solution,
— Cost: O(mn2 + n3) form ≥ n and O(nm2 +m3) form < n.

• Divide-and-Conquer SVD:
— An efficient variant of SVD for large problems,
— Divides the matrix into smaller submatrices,
— Combines results to obtain the final solution,
— Cost: O(mn2) form ≥ n and O(nm2) form < n (faster than traditional SVD for

large-scale problems).
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LAPACK: Generalized Linear Least Squares Problems
ŵ LAPACK: Linear Algebra PACKage

Driver routines are provided for two types of generalized linear least squares problems.

The first is the linear equality-constrained least squares problem (LSE):

min
x

∥c− Ax∥2 subject to Bx = d

where A ∈ Rm×n, B ∈ Rp×n, c is a givenm-vector, d is a given p-vector, with
p ≤ n ≤ m+ p.

The routine DGGLSE solves this problem using the generalized RQ factorization,

Assumes B has full row rank p and
[
A
B

]
has full column rank n,

Under these assumptions, the problem has a unique solution.
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LAPACK: Generalized Linear Model Problem
ŵ LAPACK: Linear Algebra PACKage

The second is the general linear model problem (GLM):

min
x

∥y∥2 subject to d = Ax+ By

where A ∈ Rn×m, B ∈ Rn×p, and d is a given n-vector, withm ≤ n ≤ m+ p.
When B = I, the problem reduces to an ordinary linear least squares problem,
When B is square and nonsingular, it is equivalent to the weighted linear least
squares problem:

min
x

∥B−1(d− Ax)∥2

The routine DGGGLM solves this problem using the generalized QR factorization:
Assumes A has full column rankm and (A, B) has full row rank n,
Under these assumptions, there are unique solutions x and y.
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LAPACK: Generalized Linear Model Problem
ŵ LAPACK: Linear Algebra PACKage

Operation Single precision Double precision
real complex real complex

Solve LSE using GRQ SGGLSE CGGLSE DGGLSE ZGGLSE
Solve GLM using GQR SGGGLM CGGGLM DGGGLM ZGGGLM

The GRQ decomposes the pair (A, B) into orthogonal and triangular matrices as

A = RQ and B = ZTQ, Q, Z orthogonal, R, T upper triangular

The GQR decomposes the pair (A, B) into orthogonal and triangular matrices as

A = QR and B = QTZ, Q, Z orthogonal, R, T upper triangular;
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Eigenproblems and Singular Value Decomposition
ŵ LAPACK: Linear Algebra PACKage

LAPACK provides a comprehensive set of routines for solving various types of eigenvalue
problems and performing singular value decomposition (SVD).

These routines are designed to handle different matrix types, including general,
symmetric, Hermitian, and banded matrices.

Key features of LAPACK’s eigenproblem and SVD routines include:
• Efficient algorithms for computing eigenvalues and eigenvectors,
• Support for both real and complex matrices,
• Routines for computing the SVD of general matrices,
• Specialized routines for symmetric and Hermitian matrices to exploit their properties
for improved performance.
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LAPACK: Symmetric Eigenproblems (SEP)
ŵ LAPACK: Linear Algebra PACKage

The symmetric eigenvalue problem is to find the eigenvalues λ and corresponding
eigenvectors z ̸= 0, such that:

Az = λz, A = A⊤, where A is real.

For the Hermitian eigenvalue problem we have:

Az = λz, A = AH.

For both problems the eigenvalues λ are real.

When all eigenvalues and eigenvectors have been computed, we write:

A = ZΛZ⊤

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an
orthogonal (or unitary) matrix whose columns are the eigenvectors. This is the classical
spectral factorization of A.
Ŷź/Źŵ



Driver routines for symmetric eigenproblems
ŵ LAPACK: Linear Algebra PACKage

There are four types of driver routines for symmetric and Hermitian eigenproblems:
A simple driver (name ending -EV) computes all the eigenvalues and (optionally)
eigenvectors,
An expert driver (name ending -EVX) computes all or a selected subset of the
eigenvalues and eigenvectors,
A divide-and-conquer driver (name ending -EVD) solves the same problem as the
simple driver but is much faster for large matrices,
A relatively robust representation (RRR) driver (name ending -EVR) is the fastest
algorithm and uses the least workspace.

Different driver routines are provided to take advantage of special structure or storage of
the matrix A.
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LAPACK: Driver routines for symmetric eigenproblems
ŵ LAPACK: Linear Algebra PACKage

Function and storage scheme Single precision Double precision
real complex real complex

simple driver SSYEV CHEEV DSYEV ZHEEV
divide and conquer driver SSYEVD CHEEVD DSYEVD ZHEEVD
expert driver SSYEVX CHEEVX DSYEVX ZHEEVX
RRR driver SSYEVR CHEEVR DSYEVR ZHEEVR

simple driver (packed) SSPEV CHPEV DSPEV ZHPEV
divide and conquer (packed) SSPEVD CHPEVD DSPEVD ZHPEVD
expert driver (packed) SSPEVX CHPEVX DSPEVX ZHPEVX
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LAPACK: Driver routines for symmetric eigenproblems
ŵ LAPACK: Linear Algebra PACKage

Function and storage scheme Single precision Double precision
real complex real complex

simple driver (band) SSBEV CHBEV DSBEV ZHBEV
divide and conquer (band) SSBEVD CHBEVD DSBEVD ZHBEVD
expert driver (band) SSBEVX CHBEVX DSBEVX ZHBEVX

simple driver (tridiagonal) SSTEV DSTEV
divide and conquer (tridiagonal) SSTEVD DSTEVD
expert driver (tridiagonal) SSTEVX DSTEVX
RRR driver (tridiagonal) SSTEVR DSTEVR
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Nonsymmetric Eigenproblems (NEP)
ŵ LAPACK: Linear Algebra PACKage

The nonsymmetric eigenvalue problem is to find the eigenvalues λ and corresponding
right eigenvectors v ̸= 0, such that:

Av = λv.

A real matrix Amay have complex eigenvalues, occurring as complex conjugate pairs. A
vector u ̸= 0 satisfying:

uHA = λuH

is called a left eigenvector of A.

This problem can be solved via the Schur factorization of A:

A = ZTZ⊤ (real case), A = ZTZH (complex case)

where Z is orthogonal (or unitary) and T is an upper quasi-triangular (or triangular) matrix.
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LAPACK: Driver routines for nonsymmetric
eigenproblems
ŵ LAPACK: Linear Algebra PACKage

Function Single precision Double precision
real complex real complex

simple driver for Schur factorization SGEES CGEES DGEES ZGEES
expert driver for Schur factorization SGEESX CGEESX DGEESX ZGEESX
simple driver for eigenvalues/vectors SGEEV CGEEV DGEEV ZGEEV
expert driver for eigenvalues/vectors SGEEVX CGEEVX DGEEVX ZGEEVX
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LAPACK: Driver routines for nonsymmetric
eigenproblems
ŵ LAPACK: Linear Algebra PACKage

Two pairs of drivers are provided:
xGEES and xGEESX: compute the Schur factorization of A, with optional ordering of
eigenvalues,
xGEEV and xGEEVX: compute all eigenvalues and (optionally) right or left
eigenvectors.

The expert drivers (xGEESX and xGEEVX) can additionally balance the matrix and
compute condition numbers for the eigenvalues or eigenvectors.
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Singular Value Decomposition (SVD)
ŵ LAPACK: Linear Algebra PACKage

The singular value decomposition of anm-by-nmatrix A is given by:

A = UΣV⊤ (A = UΣVH in the complex case)

where U and V are orthogonal (unitary) and Σ is anm-by-n diagonal matrix with real
diagonal elements σi such that:

σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0.

The σi are the singular values of A and the firstmin(m, n) columns of U and V are the left
and right singular vectors of A.
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Driver routines for SVD
ŵ LAPACK: Linear Algebra PACKage

Two types of driver routines are provided for the SVD:
A simple driver xGESVD computes all the singular values and (optionally) left and/or
right singular vectors,
A divide-and-conquer driver xGESDD solves the same problem but is much faster for
large matrices.

The divide-and-conquer driver uses more workspace but is significantly faster than
the simple driver for large matrices.
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Generalized Symmetric Definite Eigenproblems (GSEP)
ŵ LAPACK: Linear Algebra PACKage

Drivers are provided to compute all the eigenvalues and (optionally) the eigenvectors of
the following types of problems:
Ŵ. Az = λBz

ŵ. ABz = λz

Ŷ. BAz = λz

where A and B are symmetric or Hermitian and B is positive definite.

For all these problems the eigenvalues λ are real. The matrices Z of computed
eigenvectors satisfy:
• Z⊤AZ = Λ (problem types Ŵ and Ŷ) or Z−1AZ−⊤ = I (problem type ŵ),
• Z⊤BZ = I (problem types Ŵ and ŵ) or Z⊤B−1Z = I (problem type Ŷ),

where Λ is a diagonal matrix with the eigenvalues on the diagonal.
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Driver routines for GSEP
ŵ LAPACK: Linear Algebra PACKage

Three types of driver routines are provided for generalized symmetric and Hermitian
eigenproblems:

A simple driver (name ending -GV) computes all the eigenvalues and (optionally)
eigenvectors,
An expert driver (name ending -GVX) computes all or a selected subset of the
eigenvalues and eigenvectors. If few enough eigenvalues or eigenvectors are desired,
the expert driver is faster than the simple driver,
A divide-and-conquer driver (name ending -GVD) solves the same problem as the
simple driver but is much faster for large matrices, although it uses more workspace.

Different driver routines are provided to take advantage of special structure or storage of
the matrices A and B.
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LAPACK: Driver routines for GSEP
ŵ LAPACK: Linear Algebra PACKage

Function and storage scheme Single precision Double precision
real complex real complex

simple driver SSYGV CHEGV DSYGV ZHEGV
divide and conquer driver SSYGVD CHEGVD DSYGVD ZHEGVD
expert driver SSYGVX CHEGVX DSYGVX ZHEGVX

simple driver (packed) SSPGV CHPGV DSPGV ZHPGV
divide and conquer (packed) SSPGVD CHPGVD DSPGVD ZHPGVD
expert driver (packed) SSPGVX CHPGVX DSPGVX ZHPGVX

simple driver (band) SSBGV CHBGV DSBGV ZHBGV
divide and conquer (band) SSBGVD CHBGVD DSBGVD ZHBGVD
expert driver (band) SSBGVX CHBGVX DSBGVX ZHBGVX
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Generalized Nonsymmetric Eigenproblems (GNEP)
ŵ LAPACK: Linear Algebra PACKage

Given a matrix pair (A, B), where A and B are square n× nmatrices, the generalized
nonsymmetric eigenvalue problem is to find the eigenvalues λ and corresponding
eigenvectors x ̸= 0 such that:

Ax = λBx

or to find the eigenvalues µ and corresponding eigenvectors y ̸= 0 such that:

µAy = By

These problems are equivalent with µ = 1/λ and x = y if neither λ nor µ is zero.
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Matrix Pencils and Eigenvalue Representation
ŵ LAPACK: Linear Algebra PACKage

To deal with cases where λ or µ is zero or nearly so, LAPACK routines return two values, α
and β, for each eigenvalue, such that:

λ = α/β and µ = β/α

Vectors u ̸= 0 or v ̸= 0 satisfying:

u⊤A = λu⊤B or µv⊤A = v⊤B

are called left eigenvectors.

The matrix pencil A− λB is used to refer to the generalized eigenproblem. The problem is
called:
• Regular if det(A− λB) ̸≡ 0 for all λ,
• Singular if det(A− λB) ≡ 0 for all λ (signaled by α = β = 0).
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Generalized Schur Decomposition
ŵ LAPACK: Linear Algebra PACKage

The generalized nonsymmetric eigenvalue problem can be solved via the generalized
Schur decomposition of the matrix pair (A, B).

In the real case:
A = QSZ⊤, B = QTZ⊤

In the complex case:
A = QSZH, B = QTZH

where Q and Z are orthogonal (or unitary), T is upper triangular, and S is upper
quasi-triangular with 1× 1 and 2× 2 diagonal blocks.

The columns of Q and Z are called left and right generalized Schur vectors and span pairs
of deflating subspaces of A and B.
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Driver routines for GNEP
ŵ LAPACK: Linear Algebra PACKage

Two pairs of drivers are provided:
xGGES and xGGESX: compute the generalized Schur decomposition of (A, B), with
optional ordering of eigenvalues,
xGGEV and xGGEVX: compute all generalized eigenvalues and (optionally) right or left
eigenvectors.

The expert drivers (xGGESX and xGGEVX) can additionally:
• Balance the matrix pair to improve conditioning,
• Compute condition numbers for the eigenvalues or eigenvectors.
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Summary of GNEP driver routines
ŵ LAPACK: Linear Algebra PACKage

Function Single precision Double precision
real complex real complex

simple driver (Schur) SGGES CGGES DGGES ZGGES
expert driver (Schur) SGGESX CGGESX DGGESX ZGGESX
simple driver (eigenvalues) SGGEV CGGEV DGGEV ZGGEV
expert driver (eigenvalues) SGGEVX CGGEVX DGGEVX ZGGEVX
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Generalized Singular Value Decomposition (GSVD)
ŵ LAPACK: Linear Algebra PACKage

The generalized (or quotient) singular value decomposition of anm× nmatrix A and a
p× nmatrix B is given by:

A = UΣ1[0,R]Q⊤ and B = VΣ2[0,R]Q⊤

where:
• U ism×m, V is p× p, Q is n× n, all orthogonal (or unitary for complex),

• R is r× r, upper triangular and nonsingular, where r is the rank of
[
A
B

]
,

• Σ1 ism× r and Σ2 is p× r, both real, nonnegative, and diagonal.

The ratios α1/β1, . . . , αr/βr are called the generalized singular values of the pair (A, B).
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Special Cases of GSVD
ŵ LAPACK: Linear Algebra PACKage

Important special cases of the generalized singular value decomposition include:
If B is square and nonsingular, then r = n and the GSVD is equivalent to the SVD of
AB−1,
If the columns of

[
A⊤ B⊤

]⊤ are orthonormal, then r = n, R = I, and the GSVD is
equivalent to the Cosine-Sine (CS) decomposition,
The generalized eigenvalues of A⊤A− λB⊤B can be expressed in terms of the GSVD.

Ÿŷ/Źŵ



Driver routine for GSVD
ŵ LAPACK: Linear Algebra PACKage

A single driver routine xGGSVD computes the generalized singular value decomposition of
A and B.

Function Single precision Double precision
real complex real complex

GSVD SGGSVD CGGSVD DGGSVD ZGGSVD

The method is based on the generalized QR and RQ factorizations,
It is useful for solving certain least squares and generalized eigenvalue problems,
The GSVD provides a unified framework for understanding relationships between
different matrix decompositions.
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Computational Routines
ŵ LAPACK: Linear Algebra PACKage

Driver routines call a sequence of computational routines (also called auxiliary routines)
to perform specific tasks:
Factorization routines compute matrix factorizations (LU, QR, Cholesky, etc.),
Solver routines solve systems using a precomputed factorization,
Eigenvalue routines reduce matrices to condensed forms (tridiagonal, Hessenberg),
Utility routines perform auxiliary operations (scaling, orthogonal transformations).

Users can call computational routines directly for finer control and better
performance,
Useful when you need to reuse a factorization for multiple operations,
Allows combining different algorithms in a custom sequence.
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LAPACK: Factorization Routines
ŵ LAPACK: Linear Algebra PACKage

Examples of factorization computational routines:
xGETRF: LU factorization with partial pivoting,
xGETRS: solve using LU factorization,
xGEQRF: QR factorization,
xGERQF: RQ factorization,
xGELQF: LQ factorization,
xORMQR (or xUNMQR): apply orthogonal transformation from QR,
xPOTRF: Cholesky factorization.

Combining computational routines allows implementing custom algorithms:
! Compute QR factorization
call dgeqrf(m, n, A, lda, tau, work, lwork, info)
! Apply Q to a vector
call dormqr('L', 'T', m, nrhs, n, A, lda, tau, B, ldb, work, lwork, info)
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LAPACK: Solver Routines
ŵ LAPACK: Linear Algebra PACKage

Solver routines use precomputed factorizations to solve linear systems efficiently:
xGETRS: solve using LU factorization from xGETRF,
xPOTRS: solve using Cholesky factorization from xPOTRF,
xTRTRS: solve triangular systems,
xGBTRS: solve banded systems using factorization from xGBTRF,
xGTTRS: solve tridiagonal systems using factorization from xGTTRF.

These routines typically perform O(n2) operations instead of O(n3) for factorization:
! Factorize once
call dgetrf(n, n, A, lda, ipiv, info)
! Solve for multiple right-hand sides
do i = 1, nrhs

call dgetrs('N', n, 1, A, lda, ipiv, B(:,i), n, info)
end do
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LAPACK: Solver Routines
ŵ LAPACK: Linear Algebra PACKage

Solver routines use precomputed factorizations to solve linear systems efficiently:
xGETRS: solve using LU factorization from xGETRF,
xPOTRS: solve using Cholesky factorization from xPOTRF,
xTRTRS: solve triangular systems,
xGBTRS: solve banded systems using factorization from xGBTRF,
xGTTRS: solve tridiagonal systems using factorization from xGTTRF.

Separating factorization and solving provides significant performance gains for
multiple systems,
Essential for iterative refinement and other advanced techniques.
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LAPACK: Eigenvalue Reduction and Schur Manipulation
ŵ LAPACK: Linear Algebra PACKage

Reducing to Hessenberg form is often the first step in computing eigenvalues of
nonsymmetric matrices:

xGEHRD: reduce a general matrix to upper Hessenberg form,
xORGHR (or xUNGHR): generate the orthogonal matrix from the reduction,
Hessenberg form has zeros below the first subdiagonal, reducing subsequent
eigenvalue computations.

Schur factorization manipulation:
xTREXC: reorder eigenvalues in Schur factorization by exchanging diagonal blocks,
xTRSEN: reorder and compute condition numbers for selected eigenvalues,
Useful for isolating specific eigenvalues or organizing them by magnitude or stability.
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LAPACK: Eigenvalue Reduction and Schur Manipulation
ŵ LAPACK: Linear Algebra PACKage

Solving Sylvester equations:
xTRSYL: solve the generalized Sylvester equation AX+ XB = C or related forms,
Requires Schur factorizations of A and B as input,
Applications include model reduction, control theory, and matrix equation solutions.

! Reduce to Hessenberg form
call dgehrd(n, 1, n, A, lda, tau, work, lwork, info)
! Reorder Schur form
call dtrexc('V', n, T, ldt, Q, ldq, ifst, ilst, work, info)
! Solve Sylvester equation: AX + XB = C
call dtrsyl('N', 'N', 1, m, n, A, lda, B, ldb, C, ldc, scale, info)
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Why Use Computational Routines?
ŵ LAPACK: Linear Algebra PACKage

Factorization reuse Compute factorization once, use it for multiple right-hand sides or
operations

Memory efficiency Control allocation and reuse of intermediate arrays
Algorithm customization Combine different routines to implement specialized algorithms
Performance Avoid redundant computations when multiple related operations are

needed
Stability control Apply equilibration or scaling before factorization for better conditioning

Example use case: Solve multiple systems Axi = bi where bi depends on xi−1:
Ŵ. Compute LU factorization of A once using DGETRF,
ŵ. For each bi, call DGETRS with the precomputed factors,
Ŷ. Much faster than calling DGESV repeatedly.
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Conclusions
Ŷ Conclusions and next step

LAPACK provides a suite of routines for solving LA problems efficiently,
Driver routines offer high-level interfaces for common tasks,
Computational routines allow fine-grained control,
Understanding both types of routines enables users to optimize performance and
tailor solutions to specific needs.

Next step: look at the ScaLAPACK library for distributed-memory parallel computing,
ScaLAPACK extends LAPACK’s capabilities to large-scale problems across multiple
processors.
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Summary of ScaLAPACK Infrastructure
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK = Scalable Linear Algebra PACKage

• Distributed-memory extension of
LAPACK for parallel computing

• Built on three key layers:
Ŵ. MPI (Message Passing Interface) —
low-level communication

ŵ. BLACS (Basic Linear Algebra
Communication Subprograms) —
higher-level communication primitives

Ŷ. PBLAS (Parallel BLAS) — distributed
matrix operations

• Matrix distributed across process grid
using ŵD block-cyclic layout

ScaLAPACK Routines

PBLAS

BLACS

MPI

Each layer abstracts communication details,
enabling scalable algorithmsŶ/źų



Initialization: process grid and matrix distribution
Ŵ ScaLAPACK Numerical Routines

Process grid setup:
CALL BLACS_GRIDINIT( ICTXT, 'R', NPROW, NPCOL )

where ICTXT is the BLACS context, NPROW and NPCOL define the process grid dimensions.

Matrix descriptor creation:
CALL DESCINIT( DESC, M, N, MB, NB, RSRC, CSRC, ICTXT, LLD, INFO )

where DESC is the descriptor array for the distributed matrix, M, N are global matrix
dimensions, MB, NB are block sizes, and RSRC, CSRC specify the process owning the first
block.
Information on the local part of the matrix can be obtained using:

CALL NUMROC( N, NB, IPROC, ISRCPROC, NPROCS )
which computes the number of rows or columns of the distributed matrix owned by a
specific process.
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ScaLAPACK: Driver Routines for Linear Systems
Ŵ ScaLAPACK Numerical Routines

Two types of driver routines are provided for solving systems of linear equations:
• Simple driver (name ending -SV):

— Solves the system AX = B by factorizing A and overwriting B with the solution X
• Expert driver (name ending -SVX):

— Solve A⊤X = B or AHX = B (unless A is symmetric or Hermitian)
— Estimate the condition number of A, check for near-singularity and pivot growth
— Refine the solution and compute forward and backward error bounds
— Equilibrate the system if A is poorly scaled

Expert driver requires roughly twice as much storage to perform these extra functions.

Both types handle multiple right-hand sides (columns of B). Different drivers exploit
special properties or storage schemes of matrix A.

Note: For band/tridiagonal matrices (PxDBTRF, PxDTTRF, PxGBTRF, PxPBTRF, PxPTTRF),
the factorization differs from LAPACK due to additional permutations for parallelism.
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ScaLAPACK: Linear System Solution Drivers
Ŵ ScaLAPACK Numerical Routines

Type of matrix and storage
scheme

Operation Single precision Double precision

Real Complex Real Complex

general (partial pivoting) simple driver PSGESV PCGESV PDGESV PZGESV
expert driver PSGESVX PCGESVX PDGESVX PZGESVX

general band (partial pivot-
ing)

simple driver PSGBSV PCGBSV PDGBSV PZGBSV

general band (no pivoting) simple driver PSDBSV PCDBSV PDDBSV PZDBSV

general tridiagonal (no piv-
oting)

simple driver PSDTSV PCDTSV PDDTSV PZDTSV
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ScaLAPACK: Linear System Solution Drivers
Ŵ ScaLAPACK Numerical Routines

Type of matrix and storage
scheme

Operation Single precision Double precision

Real Complex Real Complex

symmetric/Hermitian posi-
tive definite

simple driver PSPOSV PCPOSV PDPOSV PZPOSV

expert driver PSPOSVX PCPOSVX PDPOSVX PZPOSVX
symmetric/Hermitian posi-
tive definite band

simple driver PSPBSV PCPBSV PDPBSV PZPBSV

symmetric/Hermitian posi-
tive definite tridiagonal

simple driver PSPTSV PCPTSV PDPTSV PZPTSV
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Divide and Conquer for Banded Linear Systems
Ŵ ScaLAPACK Numerical Routines

The algorithm we discuss is based on the divide and conquer strategy introduced in

J. Dongarra and L. Johnsson. Solving banded systems on a parallel processor. Parallel
Computing, Ÿ:ŵŴż–ŵŷŹ, ŴżŻź,

A. Cleary and J. Dongarra. Implementation in ScaLAPACK of Divide-and-Conquer Algorithms
for Banded and Tridiagonal Linear Systems. Computer Science Dept. Technical Report
CS-żź-ŶŸŻ, University of Tennessee, Knoxville, TN, April Ŵżżź. (Also LAPACK Working Note
ŴŵŸ).

The main idea is to partition the banded matrix into smaller submatrices, solve the
smaller systems independently, and then combine the solutions to obtain the solution of
the original system.
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Divide and Conquer for Banded Linear Systems
Ŵ ScaLAPACK Numerical Routines

Ax = b, lower bandwidth βl, upper bandwidth βu
The algorithm follows these steps:
Ŵ. First produce a reordering: PA(P−1P)x = Pb, where P is a permutation matrix,
ŵ. The reorderd matrix PAP−1 is factore as LU or LL⊤ via Gaussian
Elimination/Chokesky,

Ŷ. Solve the system LUx′ = b′ (or LL⊤x′ = b′) where x′ = Px and b′ = Pb,
Ŷ.Ŵ Solve Lz = b′ via forward substitution,
Ŷ.ŵ Solve Ux′ = z via back substitution,

ŷ. Finally, recover the solution x = P−1x′.

Find a good n× n permutation matrix P that reorders A to allow exploitation of
parallelism,
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The Symmetric and Positive Definite Case
Ŵ ScaLAPACK Numerical Routines

A1

B1 C1

D1 . . .

• User inputs the matrix in lower triangular form,
• Each processor stores a contiguous set of
columns of the matrix

• We partition each process matrix:
— Ai: ”trapezoidal” block along the diagonal of

size Oi,
— Bi, Ci, Di: lower triangular blocks of size β × β,
— The last processor has only the Ai block.
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The Symmetric and Positive Definite Case
Ŵ ScaLAPACK Numerical Routines

The reordering goes as follows:
• Number the equations in the Ai first, keeping the
same relative order,

• Number the equations in the Ci next, keeping the
same relative order,

The Cholesky factorization of the reordered matrix
can be computed with sequential block operations.

We do not physically reorder the matrix but,
rather, we base block operations on the reordering.
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Cholesky Factor of the Permuted Matrix
Ŵ ScaLAPACK Numerical Routines

L1

L2

L3

L4

B′1
D′1

⊤ G2 H2

B′2
D′2

⊤ G3 H3

B′3 D′3
⊤ G4 H4

L(C1)

F2 L(C2)

F3 L(C3)

• Factorization: largely computed
with sequential block operations,
minimal communication required.

• Fill-in: Gi and Hi represent fill-in,
doubling nonzeros compared to
sequential algorithms.

• Operation Count: O(4Nβ2)

Ai factorization: Nβ2.
Forming Gi: 2Nβ2.
Updating Ci with Gi: Nβ2.

• Total: Approx. 4× operations of
the sequential algorithm.
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The three phases of the Divide and Conquer Algorithm
Ŵ ScaLAPACK Numerical Routines

Phase Ŵ Formation of the reduced system.
Each processor does computations independently (for the most part) with
local parts and then combines to form the Schur complement system
corresponding to the parts already factored.
The Schur complement is often called the reduced system.

Phase ŵ The reduced system is solved, and the answers are communicated back to
all of the processors.

Phase Ŷ The solutions from Phase ŵ are applied in a backsolution process.
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Phase Ŵ: Formation of the Reduced System
Ŵ ScaLAPACK Numerical Routines

We look at the i-th processor, first and last processors have special cases.
• Communication Step: Di is sent to processor i+ 1. Since this is a small communication, it is
completely overlapped with subsequent computations.

At this point, portions of the matrix are stored locally.

• We treat local computations as a frontal computation.

• We perform Oi factorization steps and apply them to the remaining submatrix of size 2β.

• This submatrix is subsequently used in Phase ŵ to form the reduced system.

The “divide” in the algorithm’s name stems from the reordering allowing each defined front to be
independent.

Only the 2β update equations at the end of each front need be coordinated with other processors.
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Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

0

B2
0

C2

0

• Start the exchange of Di block with process i+ 1.

• Take Oi steps of Cholesky factorization on the
local front:

— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:

— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i
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Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

0

B2
0

C2

0

call dpbtrf( ... , A_i, ... )

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),

— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:

— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i
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Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

0

B′2 0
C2

0

call dtrtrs( ... , B_i, ... )

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,

— Update Ci using B′i as C′i = Ci − B′iB
′
i
⊤.

• The exchanged Di is now needed:

— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i
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Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

0

B′2 0
C2

0

call dtrmm( ... , B_i, ... )

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:

— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i
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Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

G2 H2

B′2 0 C′2

0

call dtbtrs( ... , B_i, ... )

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:
— Compute Gi from LiG⊤i = Di,

— The matrix Ei represents the contribution from
processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i
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Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

G2 H2

B′2 0 C′2

E2

call dsyrk( ... , G_i, ... )

• Start the exchange of Di block with process i+ 1.
• Take Oi steps of Cholesky factorization on the
local front:
— Factor Ai to get L(Ai),
— Update Bi using Li = L(Ai): LiB′i⊤ = B⊤i ,
— Update Ci using B′i as C′i = Ci − B′iB

′
i
⊤.

• The exchanged Di is now needed:
— Compute Gi from LiG⊤i = Di,
— The matrix Ei represents the contribution from

processor i to the diagonal block of the reduced
system stored on process i− i, that is C′i−1:
Ei = GiG⊤i
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Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

G2 H2

B′2 F2 C′2

E2

call dtrmm( ... , B_i, ... )

— The local computation is finished by computing
Fi, using B′i and the last β columns of Gi, which
we have labelled Hi:

F⊤i = HiB′i
⊤

• The processor is now ready for Phase ŵ.
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Phase Ŵ: Continued
Ŵ ScaLAPACK Numerical Routines

A2

D⊤
1

G2 H2

B′2 F2 C′2

E2

— The local computation is finished by computing
Fi, using B′i and the last β columns of Gi, which
we have labelled Hi:

F⊤i = HiB′i
⊤

• The processor is now ready for Phase ŵ.
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Phase ŵ: Solution of the Reduced System
Ŵ ScaLAPACK Numerical Routines

Phase ŵ consists of the forming and factorization of the Schur complement matrix.
• Each processor contributes three blocks of size β × β to this system: Ei, Fi, C′i.
• Each C′i is added to Ei+1 to form the diagonal blocks of the matrix,.
• The Fi form the off-diagonal blocks.

The resultant system is block tridiagonal, with P− 1 blocks.

Several methods for factoring the reduced system have been proposed:
• For small P or small β: Perform an all-to-all broadcast of each processor’s portion of
the reduced system.

Disadvantage: Entire reduced system ends up on each processor.
Advantage: Only one (expensive) communication step.
Disadvantage: Redundant computation (serial algorithm), will not scale.

• Parallel Solution: For larger problems, ScaLAPACK uses a parallel block tridiagonal
solver scaling as O(log P) or P.
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Phase ŵ: Solution of the Reduced System
Ŵ ScaLAPACK Numerical Routines

We use a block formulation of odd-even (or cyclic) reduction.
• This algorithm has log2 P stages.
• At each stage, the odd-numbered blocks are used to “eliminate” the
even-numbered blocks.

• The process decreases the number of blocks left by a factor of two at each stage.
• Symmetry is maintained throughout (Cholesky factorization of a symmetric
permutation of the reduced system).

Reordering Strategy:
• Blocks are ordered so that even-numbered blocks in Step Ŵ are first, those in Step ŵ
correspond to second, and so on.

• Results in an elimination tree of minimal height.
Implementation requires additional space allocation for fill-in created by the reordering

(though of much lower order than Phase Ŵ fill-in).
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Phase Ŷ: Backsolution
Ŵ ScaLAPACK Numerical Routines

• Phase Ŷ is specific to the solution step (not factorization).
• Operations performed mirror the factorization steps (Phase Ŵ and ŵ) but operate on
the right-hand sides.

Procedure At the end of Phase ŵ, processors hold portions of the solution to the
reduced system.

Communication Each processor distributes 2β elements of this solution to neighboring
processors.

Computation Partial solutions are back-substituted into locally stored factors. This is a
completely local computation stage.

• Structure is similar to factorization but simpler.
• Uses block operations from LAPACK and BLAS.
• Multiple right-hand sides are handled efficiently in this context.
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Running an example
Ŵ ScaLAPACK Numerical Routines

We want to run an example of the parallel divide and conquer algorithm:
call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

Where:
• uplo: ‘L‘ for lower triangular storage,
• n: order of the matrix,
• bw: bandwidth of the matrix,
• nrhs: number of right-hand sides,
• a: local array containing the lower
triangular part of the matrix,

• ja: global column index of the first
local column of a,

• desca: array descriptor for matrix a,
• b: local array containing the right-hand
side(s),

• ib: global row index of the first local
row of b,

• descb: array descriptor for matrix b,
• work: workspace array,
• lwork: size of the workspace array,
• info: output status variable.
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The construction of the input matrix
Ŵ ScaLAPACK Numerical Routines

• Initialize matrix A in banded format,
• Create a symmetric positive definite banded matrix,
• In packed banded format for UPLO='U':

Ai,j is stored in A(BW+1+i-j, j) formax(1, j− BW) ≤ i ≤ j.
a = 0.0_real64
do j = 1, loc_n_a

! Global column index
jloc = (mycol * nb) + j
if (jloc <= n) then

! Diagonal element (make it dominant for positive definiteness)
a(bw + 1 + (j-1)*lld_a) = 4.0_real64 + 2.0_real64 * real(bw, real64)
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The construction of the input matrix
Ŵ ScaLAPACK Numerical Routines

! Off-diagonal elements
do i = max(1, jloc - bw), jloc - 1

if (i >= 1 .and. i < jloc) then
iloc = bw + 1 + i - jloc
if (iloc >= 1 .and. iloc <= bw + 1) then
a(iloc + (j-1)*lld_a) = -1.0_real64

end if
end if

end do
end if

end do
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The construction of the input matrix
Ŵ ScaLAPACK Numerical Routines

The previous code build the following matrix for n = 8 and bw = 2:

A =



6 −1 −1 0 0 0 0 0
−1 6 −1 −1 0 0 0 0
−1 −1 6 −1 −1 0 0 0
0 −1 −1 6 −1 −1 0 0
0 0 −1 −1 6 −1 −1 0
0 0 0 −1 −1 6 −1 −1
0 0 0 0 −1 −1 6 −1
0 0 0 0 0 −1 −1 6


which is symmetric positive definite and banded with bandwidth ŵ.
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The work spaces
Ŵ ScaLAPACK Numerical Routines

• ScaLAPACK routines use a workspace array WORK of size LWORK to store temporary
data.

• The size of LWORK depends on the routine and the problem size.
• If LWORK is too small, the routine returns an error.

For PDPBSV, the minimal size is:

LWORK ≥ (NB+ 2 · BW) · BW+max((BW · NRHS), BW2)

• NB: Block size,
• BW: Bandwidth,
• NRHS: Number of right-hand sides.

Query mechanism: If LWORK = -1, the routine calculates the optimal size and returns it
in WORK(1). This is the recommended way to allocate the workspace.
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The work spaces
Ŵ ScaLAPACK Numerical Routines

• ScaLAPACK routines use a workspace array WORK of size LWORK to store temporary
data.

• The size of LWORK depends on the routine and the problem size.
• If LWORK is too small, the routine returns an error.

For PDPBSV, the minimal size is:

LWORK ≥ (NB+ 2 · BW) · BW+max((BW · NRHS), BW2)

• NB: Block size,
• BW: Bandwidth,
• NRHS: Number of right-hand sides.

lwork = (nb + 2*bw) * bw + max(bw*nrhs, bw*bw)
allocate(work(lwork), stat=info)
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Calling the ScaLAPACK routine and measure time
Ŵ ScaLAPACK Numerical Routines

Finally, we can call the ScaLAPACK routine to solve the system Ax = b:
! Start timing
t_start = mpi_wtime()
! Call PDPBSV to solve the system
call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, &

work, lwork, info)
! End timing
t_end = mpi_wtime()
t_elapsed = t_end - t_start
! All reduce to get maximum time across all processors
call mpi_allreduce(mpi_in_place, t_elapsed, 1, mpi_double_precision, &

mpi_max, mpi_comm_world, ierr)
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Scaling Results
Ŵ ScaLAPACK Numerical Routines

We run the weak scaling on the Amelia cluster at IAC-CNR, with Intel ŵųŵŶ.
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Scaling Results
Ŵ ScaLAPACK Numerical Routines

Observations:
• The time for the solution of the linear system remains constant as we increase the
number of processors P while keeping the problem size N proportional to P.

• This is the expected behavior for a weak scaling experiment:
— N = P× local_size.
— Ideal weak scaling behavior: execution time is constant.

• The GFLOPsmetric increases linearly with P, showing that we are able to effectively
use the added computational power.

The divide and conquer algorithm for banded systems in ScaLAPACK exhibits good parallel
scalability, effectively handling the inherent dependencies of the banded structure
through the hierarchical decomposition.
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Linear Least Squares Problems
Ŵ ScaLAPACK Numerical Routines

The linear least squares (LLS) problem is defined as finding x that minimizes:

min
x

∥b− Ax∥2

where A is anm× nmatrix and b is anm-element vector.

Overdetermined (m ≥ n)
• If full rank (n), the solution is unique.
• “Least squares solution”.

Underdetermined (m < n)
• If full rank (m), infinite solutions satisfy

b− Ax = 0.
• We seek theminimum norm solution
which minimizes ∥x∥2.

In the rank-deficient case (rank(A) < min(m, n)), we seek theminimum norm least
squares solution which minimizes both ∥b− Ax∥2 and ∥x∥2.
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ScaLAPACK LLS Driver: PxGELS
Ŵ ScaLAPACK Numerical Routines

The driver routine PxGELS solves the LLS problem assuming A has full rank.
• Finds the LLS solution form ≥ n and the minimum norm solution form < n.
• Uses QR factorization or LQ factorization of A.
• Can handle A or AH (or A⊤ for real matrices).
• Handles multiple right-hand sides (columns of B) in a single call.

Driver Routines for Linear Least Squares:

Problem Type Driver Single precision Double precision

Real Complex Real Complex

Full rank LLS PxGELS PSGELS PCGELS PDGELS PZGELS
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Symmetric Eigenproblems (SEP)
Ŵ ScaLAPACK Numerical Routines

The symmetric/Hermitian eigenvalue problem is to find the eigenvalues λ and
corresponding eigenvectors z ̸= 0 such that:

Az = λz, where A = A⊤ (symmetric) or A = AH (Hermitian).

The eigenvalues λ are always real.
When all eigenvalues and eigenvectors are computed, we can write the spectral
factorization A = ZΛZH, where Λ is diagonal containing eigenvalues, and Z is orthogonal
(or unitary) containing eigenvectors.

Two types of driver routines are provided:
• Simple driver (name ending -EV):

— Computes all eigenvalues and (optionally) eigenvectors.
• Expert driver (name ending -EVX):

— Computes either all or a selected subset of eigenvalues.
— Optionally computes corresponding eigenvectors.
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Singular Value Decomposition (SVD)
Ŵ ScaLAPACK Numerical Routines

The Singular Value Decomposition (SVD) of anm× nmatrix A is given by:

A = UΣV⊤ (or A = UΣVH for complex)

where U and V are orthogonal (unitary) and Σ is anm-by-n diagonal matrix with real
diagonal elements σi, such that:

σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0

The σi are the singular values, and the firstmin(m, n) columns of U and V are the left and
right singular vectors, satisfying:

Avi = σiui and A⊤ui = σivi

Driver Routine: PxGESVD
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Singular Value Decomposition (SVD)
Ŵ ScaLAPACK Numerical Routines

• Computes the “economy size” or “thin” SVD.
• Ifm > n: only the first n columns of U are computed.

Operation Driver Single precision Double precision

Real Complex Real Complex

Thin SVD PxGESVD PSGESVD PCGESVD PDGESVD PZGESVD
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Generalized Symmetric Definite Eigenproblems (GSEP)
Ŵ ScaLAPACK Numerical Routines

An expert driver is provided to compute all (or selected) eigenvalues and (optionally)
eigenvectors for the following problems:
Ŵ. Az = λBz

ŵ. ABz = λz

Ŷ. BAz = λz

where A and B are symmetric (or Hermitian) and B is positive definite.

Properties:
• The eigenvalues λ are real.
• The matrix of eigenvectors Z satisfies orthogonality conditions relative to B (e.g.,

ZHBZ = I for type Ŵ).
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Generalized Symmetric Definite Eigenproblems (GSEP)
Ŵ ScaLAPACK Numerical Routines

An expert driver is provided to compute all (or selected) eigenvalues and (optionally)
eigenvectors for the following problems:
Ŵ. Az = λBz
ŵ. ABz = λz
Ŷ. BAz = λz

where A and B are symmetric (or Hermitian) and B is positive definite.

Driver Routines (Expert):

Matrix Type Single precision Double precision

Real Complex Real Complex

Symmetric PSSYGVX – PDSYGVX –
Hermitian – PCHEGVX – PZHEGVX
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Computational Routines Overview
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK provides a suite of computational routines for solving linear algebra
problems, including:
• Solving systems of linear equations,
• Computing matrix factorizations,
• Estimating condition numbers,
• Refining solutions and computing error bounds,
• Computing matrix inverses,
• Performing matrix equilibration.

These routines are designed to work with distributed matrices and leverage parallel
computing architectures for efficiency and scalability.
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Computational Routines for Linear Equations
Ŵ ScaLAPACK Numerical Routines

Linear System Notation:
AX = B

where A is the coefficient matrix, B is the right-hand side, and X is the solution.

ScaLAPACK provides computational routines for factorizing A based on its properties:
• General matrices: LU factorization with partial pivoting (A = PLU).
• Symmetric/Hermitian positive definite: Cholesky factorization (A = UHU or

A = LLH).
• Band matrices: Generalized band factorizations.
• Tridiagonal matrices: Specialized LU or LDLH factorizations.
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Tasks Performed by Computational Routines
Ŵ ScaLAPACK Numerical Routines

The last three characters of the routine name indicate the task:
PxyyTRF Factorize the matrix (e.g., LU, Cholesky).
PxyyTRS Use the factorization to solve AX = B via forward/backward substitution.
PxyyCON Estimate the reciprocal of the condition number κ(A).
PxyyRFS Refine the solution and compute error bounds (iterative refinement).
PxyyTRI Compute thematrix inverse A−1 using the factorization.
PxyyEQU Compute equilibration scaling factors to improve condition number.

Note: Not all routines are available for all matrix types (e.g., inversion is not provided for band
matrices as the inverse is generally dense).
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Summary of Computational Routines
Ŵ ScaLAPACK Numerical Routines

Matrix type Factorize Solve Condition Error Invert Equilibrate
Estimate Bounds

General PxGETRF PxGETRS PxGECON PxGERFS PxGETRI PxGEEQU
General Band PxGBTRF PxGBTRS PxGBCON PxGBRFS – PxGBEQU
General Tridiagonal PxDTTRF PxDTTRS – – – –

Sym./Herm. Pos. Def. PxPOTRF PxPOTRS PxPOCON PxPORFS PxPOTRI PxPOEQU
Sym./Herm. Pos. Def.
Band

PxPBTRF PxPBTRS PxPBCON PxPBRFS – PxPBEQU

Sym./Herm. Pos. Def.
Tridiagonal

PxPTTRF PxPTTRS – – – –

Triangular – PxTRTRS PxTRCON PxTRRFS PxTRTRI –
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Computational Routines for Orthogonal Factorization
and LLS
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK provides routines for orthogonal factorizations and solving linear least
squares (LLS) problems.

Orthogonal Factorizations:
• QR factorization (A = QR) for general matrices.
• LQ factorization (A = LQ) for general matrices.

Linear Least Squares Problems:
• Solve overdetermined systems (m ≥ n) to find the least squares solution.
• Solve underdetermined systems (m < n) to find the minimum norm solution.
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QR Factorization
Ŵ ScaLAPACK Numerical Routines

The most common of the factorizations is the QR factorization given by:

A = QR

where R is n× n upper triangular and Q ism×m orthogonal (or unitary). If A is of full
rank n, then R is nonsingular.

It is often written as:
A =

(
Q1 Q2

)(R1
0

)
= Q1R1

where Q1 consists of the first n columns of Q, and Q2 the remainingm− n columns.
Ifm < n:

A = Q
(
R1 R2

)
where R1 is upper triangular and R2 is rectangular.
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ScaLAPACK support for QR
Ŵ ScaLAPACK Numerical Routines

The routine PxGEQRF computes the QR factorization.
• Q is not formed explicitly but represented as a product of elementary reflectors
(Hi = I− τvvH).

• PxORGQR (or PxUNGQR): Generates all or part of Q.
• PxORMQR (or PxUNMQR): Pre- or post-multiplies a matrix by Q or QH.
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Orthogonal or Unitary Matrices in ScaLAPACK
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK represents an orthogonal (or unitary) matrix Q as a product of elementary
reflectors (Householder matrices):

Q = H1H2 · · ·Hk

where each Hi = I− τvvH.
• τ is a scalar and v is the Householder vector.
• v1 = 1, so it does not need to be stored.

Working with Q: Most users do not operate on Hi directly but use provided routines:
• Generate Q: Routines ending in -ORG / -UNG (e.g., PDORGQR) form Q explicitly.
• Apply Q: Routines ending in -ORM / -UNM (e.g., PDORMQR) compute QTC or QCwithout
forming Q.

Note: In complex arithmetic, elementary reflectors are unitary but not Hermitian. This allows
reducing complex Hermitian matrices to real symmetric tridiagonal form.
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Solving Linear Least Squares with QR
Ŵ ScaLAPACK Numerical Routines

Whenm ≥ n and A has full rank, the LLS problem minimizes ∥b− Ax∥2.

∥b− Ax∥2 = ∥QHb− QHAx∥2 =
∥∥∥∥(c1c2

)
−
(
R1
0

)
x
∥∥∥∥
2

Steps:
Ŵ. Compute c = QHb using PxORMQR,
ŵ. Solve the upper triangular system R1x = c1 using PxTRTRS,

Ŷ. The residual vector is r = Q
(
0
c2

)
, its norm is ∥c2∥2.
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LQ Factorization
Ŵ ScaLAPACK Numerical Routines

The LQ factorization is given by:

A =
(
L 0

)(Q1

Q2

)
= LQ1

where L ism×m lower triangular, Q is n× n orthogonal (or unitary), Q1 consists of the
firstm rows of Q, and Q2 the remaining n−m rows.

ScaLAPACK Routines:
• PxGELQF: Computes the factorization. Q is represented as a product of elementary
reflectors.

• PxORGLQ (or PxUNGLQ): Generates all or part of Q.
• PxORMLQ (or PxUNMLQ): Pre- or post-multiplies a matrix by Q or QH.

The LQ factorization of A corresponds to the QR factorization of A⊤ (or AH):

A = LQ ⇐⇒ A⊤ = Q⊤L⊤
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Solving Underdetermined Systems with LQ
Ŵ ScaLAPACK Numerical Routines

The LQ factorization is used to find theminimum norm solution of an underdetermined
system (m < n) with rankm.
The solution is given by:

x = QH
(
L−1b
0

)
Computational Steps:
Ŵ. Solve the lower triangular system Ly = b for y using PxTRTRS,

ŵ. Form the vector ỹ =
(
y
0

)
,

Ŷ. Compute x = QHỹ using PxORMLQ (or PxUNMLQ).
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QR Factorization with Column Pivoting
Ŵ ScaLAPACK Numerical Routines

If A is not of full rank, or the rank is in doubt, we can perform a QR factorization with
column pivoting:

AP = QR

where P is a permutation matrix.
• P is chosen so that |r11| ≥ |r22| ≥ · · · ≥ |rnn|.
• And for each k, the leading submatrix R11 of size k× k is well-conditioned, while the
trailing submatrix R22 is negligible.

Rank Determination: If R22 is negligible, then k is the effective rank of A.

Basic Solution to LLS:
x = P

(
R−1
11 c1
0

)
where c1 consists of the first k elements of c = QHb.
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ScaLAPACK routine for QR with Pivoting
Ŵ ScaLAPACK Numerical Routines

The routine PxGEQPF computes the QR factorization with column pivoting.
• It does not attempt to determine the rank of A automatically (user must inspect
diagonal of R).

• Q is represented in the same way as in PxGEQRF.
• Routines PxORMQR (real) or PxUNMQR (complex) can be used to apply Q.
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Complete Orthogonal Factorization
Ŵ ScaLAPACK Numerical Routines

QR with column pivoting does not compute aminimum norm solution for rank-deficient
LLS unless R12 = 0.

To solve this, we apply further orthogonal transformations from the right to the upper
trapezoidal matrix R (using PxTZRZF) to eliminate R12:

RP =

(
T11 0
0 0

)
Z

This yields the complete orthogonal factorization:

AP = Q
(
T11 0
0 0

)
Z
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Complete Orthogonal Factorization
Ŵ ScaLAPACK Numerical Routines

From this, the minimum norm solution is obtained as:

x = PZH
(
T−1
11 c1
0

)
Software Details:
• Z is represented as a product of elementary reflectors.
• PxORMRZ (or PxUNMRZ) is provided to multiple a matrix by Z or ZH.
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Summary of Orthogonal Factorization Routines (QR)
Ŵ ScaLAPACK Numerical Routines

All the factorization routines discussed here (except PxTZRZF) allow arbitrarym and n, so
that in some cases the matrices R or L are trapezoidal rather than triangular.

A routine that performs pivoting is provided only for the QR factorization.

Computational routines for QR factorization
Task Single precision Double precision

Real Complex Real Complex

QR factorization and related operations
Factorize generic PSGEQRF PCGEQRF PDGEQRF PZGEQRF
Factorize w/ pivoting PSGEQPF PCGEQPF PDGEQPF PZGEQPF
Apply Q PSORMQR PCUNMQR PDORMQR PZUNMQR
Generate Q PSORGQR PCUNGQR PDORGQR PZUNGQR
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Summary of Orthogonal Factorization Routines (LQ)
Ŵ ScaLAPACK Numerical Routines

Computational routines for LQ factorization
Task Single precision Double precision

Real Complex Real Complex

LQ factorization and related operations
Factorize generic PSGELQF PCGELQF PDGELQF PZGELQF
Apply Q PSORMLQ PCUNMLQ PDORMLQ PZUNMLQ
Generate Q PSORGLQ PCUNGLQ PDORGLQ PZUNGLQ
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Generalized QR (GQR) Factorization
Ŵ ScaLAPACK Numerical Routines

The Generalized QR (GQR) factorization of an n×mmatrix A and an n× pmatrix B is
given by the pair of factorizations:

A = QR, B = QTZ

where Q (n× n) and Z (p× p) are orthogonal (or unitary) matrices. R and T are generally
upper triangular (or trapezoidal) matrices.

Implicit Factorization
If B is square and nonsingular, the GQR factorization implicitly gives the QR factorization
of B−1A:

B−1A = ZH(T−1R)

without explicitly computing the inverse or the matrix product.
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Generalized QR (GQR) Factorization
Ŵ ScaLAPACK Numerical Routines

The Generalized QR (GQR) factorization of an n×mmatrix A and an n× pmatrix B is
given by the pair of factorizations:

A = QR, B = QTZ

where Q (n× n) and Z (p× p) are orthogonal (or unitary) matrices. R and T are generally
upper triangular (or trapezoidal) matrices.

ScaLAPACK Routine: PxGGQRF
• Algorithms proceeds by computing the QR factorization of A and then the RQ
factorization of QHB.

• Q and Z can be formed explicitly or used to multiply other matrices (like standard QR).
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Generalized RQ (GRQ) Factorization
Ŵ ScaLAPACK Numerical Routines

The Generalized RQ (GRQ) factorization of anm× nmatrix A and a p× nmatrix B is
given by the pair of factorizations:

A = RQ, B = ZTQ

where Q (n× n) and Z (p× p) are orthogonal (or unitary) matrices.

Structure:
• R is upper trapezoidal (triangular) with structure similar to the R in RQ.
• T is upper trapezoidal (triangular) with structure similar to the R in QR.

Implicit Factorization
If B is square and nonsingular, the GRQ factorization implicitly gives the RQ of AB−1:

AB−1 = (RT−1)ZH

without explicitly computing the inverse or the product.Ÿų/źų



Generalized RQ (GRQ) Factorization
Ŵ ScaLAPACK Numerical Routines

The Generalized RQ (GRQ) factorization of anm× nmatrix A and a p× nmatrix B is
given by the pair of factorizations:

A = RQ, B = ZTQ

where Q (n× n) and Z (p× p) are orthogonal (or unitary) matrices.

Structure:
• R is upper trapezoidal (triangular) with structure similar to the R in RQ.
• T is upper trapezoidal (triangular) with structure similar to the R in QR.

ScaLAPACK Routine: PxGGRQF
• Computes the RQ factorization of A first, then the QR factorization of BQH.
• Q and Z can be formed explicitly or used to multiply other matrices.
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Computational Routines for Symmetric Eigenproblems
Ŵ ScaLAPACK Numerical Routines

Problem Definition: Let A be a real symmetric or complex Hermitian N× Nmatrix. Find
eigenvalues λ and non-zero eigenvectors z such that:

Az = λz

Computation Stages:
Ŵ. Reduction to Tridiagonal Form:

A = QTQH

where Q is orthogonal (unitary) and T is real symmetric tridiagonal.
ŵ. Solve Tridiagonal Problem: Compute eigenvalues/vectors of T.

T = SΛS⊤

The eigenvectors of A are recovered as Z = QS.
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Reduction to Tridiagonal Form
Ŵ ScaLAPACK Numerical Routines

The reduction A = QTQH is performed by:
• PxSYTRD: Real symmetric matrices.
• PxHETRD: Complex Hermitian matrices.

Handling Q:
• The matrix Q is represented as a product of elementary reflectors.
• PxORMTR (Real) / PxUNMTR (Complex): Multiplies a matrix by Q without forming it
explicitly.

• Used to transform eigenvectors of T back to eigenvectors of A.
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Solving the Tridiagonal Problem
Ŵ ScaLAPACK Numerical Routines

ScaLAPACK provides specific routines for the tridiagonal phase:
xSTEQR2 Modified version of LAPACK’s xSTEQR.

• Computes all eigenvalues and (optionally) eigenvectors using implicit
QL or QR.

• Optimized look-ahead and partial updates for parallel execution.
PxSTEBZ Uses bisection.

• Computes some or all eigenvalues (e.g., in an interval [a, b] or indices i
to j).

• Tunable accuracy vs. speed.
PxSTEIN Uses inverse iteration.

• Computes eigenvectors given accurate eigenvalues.
• Performs reorthogonalization to ensure vector quality (limited by
workspace).

ŸŶ/źų



Summary of Computational Routines for SEP
Ŵ ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Tridiagonal reduction
Factorize A = QTQT PSSYTRD PCHETRD PDSYTRD PZHETRD
Multiply by Q PSORMTR PCUNMTR PDORMTR PZUNMTR

Tridiagonal solvers
All eigs (QR/QL) SSTEQR2 CSTEQR2 DSTEQR2 ZSTEQR2
Selected eigs (Bisection) PSSTEBZ PCSTEBZ PDSTEBZ PZSTEBZ
Selected vectors (Inv. It.) PSSTEIN PCSTEIN PDSTEIN PZSTEIN
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Nonsymmetric Eigenproblems (NEP)
Ŵ ScaLAPACK Numerical Routines

Problem Definition: Let A be a square n× nmatrix.
• A scalar λ is an eigenvalue and a non-zero vector v is a right eigenvector if:

Av = λv

• A non-zero vector u is a left eigenvector if:

uHA = λuH

Goal: The basic task is to compute all n eigenvalues λ and, optionally, their associated
right eigenvectors v and/or left eigenvectors u.
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Schur Factorization
Ŵ ScaLAPACK Numerical Routines

A fundamental step in solving NEP is the Schur factorization:

A = ZTZH (or A = ZTZ⊤ for real matrices)

• Complex Case: Z is unitary, and T is upper triangular. The eigenvalues appear on the
diagonal of T.

• Real Case: Z is orthogonal, and T is upper quasi-triangular.
— T has Ŵ-by-Ŵ and ŵ-by-ŵ blocks on the diagonal.
— Complex conjugate eigenvalues correspond to the ŵ-by-ŵ blocks.

• The columns of Z are called the Schur vectors of A.
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Computational Stages for NEP
Ŵ ScaLAPACK Numerical Routines

The computation is typically performed in two stages:
Ŵ. Reduction to Upper Hessenberg Form:

A = QHQH

where H is upper Hessenberg (zero below the first subdiagonal) and Q is
orthogonal/unitary.

ŵ. Schur Factorization of H:
H = STSH

where T is the Schur form. The Schur vectors of the original matrix A are recovered
as Z = QS.
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Stage Ŵ: Reduction to Hessenberg Form
Ŵ ScaLAPACK Numerical Routines

Factorization Routine: PxGEHRD
• Reduces a general matrix A to upper Hessenberg form H.
• Represents the orthogonal matrix Q in a factored form (product of elementary
reflectors).

Orthogonal/Unitary Matrix Operations:
• PxORMHR (Real) / PxUNMHR (Complex).
• Used to multiply another matrix by Q (or QH) without explicitly forming Q.
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Stage ŵ: Schur Factorization
Ŵ ScaLAPACK Numerical Routines

Routine: PxLAHQR
• Computes the Schur factorization of the upper Hessenberg matrix H.
• Eigenvalues are obtained from the diagonal of T.

Parallel Algorithm Strategy:
• Unlike LAPACK’s xLAHQR (single double shift) or xHSEQR (single large multi-shift),
ScaLAPACK usesmultiple double shifts.

• Shifts are spaced apart to allow parallelism across several processor rows/columns.
• Shifts are applied in a block fashion to maximize performance.
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Heuristics for Eigenvalue Computations: Shifting
Ŵ ScaLAPACK Numerical Routines

The convergence of the QR algorithm (or similar iterative methods like the Francis
double-shift) depends on the ratio of eigenvalues |λi|/|λj|.
Goal: Accelerate convergence by subtracting a scalar shift σ:

A− σI = QR −→ Anew = RQ+ σI

Ideally, if σ ≈ λn, the deflation happens very quickly.

Techniques:
• Francis Double Shift: Standard for real non-symmetric matrices. Uses a 2× 2 block
from the bottom corner to perform implicitly shifted steps with complex conjugate
shifts, keeping arithmetic real.

• Aggressive Early Deflation: Looks for convergence in a large window at the bottom
of the matrix, deflating multiple eigenvalues at once.
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Parallelism and Bulge Chasing
Ŵ ScaLAPACK Numerical Routines

The implicit shift strategy creates a “bulge” (non-zero entries outside the Hessenberg
form) that must be chased down the diagonal to restore the form.

Initial Bulge Chasing... Restored

Parallel Approach (ScaLAPACK):
• Multi-shift: Instead of chasing one bulge, introduce multiple bulges (chains of shifts)
simultaneously.

• These bulges can be chased by different processors in a pipelined fashion, increasing
the arithmetic intensity (BLAS Ŷ) and parallelism.

ŹŴ/źų



Summary of Computational Routines for NEP
Ŵ ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Hessenberg reduction
Factorize A = QHQH PSGEHRD PCGEHRD PDGEHRD PZGEHRD
Multiply by Q PSORMHR PCUNMHR PDORMHR PZUNMHR

Schur factorization
Compute H = STSH PSLAHQR PCLAHQR PDLAHQR PZLAHQR
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Computational Stages for SVD
Ŵ ScaLAPACK Numerical Routines

Let A be anm× nmatrix. The computation of the SVD proceeds in two main stages:
Ŵ. Reduction to Bidiagonal Form:

A = QBPH

where B is real bidiagonal, and Q (m×m) and P (n× n) are orthogonal (unitary).
— Ifm ≥ n, B is upper bidiagonal.
— Ifm < n, B is lower bidiagonal.

ŵ. SVD of the Bidiagonal Matrix:
B = U1ΣVH1

where U1 and V1 are orthogonal, and Σ contains the singular values.
The singular vectors of A are then U = QU1 and V = PV1.
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Computational Routines for SVD
Ŵ ScaLAPACK Numerical Routines

Reduction Routine: PxGEBRD
• Reduces A to bidiagonal form B.
• Represents Q and P as products of elementary reflectors.

Applying Q and P:
• PxORMBR (Real) / PxUNMBR (Complex).
• Routine to multiply a given matrix by Q or P (or their transposes).

Solving the Bidiagonal Problem:
• ScaLAPACK typically utilizes the LAPACK routine xBDSQR to compute the SVD of the
bidiagonal matrix B.
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Optimization for Non-Square Matrices
Ŵ ScaLAPACK Numerical Routines

Ifm ≫ n or n ≫ m, it is more efficient to perform a preliminary QR or LQ factorization.

Casem ≫ n:
Ŵ. Compute QR factorization: A = QR (using PxGEQRF).
ŵ. Compute SVD of the n× nmatrix R.

Case n ≫ m:
Ŵ. Compute LQ factorization: A = LQ (using PxGELQF).
ŵ. Compute SVD of them×mmatrix L.

Note: The driver routine PxGESVD automatically handles these paths.
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Rank-Deficient Linear Least Squares
Ŵ ScaLAPACK Numerical Routines

The SVD is used to solve rank-deficient LLS problems (min ∥b− Ax∥2) by finding the
minimum norm solution.

Let k be the effective rank of A (number of singular values σi > threshold).
The solution is given by:

x = VkΣ
−1
k c1

where:
• Σk is the leading k× k submatrix of Σ,
• Vk consists of the first k columns of V,
• c1 consists of the first k elements of c = UHb.

PxORMBR (or PxUNMBR) is used to compute UHb.

ŹŹ/źų



Summary of SVD Computational Routines
Ŵ ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Bidiagonal reduction
Factorize A = QBPH PSGEBRD PCGEBRD PDGEBRD PZGEBRD
Multiply by Q or P PSORMBR PCUNMBR PDORMBR PZUNMBR

Bidiagonal SVD (LAPACK)
SVD of B SBDSQR CBDSQR DBDSQR ZBDSQR
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Computational Routines for GSEP
Ŵ ScaLAPACK Numerical Routines

Reduction to Standard Form: The generalized problems are reduced to the standard
symmetric eigenvalue problem Cy = λy using the Cholesky factorization of B (B = UHU or
B = LLH).

Reduction Strategy:
• Type Ŵ (Az = λBz): C = U−HAU−1 or L−1AL−H. z = U−1y or L−Hy.
• Type ŵ (ABz = λz): C = UAUH or LHAL. z = U−1y or L−Hy.
• Type Ŷ (BAz = λz): C = UAUH or LHAL. z = UHy or Ly.

ScaLAPACK Routine: PxyyGST
• Overwrites A with the standard matrix C.
• After reduction, standard SEP routines (e.g., PxSYTRD) are used on C.
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Summary of Computational Routines for GSEP
Ŵ ScaLAPACK Numerical Routines

Task Single precision Double precision

Real Complex Real Complex

Reduction to standard
form
Compute C from A, B PSSYGST PCHEGST PDSYGST PZHEGST

Note on Eigenvectors: No special routines are needed to recover eigenvectors z from y.
These are simple triangular solves or matrix-vector multiplications handled by PBLAS (e.g.,
PxTRSV or PxTRMM).
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Conclusions
ŵ Conclusions

ScaLAPACK provides a comprehensive suite of routines for distributed-memory parallel
computation of a wide range of linear algebra problems, including:
• Orthogonal factorizations (QR, LQ, GQR, GRQ).
• Symmetric and nonsymmetric eigenproblems (SEP, NEP, GSEP).
• Singular Value Decomposition (SVD).

The library leverages efficient algorithms and parallelism strategies to ensure scalability
and performance on large-scale systems.

These tools permits to implement high-performance applications in scientific computing
and engineering that require robust linear algebra capabilities, e.g.,model reduction,
computation of matrix functions, and solving large-scale optimization problems.
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HPLA up to now and today’s plan
Ŵ GPU BLAS libraries

Up to now, we have seen:
The design principles of the BLAS library,
The implementation of the BLAS library on CPUs and shared memory systems,
Some performance considerations on CPU BLAS implementations,
The implementation of the BLAS library on distributed memory systems.
Some performance considerations on distributed memory BLAS implementations.
LAPACK and ScaLAPACK libraries for dense linear algebra.

Today we will look at some implementations of the BLAS library on GPUs.
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Table of Contents
ŵ GPGPU Computing and Dense Linear Algebra

▶ GPGPU Computing and Dense Linear Algebra
The CUDA Programming Model
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cuSOLVER for LAPACK-like workloads
cuSOLVERMp: Library for Distributed Dense Linear Algebra
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GPGPU Computing
ŵ GPGPU Computing and Dense Linear Algebra

• GPGPU stands for General-Purpose computing on Graphics Processing Units.
• Originally designed for image rendering, GPUs have evolved into highly parallel,

multi-threaded, many-core processors with tremendous computational power and
very high memory bandwidth.

• Why leverage GPUs for scientific computing?
— High arithmetic intensity.
— Massive parallelism (thousands of cores).
— Energy efficiency (FLOPS per Watt).

• Dense Linear Algebra (DLA) is a prime candidate for GPU acceleration due to its
regular memory access patterns and high computational density.
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CPU vs. GPU Architecture
ŵ GPGPU Computing and Dense Linear Algebra

CPU (Latency Oriented)
• Optimized for serial performance.
• Complex control logic.
• Large caches to minimize latency.
• Fewer, powerful cores.

Control

Cache

ALU ALU

DRAM

GPU (Throughput Oriented)
• Optimized for parallel performance.
• Simple control logic.
• Small caches (latency hidden by

thread switching).
• Many simpler cores (SIMT).

…many ALUs …

DRAM
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CPU vs. GPU Architecture
ŵ GPGPU Computing and Dense Linear Algebra

• High-Level View: GPU = collection of
Streaming Multiprocessors (SMs).

• Organization: SMs are grouped into
Graphics Processing Clusters (GPCs).

• Inside an SM:
— Register file.
— Unified data cache (LŴ cache +

Shared Memory).
— Functional units (CUDA cores,

Tensor cores).

• Flexibility: The split between LŴ and
Shared Memory is configurable at
runtime.
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Programming Models for GPUs
ŵ GPGPU Computing and Dense Linear Algebra

To utilize GPUs for linear algebra, we need specific programming models:
CUDA (Compute Unified Device Architecture) Proprietary NVIDIA platform. The de-facto

standard for HPC on NVIDIA GPUs. Provides low-level control and high
performance.

HIP (Heterogeneous-Compute Interface for Portability) AMD’s answer to CUDA, allowing
code to run on AMD hardware.

OpenCL / SYCL / OneAPI Open standards for cross-platform parallel programming.
OpenACC / OpenMP Directive-based approaches (pragmas) to offload computations to

accelerators without rewriting the entire codebase.

Most vendor-provided BLAS libraries (cuBLAS, rocBLAS) are highly optimized using the
native models (CUDA/HIP).
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How much does it costs?
ŵ GPGPU Computing and Dense Linear Algebra

NVIDIA HGXŵųų

• ŴŷŴGB of HBMŶe

• ŷ.ŻTB/s of bandwidth

• ŷ petaFLOPS for FPŻ

∼ Ŷųų.ųųų $

AMD Instinct™ MIŶŸŸX GPUs

• ŵŻŻGB of HBMŶe

• Ż TB/s of bandwidth

• Ÿ petaFLOPS for FPŻ

∼ŵŵų.ųųų €

Intel® GPU Max ŴŸŸų

• ŴŵŻ GB of HBMŵe

• Ŷ.ŵŻ TB/s of bandwidth

• Ÿŵ.ŷŶ TFLOPS for FPŻ

∼Ż.ŸŸų €
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Heterogeneous Computing
ŵ GPGPU Computing and Dense Linear Algebra

The CUDA programming model assumes a heterogeneous system:
• Host: The CPU and its memory (system memory).
• Device: The GPU and its own memory.

Typically, a CUDA program flows as follows:
Ŵ. Copy data from Host memory to Device memory.
ŵ. Launch Kernel: The CPU instructs the GPU to execute a function (kernel) on the data.
Ŷ. Execute: The GPU executes the kernel in parallel across many threads.
ŷ. Copy results from Device memory back to Host memory.
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Thread blocks and grids
ŵ GPGPU Computing and Dense Linear Algebra

• High count: Kernels launch millions of
threads, organized into Blocks.

• Structure: blocks form a Grid.
— Blocks in a grid have the same size.
— Can be ŴD, ŵD, or ŶD for easy

mapping to data.

• Identity: Threads use built-in
variables to find their coordinates in
the Block/Grid.

The CUDA programming model enables
arbitrarily large grids to run on GPUs of any
size. To achieve this, it requires that there

be no data dependencies between threads
in different thread blocks.
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Thread blocks and grids
ŵ GPGPU Computing and Dense Linear Algebra

• Hardware Mapping:
— A block executes on a single SM.
— Enables fast synch and Shared

Memory usage within a block.
— Grids scale to millions of blocks,

automatically scheduled on
available SMs.

Threads within a block run on the same
SM, while different thread blocks are
scheduled among available SMs in any
order. This allows the execution to be
parallel or serial, ensuring scalability across
different hardware.

The CUDA programming model enables
arbitrarily large grids to run on GPUs of any
size. To achieve this, it requires that there

be no data dependencies between threads
in different thread blocks.

ż/źŴ



Thread blocks and grids
ŵ GPGPU Computing and Dense Linear Algebra

• Clusters (CC≥ ż.ų): An optional
hierarchy level grouping thread
blocks.

• Execution: Guaranteed to run on a
single GPC (Graphics Processing
Cluster).

• Benefits:
— Synchronization between blocks in

the same cluster.
— Distributed Shared Memory:

Threads can access the shared
memory of all blocks in the cluster.

The CUDA programming model enables
arbitrarily large grids to run on GPUs of any
size. To achieve this, it requires that there

be no data dependencies between threads
in different thread blocks.
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Warps and SIMT
ŵ GPGPU Computing and Dense Linear Algebra

• Warps:
— Threads within a block are grouped into bundles of Ŷŵ threads called warps.
— Warps are the fundamental unit of scheduling on an SM.

• SIMT (Single-Instruction, Multiple-Threads):
— All threads in a warp execute the same instruction at the same time.
— Each thread has its own instruction address counter and register state.
— Lock-step execution: Ideally, all Ŷŵ threads progress together.

• Recommendation:
— Configure thread block sizes to be multiples of Ŷŵ.
— If not, the last warp will have inactive lanes, wasting computational resources.
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Warp Divergence
ŵ GPGPU Computing and Dense Linear Algebra

• Threads in a warp can follow different execution
paths (e.g., if-else statements).

• Divergence: If threads diverge, the warp serially
executes each branch path.

• Threads not on the current path aremasked off
(inactive).

• Impact: Significantly reduces parallel efficiency
(active threads < Ŷŵ).

• Optimization: Maximize utilization by ensuring
threads in a warp follow the same control flow.
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GPU Memory Model Overview
ŵ GPGPU Computing and Dense Linear Algebra

Modern GPUs utilize a complex memory hierarchy to balance bandwidth and latency.
We distinguish between:

• Off-Chip Memory (DRAM):
— Global Memory: The large DRAM attached to the GPU. Accessible by all SMs. High

latency, high bandwidth.
— SystemMemory: DRAM attached to the CPU (Host).

• On-Chip Memory:
— Registers: Fastest memory, private to a thread.
— Shared Memory: Programmable cache shared within a Thread Block (or Cluster).
— Caches: LŴ (per SM) and Lŵ (device-wide).

Unified Addressing: CPU and GPU share a single virtual memory space, allowing the
unique identification of memory locations across devices.
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On-Chip Memory Details
ŵ GPGPU Computing and Dense Linear Algebra

Registers
• Stores thread-local variables.
• Allocation is per-thread; total usage determines

occupancy (how many blocks fit on an SM).

Shared Memory
• Visible to all threads in a Block (or Cluster on

HŴųų+).
• Used for inter-thread communication and data

reuse.
• Physically shares storage with LŴ Cache; the split

is often configurable.

Lŵ Cache (Device)

SM

LŴ / Shared

Regs
SM

LŴ / Shared

Regs

Global Memory (DRAM)

ŴŶ/źŴ



The CUDA Platform Overview
ŵ GPGPU Computing and Dense Linear Algebra

The NVIDIA CUDA platform enables heterogeneous computing through a combination of
hardware and software components.

Key Components:
• Compute Capability (CC):

— Version number (X.Y) indicating supported features and hardware parameters.
— Corresponds to the Streaming Multiprocessor (SM) version (e.g., CC ż.ų→ sm_90).

• NVIDIA Driver:
— acts as the ”OS” of the GPU.
— Foundational; required for all GPU uses (CUDA, Vulkan, DirectŶD).

• CUDA Toolkit:
— Suite of libraries, headers, tools (e.g., nvcc), and the CUDA Runtime.
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CUDA APIs: Runtime vs. Driver
ŵ GPGPU Computing and Dense Linear Algebra

CUDA offers two main APIs for application development:

CUDA Runtime API
• High-level API.
• Handles common tasks (memory

allocation, data transfer, kernel
launching) easily.

• Language extensions (e.g.,
<<<...>>> syntax).

• Used in most CUDA applications.

CUDA Driver API
• Low-level API exposed directly by the

driver.
• Grants finer control (e.g., context

management).
• More verbose; conceptually similar to

OpenCL.

• The Runtime API is implemented on top of the Driver API.
• Applications can mix both APIs (interoperability).
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Parallel Thread Execution (PTX)
ŵ GPGPU Computing and Dense Linear Algebra

• What is PTX?
— A virtual Instruction Set Architecture (ISA).
— An intermediate assembly language that abstracts the physical hardware.

• Role in Compilation:
— High-level code (C++/Fortran) is compiled into PTX.
— The graphics driver Just-In-Time (JIT) compiles PTX into machine code (SASS) valid for

the specific GPU installed.
• Benefit:

— Forward compatibility: Code compiled to PTX years ago can often run on new GPUs
because the driver translates the virtual instructions to the new architecture.

ŴŹ/źŴ



Binary Compatibility
ŵ GPGPU Computing and Dense Linear Algebra

NVIDIA GPUs guarantee binary compatibility under specific conditions:
• Within Major Version:

— Binary code (cubin, e.g., sm_86) can run on GPUs with the same major version and
equal or higher minor version.

— Example: Code compiled for sm_86 works on sm_86 and sm_89, but not on sm_80
(minor version too low).

• Between Major Versions:
— Binaries are not compatible across major versions.
— Example: Code for sm_80 will not run on a Hopper GPU (sm_90).

Note: Binary compatibility applies only to binaries generated by official NVIDIA tools (e.g.,
nvcc).
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PTX Compatibility & Forward Compatibility
ŵ GPGPU Computing and Dense Linear Algebra

To support future hardware, GPU code can be embedded as PTX (virtual assembly) rather
than just binary SASS.

• Mechanism:
— Application stores PTX for a specific virtual architecture (e.g., compute_80).
— At runtime, the driver Just-In-Time (JIT) compiles this PTX into binary code for the

detected GPU.

• Requirement: The PTX version must be≤ the GPU’s compute capability.
• Benefit:

— Forward Compatibility: An app compiled today for compute_80 can run on a future
architecture (e.g., sm_120) without recompilation.
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Just-in-Time (JIT) Compilation
ŵ GPGPU Computing and Dense Linear Algebra

• Process: The device driver translates loaded PTX into native binary code at
application load time.

• Trade-offs:
Increases application load / startup time.
Allows code to run on GPUs that didn’t exist when the app was built.
Benefits from newer compiler optimizations in updated drivers.

• Compute Cache:
— The driver caches generated binaries to avoid recompiling on subsequent runs.
— Cache is invalidated upon driver updates.

• NVRTC: A runtime compilation library that allows compiling CUDA C++ source code
directly to PTX at runtime, offering even more flexibility.
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A Simple CUDA hell-world Program
ŵ GPGPU Computing and Dense Linear Algebra

#include <iostream>
__global__ void helloFromGPU() {

printf("Hello World from GPU!\n");
}
int main() {

// Launch kernel with 1 block of 1 thread
helloFromGPU<<<1, 1>>>();
// Wait for GPU to finish
cudaDeviceSynchronize();
return 0;

}

• The __global__ qualifier indicates a kernel function executed on the GPU.
• The <<<1, 1>>> syntax launches the kernel with Ŵ block of Ŵ thread.
• cudaDeviceSynchronize() ensures the CPU waits for the GPU before exiting.
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Compilation
ŵ GPGPU Computing and Dense Linear Algebra

To compile the CUDA program, use the NVIDIA CUDA Compiler nvcc:
nvcc -o hello_cuda hello_cuda.cu
This command generates an executable named hello_cuda.

We can specify the target GPU architecture using the -arch flag:
nvcc -arch=sm_89 -o hello_cuda hello_cuda.cu
This compiles the code for GPUs with Compute Capability Ż.ż (The NVIDIA GeForce RTX
ŷųŹų on my laptop).

If we run the program, we should see:
Hello World from GPU!

ŵŴ/źŴ



Compilation with CMake
ŵ GPGPU Computing and Dense Linear Algebra

To compile CUDA code with CMake, we need to enable CUDA support in our
CMakeLists.txt file:
cmake_minimum_required(VERSION 3.18)
project(HelloCUDA LANGUAGES CXX CUDA)
add_executable(hello_cuda hello_cuda.cu)
set_target_properties(hello_cuda PROPERTIES

CUDA_ARCHITECTURES "89"
)

• CUDA is treated as a first-class language in CMake.
• The set_target_properties(target CUDA_ARCHITECTURES) property

specifies the target GPU architectures.
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Implementing DAXPY with CUDA
ŵ GPGPU Computing and Dense Linear Algebra

The DAXPY operation computes y← αx+ y for vectors x and y and scalar α. Here is a
simple CUDA implementation:
__global__ void daxpy(int n, double alpha, const double *x, double *y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n) {

y[i] += alpha * x[i];
}

}

• Each thread computes one element of the result.
• The thread index i is calculated using block and thread indices.
• A boundary check ensures we do not access out-of-bounds memory.
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Block and Thread Indexing
ŵ GPGPU Computing and Dense Linear Algebra

In the DAXPY kernel, each thread computes a single element of the output vector y. The
thread index i is calculated as:

i = blockIdx.x× blockDim.x + threadIdx.x

blockIdx.x The index of the current block in the grid.
blockDim.x The number of threads per block.
threadIdx.x The index of the thread within its block.

This calculation allows us to uniquely identify each thread across the entire grid, enabling
parallel computation of the DAXPY operation.
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Launching the DAXPY Kernel
ŵ GPGPU Computing and Dense Linear Algebra

To launch the DAXPY kernel from the host (CPU) code, we need to allocate memory on the
GPU, copy data, and invoke the kernel:
// Host code
int n = 1<<20; // Vector size
double alpha = 2.0;
double *h_x = (double*)malloc(n * sizeof(double));
double *h_y = (double*)malloc(n * sizeof(double));
// Initialize h_x and h_y...
double *d_x, *d_y;
cudaMalloc(&d_x, n * sizeof(double));
cudaMalloc(&d_y, n * sizeof(double));
cudaMemcpy(d_x, h_x, n * sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, h_y, n * sizeof(double), cudaMemcpyHostToDevice);
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Launching the DAXPY Kernel
ŵ GPGPU Computing and Dense Linear Algebra

// Launch kernel
int blockSize = 256;
int numBlocks = (n + blockSize - 1) / blockSize;
daxpy<<<numBlocks, blockSize>>>(n, alpha, d_x, d_y);
// Copy result back to host
cudaMemcpy(h_y, d_y, n * sizeof(double), cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_x);
cudaFree(d_y);

• We allocate device memory using cudaMalloc and copy data with cudaMemcpy.
• The kernel is launched with a calculated number of blocks and threads per block.
• Finally, we copy the result back to the host and free device memory.
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Executing a Kernel
ŵ GPGPU Computing and Dense Linear Algebra

We execute a kernel on the GPU using the triple angle bracket syntax <<<...>>>:
daxpy<<<numBlocks, blockSize>>>(n, alpha, d_x, d_y);
Here:

• numBlocks specifies the number of thread blocks in the grid.
• blockSize specifies the number of threads per block.

Example Calculation:
• The int n=1<<20; sets the vector size to 220 = 1, 048, 576.
• For a vector of size n = 1, 000, 000 and a block size of ŵŸŹ:
• Number of blocks = ⌈1,000,000256 ⌉ = 3907.
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What performances do we get out of this?
ŵ GPGPU Computing and Dense Linear Algebra

• The performance of our simple DAXPY implementation will depend on several
factors:
Memory bandwidth The speed of data transfer between global memory and the

GPU cores.
Kernel launch overhead The time taken to launch the kernel on the GPU.

Occupancy How well the GPU’s resources are utilized (number of active warps per
SM).

• To measure performance, we can use CUDA events to time the kernel execution and
calculate the achieved GFLOPS.

• Optimizations such as using shared memory, minimizing global memory accesses,
and ensuring coalesced memory access patterns can significantly improve
performance.
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CUDA Events for Timing
ŵ GPGPU Computing and Dense Linear Algebra

An approach to measure kernel execution time is to use CUDA Events:

• Create events: cudaEventCreate
• Record events: cudaEventRecord
• Synchronize:
cudaEventSynchronize

• Elapsed time:
cudaEventElapsedTime

cudaEvent_t start, stop;
float ms;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start);
// Launch kernel
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&ms, start, stop);

To calculate GFLOPS:
GFLOPS =

2n
ms× 106
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These are the results on my laptop (RTX ŷųŹų)
ŵ GPGPU Computing and Dense Linear Algebra
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The cuBLAS Library
ŵ GPGPU Computing and Dense Linear Algebra

• cuBLAS is NVIDIA’s GPU-accelerated implementation of the Basic Linear Algebra
Subprograms (BLAS) library.

• It provides highly optimized routines for dense linear algebra operations, including:
— Level Ŵ BLAS: Vector operations (e.g., DAXPY, DOT).
— Level ŵ BLAS: Matrix-vector operations (e.g., GEMV).
— Level Ŷ BLAS: Matrix-matrix operations (e.g., GEMM).

• cuBLAS leverages the full capabilities of NVIDIA GPUs, including:
— Efficient memory access patterns.
— Use of shared memory and registers.
— Optimized kernel launches and execution strategies.

• It is widely used in scientific computing, machine learning, and other
high-performance applications requiring fast linear algebra computations.
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Using cuBLAS
ŵ GPGPU Computing and Dense Linear Algebra

To ensure maximum compatibility with existing Fortran environments, the cuBLAS library
operates based on Column-Major storage and Ŵ-based indexing.

Implications for C/C++ Developers:
• C and C++ utilize Row-Major storage by default.
• Consequently, native ŵD array semantics (e.g., double A[rows][cols]) cannot be

directly used with cuBLAS.

You can define two macros to help with indexing:
#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1))
#define IDX2C(i,j,ld) (((j)*(ld))+(i))
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A couple of useful macros
ŵ GPGPU Computing and Dense Linear Algebra

Writing error check code is very repetitive. We can define a couple of macros to help us:

Ŵ) To wrap CUDA runtime API calls:
#define CHECK_CUDA(call) \

do { \
cudaError_t err = call; \
if (err != cudaSuccess) { \

fprintf(stderr, "CUDA error %s:%d: %s\n", \
__FILE__, __LINE__, cudaGetErrorString(err)); \

exit(EXIT_FAILURE); \
} \

} while (0)
This macro checks the return status of a CUDA runtime API call and prints an error
message if the call fails.
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A couple of useful macros
ŵ GPGPU Computing and Dense Linear Algebra

Writing error check code is very repetitive. We can define a couple of macros to help us:

ŵ) To wrap cuBLAS runtime API calls:
#define CHECK_CUBLAS(call) \

do { \
cublasStatus_t status = call; \
if (status != CUBLAS_STATUS_SUCCESS) { \

fprintf(stderr, "cuBLAS error %s:%d: %d\n", \
__FILE__, __LINE__, status); \

exit(EXIT_FAILURE); \
} \

} while (0)
This macro checks the return status of a cuBLAS API call and prints an error message if the
call fails.
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cuBLAS example: DAXPY
ŵ GPGPU Computing and Dense Linear Algebra

To use cuBLAS the first thing we need to do is create a cuBLAS handle:
cublasHandle_t handle;
CHECK_CUBLAS(cublasCreate(&handle));
This handle is used to manage the cuBLAS library context and resources.

Then we can call the cublasDaxpy function to perform the DAXPY operation:
CHECK_CUBLAS(cublasDaxpy(handle, n, &alpha, d_x, 1, d_y, 1));
At this point an interface to the DAXPY operation should be very familiar!

Finally, we need to destroy the cuBLAS handle to free resources:
cublasDestroy(handle);
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The cuBLAS DAXPY interface
ŵ GPGPU Computing and Dense Linear Algebra

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,
const double *alpha,
const double *x, int incx,
double *y, int incy);

handle cuBLAS library context.
n Number of elements in vectors x and y.

alpha Pointer to the scalar multiplier.
x Pointer to the input vector x.

incx Stride between elements in x (usually Ŵ).
y Pointer to the input/output vector y.

incy Stride between elements in y (usually Ŵ).
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The cuBLAS DAXPY interface
ŵ GPGPU Computing and Dense Linear Algebra

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,
const double *alpha,
const double *x, int incx,
double *y, int incy);

alpha Pointer to the scalar multiplier.
alpha and beta parameters can be passed by reference on the host or the device.
When the pointer mode is set to CUBLAS_POINTER_MODE_HOST:

• The scalars can be on the stack or heap (not managed memory).
• The kernels are launched with the value of the scalar.
• Host memory can be freed immediately after the call.
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The cuBLAS DAXPY interface
ŵ GPGPU Computing and Dense Linear Algebra

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,
const double *alpha,
const double *x, int incx,
double *y, int incy);

alpha Pointer to the scalar multiplier.
alpha and beta parameters can be passed by reference on the host or the device.
When set to CUBLAS_POINTER_MODE_DEVICE:

• The scalars must be accessible on the device.
• Their values must not change until the kernel completes.
• Allows fully asynchronous execution, even if alpha is generated by a previous kernel

(common in iterative solvers).
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The cuBLAS DAXPY interface
ŵ GPGPU Computing and Dense Linear Algebra

cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,
const double *alpha,
const double *x, int incx,
double *y, int incy);

alpha Pointer to the scalar multiplier.
alpha and beta parameters can be passed by reference on the host or the device.
To set the pointer mode, use:
cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_HOST);
The default mode is CUBLAS_POINTER_MODE_HOST.
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The cuBLAS 2-norm
ŵ GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDnrm2 function to compute the Euclidean norm
(ŵ-norm) of a vector:
cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,

const double *x, int incx, double *result)

handle cuBLAS library context.
n Number of elements in vector x.
x Pointer to the input vector x.

incx Stride between elements in x (usually Ŵ).
result Pointer to store the computed norm.
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The cuBLAS 2-norm
ŵ GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDnrm2 function to compute the Euclidean norm
(ŵ-norm) of a vector:
cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,

const double *x, int incx, double *result)

result Pointer to store the computed norm.

For the functions of this category, when the pointer mode is set to
CUBLAS_POINTER_MODE_HOST, these functions block the CPU, until the GPU has
completed its computation and the results have been copied back to the Host.
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The cuBLAS 2-norm
ŵ GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDnrm2 function to compute the Euclidean norm
(ŵ-norm) of a vector:
cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,

const double *x, int incx, double *result)

result Pointer to store the computed norm.

When the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE, these functions
return immediately. This requires proper synchronization in order to read the result from
the host.
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The cuBLAS GEMV operation
ŵ GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDgemv function to perform the matrix-vector
multiplication operation:

y← α op(A)x+ βy

The function signature is:
cublasStatus_t cublasDgemv(cublasHandle_t handle,

cublasOperation_t trans, int m, int n,
const double *alpha,
const double *A, int lda,
const double *x, int incx,
const double *beta,
double *y, int incy)
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The cuBLAS GEMV operation
ŵ GPGPU Computing and Dense Linear Algebra

handle cuBLAS library context.
trans Operation on matrix A (CUBLAS_OP_N, CUBLAS_OP_T, CUBLAS_OP_C).

m,n Dimensions of matrix A (rows, columns).
alpha Pointer to the scalar multiplier for op(A)x.

A Pointer to the input matrix A.
lda Leading dimension of matrix A (usually m).

x Pointer to the input vector x.
incx Stride between elements in x (usually Ŵ).
beta Pointer to the scalar multiplier for y.

y Pointer to the input/output vector y.
incy Stride between elements in y (usually Ŵ).
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We can run a comparison with OpenBLAS
ŵ GPGPU Computing and Dense Linear Algebra

We can create and populate matrices/vectors on the host,
const size_t bytes_A = (size_t)m * n * sizeof(double);
const size_t bytes_x = (size_t)n * sizeof(double);
const size_t bytes_y = (size_t)m * sizeof(double);
double *h_A = (double *)malloc(bytes_A);
double *h_x = (double *)malloc(bytes_x);
double *h_y = (double *)malloc(bytes_y);
double *h_y_cpu = (double *)malloc(bytes_y);
double *h_y_gpu = (double *)malloc(bytes_y);
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We can run a comparison with OpenBLAS
ŵ GPGPU Computing and Dense Linear Algebra

We can create and populate matrices/vectors on the host,
for (int col = 0; col < n; col++) {

for (int row = 0; row < m; row++) {
h_A[col * m + row] = 1.0 + (row + col) * 1e-6;

}
}
for (int i = 0; i < n; i++) {
h_x[i] = 1.0;

}
for (int i = 0; i < m; i++) {
h_y[i] = 2.0;
h_y_cpu[i] = 2.0;

}
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We can run a comparison with OpenBLAS
ŵ GPGPU Computing and Dense Linear Algebra

We can create and populate matrices/vectors on the host, copy them to the device,
double *d_A, *d_x, *d_y;
// Allocate device memory
CHECK_CUDA(cudaMalloc(&d_A, bytes_A));
CHECK_CUDA(cudaMalloc(&d_x, bytes_x));
CHECK_CUDA(cudaMalloc(&d_y, bytes_y));
// Copy data to device
CHECK_CUDA(cudaMemcpy(d_A, h_A, bytes_A, cudaMemcpyHostToDevice));
CHECK_CUDA(cudaMemcpy(d_x, h_x, bytes_x, cudaMemcpyHostToDevice));
CHECK_CUDA(cudaMemcpy(d_y, h_y, bytes_y, cudaMemcpyHostToDevice));
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We can run a comparison with OpenBLAS
ŵ GPGPU Computing and Dense Linear Algebra

We can create and populate matrices/vectors on the host, copy them to the device, and
run the cublasDgemv function
int m = 4096;
int n = 4096;
const double alpha = 2.0;
const double beta = 1.0;
CHECK_CUBLAS(cublasDgemv(handle, CUBLAS_OP_N, m, n, &alpha, d_A,

m, d_x, 1,
&beta, d_y, 1));

• We run Ŵų warm-up iterations before timing the execution.
• We then run Ŵųų timed iterations to measure performance.
• Finally, we copy the result back to the host for verification.
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We can run a comparison with OpenBLAS
ŵ GPGPU Computing and Dense Linear Algebra

We copy back the result to the host and verify correctness against OpenBLAS:
CHECK_CUDA(cudaMemcpy(h_y_gpu, d_y, bytes_y, cudaMemcpyDeviceToHost));
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We can run a comparison with OpenBLAS
ŵ GPGPU Computing and Dense Linear Algebra

We copy back the result to the host and verify correctness against OpenBLAS:
CHECK_CUDA(cudaMemcpy(h_y_gpu, d_y, bytes_y, cudaMemcpyDeviceToHost));
cblas_dgemv(CblasColMajor, CblasNoTrans,m, n, alpha, h_A, m, h_x, 1, beta,

h_y_cpu, 1);↪→

// Verify correctness
int errors = 0;
for (int i = 0; i < m && errors < 10; i++) {

double diff = fabs(h_y_cpu[i] - h_y_gpu[i]);
if (diff > 1e-8) {
fprintf(stderr, "Mismatch at %d: CPU %.12f GPU %.12f\n",

i, h_y_cpu[i], h_y_gpu[i]);
errors++;

}
}
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Comparison with OpenBLAS (NVIDIA RTX ŷųŹų GPU)
ŵ GPGPU Computing and Dense Linear Algebra
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The cuBLAS GEMM operation
ŵ GPGPU Computing and Dense Linear Algebra

The cuBLAS library provides the cublasDgemm function to perform the matrix-matrix
multiplication operation:

C← α op(A) op(B) + βC

The function signature is:
cublasStatus_t cublasDgemm(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc)
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The cuBLAS GEMM operation
ŵ GPGPU Computing and Dense Linear Algebra

handle cuBLAS library context.
transa, transb Operations on matrices A and B (CUBLAS_OP_N, CUBLAS_OP_T,

CUBLAS_OP_C).
m,n,k Dimensions of the matrices.
alpha Pointer to the scalar multiplier for op(A) op(B).

A Pointer to the input matrix A.
lda Leading dimension of matrix A (usually m).

B Pointer to the input matrix B.
ldb Leading dimension of matrix B (usually k).

beta Pointer to the scalar multiplier for C.
C Pointer to the input/output matrix C.

ldc Leading dimension of matrix C (usually m).
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Running a comparison with OpenBLAS
ŵ GPGPU Computing and Dense Linear Algebra

We can run a similar comparison as before, but this time using the cublasDgemm
function to perform matrix-matrix multiplication.

The process involves:
Ŵ. Creating and populating matrices on the host.
ŵ. Copying them to the device.
Ŷ. Running the cublasDgemm function.
ŷ. Copying back the result to the host.
Ÿ. Verifying correctness against OpenBLAS.
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DGEMM Performance: Throughput
ŵ GPGPU Computing and Dense Linear Algebra
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DGEMM Performance: Throughput
ŵ GPGPU Computing and Dense Linear Algebra
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Interpreting DGEMM Performance Results
ŵ GPGPU Computing and Dense Linear Algebra

• AŶų: Near-Peak FPŹŷ Performance
— Based on GAŴųų architecture with FPŹŷ Tensor Cores.
— cuBLAS DGEMM exploits Tensor Cores when matrix sizes and alignment allow.
— Measured performance (∼Ż–Ŵų TFLOPS) reaches Żų–żų% of theoretical FPŹŷ Tensor

Core peak.
— Low memory bandwidth utilization confirms the kernel is compute-bound.

• Aŷų: Limited by Scalar FPŹŷ Units
— Based on GAŴųŵ architecture with no FPŹŷ Tensor Cores.
— FPŹŷ throughput is limited to Ŵ/Źŷ of FPŶŵ rate.
— Observed∼ų.Ÿ TFLOPS is consistent with the∼Ŵ.Ŵ TFLOPS hardware peak.
— DGEMM performance is fundamentally constrained by narrow FPŹŷ pipelines.

• Key Takeaway
— Large FPŹŷ performance gap reflects architectural design choices.
— AŶų is optimized for HPC and numerical linear algebra.
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cuSOLVER for LAPACK-like Workloads
ŵ GPGPU Computing and Dense Linear Algebra

• cuSolverDN is designed to solve dense linear systems of the form:

Ax = b

where A ∈ Rn×n, b ∈ Rn, and x ∈ Rn.

• Factorizations provided:
— LU with partial pivoting for general matrices.
— QR factorization.
— Cholesky for symmetric/Hermitian positive definite matrices.
— LDL (Bunch-Kaufman) for symmetric indefinite matrices.

• Decompositions:
— Singular Value Decomposition (SVD).
— Bidiagonalization.
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cuSOLVER for LAPACK-like Workloads
ŵ GPGPU Computing and Dense Linear Algebra

• cuSolverDN is designed to solve dense linear systems of the form:

Ax = b

where A ∈ Rn×n, b ∈ Rn, and x ∈ Rn.

• Design Philosophy:
— Targets computationally intensive LAPACK routines.
— Provides an API compatible with LAPACK.
— The main idea is to allows users to accelerate bottlenecks on the GPU while keeping

other parts of the code on the CPU.
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Solving a Linear System with cuSOLVERDN
ŵ GPGPU Computing and Dense Linear Algebra

To solve a linear system Ax = b using the cuSOLVERDN library, the process typically
involves two main steps, mirroring the LAPACK approach:

Ŵ. Factorization: Compute the LU factorization of the coefficient matrix A using
cusolverDnDgetrf. This decomposes A into P · L · U.

ŵ. Solve: Solve the system using the computed factors with cusolverDnDgetrs. This
involves forward and backward substitutions.
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Solving a Linear System with cuSOLVERDN
ŵ GPGPU Computing and Dense Linear Algebra

To solve a linear system Ax = b using the cuSOLVERDN library, the process typically
involves two main steps, mirroring the LAPACK approach.

Main Bottlenecks on GPUs:
• Pivoting: The LU factorization requires partial pivoting for numerical stability. This

involves finding the pivot element (reduction) and swapping rows (irregular memory
access), which are sequential and memory-bound operations that hurt GPU
parallelism.

• Triangular Solves (TRSM): The forward and backward substitutions in getrs have
dependencies between rows/columns, limiting the available parallelism compared to
matrix multiplication (GEMM).
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cuSOLVERDN Performance Factorization Throughput
ŵ GPGPU Computing and Dense Linear Algebra

RTX ŷųŹų vs OpenBLAS
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cuSOLVERDN Performance Factorization Throughput
ŵ GPGPU Computing and Dense Linear Algebra

RTX ŷųŹų vs OpenBLAS
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cuSOLVERDN Performance Factorization Throughput
ŵ GPGPU Computing and Dense Linear Algebra

RTX ŷųŹų: Factorization Throughput
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Interpreting cuSOLVERDN Performance Results
ŵ GPGPU Computing and Dense Linear Algebra

• Factorization (dgetrf):
— cuSOLVERDN achieves significant speedups over CPU libraries (OpenBLAS, MKL) for LU

factorization.
— The GPU’s parallelism effectively accelerates the computationally intensive parts of the

factorization.
— However, performance is still limited by pivoting and memory-bound operations.

• Solve (dgetrs):
— The solve step shows more modest speedups due to inherent sequential dependencies

in triangular solves.
— While GPUs can accelerate some parts, the limited parallelism restricts overall

performance gains.

• Overall Takeaway:
— cuSOLVERDN provides performance improvements for dense linear algebra tasks on

GPUs.
— The effectiveness varies between factorization and solve phases.Ÿų/źŴ



The other cuSOLVERDN Routines
ŵ GPGPU Computing and Dense Linear Algebra

The cuSOLVERDN library also provides other LAPACK-like routines, each with its own
performance characteristics on GPUs:

• QR Factorization (dgeqrf): Similar performance characteristics to LU factorization,
with speedups over CPU libraries.

• Cholesky Factorization (dpotrf): Generally faster than LU due to the absence of
pivoting, achieving higher throughput on GPUs.

• SVD (dgesvd): More complex and computationally intensive, with performance gains
depending on matrix size and GPU capabilities.

• Bidiagonalization (dgebdŵ): Similar to SVD, with performance influenced by the
algorithmic complexity and data movement.
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The other cuSOLVERDN Routines
ŵ GPGPU Computing and Dense Linear Algebra

The cuSOLVERDN library also provides other LAPACK-like routines, each with its own
performance characteristics on GPUs:

• QR Factorization (dgeqrf)
• Cholesky Factorization (dpotrf)
• SVD (dgesvd)
• Bidiagonalization (dgebdŵ)

As we have said many times, it is crucial to:
Profile your specific workload.
Understand the performance characteristics of each routine on your target GPU!
Test always on your Workloads!
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cuSOLVERMp: Distributed Dense Linear Algebra
ŵ GPGPU Computing and Dense Linear Algebra

cuSOLVERMp is the NVIDIA library for distributed-memory dense linear algebra, designed
to scale across multiple GPUs and nodes.

Multi-process, Multi-GPU:
— Follows the One process per GPU paradigm.
— Seamless integration with MPI applications.
ScaLAPACK Compatibility:

C interfaces designed tomirror ScaLAPACK.
Porting of legacy distributed CPU codes.

High Performance:
— Uses NCCL (NVIDIA Collective Communication

Library) for inter-GPU communication.
— Tensor Core accelerated math kernels.

Tools: Built-in logging and tracing support.

Node Ŵ (MPI Rank ų-Ŵ)

GPU ų GPU Ŵ
NVLink

Node ŵ (MPI Rank ŵ-Ŷ)

GPU ŵ GPU Ŷ
NVLink

Infiniband / NCCL

cuSOLVERMp Logic
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cuSOLVERMp: Workflow and Data Layout
ŵ GPGPU Computing and Dense Linear Algebra

Data Layout of Local Matrices
• cuSOLVERMp assumes that local matrices are stored in column-major format

(compatible with Fortran/LAPACK).

Workflow Overview
Ŵ. Create a NCCL communicator (NCCL Initialization).
ŵ. Initialize the library handle: cusolverMpCreate().
Ŷ. Initialize grid descriptors: cusolverMpCreateDeviceGrid().
ŷ. Initialize matrix descriptors: cusolverMpCreateMatrixDesc().
Ÿ. Query the host and device buffer sizes for a given routine.
Ź. Allocate host and device workspace buffers.
ź. Execute the routine to perform the desired computation.
Ż. Synchronize local stream: cudaStreamSynchronize().
ż. Cleanup resources (workspaces, descriptors, handle, communicator).
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cuSOLVERMp error control macro
ŵ GPGPU Computing and Dense Linear Algebra

Like for the other CUDA libraries, it is a good idea to define a macro for error checking:
#define CHECK_CUSOLVER_MP(call) \

do { \
cusolverStatus_t status = call; \
if (status != CUSOLVER_STATUS_SUCCESS) { \

fprintf(stderr, "cusolverMp error %s:%d: %d\n", \
__FILE__, __LINE__, status); \

exit(EXIT_FAILURE); \
} \

} while (0)
This works exactly like the error checking macros we have seen for cuBLAS and
cuSOLVERDN, but adapted for the cuSOLVERMp API.
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cuSOLVERMp Initialization: Overview
ŵ GPGPU Computing and Dense Linear Algebra

The initialization process for cuSOLVERMp closely mirrors the distributed memory setup
we saw with ScaLAPACK/BLACS, but with the addition of GPU-specific communication
layers (NCCL).
ScaLAPACK / BLACS

Ŵ. Initialize MPI.
ŵ. Initialize BLACS (Process Grid).
Ŷ. Create Context / descriptors.

cuSOLVERMp
Ŵ. Initialize MPI.
ŵ. Set CUDA device context.
Ŷ. Initialize NCCL (GPU Comms).
ŷ. Create library handle & Grids.

Key Data Types:
ncclUniqueId id; // Unique identifier for NCCL comm
ncclComm_t comm; // NCCL communicator handle
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Step Ŵ & ŵ: MPI and Device Setup
ŵ GPGPU Computing and Dense Linear Algebra

Step Ŵ: MPI Setup
Standard MPI initialization, just like any distributed application.
MPI_Init(nullptr, nullptr);
int rank, nranks;
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

Step ŵ: CUDA Device Setup
Assign a specific GPU to the MPI process (usually rank i gets GPU i (mod n)gpus).
const int local_device = getLocalDevice(); // e.g., rank % num_gpus
CUDA_CHECK(cudaSetDevice(local_device));
CUDA_CHECK(cudaFree(nullptr)); // Initialize CUDA context
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Step Ŷ: NCCL Communicator Creation
ŵ GPGPU Computing and Dense Linear Algebra

This step is roughly equivalent to Cblacs_gridinit, but for the GPU interconnect.
ncclUniqueId id;
// Rank 0 generates the unique ID
if (rank == 0) {

NCCL_CHECK(ncclGetUniqueId(&id));
}
// Broadcast the ID to all ranks so they can join the same communicator
MPI_CHECK(MPI_Bcast(&id, sizeof(id), MPI_BYTE, 0, MPI_COMM_WORLD));
// Initialize NCCL communicator
ncclComm_t comm;
NCCL_CHECK(ncclCommInitRank(&comm, nranks, id, rank));
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Step ŷ, Ÿ & Ź: Handles and Grids
ŵ GPGPU Computing and Dense Linear Algebra

Step ŷ: Stream Creation
cudaStream_t stream = nullptr;
CUDA_CHECK(cudaStreamCreate(&stream));
Step Ÿ: Library Handle
cusolverMpHandle_t handle = nullptr;
CUSOLVER_CHECK(cusolverMpCreate(&handle, local_device, stream));
Step Ź: Process Grid (Equivalent to BLACS Grid)
cusolverMpGrid_t grid = nullptr;
// Map columns of the process grid to columns of the matrix
CUSOLVER_CHECK(cusolverMpCreateDeviceGrid(handle, &grid, comm,

nprow, npcol, CUSOLVERMP_GRID_MAPPING_COL_MAJOR));
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Cleanup and Synchronization
ŵ GPGPU Computing and Dense Linear Algebra

Synchronization
Since cuSOLVERMp is asynchronous, sync the stream before checking results or exiting.
CUDA_CHECK(cudaStreamSynchronize(stream));
Cleanup: after we have done everything
Proper destruction order is crucial (reverse of initialization).
// Destroy cuSOLVERMp objects first
CUSOLVER_CHECK(cusolverMpDestroyGrid(grid));
CUSOLVER_CHECK(cusolverMpDestroy(handle));
// Destroy NCCL communicator
NCCL_CHECK(ncclCommDestroy(comm));
// Clean up CUDA resources
CUDA_CHECK(cudaStreamDestroy(stream));
// Finalize MPI
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();

Ÿż/źŴ



Matrix Management: Descriptors
ŵ GPGPU Computing and Dense Linear Algebra

Just like in ScaLAPACK (where we use descinit), cuSOLVERMp requiresmatrix
descriptors to understand the data distribution (ŵD block-cyclic).
cusolverStatus_t cusolverMpCreateMatrixDesc(

cusolverMpMatrixDescriptor_t *descr,
cusolverMpGrid_t grid,
cudaDataType dataType, // CUDA_R_64F for double
int64_t M_A, int64_t N_A, // Global Dimensions
int64_t MB_A, int64_t NB_A, // Block sizes
uint32_t RSRC_A, uint32_t CSRC_A, // Origin (usually 0,0)
int64_t LLD_A); // Local Leading Dimension

• Parallel with ScaLAPACK: This is the direct equivalent of the array descriptor array
DESC_ (e.g., DESC_A).

• Defines how the global matrix is mapped to the process grid.
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Utility: Calculating Local Sizes
ŵ GPGPU Computing and Dense Linear Algebra

Before allocating device memory, we need to know how much memory the local portion
of the distributed matrix requires.
cuSOLVERMp provides a helper equivalent to ScaLAPACK’s NUMROC:

int64_t cusolverMpNUMROC(
int64_t n, // Global dimension (rows or cols)
int64_t nb, // Block size
uint32_t iproc, // My coordinate (row or col)
uint32_t isrcproc, // Source coordinate (usually 0)
uint32_t nprocs); // Total processes in dimension
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Utility: Calculating Local Sizes
ŵ GPGPU Computing and Dense Linear Algebra

Before allocating device memory, we need to know how much memory the local portion
of the distributed matrix requires.
cuSOLVERMp provides a helper equivalent to ScaLAPACK’s NUMROC:

int64_t m_local = cusolverMpNUMROC(M, MB, proc_row, 0, nprow);
int64_t n_local = cusolverMpNUMROC(N, NB, proc_col, 0, npcol);
// Allocate on GPU
CUDA_CHECK(cudaMalloc(&d_A, m_local * n_local * sizeof(double)));
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Data Distribution Utilities
ŵ GPGPU Computing and Dense Linear Algebra

To simplify testing and porting, cuSOLVERMp provides utilities to scatter/gather data
between a single host process and the distributed device memory.
cusolverMpMatrixScatterH2D

• Scatters a global matrix (on Host) to distributed matrices (on Device).
• Only for testing/debugging (not high performance).

cusolverMpMatrixScatterH2D(handle, M, N, d_A, IA, JA, descrA,
root, h_src, h_ldsrc);

cusolverMpMatrixGatherD2H
• Gathers a distributed matrix (from Device) to a global matrix (on Host).
• Useful for verifying results.
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Data Distribution Utilities
ŵ GPGPU Computing and Dense Linear Algebra

To simplify testing and porting, cuSOLVERMp provides utilities to scatter/gather data
between a single host process and the distributed device memory.
cusolverMpMatrixScatterH2D

• Scatters a global matrix (on Host) to distributed matrices (on Device).
• Only for testing/debugging (not high performance).

cusolverMpMatrixGatherD2H
• Gathers a distributed matrix (from Device) to a global matrix (on Host).
• Useful for verifying results.

cusolverMpMatrixGatherD2H(handle, M, N, d_A, IA, JA, descrA,
root, h_dst, h_lddst);
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Available Dense API
ŵ GPGPU Computing and Dense Linear Algebra

The available dense API are:
• cusolverMpGetrf which computes the LU factorization of a general matrix.

— cusolverMpGetrf_bufferSize which computes the size of the workspace needed
for cusolverMpGetrf.

• cusolverMpGetrs which solves a system of linear equations with a general matrix
using the LU factorization computed by cusolverMpGetrf.

— cusolverMpGetrs_bufferSize which computes the size of the workspace needed
for cusolverMpGetrs.

• cusolverMpPotrf which computes the Cholesky factorization of a symmetric
positive definite matrix.

— cusolverMpPotrf_bufferSize which computes the size of the workspace needed
for cusolverMpPotrf.
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Available Dense API
ŵ GPGPU Computing and Dense Linear Algebra

• cusolverMpPotrs which solves a system of linear equations with a symmetric
positive definitematrix using the Cholesky factorization computed by
cusolverMpPotrf.

— cusolverMpPotrs_bufferSize which computes the size of the workspace needed
for cusolverMpPotrs.

• cusolverMpGeqrf which computes the QR factorization of a general matrix.
— cusolverMpGeqrf_bufferSize which computes the size of the workspace needed

for cusolverMpGeqrf.
• cusolverMpOrmqr which multiplies a matrix by the orthogonal matrix Q from a QR

factorization computed by cusolverMpGeqrf.
— cusolverMpOrmqr_bufferSize which computes the size of the workspace needed

for cusolverMpOrmqr.
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Available Dense API
ŵ GPGPU Computing and Dense Linear Algebra

• cusolverMpGels which solves a system of linear equations with a general matrix
using the QR factorization computed by cusolverMpGeqrf.

— cusolverMpGels_bufferSize which computes the size of the workspace needed for
cusolverMpGels.

• cusolverMpSytrd which reduces a symmetric matrix to tridiagonal form (Schur
Decomposition).

— cusolverMpSytrd_bufferSize which computes the size of the workspace needed
for cusolverMpSytrd.

• cusolverMpStedc which computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.

— cusolverMpStedc_bufferSize which computes the size of the workspace needed
for cusolverMpStedc.
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Available Dense API
ŵ GPGPU Computing and Dense Linear Algebra

• cusolverMpOrmtr which multiplies a matrix by the orthogonal matrix Q from a
symmetric tridiagonal reduction computed by cusolverMpSytrd.

— cusolverMpOrmtr_bufferSize which computes the size of the workspace needed
for cusolverMpOrmtr.

• cusolverMpSyevd which computes all eigenvalues and, optionally, eigenvectors of a
symmetric matrix using the divide and conquer method.

— cusolverMpSyevd_bufferSize which computes the size of the workspace needed
for cusolverMpSyevd.

• cusolverMpSygst which reduces a symmetric-definite generalized eigenvalue
problem to standard form.

— cusolverMpSygst_bufferSize which computes the size of the workspace needed
for cusolverMpSygst.
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Available Dense API
ŵ GPGPU Computing and Dense Linear Algebra

• cusolverMpSygvd which computes all eigenvalues and, optionally, eigenvectors of a
symmetric-definite generalized eigenvalue problem.

— cusolverMpSygvd_bufferSize which computes the size of the workspace needed
for cusolverMpSygvd.

Each of these routines has a corresponding _bufferSize function that allows you to
query the amount of workspace memory needed before performing the actual
computation.

This is crucial for efficient memory management in distributed GPU environments.
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Weak Scaling (Large Matrix): Throughput
ŵ GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.

We use the routine cusolverMpGetrf for cuSOLVERMp and PDGETRF for
ScaLAPACK.
Configuration for nodes Ŵ to ŴŹ:

— ŷ Tasks per Node, Ŵ GPU per Task (on NVIDIA AŶų GPUs)
— ŷ Tasks per Node, ŴŹ CPU cores per Task (Intel® Xeon® Gold ŹŶŶŻ CPU @ ŵ.ųųGHz)

Matrix Size per Process: Nlocal = 4096

Matrix Size per Process: Nlocal = 16384
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Weak Scaling (Large Matrix): Throughput
ŵ GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.
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Weak Scaling (Large Matrix): Throughput
ŵ GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.
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Weak Scaling (Large Matrix): Throughput
ŵ GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.

We use the routine cusolverMpGetrf for cuSOLVERMp and PDGETRF for
ScaLAPACK.
Configuration for nodes Ŵ to ŴŹ:

— ŷ Tasks per Node, Ŵ GPU per Task (on NVIDIA AŶų GPUs)
— ŷ Tasks per Node, ŴŹ CPU cores per Task (Intel® Xeon® Gold ŹŶŶŻ CPU @ ŵ.ųųGHz)

Matrix Size per Process: Nlocal = 4096

Matrix Size per Process: Nlocal = 16384
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Weak Scaling (Large Matrix): Throughput
ŵ GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.
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Weak Scaling (Large Matrix): Throughput
ŵ GPGPU Computing and Dense Linear Algebra

We test cuSOLVERMp against ScaLAPACK (MKL) for the LU factorization of a dense matrix
in weak scaling mode.
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Interpreting the Distributed LU Results
ŵ GPGPU Computing and Dense Linear Algebra

The comparison emphasizes the different sweet spots for CPU and GPU clusters:
• Massive Throughput on Large Problems: For Nlocal = 16384, cuSOLVERMp is orders
of magnitude faster. The AŶų GPUs exploit Tensor Cores to deliver over 14 P on
small rank counts, crushing the CPU performance. This confirms that for large-scale
dense problems, GPUs are the superior choice.

• The Latency penalty on Small Problems: For Nlocal = 4096 distributed across many
ranks (e.g., Źŷ), the GPU performance collapses.

— Computation is too fast to hide communication latency (pivoting, panel exchange).
— ScaLAPACK on CPUs scales better here because the slower CPU compute allows for

better overlapping with communication, and CPUs generally handle fine-grained
dependencies (like pivoting) with less latency overhead relative to their compute speed.

• Efficiency: Weak scaling on GPUs requires keeping the problem size large to
maintain high efficiency. If the local matrix shrinks or stays constant but relatively
small (< 10k), the interconnect (PCIe/NVLink) becomes the bottleneck.
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Wrapping up the course
Ŷ Conclusions

In this course, we have covered:
Some fundamentals of parallel computing on modern HPC systems

A quick overview of computer architectures,
The difference between Shared Memory and Distributed Memory systems,
The main programming models for each of these architectures (OpenMP andMPI),
Programming in modern Fortran.

The fundamentals of BLAS libraries:
in the Shared Memory Context via OpenMP and CPU vectorization,
in the Distributed Memory Context via MPI,
in the GPU Context via CUDA.

The fundamentals of NLA algorithms and libraries:
The LAPACK library for Shared Memory systems,
The ScaLAPACK library for Distributed Memory systems,
The cuSOLVER library for GPU-accelerated systems.
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What remains to do?
Ŷ Conclusions

We have covered a lot of ground, but there is still much more to explore in the world of
HPC and numerical linear algebra:

There is the world of Sparse Linear Algebra that we have not touched upon.
There are many more advanced algorithms and libraries to explore (e.g.,MAGMA,
PLASMA, PSCToolkit, PETSc, Trilinos, etc.).
Performance tuning and optimization for specific architectures is a deep field in itself.
Emerging architectures (e.g., TPUs, FPGAs) and programming models (e.g., SYCL,
Kokkos) are worth exploring.

The way forward
On a shorter term, look for a problem that interests you, and try to implement and
optimize a solution using the tools and techniques we have discussed in this course!
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