
Multigrid as a useful solver/preconditioner
for blocks

Iterative Methods for Large-Scale Saddle-Point Problems

Fabio Durastante
Università di Pisa

Envelope fabio.durastante@unipi.it

May, 2022

mailto:fabio.durastante@unipi.it

Overview

1. The Multigrid Idea
1.1 Multigrid based on geometry
1.2 A general two grid formulation
1.3 Smooth and stable components

2. Algebraic multigrid
2.1 Ruge-Stuben Splitting Algorithm
2.2 Aggregation-based multigrids
2.3 Compatible relaxation
2.4 Available libraries

3. Extreme scale applications
3.1 The Poisson benchmark
3.2 A Large Eddy Scale simulation

2 / 58

The Multigrid Idea

A word of caution
These methods start from a simple idea, but the confusion of their explanation grows
exponentially with the degree of generality and abstraction that one wants to impose.

Our plan

Good introductions are contained in the books (Briggs, Henson, and McCormick 2000;
Trottenberg, Oosterlee, and Schüller 2001; Vassilevski 2008), for the more theoretically
inclined the best high-level presentation is in (Xu and Zikatanov 2017).

3 / 58

The Multigrid Idea

A word of caution
These methods start from a simple idea, but the confusion of their explanation grows
exponentially with the degree of generality and abstraction that one wants to impose.

Our plan
Therefore we will start explaining them in a completely abstract framework.

Good introductions are contained in the books (Briggs, Henson, and McCormick 2000;
Trottenberg, Oosterlee, and Schüller 2001; Vassilevski 2008), for the more theoretically
inclined the best high-level presentation is in (Xu and Zikatanov 2017).

3 / 58

The Multigrid Idea

A word of caution
These methods start from a simple idea, but the confusion of their explanation grows
exponentially with the degree of generality and abstraction that one wants to impose.

Our plan
Therefore we will start explaining them in a completely abstract framework. Therefore we
will start from the simplest 1D example, and work on that.

Good introductions are contained in the books (Briggs, Henson, and McCormick 2000;
Trottenberg, Oosterlee, and Schüller 2001; Vassilevski 2008), for the more theoretically
inclined the best high-level presentation is in (Xu and Zikatanov 2017).

3 / 58

The Multigrid Idea

A word of caution
These methods start from a simple idea, but the confusion of their explanation grows
exponentially with the degree of generality and abstraction that one wants to impose.

Our plan
Therefore we will start explaining them in a completely abstract framework. Therefore we
will start from the simplest 1D example, and work on that.

Good introductions are contained in the books (Briggs, Henson, and McCormick 2000;
Trottenberg, Oosterlee, and Schüller 2001; Vassilevski 2008), for the more theoretically
inclined the best high-level presentation is in (Xu and Zikatanov 2017).

3 / 58

Multigrid based on geometry: Poisson

Let us consider the following boundary value problem{
−uxx(x) = f (x), x ∈ (0, 1),
u(0) = u(1) = 0.

, f ∈ C0([0, 1]).

If we apply standard centered finite difference discretization on the grid
Ωh = {xk}n+2

k=0 = {kh} and h = 1/(n + 2), that gives rise to the linear system

1

h2
Anu = f, An =

2 −1 0 · · · 0
−1 2 −1 · · · 0

0
.

... . . . −1 2 −1
0 · · · 0 −1 2

4 / 58

Multigrid based on geometry: Poisson
The matrix An is a very peculiar type of matrix for which we now everything, specifically:

Anv(i) = λiv(i),

with eigenvalues and eigenvectors

λi = 2− 2 cos
(

iπ
n + 1

)
, v (i)

j = sin
(

ijπ
n + 1

)
, i , j = 1, . . . , n.

1 2 3 4 5

i

−1

1
v (1)

j

0

v(i)
1

v(i)
2 v(i)

3 v(i)
4

• If we sample the eigenvectors we get
oscillating functions,

• They represent exactly the frequency in the
span of the grid function Fourier series.

5 / 58

Multigrid based on geometry: Poisson
The matrix An is a very peculiar type of matrix for which we now everything, specifically:

Anv(i) = λiv(i),

with eigenvalues and eigenvectors

λi = 2− 2 cos
(

iπ
n + 1

)
, v (i)

j = sin
(

ijπ
n + 1

)
, i , j = 1, . . . , n.

1 2 3 4 5

i

−1

1
v (2)

j

0

v(i)
1 v(i)

2

v(i)
3 v(i)

4

• If we sample the eigenvectors we get
oscillating functions,

• They represent exactly the frequency in the
span of the grid function Fourier series.

5 / 58

Multigrid based on geometry: Poisson
The matrix An is a very peculiar type of matrix for which we now everything, specifically:

Anv(i) = λiv(i),

with eigenvalues and eigenvectors

λi = 2− 2 cos
(

iπ
n + 1

)
, v (i)

j = sin
(

ijπ
n + 1

)
, i , j = 1, . . . , n.

1 2 3 4 5

i

−1

1
v (i)

j

0

v(i)
1

v(i)
2 v(i)

3

v(i)
4 • If we sample the eigenvectors we get

oscillating functions,
• They represent exactly the frequency in the

span of the grid function Fourier series.

5 / 58

Multigrid based on geometry: Poisson
The matrix An is a very peculiar type of matrix for which we now everything, specifically:

Anv(i) = λiv(i),

with eigenvalues and eigenvectors

λi = 2− 2 cos
(

iπ
n + 1

)
, v (i)

j = sin
(

ijπ
n + 1

)
, i , j = 1, . . . , n.

1 2 3 4 5

i

−1

1
v (i)

j

0

v(i)
1

v(i)
2

v(i)
3

v(i)
4

• If we sample the eigenvectors we get
oscillating functions,

• They represent exactly the frequency in the
span of the grid function Fourier series.

5 / 58

Multigrid based on geometry: Poisson
The matrix An is a very peculiar type of matrix for which we now everything, specifically:

Anv(i) = λiv(i),

with eigenvalues and eigenvectors

λi = 2− 2 cos
(

iπ
n + 1

)
, v (i)

j = sin
(

ijπ
n + 1

)
, i , j = 1, . . . , n.

We divide arbitrarily this set of frequencies in two subsets:

Low frequencies
{

v(i) = sin(iy) : y = jπ
n+1 , j = 1, . . . , n i = 1, . . . , n/2− 1

}
,

High frequencies
{

v(i) = sin(iy) : y = jπ
n+1 , j = 1, . . . , n i = n/2, . . . , 1

}
.

5 / 58

Multigrid based on geometry: Jacobi

Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =u(k) + D−1
n (f − Anu(k)) =

(
In − 1

2
An

)
u(k) +

1

2
f,

Dn =diag(An) = 2In

6 / 58

Multigrid based on geometry: Jacobi

Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =u(k) + D−1
n (f − Anu(k)) =

(
In − 1

2
An

)
u(k) +

1

2
f,

Dn =diag(An) = 2In

• The iteration matrix is then Jn = In − An/2, with the information we have on the
spectrum, we observe that: ρ(Jn) → 1 for n → +∞ so slow convergence! A sorry
state of affairs.

• Maybe we can weight the iteration to make things better

6 / 58

Multigrid based on geometry: Jacobi

Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =

[
(1− ω)In + ω

(
In − 1

2
An

)]
u(k) +

1

2
ωf,

• The iteration matrix is then Jn = In − An/2, with the information we have on the
spectrum, we observe that: ρ(Jn) → 1 for n → +∞ so slow convergence! A sorry
state of affairs.

• Maybe we can weight the iteration to make things better

6 / 58

Multigrid based on geometry: Jacobi

Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =

[
(1− ω)In + ω

(
In − 1

2
An

)]
u(k) +

1

2
ωf,

• The iteration matrix is then Jn = In − An/2, with the information we have on the
spectrum, we observe that: ρ(Jn) → 1 for n → +∞ so slow convergence! A sorry
state of affairs.

• Maybe we can weight the iteration to make things better. The iteration matrix is
now Jω

n = In − ω
2 An. The best spectral conditioning for µω

1 = λmax(Jω
n) is obtained for

µ1
1 < µω

1 ∀ω ∈ (0, 1). Therefore, we have only made the convergence worse…

6 / 58

Multigrid based on geometry: Jacobi
Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =

[
(1− ω)In + ω

(
In − 1

2
An

)]
u(k) +

1

2
ωf,

We hold the line, let us write everything in the eigenvector basis:

e(0) =
n∑

i=1

αiv(i), Jω
n = VΛω

n V T where Λω
n = diag(µω

i),

at the kth step (for u = A−1
n f the true solution) we find

u − u(k) = e(k) =(Jω
n)

ke(0) = V (Λω
n)

kV T e(0) = V (Λω
n)

kα

=

n∑
i=1

(
1− 2ω sin2

(
iπ

2(n + 1)

))k
αiv (i).

6 / 58

Multigrid based on geometry: Jacobi
Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =

[
(1− ω)In + ω

(
In − 1

2
An

)]
u(k) +

1

2
ωf,

We hold the line, let us write everything in the eigenvector basis:

u − u(k) =
n∑

i=1

(
1− 2ω sin2

(
iπ

2(n + 1)

))k
αiv (i).

LIGHTBULB Idea!
The ith entry of e(k) is defined in terms of the ith eigenvalues of Jω

k :

βi =

(
1− 2ω sin2

(
iπ

2(n + 1)

))k
αi ≈

(
1− ω

π2

2
h2

)k
αi .

6 / 58

Multigrid based on geometry: Jacobi
Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =

[
(1− ω)In + ω

(
In − 1

2
An

)]
u(k) +

1

2
ωf,

We hold the line, let us write everything in the eigenvector basis:

u − u(k) =
n∑

i=1

(
1− 2ω sin2

(
iπ

2(n + 1)

))k
αiv (i).

Working only in the high-frequency
We choose an optimal ω that minimizes the absolute values of the βi in the high
frequencies, i.e., ωopt = 2/3.

6 / 58

Multigrid based on geometry: Jacobi
Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =

[
(1− ω)In + ω

(
In − 1

2
An

)]
u(k) +

1

2
ωf,

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2
Initial error

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2
Error after 2 iterations

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2
Error after 8 iterations

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2
Error after 16 iterations

Solver as smoother
In the domain of the high
frequencies, for whatever value of k,
we find that the error has become a
smooth function.

6 / 58

Multigrid based on geometry: Jacobi
Now we have put some notation in place, but let us try solving our system with the
simplest method we know: Jacobi!

u(k+1) =

[
(1− ω)In + ω

(
In − 1

2
An

)]
u(k) +

1

2
ωf,

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2
Initial error

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2
Error after 2 iterations

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2
Error after 8 iterations

0 50 100 150 200 250

-4

-3

-2

-1

0

1

2
Error after 16 iterations

Solver as smoother
In the domain of the high
frequencies, for whatever value of k,
we find that the error has become a
smooth function.

But the convergence is always bad…

6 / 58

Multigrid based on geometry: Error equation
• Let us suppose that we have computed an approximation ũ of the solution u through

some iterations of the optimally weighted Jacobi.

LIGHTBULB If only we knew the error…
If we could compute in some way the error e then the solution of the linear system could be
obtained as u = ũ + e

• If we wanted to compute it, we could solve the linear system
Ane = Anu − Anũ = f − Anũ = r.

Still no gain?
We are back solving a linear system with the same coefficient matrix. Nevertheless, having
swapped from the need of computing u to e gives us the chance to exploit the information
that the error has been smoothed.

7 / 58

Multigrid based on geometry: Error equation
• Let us suppose that we have computed an approximation ũ of the solution u through

some iterations of the optimally weighted Jacobi.

LIGHTBULB If only we knew the error…
If we could compute in some way the error e then the solution of the linear system could be
obtained as u = ũ + e
• If we wanted to compute it, we could solve the linear system

Ane = Anu − Anũ = f − Anũ = r.

Still no gain?
We are back solving a linear system with the same coefficient matrix. Nevertheless, having
swapped from the need of computing u to e gives us the chance to exploit the information
that the error has been smoothed.

7 / 58

Multigrid based on geometry: Error equation
• Let us suppose that we have computed an approximation ũ of the solution u through

some iterations of the optimally weighted Jacobi.

LIGHTBULB If only we knew the error…
If we could compute in some way the error e then the solution of the linear system could be
obtained as u = ũ + e
• If we wanted to compute it, we could solve the linear system

Ane = Anu − Anũ = f − Anũ = r.

Still no gain?
We are back solving a linear system with the same coefficient matrix. Nevertheless, having
swapped from the need of computing u to e gives us the chance to exploit the information
that the error has been smoothed.

7 / 58

Multigrid based on geometry: Grids
Let us consider the grids (for an odd n):

Ωh =

{
iπ

n + 1
: i = 1, . . . , n

}
,

Ω2h =

{
2iπ

n + 1
: i = 1, . . . ,

n − 1

2

}
=

{
iπ

n−1
2 + 1

: i = 1, . . . ,
n − 1

2

}
,

We restrict the matrix and the residual vector on the coarse grid to solve the error
equation

Ωh Anu = f, u, f ∈ Rn,

Ω2h A n−1
2

ẽ = r̃, ẽ, r̃ ∈ R
n−1
2 .

8 / 58

Multigrid based on geometry: Grids

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

We restrict the matrix and the residual vector on the coarse grid to solve the error
equation

Ωh Anu = f, u, f ∈ Rn,

Ω2h A n−1
2

ẽ = r̃, ẽ, r̃ ∈ R
n−1
2 .

8 / 58

Multigrid based on geometry: the whole idea

1. We apply the smoother to smooth the error in the high frequency,
2. We use our coarsening strategy for the error equation

2.1 a restriction operator I2h
h : Ωh → Ω2h,

2.2 a prolongation operator Ih
2h : Ω2h → Ωh,

2.3 the discretization matrix at the lower level, i.e., An−1/2.
3. We can make additional distinctions between high and low frequencies for the error

equation with respect to the actual grid Ω2h and a coarser grid Ω4h to iterate our
coupling of smoothing iterations and iterative refinement by coarsening

4. We do something peculiar on the coarsest grid in which we face a very small linear
system, possibly a single linear scalar equation, that can be solved efficiently by a
direct method.

9 / 58

Multigrid based on geometry: the algorithm
Data: {Ak}0k=l , l, {S(1)

k }0k=l , {S(2)
k }0k=l , {Ik−1

k }0k=l and {Ik
k−1}0k=l , bk

0
k=l , initial guess u(j).

Output: Approximation u(j+1) to the solution of xl .
Input: u(j+1)

k = MGM(Ak , bk , x(j)
k , k, ν1, ν2, γ)

ν1 steps of presmoother S(1)
k applied to Ak x̃(j)

k = bk ; // Presmoothing
Compute the residual r(j)

k = bk − Ak x̃(j)
k ; // Coarse Grid Correction

Restrict the residual r(j)
k−1 = Ik−1

k r(j)
k ;

if k = 1 then
Direct solver for Ak−1e(j)

k−1;
else

for i = 1, . . . , γ do
e(j)

k−1 = MGM(Ak−1, rk−1, 0, k − 1, ν1, ν2, γ)

end
end
Prolong the error e(j)

k = Ik
k−1e(j)

k−1;
Update the approximation x(j)

k = x̃(j)
k + e(j)

k ;
ν2 steps of postsmoother S(2)

k applied to Ak x̃(j+1)
k = bk with initial guess x(j)

k ; // Postsmoothing
10 / 58

Multigrid based on geometry: convergence

We express the previous algorithm as the product by an iteration matrix Ml :{
M0 = 0, k = 0,

Mk = (S(1)
k)ν1

(
Ik − Ik

k−1(Ik−1 − Mγ
k−1)A

−1
k−1I

k−1
k Ak

)
(S(2)

k)ν2 k ≥ 1.
.

LIGHTBULB Idea: it is a stationary method, thus it converges iff ρ(Mk) < 1.

Convergence theorem
Let A ∈ Rn×n be SPD. Assume that the prolongation operators Ik

k−1 have full rank and
that the Galerkin conditions holds

Ik
k−1 = (Ik−1

k)T , Ak−1 = Ik−1
k Ak Ik

k−1, ∀ k = l − 1, . . . , 0,

11 / 58

Multigrid based on geometry: convergence

Convergence theorem
Let A ∈ Rn×n be SPD. Assume that the prolongation operators Ik

k−1 have full rank and
that the Galerkin conditions holds

Ik
k−1 = (Ik−1

k)T , Ak−1 = Ik−1
k Ak Ik

k−1, ∀ k = l − 1, . . . , 0,

Furthermore, if the orthogonal projector Πk = I − Ik
k+1A

−1
k+1I

k+1
k Ak , satisfies

∀ ek ∃ δ1 > 0 : ‖S(2)
k ek‖2A ≤ ‖ek‖2A − δ1‖Πkek‖2A,

independently of ek and k, then the multigrid method with γ = 1, ν1 = 0 and ν2 ≥ 1 (no
pre–smoother), has a converge factor bounded above by

√
1− δ1 with δ1 ≤ 1.

11 / 58

Multigrid based on geometry: convergence

Convergence theorem
Let A ∈ Rn×n be SPD. Assume that the prolongation operators Ik

k−1 have full rank and
that the Galerkin conditions holds

Ik
k−1 = (Ik−1

k)T , Ak−1 = Ik−1
k Ak Ik

k−1, ∀ k = l − 1, . . . , 0,

Furthermore, if the following condition holds

∀ ek ∃ δ2 > 0 : ‖S(1)
k ek‖2A ≤ ‖ek‖2A − δ2‖ΠkS(1)

k ek‖2A,

independently of ek and k, then the multigrid method based with γ = 1, ν1 ≥ 1 and
ν2 = 0 (no post–smoother), has a converge factor bounded above by 1/

√
1 + δ2.

11 / 58

Multigrid based on geometry: convergence

Convergence theorem
Let A ∈ Rn×n be SPD. Assume that the prolongation operators Ik

k−1 have full rank and
that the Galerkin conditions holds

Ik
k−1 = (Ik−1

k)T , Ak−1 = Ik−1
k Ak Ik

k−1, ∀ k = l − 1, . . . , 0,

Finally, if both estimate

∀ ek ∃ δ1 > 0 : ‖S(2)
k ek‖2A ≤ ‖ek‖2A − δ1‖Πkek‖2A,

∀ ek ∃ δ2 > 0 : ‖S(1)
k ek‖2A ≤ ‖ek‖2A − δ2‖ΠkS(1)

k ek‖2A,

holds, for a pre– and post–smoother an estimate of the convergence factor is given by√
1− δ1/1 + δ2.

11 / 58

Concluding the example
We test the simple recursive implementation from

CODE E6-SimpleGMG/ex_toepmultigrid.m

We consider the 1D Poisson problem with
• Jacobi smoother with optimal parameter,
• nu1 = ν2 = 2 smoother steps,
• Use linear interpolation,
• Impose Galerkin conditions,
• Use multigrid as a solver. 2 4 6

10−10

10−7

10−4

Iteration

Er
ro

r

Tests and extensions
The code contains other test problems with which you can play around. To get better
performances you could re-implement the algorithm in a non recursive way.

12 / 58

Concluding the example
We test the simple recursive implementation from

CODE E6-SimpleGMG/ex_toepmultigrid.m

We consider the 1D Poisson problem with
• Jacobi smoother with optimal parameter,
• nu1 = ν2 = 2 smoother steps,
• Use linear interpolation,
• Impose Galerkin conditions,
• Use multigrid as a solver.

Convergence result on finer meshes
Size 63 Iteration 5 Time 6.72e-03
Size 127 Iteration 5 Time 5.61e-03
Size 255 Iteration 6 Time 1.91e-02
Size 511 Iteration 5 Time 5.40e-02
Size 1023 Iteration 6 Time 1.42e-01
Size 2047 Iteration 6 Time 5.85e-01
Size 4095 Iteration 6 Time 2.36e+00

Tests and extensions
The code contains other test problems with which you can play around. To get better
performances you could re-implement the algorithm in a non recursive way.

12 / 58

Concluding the example
We test the simple recursive implementation from

CODE E6-SimpleGMG/ex_toepmultigrid.m

We consider the 1D Poisson problem with
• Jacobi smoother with optimal parameter,
• nu1 = ν2 = 2 smoother steps,
• Use linear interpolation,
• Impose Galerkin conditions,
• Use multigrid as a solver.

Convergence result on finer meshes
Size 63 Iteration 5 Time 6.72e-03
Size 127 Iteration 5 Time 5.61e-03
Size 255 Iteration 6 Time 1.91e-02
Size 511 Iteration 5 Time 5.40e-02
Size 1023 Iteration 6 Time 1.42e-01
Size 2047 Iteration 6 Time 5.85e-01
Size 4095 Iteration 6 Time 2.36e+00

Tests and extensions
The code contains other test problems with which you can play around. To get better
performances you could re-implement the algorithm in a non recursive way.

12 / 58

More general geometries
One of the major question is now:

“How do we find interpolation operators and smoother
satisfying the convergence theorem?”

• For structured matrices (Toeplitz, Circulant, τ -algebra, etc.) we can discharge the
problem on the properties of some functions describing the spectrum. Unfortunately,
this is usually possible only when the matrix is obtained from the discretization of a
PDE on a structured or uniform grid.

• In general, our linear system could be coming from an optimization problem, being
the Laplacian of a graph, being the discretization of a differential operator on an
unstructured grid

The way forward
We will reformulate the algorithm to use only purely algebraic properties of the matrix.

13 / 58

More general geometries
One of the major question is now:

“How do we find interpolation operators and smoother
satisfying the convergence theorem?”

• For structured matrices (Toeplitz, Circulant, τ -algebra, etc.) we can discharge the
problem on the properties of some functions describing the spectrum. Unfortunately,
this is usually possible only when the matrix is obtained from the discretization of a
PDE on a structured or uniform grid.

• In general, our linear system could be coming from an optimization problem, being
the Laplacian of a graph, being the discretization of a differential operator on an
unstructured grid

The way forward
We will reformulate the algorithm to use only purely algebraic properties of the matrix.

13 / 58

More general geometries
One of the major question is now:

“How do we find interpolation operators and smoother
satisfying the convergence theorem?”

• For structured matrices (Toeplitz, Circulant, τ -algebra, etc.) we can discharge the
problem on the properties of some functions describing the spectrum. Unfortunately,
this is usually possible only when the matrix is obtained from the discretization of a
PDE on a structured or uniform grid.

• In general, our linear system could be coming from an optimization problem, being
the Laplacian of a graph, being the discretization of a differential operator on an
unstructured grid

The way forward
We will reformulate the algorithm to use only purely algebraic properties of the matrix.

13 / 58

Revisiting the components: A-convergent smoothers
To build the “source agnostic” Multigrid we start by revisiting the constitutive components.

Theorem (A-convergent spliting)
Let A be SPD. Assume that for a given M the iteration matrix I − M−1A has an A-norm
less than one, or, equivalently that

‖I − A1/2M−1A1/2‖ < 1.

The symmetrization M = M(M + MT − A)−1MT satisfies
(i) I − M−1A = (I − M−T A)(I − M−1A),
(ii) M − A is Symmetric Positive Semidefinite
(iii) ‖I − A1/2M−1A1/2‖ = ‖I − A1/2M−1A1/2‖,
(iv) ‖I − A1/2M−1A1/2‖ < 1 ⇔ M + MT − A SPD

14 / 58

Revisiting the components: 2× 2-block factorization

Given A ∈ Rn×n SPD, we let J and P be two rectangular matrices with n rows so that
we can consider the 2× 2-block factorization:

A =

[
A R
L B

]
, A = JT AJ , B = PT AP .

We now suppose having two matrices M ≈ A and D ≈ B with D SPD, where “≈”
(usually) means that M and D are A/B-convergent splitting.

15 / 58

Revisiting the components: 2× 2-block factorization
Given A ∈ Rn×n SPD, we let J and P be two rectangular matrices with n rows so that
we can consider the 2× 2-block factorization:

A =

[
A R
L B

]
, A = JT AJ , B = PT AP .

We now suppose having two matrices M ≈ A and D ≈ B with D SPD, where “≈”
(usually) means that M and D are A/B-convergent splitting.
Let r0 = b − Au0;
Use method M for (JT AJ)x = JT r0,;
Compute the residual rm = b − Aum = b − Au0 − AJxm = (I − AJM−1JT)r0;

Use method D for (PT AP)w = PT rm;
Compute the residual rw = b−Auw = b−Aum −APw = (I −APD−1PT)(I −AJM−1JT)r0;
Use method M for (JT AJ)x = JT rw ,;
The new residual is

rnew = b − Aunew = b − Auw − AJx = (I − AJM−T JT)(I − APD−1PT)(I − AJM−1JT)r0

Algorithm 1: Product iteration method
15 / 58

Revisiting the components: 2× 2-block factorization
Given A ∈ Rn×n SPD, we let J and P be two rectangular matrices with n rows so that
we can consider the 2× 2-block factorization:

A =

[
A R
L B

]
, A = JT AJ , B = PT AP .

We now suppose having two matrices M ≈ A and D ≈ B with D SPD, where “≈”
(usually) means that M and D are A/B-convergent splitting.
Let r0 = b − Au0;
Use method M for (JT AJ)x = JT r0,;
Compute the residual rm = b − Aum = b − Au0 − AJxm = (I − AJM−1JT)r0;
Use method D for (PT AP)w = PT rm;
Compute the residual rw = b−Auw = b−Aum −APw = (I −APD−1PT)(I −AJM−1JT)r0;

Use method M for (JT AJ)x = JT rw ,;
The new residual is

rnew = b − Aunew = b − Auw − AJx = (I − AJM−T JT)(I − APD−1PT)(I − AJM−1JT)r0

Algorithm 2: Product iteration method
15 / 58

Revisiting the components: 2× 2-block factorization
Given A ∈ Rn×n SPD, we let J and P be two rectangular matrices with n rows so that
we can consider the 2× 2-block factorization:

A =

[
A R
L B

]
, A = JT AJ , B = PT AP .

We now suppose having two matrices M ≈ A and D ≈ B with D SPD, where “≈”
(usually) means that M and D are A/B-convergent splitting.
Let r0 = b − Au0;
Use method M for (JT AJ)x = JT r0,;
Compute the residual rm = b − Aum = b − Au0 − AJxm = (I − AJM−1JT)r0;
Use method D for (PT AP)w = PT rm;
Compute the residual rw = b−Auw = b−Aum −APw = (I −APD−1PT)(I −AJM−1JT)r0;
Use method M for (JT AJ)x = JT rw ,;
The new residual is

rnew = b − Aunew = b − Auw − AJx = (I − AJM−T JT)(I − APD−1PT)(I − AJM−1JT)r0
Algorithm 3: Product iteration method

15 / 58

Revisiting the components: 2× 2-block factorization
Given A ∈ Rn×n SPD, we let J and P be two rectangular matrices with n rows so that
we can consider the 2× 2-block factorization:

A =

[
A R
L B

]
, A = JT AJ , B = PT AP .

We now suppose having two matrices M ≈ A and D ≈ B with D SPD, where “≈”
(usually) means that M and D are A/B-convergent splitting.

Residual iteration matrix
The residual iteration Er is therefore given by:

Er = b − Aunew = b − Auw − AJx = (I − AJM−T JT)(I − APD−1PT)(I − AJM−1JT),

thus u − u0 = A−1r0 7→ u − unew = A−1rnew since AE = ErA

E = (I − JM−T JT A)(I − PD−1PT A)(I − JM−1JT A) = A−1ErA.
15 / 58

Revisiting the components: 2× 2-block factorization
Lemma
If M and D are convergent smoother then ‖Ee‖A ≤ ‖e‖A.

Block-factorizations and product iteration methods
We implicitly define the product iteration method

I − B−1A = (I − JM−T JT A)(I − PD−1PT A)(I − JM−1JT A).

Theorem
Let M = M(M+MT −A)−1MT , given the following block-factored matrix

B̂ =

[
M O

PTAJ I

] [
(M+MT −A)−1 O

O D

] [
MT JT AP
O I

]
we express explicitly the operator as

B−1 = [J ,P]B̂[J ,P]T = JM−1JT + (I − JM−T JT A)PD−1PT (I −AJM−1JT).

16 / 58

Revisiting the components: 2× 2-block factorization
Lemma
If M and D are convergent smoother then ‖Ee‖A ≤ ‖e‖A.

Block-factorizations and product iteration methods
We implicitly define the product iteration method

I − B−1A = (I − JM−T JT A)(I − PD−1PT A)(I − JM−1JT A).

Theorem
Let M = M(M+MT −A)−1MT , given the following block-factored matrix

B̂ =

[
M O

PTAJ I

] [
(M+MT −A)−1 O

O D

] [
MT JT AP
O I

]
we express explicitly the operator as

B−1 = [J ,P]B̂[J ,P]T = JM−1JT + (I − JM−T JT A)PD−1PT (I −AJM−1JT).

16 / 58

Revisiting the components: 2× 2-block factorization
Lemma
If M and D are convergent smoother then ‖Ee‖A ≤ ‖e‖A.

Block-factorizations and product iteration methods
We implicitly define the product iteration method

I − B−1A = (I − JM−T JT A)(I − PD−1PT A)(I − JM−1JT A).

Theorem
Let M = M(M+MT −A)−1MT , given the following block-factored matrix

B̂ =

[
M O

PTAJ I

] [
(M+MT −A)−1 O

O D

] [
MT JT AP
O I

]
we express explicitly the operator as

B−1 = [J ,P]B̂[J ,P]T = JM−1JT + (I − JM−T JT A)PD−1PT (I −AJM−1JT).

16 / 58

Revisiting the components: 2× 2-block factorization

What did we just prove?
1. We can build a block-factorization preconditioner B−1 as [J ,P]B̂[J ,P]T ,
2. The matrix B̂ is obtained from the approximate block-factorization of the two-by-two

block matrix Â = [J ,P]T A[J ,P],
3. The stationary matrix iteration I − B−1A can be expressed as the product

(I − JM−T JT A)(I − PD−1PT A)(I − JM−1JT A),

that act on Range(J), Range(P), and Range(J).

We have written, using block factorization, a method of the type we saw in our
geometric example on the 1D Laplacian. The high and low frequency spaces are then
represented as the images and kernels of the J and P maps.

17 / 58

Revisiting the components: 2× 2-block factorization

What did we just prove?
1. We can build a block-factorization preconditioner B−1 as [J ,P]B̂[J ,P]T ,
2. The matrix B̂ is obtained from the approximate block-factorization of the two-by-two

block matrix Â = [J ,P]T A[J ,P],
3. The stationary matrix iteration I − B−1A can be expressed as the product

(I − JM−T JT A)(I − PD−1PT A)(I − JM−1JT A),

that act on Range(J), Range(P), and Range(J).

We have written, using block factorization, a method of the type we saw in our
geometric example on the 1D Laplacian. The high and low frequency spaces are then
represented as the images and kernels of the J and P maps.

17 / 58

Two-grid preconditioner
For J = I then [J ,P]T has full column rank since [I,P][I,P]T = I + PPT is SPD.

Two-grid preconditioner
Given a smoother M for A and an interpolation matrix P , and let D be an SPD
approximation to B = PT AP , such that
• M + MT − A is SPD (equivalently, ‖I − A1/2M−1A1/2‖ < 1).
• D − B is SPD.

Then, given the block matrix

B̂ =

[
M O

PT A I

] [
(MT + M − A)−1 O

O D

] [
MT AP
O I

]
we define the preconditioner B−1

TG = [I,P]B̂[I,P]T or, equivalently,

B−1
TG = M−1

+ (I − AM−1)T PD−1PT (I − M−1A).
18 / 58

Two-grid preconditioner: convergence

What can we say about the convergence properties of such method?

Convergence constant
We would like to estimate the best constant

vT Av ≤ vT BTGv ≤ KTGvT Av.

Theorem
Assume that J and P are such that any vector v can be decomposed as v = Jw + Px. We
introduce the projectors πA = PB−1PT A = P(PT AP)−1PT , and let
M̃ = MT (M+MT − A)−1M. The best constant K is given by

19 / 58

Two-grid preconditioner: convergence

What can we say about the convergence properties of such method?

Convergence constant
We would like to estimate the best constant

vT Av ≤ vT BTGv ≤ KTGvT Av.

Theorem
Assume that J and P are such that any vector v can be decomposed as v = Jw + Px. We
introduce the projectors πA = PB−1PT A = P(PT AP)−1PT , and let
M̃ = MT (M+MT − A)−1M. The best constant K is given by

19 / 58

Two-grid preconditioner: convergence
What can we say about the convergence properties of such method?

Convergence constant
We would like to estimate the best constant

vT Av ≤ vT BTGv ≤ KTGvT Av.

Theorem
Assume that J and P are such that any vector v can be decomposed as v = Jw + Px. We
introduce the projectors πA = PB−1PT A = P(PT AP)−1PT , and let
M̃ = MT (M+MT − A)−1M. The best constant K is given by

K = sup
v∈Range(I−πA)

inf
w : v=(I−πA)Jw

wTM̃w
vT Av = sup

v
inf

w : v=(I−πA)Jw

wTM̃w
vT A(I − πA)v

.

19 / 58

Two-grid preconditioner: convergence
What can we say about the convergence properties of such method?

Convergence constant
We would like to estimate the best constant

vT Av ≤ vT BTGv ≤ KTGvT Av.

Theorem
Assume that J and P are such that any vector v can be decomposed as v = Jw + Px with
[J ,P] invertible. We introduce the projectors πA = PB−1PT A = P(PT AP)−1PT , and let
M̃ = MT (M+MT − A)−1M. The best constant K is given by

K = sup
w

wTM̃w
wT JT A(I − πA)Jw .

19 / 58

Two-grid preconditioner: convergence

For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .

We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

20 / 58

Two-grid preconditioner: convergence

For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

20 / 58

Two-grid preconditioner: convergence

For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

inf
w

[
(πAw + (I − πA)v)T M̃(πAw + (I − πA)v)

]
((I − πA)v)T A((I − πA)v)

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

20 / 58

Two-grid preconditioner: convergence
For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

inf
w

[
(πAw + (I − πA)v)T M̃(πAw + (I − πA)v)

]
((I − πA)v)T A((I − πA)v)

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

⇒ the infw [·] is attained a w such that πA(v − w) = πM̃v, i.e.,

A−1
c PT A(v − w) = M̃−1PT M̃v

⇒ Pwc = πAw = w = (πA − πM̃)v

20 / 58

Two-grid preconditioner: convergence
For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

inf
w

[
(πAw + (I − πA)v)T M̃(πAw + (I − πA)v)

]
((I − πA)v)T A((I − πA)v)

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

⇒ the infw [·] is attained a w such that πA(v − w) = πM̃v, i.e.,

A−1
c PT A(v − w) = M̃−1PT M̃v ⇒ wc = A−1

c PT Av − M̃−1
c PT M̃v.

⇒ Pwc = πAw = w = (πA − πM̃)v

20 / 58

Two-grid preconditioner: convergence
For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

inf
w

[
(πAw + (I − πA)v)T M̃(πAw + (I − πA)v)

]
((I − πA)v)T A((I − πA)v)

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

⇒ the infw [·] is attained a w such that πA(v − w) = πM̃v, i.e.,

A−1
c PT A(v − w) = M̃−1PT M̃v ⇒ wc = A−1

c PT Av − M̃−1
c PT M̃v.

⇒ Pwc = πAw = w = (πA − πM̃)v
20 / 58

Two-grid preconditioner: convergence
For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

inf
w

[
(πAw + (I − πA)v)T M̃(πAw + (I − πA)v)

]
((I − πA)v)T A((I − πA)v)

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

⇒ the infw [·] is attained a w such that πA(v − w) = πM̃v, i.e.,

A−1
c PT A(v − w) = M̃−1PT M̃v ⇒ wc = A−1

c PT Av − M̃−1
c PT M̃v.

⇒ Pwc = πAw = w = (πA − πM̃)v ⇒ πAw + (I − πA)v = (I − πM̃)v.
20 / 58

Two-grid preconditioner: convergence
For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

(
(I − πM̃)v

)T M̃
(
(I − πM̃)v

)
((I − πA)v)T A((I − πA)v)

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

⇒ the infw [·] is attained a w such that πA(v − w) = πM̃v, i.e.,

A−1
c PT A(v − w) = M̃−1PT M̃v ⇒ wc = A−1

c PT Av − M̃−1
c PT M̃v.

⇒ Pwc = πAw = w = (πA − πM̃)v ⇒ πAw + (I − πA)v = (I − πM̃)v.
20 / 58

Two-grid preconditioner: convergence

For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

(
(I − πM̃)v

)T M̃
(
(I − πM̃)v

)
((I − πA)v)T A((I − πA)v)

= sup
v

vT M̃(I − πM̃)v
vT Av

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

• (I − πM̃)P = P − P(PT M̃P)−1PT M̃P = 0 ⇒ (I − πM̃)(I − πA) = I − πM̃

20 / 58

Two-grid preconditioner: convergence
For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

(
(I − πM̃)v

)T M̃
(
(I − πM̃)v

)
((I − πA)v)T A((I − πA)v)

= sup
v

vT M̃(I − πM̃)v
vT Av

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

• (I − πM̃)P = P − P(PT M̃P)−1PT M̃P = 0 ⇒ (I − πM̃)(I − πA) = I − πM̃

KTG = sup
v=(I−πA)v

(
(I − πM̃)v

)T M̃
(
(I − πM̃)v

)
vT Av ≤ sup

v

vT M̃(I − πM̃)v
vT Av ,

20 / 58

Two-grid preconditioner: convergence
For the two-grid case we have J = I, M = M a smoother for A and D = B = PT AP .
We apply the previous theorem and find:

KTG = sup
v

inf
w : v=(I−πA)w

wT M̃w
vT Av

= sup
v

(
(I − πM̃)v

)T M̃
(
(I − πM̃)v

)
((I − πA)v)T A((I − πA)v)

= sup
v

vT M̃(I − πM̃)v
vT Av

• We introduce πM̃ = PM̃−1
c PT M̃ = P(PT M̃P)−1PT M̃,

• (I − πM̃)P = P − P(PT M̃P)−1PT M̃P = 0 ⇒ (I − πM̃)(I − πA) = I − πM̃
• vT Av ≥ vT A(I − πA)v and thus the opposite inequality holds:

sup
v

vT M̃(I − πM̃)v
vT Av

≤ sup
v

vT M̃(I − πM̃)v
vT A(I − πA)v

= KTG .

20 / 58

Two-grid preconditioner: convergence

Briefcase The first take-home message
The Theorem we have just seen shows that

ρ(ETG) = 1− 1

KTG
, KTG =

sup

v

vT M̃(I − πM̃)v
vT Av ,

sup
v

‖(I − PR)v‖2
M̃

‖v‖2A
,

πM̃ = P(PT M̃P)−1PT M̃,

for M̃ = MT (M + MT − A)−1M, and R = (PT M̃P)−1PT M̃.

EYE Observe that RP is the identity on the coarse space.

21 / 58

Two-grid preconditioner: convergence

Working with the symmetrized smoother M̃ is useful for proving estimates, but not so
much for estimating constants.

Corollary
Let M̃ be spectrally equivalent to an SPD matrix D, i.e., such that

∃ c1, c2 > 0 : c1vT Dv ≤ vTM̃v ≤ c2vT Dv ∀v .

Then, with πD = P(PT DP)−1PT D the following estimate for KTG holds

c1 sup
v

vT D(I − πD)v
vT Av ≤ KTG ≤ c2 sup

v

vT D(I − πD)v
vT Av .

21 / 58

Two-grid preconditioner: convergence

Example
If M is SPD and such that M − A is positive semidefinite, M̃ = M(2M − A)−1M is
spectrally equivalent to M such that

1

2
vT Mv ≤ vT M̃v ≤ vT Mv,

thus c1 = 1/2, and c2 = 1.

21 / 58

Two-grid preconditioner: convergence

Example
If M is the Gauss-Seidel iteration matrix, i.e., M = D − L, then M̃ = (D − U)D−1(D − L)
is spectrally equivalent to D with

1

4
vT Mv ≤ vT M̃v ≤ κ2vT Mv,

thus c1 = 1/4, and c2 = κ the maximum number of nonzero entries of A per row.

We know how to estimate these quantities for both Jacobi and Gauss–Seidel type methods.

21 / 58

Increasing the number of levels
We have described the two-grid method as

B̂ =

[
M O

PT A I

] [
(MT + M − A)−1 O

O Ac

] [
MT AP
O I

]
, D = Ac = PT AP ,

• For the following discussion is better to represent it by having the block triangular
matrix with unit diagonal,

• Assume that we have ` ≥ 1 levels and define
• A0 = A,
• Pk : Vk+1 ≡ Rnk+1 7→ Vk ≡ Rnk interpolation matrix PVk+1 ⊂ Vk ,
• Ak+1 = PT

k AkPk coarse-grid k + 1 matrix,
• Mk a convergent smoother for Ak , i.e., ‖I − A1/2

k M−1
k A1/2

k ‖ < 1.
• With this ingredient we define a MG as a recursive 2× 2 block-factorization

preconditioner B−1
k = [I,Pk]B

−1
k [I,Pk]

T .

22 / 58

Increasing the number of levels
We have described the two-grid method as

B̂ =

[
I O

PT AM−1 I

] [
M(MT + M − A)−1MT O

O Ac

] [
I M−T AP
O I

]
, D = Ac = PT AP ,

• For the following discussion is better to represent it by having the block triangular
matrix with unit diagonal,

• Assume that we have ` ≥ 1 levels and define
• A0 = A,
• Pk : Vk+1 ≡ Rnk+1 7→ Vk ≡ Rnk interpolation matrix PVk+1 ⊂ Vk ,
• Ak+1 = PT

k AkPk coarse-grid k + 1 matrix,
• Mk a convergent smoother for Ak , i.e., ‖I − A1/2

k M−1
k A1/2

k ‖ < 1.
• With this ingredient we define a MG as a recursive 2× 2 block-factorization

preconditioner B−1
k = [I,Pk]B

−1
k [I,Pk]

T .

22 / 58

Increasing the number of levels
We have described the two-grid method as

B̂ =

[
I O

PT A I

] [
(MT + M − A)−1MT O

O Ac

] [
I AP
O I

]
, D = Ac = PT AP ,

• For the following discussion is better to represent it by having the block triangular
matrix with unit diagonal,

• Assume that we have ` ≥ 1 levels and define
• A0 = A,
• Pk : Vk+1 ≡ Rnk+1 7→ Vk ≡ Rnk interpolation matrix PVk+1 ⊂ Vk ,
• Ak+1 = PT

k AkPk coarse-grid k + 1 matrix,
• Mk a convergent smoother for Ak , i.e., ‖I − A1/2

k M−1
k A1/2

k ‖ < 1.

• With this ingredient we define a MG as a recursive 2× 2 block-factorization
preconditioner B−1

k = [I,Pk]B
−1
k [I,Pk]

T .

22 / 58

Increasing the number of levels
We have described the two-grid method as

Bk =

[
I O

PT
k AkM−1

k I

] [
Mk(MT

k + Mk − Ak)
−1MT

k O
O Bk+1

] [
I M−T

k AkPk
O I

]

• For the following discussion is better to represent it by having the block triangular
matrix with unit diagonal,

• Assume that we have ` ≥ 1 levels and define
• A0 = A,
• Pk : Vk+1 ≡ Rnk+1 7→ Vk ≡ Rnk interpolation matrix PVk+1 ⊂ Vk ,
• Ak+1 = PT

k AkPk coarse-grid k + 1 matrix,
• Mk a convergent smoother for Ak , i.e., ‖I − A1/2

k M−1
k A1/2

k ‖ < 1.
• With this ingredient we define a MG as a recursive 2× 2 block-factorization

preconditioner B−1
k = [I,Pk]B

−1
k [I,Pk]

T .

22 / 58

Increasing the number of levels

At the coarsest level set B` = A`, the action of B−1
k r is given by;

Solve for Mkxk = r; /* Presmooth */
Compute the residual d = r − Akxk = (I − AkM−1

k)r;
Compute xk+1 = B−1

k+1PT
k (I − AkM−1

k)r; /* Coarse grid correction */
Update xk = xk + Pxk+1 = M−1

k r + PkB−1
k+1PT

k (I − AkM−1
k)r;

Solve for MT
k y = r − Akxk ; /* Postsmooth */

Set B−1
k r = xk + y.

Algorithm 4: Generic MG Algorithm

That is:

23 / 58

Increasing the number of levels

At the coarsest level set B` = A`, the action of B−1
k r is given by;

Solve for Mkxk = r; /* Presmooth */
Compute the residual d = r − Akxk = (I − AkM−1

k)r;
Compute xk+1 = B−1

k+1PT
k (I − AkM−1

k)r; /* Coarse grid correction */
Update xk = xk + Pxk+1 = M−1

k r + PkB−1
k+1PT

k (I − AkM−1
k)r;

Solve for MT
k y = r − Akxk ; /* Postsmooth */

Set B−1
k r = xk + y.

Algorithm 5: Generic MG Algorithm
That is:

B−1
k r = (M−1

k + M−T
k − M−1

k AkM−T
k + (I − M−T

k Ak)PkB−1
k+1P

T
k (I − AkM−1

k))r

23 / 58

Increasing the number of levels
At the coarsest level set B` = A`, the action of B−1

k r is given by;
Solve for Mkxk = r; /* Presmooth */
Compute the residual d = r − Akxk = (I − AkM−1

k)r;
Compute xk+1 = B−1

k+1PT
k (I − AkM−1

k)r; /* Coarse grid correction */
Update xk = xk + Pxk+1 = M−1

k r + PkB−1
k+1PT

k (I − AkM−1
k)r;

Solve for MT
k y = r − Akxk ; /* Postsmooth */

Set B−1
k r = xk + y.

Algorithm 6: Generic MG Algorithm
That is:

B−1
k = M−1

k + (I − M−T
k Ak)PkB−1

k+1P
T
k (I − AkM−1

k),

for Mk the symmetrized smoother and B` = A`.

Definition
We call this method the symmetric V (1, 1)-cycle Multigrid.

23 / 58

Increasing the number of levels
At the coarsest level set B` = A`, the action of B−1

k r is given by;
Solve for Mkxk = r; /* Presmooth */
Compute the residual d = r − Akxk = (I − AkM−1

k)r;
Compute xk+1 = B−1

k+1PT
k (I − AkM−1

k)r; /* Coarse grid correction */
Update xk = xk + Pxk+1 = M−1

k r + PkB−1
k+1PT

k (I − AkM−1
k)r;

Solve for MT
k y = r − Akxk ; /* Postsmooth */

Set B−1
k r = xk + y.

Algorithm 7: Generic MG Algorithm
That is:

B−1
k = M−1

k + (I − M−T
k Ak)PkB−1

k+1P
T
k (I − AkM−1

k),

for Mk the symmetrized smoother and B` = A`.

Definition
We call this method the symmetric V (1, 1)-cycle Multigrid.

23 / 58

Sufficient condition for convergence
Proposition
Under the assumption that the smoothers Mk are convergent in the Ak-norm, the
symmetric V (1, 1)-cycle Multigrid preconditioner Bk is such that Bk − Ak is symmetric
positive semidefinite.

This means that Bk is a convergent stationary solver already under very non-restrictive
hypothesis.
We still don’t know anything about the convergence velocity of the method.
We still don’t know how it behaves when employed as preconditioner for the Conjugate
Gradient algorithm. Can we discover under which hypothesis we get a strong cluster
for the eigenvalues?

LIGHTBULB Idea
We have just rebuilt the construction without investigating the “high” and “low frequency”
ideas. This will be our next target.

24 / 58

Sufficient condition for convergence
Proposition
Under the assumption that the smoothers Mk are convergent in the Ak-norm, the
symmetric V (1, 1)-cycle Multigrid preconditioner Bk is such that Bk − Ak is symmetric
positive semidefinite.

This means that Bk is a convergent stationary solver already under very non-restrictive
hypothesis.

We still don’t know anything about the convergence velocity of the method.
We still don’t know how it behaves when employed as preconditioner for the Conjugate
Gradient algorithm. Can we discover under which hypothesis we get a strong cluster
for the eigenvalues?

LIGHTBULB Idea
We have just rebuilt the construction without investigating the “high” and “low frequency”
ideas. This will be our next target.

24 / 58

Sufficient condition for convergence
Proposition
Under the assumption that the smoothers Mk are convergent in the Ak-norm, the
symmetric V (1, 1)-cycle Multigrid preconditioner Bk is such that Bk − Ak is symmetric
positive semidefinite.

This means that Bk is a convergent stationary solver already under very non-restrictive
hypothesis.
We still don’t know anything about the convergence velocity of the method.

We still don’t know how it behaves when employed as preconditioner for the Conjugate
Gradient algorithm. Can we discover under which hypothesis we get a strong cluster
for the eigenvalues?

LIGHTBULB Idea
We have just rebuilt the construction without investigating the “high” and “low frequency”
ideas. This will be our next target.

24 / 58

Sufficient condition for convergence
Proposition
Under the assumption that the smoothers Mk are convergent in the Ak-norm, the
symmetric V (1, 1)-cycle Multigrid preconditioner Bk is such that Bk − Ak is symmetric
positive semidefinite.

This means that Bk is a convergent stationary solver already under very non-restrictive
hypothesis.
We still don’t know anything about the convergence velocity of the method.
We still don’t know how it behaves when employed as preconditioner for the Conjugate
Gradient algorithm. Can we discover under which hypothesis we get a strong cluster
for the eigenvalues?

LIGHTBULB Idea
We have just rebuilt the construction without investigating the “high” and “low frequency”
ideas. This will be our next target.

24 / 58

Sufficient condition for convergence
Proposition
Under the assumption that the smoothers Mk are convergent in the Ak-norm, the
symmetric V (1, 1)-cycle Multigrid preconditioner Bk is such that Bk − Ak is symmetric
positive semidefinite.

This means that Bk is a convergent stationary solver already under very non-restrictive
hypothesis.
We still don’t know anything about the convergence velocity of the method.
We still don’t know how it behaves when employed as preconditioner for the Conjugate
Gradient algorithm. Can we discover under which hypothesis we get a strong cluster
for the eigenvalues?

LIGHTBULB Idea
We have just rebuilt the construction without investigating the “high” and “low frequency”
ideas. This will be our next target.

24 / 58

Stable decompositions
Let V k = Range(P0, . . . ,Pk−1) be the kth-level coarse space viewed as a subspace of the
fine-grid vector space V 0 = V .

Stability
We say that a decomposition

v =
∑

k
vf

k vf
k ∈ V k ,

is stable if there exists a level independent constant σ > 0 such that∑
k
(vf

k)
T Akvf

k ≤ σvT Av.

Complementary space
For a space Vj we define the subspace V f

j ⊂ Vj complementary to the coarse space PjVj+1.

25 / 58

Stable decompositions
Let V k = Range(P0, . . . ,Pk−1) be the kth-level coarse space viewed as a subspace of the
fine-grid vector space V 0 = V .

Stability
We say that a decomposition

v =
∑

k
vf

k vf
k ∈ V k ,

is stable if there exists a level independent constant σ > 0 such that∑
k
(vf

k)
T Akvf

k ≤ σvT Av.

Complementary space
For a space Vj we define the subspace V f

j ⊂ Vj complementary to the coarse space PjVj+1.
25 / 58

Choosing the complementary space
LIGHTBULBThe idea from the simple Poisson case
We select V f

j so that the symmetrized smoother M j is efficient when restricted to V f
j , i.e.,∑

k
(vf

k)
T Mkvf

k ≤ σvT Av

Vector decomposition

vj = vf
j + Pjvj+1 = [I,Pk]

[
vf

k
vk+1

]
with vf

j ∈ V f
j ⊂ Vj , vj+1 ∈ Vj+1, j = k, k + 1, . . . , `− 1.

B−1
k = [I,Pk]B

−1
k [I,Pk]

T , I = GGT = (B1/2
k [I,Pk]B

−1/2
k)(B1/2

k [I,Pk]B
−1/2
k)T ,

⇒ ‖G‖2 < 1 and
[

vf
k

vk+1

]T
[I,Pk]Bk [I,Pk]

T
[

vf
k

vk+1

]
≤

[
vf

k
vk+1

]T
Bk

[
vf

k
vk+1

]
.

26 / 58

Choosing the complementary space
LIGHTBULBThe idea from the simple Poisson case
We select V f

j so that the symmetrized smoother M j is efficient when restricted to V f
j , i.e.,∑

k
(vf

k)
T Mkvf

k ≤ σvT Av ⇒ symmetrized smoother is efficient on V f
j .

Vector decomposition

vj = vf
j + Pjvj+1 = [I,Pk]

[
vf

k
vk+1

]
with vf

j ∈ V f
j ⊂ Vj , vj+1 ∈ Vj+1, j = k, k + 1, . . . , `− 1.

B−1
k = [I,Pk]B

−1
k [I,Pk]

T , I = GGT = (B1/2
k [I,Pk]B

−1/2
k)(B1/2

k [I,Pk]B
−1/2
k)T ,

⇒ ‖G‖2 < 1 and
[

vf
k

vk+1

]T
[I,Pk]Bk [I,Pk]

T
[

vf
k

vk+1

]
≤

[
vf

k
vk+1

]T
Bk

[
vf

k
vk+1

]
.

26 / 58

Choosing the complementary space
LIGHTBULBThe idea from the simple Poisson case
We select V f

j so that the symmetrized smoother M j is efficient when restricted to V f
j , i.e.,∑

k
(vf

k)
T Mkvf

k ≤ σvT Av ⇒ symmetrized smoother is efficient on V f
j .

Vector decomposition

vj = vf
j + Pjvj+1 = [I,Pk]

[
vf

k
vk+1

]
with vf

j ∈ V f
j ⊂ Vj , vj+1 ∈ Vj+1, j = k, k + 1, . . . , `− 1.

B−1
k = [I,Pk]B

−1
k [I,Pk]

T , I = GGT = (B1/2
k [I,Pk]B

−1/2
k)(B1/2

k [I,Pk]B
−1/2
k)T ,

⇒ ‖G‖2 < 1 and
[

vf
k

vk+1

]T
[I,Pk]Bk [I,Pk]

T
[

vf
k

vk+1

]
≤

[
vf

k
vk+1

]T
Bk

[
vf

k
vk+1

]
.

26 / 58

Choosing the complementary space
LIGHTBULBThe idea from the simple Poisson case
We select V f

j so that the symmetrized smoother M j is efficient when restricted to V f
j , i.e.,∑

k
(vf

k)
T Mkvf

k ≤ σvT Av ⇒ symmetrized smoother is efficient on V f
j .

Vector decomposition

vj = vf
j + Pjvj+1 = [I,Pk]

[
vf

k
vk+1

]
with vf

j ∈ V f
j ⊂ Vj , vj+1 ∈ Vj+1, j = k, k + 1, . . . , `− 1.

B−1
k = [I,Pk]B

−1
k [I,Pk]

T , I = GGT = (B1/2
k [I,Pk]B

−1/2
k)(B1/2

k [I,Pk]B
−1/2
k)T ,

⇒ ‖G‖2 < 1 and
[

vf
k

vk+1

]T
[I,Pk]Bk [I,Pk]

T
[

vf
k

vk+1

]
≤

[
vf

k
vk+1

]T
Bk

[
vf

k
vk+1

]
.

26 / 58

Choosing the complementary space
By using the definition of Bk we can estimate

0 ≤vT
k (Bk − Ak)vk

≤
`−1∑
j=k

[(
MT

j vf
j + AjPjvj+1

)T
(Mj + MT

j − Aj)
−1

(
MT

j vf
j + AjPjvj+1

)]
+ vT

` A`v` − vT
k Akvk .

If we select the decomposition for which vj = vf
j + Pjvj+1

1.
∑
j≥k

(vf
j)

T Mvf
j ≤ σvT

k Akvk ,

2.
∑
j≥k

vT
j+1PT

j Aj(Mj + MT
j − Aj)

−1AjPjvj+1 ≤ µvT
k AkvT

k ,

3. vT
` A`v` ≤ σcvT

k Akvk .

27 / 58

Choosing the complementary space
By using the definition of Bk we can estimate

0 ≤vT
k (Bk − Ak)vk

≤
`−1∑
j=k

[(
MT

j vf
j + AjPjvj+1

)T
(Mj + MT

j − Aj)
−1

(
MT

j vf
j + AjPjvj+1

)]
+ vT

` A`v` − vT
k Akvk .

If we select the decomposition for which vj = vf
j + Pjvj+1

1.
∑
j≥k

(vf
j)

T Mvf
j ≤ σvT

k Akvk ,

2.
∑
j≥k

vT
j+1PT

j Aj(Mj + MT
j − Aj)

−1AjPjvj+1 ≤ µvT
k AkvT

k ,

3. vT
` A`v` ≤ σcvT

k Akvk .

27 / 58

Choosing the complementary space
By using the definition of Bk we can estimate

0 ≤vT
k (Bk − Ak)vk

≤
`−1∑
j=k

[(
MT

j vf
j + AjPjvj+1

)T
(Mj + MT

j − Aj)
−1

(
MT

j vf
j + AjPjvj+1

)]
+ vT

` A`v` − vT
k Akvk .

If we select the decomposition for which vj = vf
j + Pjvj+1

1.
∑
j≥k

(vf
j)

T Mvf
j ≤ σvT

k Akvk ,

2.
∑
j≥k

vT
j+1PT

j Aj(Mj + MT
j − Aj)

−1AjPjvj+1 ≤ µvT
k AkvT

k ,

3. vT
` A`v` ≤ σcvT

k Akvk .

27 / 58

Choosing the complementary space
By using the definition of Bk we can estimate

0 ≤vT
k (Bk − Ak)vk

≤
`−1∑
j=k

[(
MT

j vf
j + AjPjvj+1

)T
(Mj + MT

j − Aj)
−1

(
MT

j vf
j + AjPjvj+1

)]
+ vT

` A`v` − vT
k Akvk .

If we select the decomposition for which vj = vf
j + Pjvj+1

1.
∑
j≥k

(vf
j)

T Mvf
j ≤ σvT

k Akvk ,

2.
∑
j≥k

vT
j+1PT

j Aj(Mj + MT
j − Aj)

−1AjPjvj+1 ≤ µvT
k AkvT

k ,

3. vT
` A`v` ≤ σcvT

k Akvk .
27 / 58

Choosing the complementary space
By using the definition of Bk we can estimate

0 ≤vT
k (Bk − Ak)vk

≤
`−1∑
j=k

[(
MT

j vf
j + AjPjvj+1

)T
(Mj + MT

j − Aj)
−1

(
MT

j vf
j + AjPjvj+1

)]
+ vT

` A`v` − vT
k Akvk ≤ (σc + 2(σ + µ)− 1)vT

k Akvk .

If we select the decomposition for which vj = vf
j + Pjvj+1

1.
∑
j≥k

(vf
j)

T Mvf
j ≤ σvT

k Akvk ,

2.
∑
j≥k

vT
j+1PT

j Aj(Mj + MT
j − Aj)

−1AjPjvj+1 ≤ µvT
k AkvT

k ,

3. vT
` A`v` ≤ σcvT

k Akvk .
27 / 58

Theorem for the optimal choice
Theorem (Vassilevski 2008, Theorem 5.7)
Given Aj -convergent smoother Mj , j = 0, . . . , `− 1 for the V (1, 1)-cycle MG preconditioner (with
B = B0 and A = A0). If any fine-grid vector v = v0 allows for a decomposition of the form
vf

j = vj − Pjvj+1, j = 0, 1, . . . , `− 1, such that

A1 Stable decomposition:
∑

j(vf
j)

T Mkvf
j ≤ σvT Av,

A2 Smoother scaling: (1 + δ)vT
j Avj ≤ vT

j (MT
j + Mj)vj = 2vT

j Mjvj ,

A3 Stable coarse component: vT
` A`v` ≤ σcvT Av,

A4 Efficiency of the smoothers on the components of AjPjvj+1 so that∑
j

vT
j+1PT

j Aj(Mj + MT
j − Aj)

−1AjPjvj+1 ≤ µvT AvT .

Then, the MG preconditioner B is uniformly spectrally equivalent to A:
vT Av ≤ vT Bv ≤ (σc + 2(σ + µ)− 1)vT Av.

28 / 58

Where are we now?
1. We have now obtained an analogous ot first Convergence theorem we have seen that

uses only the matrix properties.

2. We now need to compute a stable decomposition for given a matrix A,
3. Equivalently, finding matrices M0 and a way of building P for which the assumptions

A1-A4 hold.

A comes from a FEM
discretization of a PDE
and we can use Sobolev
space and grid properties

to attain stable
decompositions.

We are at a crossroad

We forget about the source
of A and try to build a

black-box approach that
enforces the needed

condition.

29 / 58

Where are we now?
1. We have now obtained an analogous ot first Convergence theorem we have seen that

uses only the matrix properties.
2. We now need to compute a stable decomposition for given a matrix A,

3. Equivalently, finding matrices M0 and a way of building P for which the assumptions
A1-A4 hold.

A comes from a FEM
discretization of a PDE
and we can use Sobolev
space and grid properties

to attain stable
decompositions.

We are at a crossroad

We forget about the source
of A and try to build a

black-box approach that
enforces the needed

condition.

29 / 58

Where are we now?
1. We have now obtained an analogous ot first Convergence theorem we have seen that

uses only the matrix properties.
2. We now need to compute a stable decomposition for given a matrix A,
3. Equivalently, finding matrices M0 and a way of building P for which the assumptions

A1-A4 hold.

A comes from a FEM
discretization of a PDE
and we can use Sobolev
space and grid properties

to attain stable
decompositions.

We are at a crossroad

We forget about the source
of A and try to build a

black-box approach that
enforces the needed

condition.

29 / 58

Where are we now?
1. We have now obtained an analogous ot first Convergence theorem we have seen that

uses only the matrix properties.
2. We now need to compute a stable decomposition for given a matrix A,
3. Equivalently, finding matrices M0 and a way of building P for which the assumptions

A1-A4 hold.

A comes from a FEM
discretization of a PDE
and we can use Sobolev
space and grid properties

to attain stable
decompositions.

We are at a crossroad

We forget about the source
of A and try to build a

black-box approach that
enforces the needed

condition.

29 / 58

The algebraic idea

Given Matrix A ∈ Rn×n SPD
Wanted Iterative method B to precondition the CG

method:
• Hierarchy of systems

Alx=bl , l = 0, . . . , `

• Transfer operators:
P l

l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother: “High frequencies”

Ml : Rnl → Rnl

Prolongator: “Low frequencies”

Pl : Rnl → Rnl+1

Complementarity of Smoother and Prolongator

30 / 58

The algebraic idea

Given Matrix A ∈ Rn×n SPD
Wanted Iterative method B to precondition the CG

method:
• Hierarchy of systems

Alx=bl , l = 0, . . . , `

• Transfer operators:
P l

l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother: “High frequencies”

Ml : Rnl → Rnl

Prolongator: “Low frequencies”

Pl : Rnl → Rnl+1

Complementarity of Smoother and Prolongator

30 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
and denote by Rnc the coarse space we are targeting.
• Let {δic} be the basis of unit coordinate vectors in Rnc ,

• Decompose v =

[
vf
0

]
+ Pvc , then

KTG = sup
v

vT M̃(I − πM̃)v
vT Av = sup

v

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
vT Av

31 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
and denote by Rnc the coarse space we are targeting.
• Let {δic} be the basis of unit coordinate vectors in Rnc ,
⇒ ψic = Pδic , ic = 1, . . . , nc is a basis for the range of πM̃ : πM̃ψic = δic .

• Decompose v =

[
vf
0

]
+ Pvc , then

KTG = sup
v

vT M̃(I − πM̃)v
vT Av = sup

v

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
vT Av

31 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
and denote by Rnc the coarse space we are targeting.
• Let {δic} be the basis of unit coordinate vectors in Rnc ,

• Decompose v =

[
vf
0

]
+ Pvc , then

KTG = sup
v

vT M̃(I − πM̃)v
vT Av = sup

v

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
vT Av

31 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
and denote by Rnc the coarse space we are targeting.
• Let {δic} be the basis of unit coordinate vectors in Rnc ,
• Decompose v =

[
vf
0

]
+ Pvc , then

KTG = sup
v

vT M̃(I − πM̃)v
vT Av = sup

v

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
vT Av

= sup
vf

sup
vc

sup
t∈R

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
([

vf
0

]
+ tPvc

)T
A
([

vf
0

]
+ tPvc

)
31 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
and denote by Rnc the coarse space we are targeting.
• Let {δic} be the basis of unit coordinate vectors in Rnc ,
• Decompose v =

[
vf
0

]
+ Pvc , then

KTG = sup
v

vT M̃(I − πM̃)v
vT Av = sup

v

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
vT Av

= sup
vf

sup
vc

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
[
vf
0

]T
A
[
vf
0

]
−

vf

0

T

APvc

2

/vT
c PT APvc

31 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
and denote by Rnc the coarse space we are targeting.
• Let {δic} be the basis of unit coordinate vectors in Rnc ,
• Decompose v =

[
vf
0

]
+ Pvc , then

KTG = sup
v

vT M̃(I − πM̃)v
vT Av = sup

v

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
vT Av

= sup
vf

sup
vc

[
vf
0

]T
M̃(I − πM̃)

[
vf
0

]
[
vf
0

]T
A
[
vf
0

]
−

vf

0

T

APvc

2

/vT
c PT APvc

31 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
and denote by Rnc the coarse space we are targeting.
• Let {δic} be the basis of unit coordinate vectors in Rnc ,

• Decompose v =

[
vf
0

]
+ Pvc , then

KTG ≤ sup
vf

sup
vc

[
vf
0

]T
M̃

[
vf
0

]
[
vf
0

]T
A
[
vf
0

]
−

vf

0

T

APvc

2

/vT
c PT APvc

31 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
and denote by Rnc the coarse space we are targeting.
• Let {δic} be the basis of unit coordinate vectors in Rnc ,

• Decompose v =

[
vf
0

]
+ Pvc , then

KTG ≤ sup
vf

sup
vc

[
vf
0

]T
M̃

[
vf
0

]
[
vf
0

]T
A
[
vf
0

]
−

[
vf
0

]T
APvc︸ ︷︷ ︸

=0 ∀ vc and vf

2

/vT
c PT APvc

31 / 58

Optimal prolongation

Let us assume that P has the form:

P =

[
W
I

]
and to optimize the bound on KTG we want[

vf
0

]T
APvc = 0 ∀ vc and vf

32 / 58

Optimal prolongation

Let us assume that P has the form:

P =

[
W
I

]
and to optimize the bound on KTG we want[

vf
0

]T [
Aff Afc
Acf Acc

] [
W
I

]
vc = 0 ∀ vc and vf

⇒ Select W such that Aff W + Afc = 0

32 / 58

Optimal prolongation
Let us assume that P has the form:

P =

[
W
I

]
=

[
−A−1

ff Afc
I

]
A =

[
Aff Afc
Acf Acc

]
and to optimize the bound on KTG we want[

vf
0

]T [
Aff Afc
Acf Acc

] [
W
I

]
vc = 0 ∀ vc and vf

Since it gives us

KTG ≤ sup
vf

[
vf
0

]T
M̃
[
vf
0

]
[
vf
0

]T
A
[
vf
0

] = sup
vf

vT
f M̃ff vf

vT
f Aff

=
1

λmin(M̃−1
ff Aff)

.

32 / 58

Selecting c and f nodes

Briefcase The second take-home message
A reasonable guideline to construct P is to find for any coarse unit vector δic in Rnc , an
approximate solution to

Aff wic = −Afcδic

and build the icth column of P as ψic = [wT
ic , δ

T
ic]

T .

• We cannot solve exactly the systems for the w both for sparsity and cost reasons,
• We are now left with the problem of finding the coarse nodes.

Here begins the fun
What differentiates the available AMG algorithms is the procedure for identifying the coarse
space through a combination of Magic heuristics, Hammer brute force and Brain clever guesses.

33 / 58

Selecting c and f nodes

Briefcase The second take-home message
A reasonable guideline to construct P is to find for any coarse unit vector δic in Rnc , an
approximate solution to

Aff wic = −Afcδic

and build the icth column of P as ψic = [wT
ic , δ

T
ic]

T .

• We cannot solve exactly the systems for the w both for sparsity and cost reasons,
• We are now left with the problem of finding the coarse nodes.

Here begins the fun
What differentiates the available AMG algorithms is the procedure for identifying the coarse
space through a combination of Magic heuristics, Hammer brute force and Brain clever guesses.

33 / 58

Ruge-Stuben Splitting Algorithm

BrainAssumption:
Geometrically smooth functions are in the near null
space of A.

Wlog assume A s.t. λmax(A) = 1, and let e be a small
normalized eigenmode of A, i.e.,

Ae = λe, ‖e‖ = 1, λ � 1

Thus: eT Ae =
∑

i<j(−ai,j)(ei − ej)
2 � 1.

MagicHeuristic
Smooth error varies slowly in the direction of relatively
large (negative) coefficients of the matrix.

34 / 58

Ruge-Stuben Splitting Algorithm

BrainAssumption:
Geometrically smooth functions are in the near null
space of A.

Wlog assume A s.t. λmax(A) = 1, and let e be a small
normalized eigenmode of A, i.e.,

Ae = λe, ‖e‖ = 1, λ � 1

Thus: eT Ae =
∑

i<j(−ai,j)(ei − ej)
2 � 1.

MagicHeuristic
Smooth error varies slowly in the direction of relatively
large (negative) coefficients of the matrix.

34 / 58

Ruge-Stuben Splitting Algorithm

Strong dependence (Ruge and Stüben 1987)
For a chosen tolerance θ ∈ (0, 1], we say that a dof i is
strongly influenced by j 6= i if

−ai,j ≥ max
k 6=i

(−ak,i).

Define:
• Wi = {j ∈ Ωi : j is weakly connected to j},
• Si = {j ∈ Ωi : j is strongly connected to j},
• Ci set of coarse points that are allowed to

interpolate i .

The (i , ic) entry of P is given by

−

ai,ic +
∑
iχ∈Si

ai,iχ
aiχ,ic∑

jc∈Ci

aiχ,jc

aii +

∑
iχ∈Wi

ai,iχ

34 / 58

Ruge-Stuben Splitting Algorithm

Strong dependence (Ruge and Stüben 1987)
For a chosen tolerance θ ∈ (0, 1], we say that a dof i is
strongly influenced by j 6= i if

−ai,j ≥ max
k 6=i

(−ak,i).

Define:
• Wi = {j ∈ Ωi : j is weakly connected to j},
• Si = {j ∈ Ωi : j is strongly connected to j},
• Ci set of coarse points that are allowed to

interpolate i .

Without delving into the details,
the expression for the interpolation
can be obtained by

1. Defining a strength matrix, As ,
obtained deleting the weak
connections in A,

2. First pass choosing an
independent set of fine grid
points based on the graph
of As ,

3. Second pass choosing
additional points (if needed) to
satisfy interpolation
requirements.

34 / 58

Ruge-Stuben Splitting Algorithm

To see the algorithm at work, we test it by means of
the PyAMG library (Bell, Olson, and Schroder 2022)
on a small problem, specifically we use it to highlight
the division in Coarse and Fine dofs of a given grid.

You can run the example in GOOGLE Google Colab by using
the GithubGitHub Gist https://bit.ly/3MToLtN.

34 / 58

https://bit.ly/3MToLtN

Coarsening via aggregation
LIGHTBULBAggregation idea
The aggregation idea is using an algorithm that splits the set of vertices of the graph of A
or of a re-weighted version of A (sometimes called filtered matrix) as a union of
non-overlapping subsets – aggregates – each of which forms a connected sub-graph.

{1, . . . , n} =

J⋃
j=1

Aj , Ai
⋂

Aj = ∅, i 6= j,

The FEM case
For a FEM discretization of PDE on a set Ω this
corresponds to a partition of the domain:

Ω =

J⋃
j=1

Ωj , Ωi
⋂

Ωj = ∅, i 6= j
Github-GOOGLE https://bit.ly/3vnAV82

35 / 58

https://bit.ly/3vnAV82

Coarsening via aggregation
LIGHTBULBAggregation idea
The aggregation idea is using an algorithm that splits the set of vertices of the graph of A
or of a re-weighted version of A (sometimes called filtered matrix) as a union of
non-overlapping subsets – aggregates – each of which forms a connected sub-graph.

{1, . . . , n} =

J⋃
j=1

Aj , Ai
⋂

Aj = ∅, i 6= j,

The FEM case
For a FEM discretization of PDE on a set Ω this
corresponds to a partition of the domain:

Ω =

J⋃
j=1

Ωj , Ωi
⋂

Ωj = ∅, i 6= j
Github-GOOGLE https://bit.ly/3vnAV82

35 / 58

https://bit.ly/3vnAV82

Coarsening via aggregation
LIGHTBULBAggregation idea
The aggregation idea is using an algorithm that splits the set of vertices of the graph of A
or of a re-weighted version of A (sometimes called filtered matrix) as a union of
non-overlapping subsets – aggregates – each of which forms a connected sub-graph.

{1, . . . , n} =

J⋃
j=1

Aj , Ai
⋂

Aj = ∅, i 6= j,

The FEM case
For a FEM discretization of PDE on a set Ω this
corresponds to a partition of the domain:

Ω =

J⋃
j=1

Ωj , Ωi
⋂

Ωj = ∅, i 6= j
Github-GOOGLE https://bit.ly/3vnAV82

35 / 58

https://bit.ly/3vnAV82

Coarsening via aggregation
Having selected aggregates

{1, . . . , n} =

J⋃
j=1

Aj , Ai
⋂

Aj = ∅, i 6= j,

The prolongator operator is then given simply by posing

P : Rnc → Rn, (Px)i 7→ xj , i ∈ Aj .

• Since the aggregates are mutually disjoint ∀ i ∈ {1, . . . , n} exist only one index
j ∈ {1, . . . , nc} such that i ∈ Cj .

LIGHTBULB “the jth component of the vector x ∈ Rm, m = |Aj | will be mapped onto all
components of the vector y ∈ Rn indices of which are in Aj”

• P represents a piece-wise constant interpolation operator.
36 / 58

Coarsening via aggregation
Usually piece-wise constant is not enough…

A = pyamg.gallery.poisson((500, 500), format='csr')
b = np.ones((A.shape[0],1))
standalone_residuals = []
mls = pyamg.smoothed_aggregation_solver(A,

symmetry='hermitian', smooth=None)↪→

standalone_residuals = []
x = mls.solve(b, tol=1e-10, accel=None,

residuals=standalone_residuals)↪→

• We get this Multigrid Hierarchy (that seems
plausible)

• But after 101 iterates we have a residual of
1.8e+02, so we are not converging.

How can we make things better?

37 / 58

Coarsening via aggregation
Usually piece-wise constant is not enough…

A = pyamg.gallery.poisson((500, 500), format='csr')
b = np.ones((A.shape[0],1))
standalone_residuals = []
mls = pyamg.smoothed_aggregation_solver(A,

symmetry='hermitian', smooth=None)↪→

standalone_residuals = []
x = mls.solve(b, tol=1e-10, accel=None,

residuals=standalone_residuals)↪→

• We get this Multigrid Hierarchy (that seems
plausible)

• But after 101 iterates we have a residual of
1.8e+02, so we are not converging.

MultilevelSolver
Number of Levels: 7
Operator Complexity: 1.262
Grid Complexity: 1.188
Coarse Solver: 'pinv'
level unknowns nonzeros
0 250000 1248000 [79.24%]
1 41750 290584 [18.45%]
2 4704 32370 [2.06%]
3 532 3538 [0.22%]
4 70 424 [0.03%]
5 12 58 [0.00%]
6 3 9 [0.00%]

How can we make things better?

37 / 58

Coarsening via aggregation
Usually piece-wise constant is not enough…

A = pyamg.gallery.poisson((500, 500), format='csr')
b = np.ones((A.shape[0],1))
standalone_residuals = []
mls = pyamg.smoothed_aggregation_solver(A,

symmetry='hermitian', smooth=None)↪→

standalone_residuals = []
x = mls.solve(b, tol=1e-10, accel=None,

residuals=standalone_residuals)↪→

• We get this Multigrid Hierarchy (that seems
plausible)

• But after 101 iterates we have a residual of
1.8e+02, so we are not converging.

MultilevelSolver
Number of Levels: 7
Operator Complexity: 1.262
Grid Complexity: 1.188
Coarse Solver: 'pinv'
level unknowns nonzeros
0 250000 1248000 [79.24%]
1 41750 290584 [18.45%]
2 4704 32370 [2.06%]
3 532 3538 [0.22%]
4 70 424 [0.03%]
5 12 58 [0.00%]
6 3 9 [0.00%]

How can we make things better?

37 / 58

Coarsening via aggregation
Usually piece-wise constant is not enough…

A = pyamg.gallery.poisson((500, 500), format='csr')
b = np.ones((A.shape[0],1))
standalone_residuals = []
mls = pyamg.smoothed_aggregation_solver(A,

symmetry='hermitian', smooth=None)↪→

standalone_residuals = []
x = mls.solve(b, tol=1e-10, accel=None,

residuals=standalone_residuals)↪→

• We get this Multigrid Hierarchy (that seems
plausible)

• But after 101 iterates we have a residual of
1.8e+02, so we are not converging.

MultilevelSolver
Number of Levels: 7
Operator Complexity: 1.262
Grid Complexity: 1.188
Coarse Solver: 'pinv'
level unknowns nonzeros
0 250000 1248000 [79.24%]
1 41750 290584 [18.45%]
2 4704 32370 [2.06%]
3 532 3538 [0.22%]
4 70 424 [0.03%]
5 12 58 [0.00%]
6 3 9 [0.00%]

How can we make things better?
37 / 58

Smoothed aggregation (Vaněk, Mandel, and Brezina 1996)

• We could play around to get better aggregates for getting a convergence constant,

Magic Select the weighting in P so that one or more vectors of the near Kernel are preserved
(usually very useful for elasticity problems),

Magic Use a procedure to smooth out the basis function induced by the aggregation
procedure by using the smoother, which is, using few applications of smoothing on the
prolongation matrix:

PS = (I − M−1A)νP , for some ν ≥ 1.

38 / 58

Smoothed aggregation (Vaněk, Mandel, and Brezina 1996)

• We could play around to get better aggregates for getting a convergence constant,
Magic Select the weighting in P so that one or more vectors of the near Kernel are preserved

(usually very useful for elasticity problems),

Magic Use a procedure to smooth out the basis function induced by the aggregation
procedure by using the smoother, which is, using few applications of smoothing on the
prolongation matrix:

PS = (I − M−1A)νP , for some ν ≥ 1.

38 / 58

Smoothed aggregation (Vaněk, Mandel, and Brezina 1996)

• We could play around to get better aggregates for getting a convergence constant,
Magic Select the weighting in P so that one or more vectors of the near Kernel are preserved

(usually very useful for elasticity problems),
Magic Use a procedure to smooth out the basis function induced by the aggregation

procedure by using the smoother, which is, using few applications of smoothing on the
prolongation matrix:

PS = (I − M−1A)νP , for some ν ≥ 1.

38 / 58

Smoothed aggregation (Vaněk, Mandel, and Brezina 1996)

• We could play around to get better aggregates for getting a convergence constant,
Magic Select the weighting in P so that one or more vectors of the near Kernel are preserved

(usually very useful for elasticity problems),
Magic Use a procedure to smooth out the basis function induced by the aggregation

procedure by using the smoother, which is, using few applications of smoothing on the
prolongation matrix:

PS = (I − M−1A)νP , for some ν ≥ 1.

mls = pyamg.smoothed_aggregation_solver(A,symmetry='hermitian',
smooth=('jacobi',{'omega':4/3}))↪→

print(mls)
standalone_residuals_jacobi = []
x = mls.solve(b, tol=1e-10, accel=None, residuals=standalone_residuals_jacobi)

That run for 12 iteration with last residual 8.620525e-09
38 / 58

Smoothed aggregation (Vaněk, Mandel, and Brezina 1996)

Hierarchy for unsmoothed aggregation
MultilevelSolver
Number of Levels: 7
Operator Complexity: 1.262
Grid Complexity: 1.188
Coarse Solver: 'pinv'
level unknowns nonzeros
0 250000 1248000 [79.24%]
1 41750 290584 [18.45%]
2 4704 32370 [2.06%]
3 532 3538 [0.22%]
4 70 424 [0.03%]
5 12 58 [0.00%]
6 3 9 [0.00%]

Hierarchy for smoothed aggregation
MultilevelSolver
Number of Levels: 6
Operator Complexity: 1.337
Grid Complexity: 1.188
Coarse Solver: 'pinv'
level unknowns nonzeros
0 250000 1248000 [74.82%]
1 41750 373416 [22.39%]
2 4704 41554 [2.49%]
3 532 4526 [0.27%]
4 65 509 [0.03%]
5 9 65 [0.00%]

39 / 58

Smoothed aggregation (Vaněk, Mandel, and Brezina 1996)

• Smoothed aggregation produces
hierarchies with more nonzero entries,

• To reduce the fill-in filtering (dropping)
strategies are usually implemented,

Operator Complexity

opc =

∑`−1
l=0 nnz(Al)

nnz(A0)

• AMG is more often used as
preconditioner for the CG algorithm that
as solver.

You can run this example on GOOGLE oogle Colab from Github https://bit.ly/3OHYKPJ.

39 / 58

https://bit.ly/3OHYKPJ

Compatible relaxation (Brandt 2000)

HammerFirst comes the smoother
The approach called compatible relaxation consists in selecting a set of coarse degrees of
freedom based solely on the smoother, the interpolation matrix is constructed later.

From the definition of KTG we have that if we find a matrix J∗ such that
J1 Range(J∗) = Range(I − PR∗), R∗ = (PT M̃P)−1PT M̃

we have the inequality: vJT
∗ M̃J∗v ≤ KTGvT JT AJv

40 / 58

Compatible relaxation (Brandt 2000)

HammerFirst comes the smoother
The approach called compatible relaxation consists in selecting a set of coarse degrees of
freedom based solely on the smoother, the interpolation matrix is constructed later.

From the definition of KTG we have that if we find a matrix J∗ such that
J1 Range(J∗) = Range(I − PR∗), R∗ = (PT M̃P)−1PT M̃

we have the inequality: vJT
∗ M̃J∗v ≤ KTGvT JT AJv

40 / 58

Compatible relaxation (Brandt 2000)

HammerFirst comes the smoother
The approach called compatible relaxation consists in selecting a set of coarse degrees of
freedom based solely on the smoother, the interpolation matrix is constructed later.

From the definition of KTG we have that if we find a matrix J∗ such that
J1 Range(J∗) = Range(I − PR∗), R∗ = (PT M̃P)−1PT M̃

we have the inequality: vJT
∗ M̃J∗v ≤ KTGvT JT AJv

LIGHTBULB Idea
J picks a principal submatrix from A and M̃, the inequality thus means that A has a
principal submatrix that is spectrally equivalent to the same principal submatrix of M̃.

40 / 58

Compatible relaxation (Brandt 2000)

HammerFirst comes the smoother
The approach called compatible relaxation consists in selecting a set of coarse degrees of
freedom based solely on the smoother, the interpolation matrix is constructed later.

From the definition of KTG we have that if we find a matrix J∗ such that
J1 Range(J∗) = Range(I − PR∗), R∗ = (PT M̃P)−1PT M̃

we have the inequality: vJT
∗ M̃J∗v ≤ KTGvT JT AJv

BrainHeuristic
Fix R , then select J such that the constant KCR in

vT JAJv ≤ vT JT M̃Jv ≤ KCRvT JT AJv,

is close to 1.
40 / 58

Compatible relaxation the idea

Let A be ans SPD matrix, M an A-convergent smoother, one can prove that

‖(I − M̃−1A)me‖A ≤ 1√
m + 1

‖e‖M̃ (Smoothing property)

Take a projection on the coarse space Q being M̃-orthogonal satisfying

‖(I − Q)e‖M̃ ≤ δ‖e‖A (Approximation property)

Then for any e = (I − Q)e and any integer m ≥ 1 the following estimate holds

‖(I − M̃−1A)me‖M̃ ≤ δ√
1 + m

‖e‖M̃ .

41 / 58

Compatible relaxation the algorithm
We apply our inequality for a solution of the homogeneous system Ax = 0
Input: e random initial iterate
m = 1;
Compute e0 = (I − Q)e;
Smooth em = (I − M̃−1A)e = (I − M−1A)(I − M−T A)em−1;
if ‖em‖M̃/‖e0‖M̃ is small then

The process has converged, convergence is now fast.;
else

Use em to augment the coarse space, build a new Q and try again.
end
Since

‖(I − M̃−1A)me‖M̃ ≤ δ√
1 + m

‖e‖M̃ ,

an m large enough for which this procedure converge exists.
42 / 58

Compatible relaxation the algorithm
We apply our inequality for a solution of the homogeneous system Ax = 0
Input: e random initial iterate
m = 1;
Compute e0 = (I − Q)e;
Smooth em = (I − M̃−1A)e = (I − M−1A)(I − M−T A)em−1;
if ‖em‖M̃/‖e0‖M̃ is small then

The process has converged, convergence is now fast.;
else

Use em to augment the coarse space, build a new Q and try again.
end
Since

‖(I − M̃−1A)me‖M̃ ≤ δ√
1 + m

‖e‖M̃ ,

an m large enough for which this procedure converge exists.
42 / 58

A list of available libraries

As we have discussed implementing these methods efficiently requires some thought.

The good news is that there are several libraries that one can resort to.

43 / 58

A list of available libraries

The good news is that there are several libraries that one can resort to.
hypre is a library of high performance preconditioners and solvers featuring

multigrid methods for the solution of large, sparse linear systems of equations
on massively parallel computers. LINUXGithub https://github.com/hypre-space/hypre

ML - Trilinos The Trilinos Project is an effort to develop algorithms and enabling
technologies within an object-oriented software framework for the solution of
large-scale, complex multi-physics engineering and scientific problems.
LINUXGithub https://github.com/trilinos/Trilinos

43 / 58

https://github.com/hypre-space/hypre
https://github.com/trilinos/Trilinos

A list of available libraries

The good news is that there are several libraries that one can resort to.
hypre is a library of high performance preconditioners and solvers featuring

multigrid methods for the solution of large, sparse linear systems of equations
on massively parallel computers. LINUXGithub https://github.com/hypre-space/hypre

ML - Trilinos The Trilinos Project is an effort to develop algorithms and enabling
technologies within an object-oriented software framework for the solution of
large-scale, complex multi-physics engineering and scientific problems.
LINUXGithub https://github.com/trilinos/Trilinos

43 / 58

https://github.com/hypre-space/hypre
https://github.com/trilinos/Trilinos

A list of available libraries
The good news is that there are several libraries that one can resort to.

PETSc the Portable, Extensible Toolkit for Scientific Computation is a suite of data
structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations.
LINUX https://petsc.org/release/

AGMG solves systems of linear equations with an aggregation-based algebraic
multigrid method. For this library, several level of parallelism are provided:
multi-threading (multi-core acceleration of sequential programs), MPI-based,
or hybrid mode (MPI+multi-threading). LOCK http://agmg.eu/

PSCToolkit parallel BLAS feature for sparse matrices that are capable of running on
machines with thousands of high-performance cores, and construction of
higher-level iterative solvers and preconditioners.
LINUXGithub https://psctoolkit.github.io/

43 / 58

https://petsc.org/release/
http://agmg.eu/
https://psctoolkit.github.io/

A list of available libraries
The good news is that there are several libraries that one can resort to.

PETSc the Portable, Extensible Toolkit for Scientific Computation is a suite of data
structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations.
LINUX https://petsc.org/release/

AGMG solves systems of linear equations with an aggregation-based algebraic
multigrid method. For this library, several level of parallelism are provided:
multi-threading (multi-core acceleration of sequential programs), MPI-based,
or hybrid mode (MPI+multi-threading). LOCK http://agmg.eu/

PSCToolkit parallel BLAS feature for sparse matrices that are capable of running on
machines with thousands of high-performance cores, and construction of
higher-level iterative solvers and preconditioners.
LINUXGithub https://psctoolkit.github.io/

43 / 58

https://petsc.org/release/
http://agmg.eu/
https://psctoolkit.github.io/

A list of available libraries
The good news is that there are several libraries that one can resort to.

PETSc the Portable, Extensible Toolkit for Scientific Computation is a suite of data
structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations.
LINUX https://petsc.org/release/

AGMG solves systems of linear equations with an aggregation-based algebraic
multigrid method. For this library, several level of parallelism are provided:
multi-threading (multi-core acceleration of sequential programs), MPI-based,
or hybrid mode (MPI+multi-threading). LOCK http://agmg.eu/

PSCToolkit parallel BLAS feature for sparse matrices that are capable of running on
machines with thousands of high-performance cores, and construction of
higher-level iterative solvers and preconditioners.
LINUXGithub https://psctoolkit.github.io/

43 / 58

https://petsc.org/release/
http://agmg.eu/
https://psctoolkit.github.io/

A list of available libraries
The good news is that there are several libraries that one can resort to.

PETSc the Portable, Extensible Toolkit for Scientific Computation is a suite of data
structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations.
LINUX https://petsc.org/release/

AGMG solves systems of linear equations with an aggregation-based algebraic
multigrid method. For this library, several level of parallelism are provided:
multi-threading (multi-core acceleration of sequential programs), MPI-based,
or hybrid mode (MPI+multi-threading). LOCK http://agmg.eu/

PSCToolkit parallel BLAS feature for sparse matrices that are capable of running on
machines with thousands of high-performance cores, and construction of
higher-level iterative solvers and preconditioners.
LINUXGithub https://psctoolkit.github.io/

Why all this interest in large and parallel?
43 / 58

https://petsc.org/release/
http://agmg.eu/
https://psctoolkit.github.io/

How large is large?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn,

.

But what does large mean?

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

44 / 58

How large is large?

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10

n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“In a ground wire problem involving a large number of ground conductors, 13 simultaneous equations were
solved…” – Dwight (1930)”
“The second machine, now in operation, was designed for the direct solution of nine or fewer simultaneous
equations.” – Wilbur, J. B. (1936)

44 / 58

How large is large?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20

n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“Finally, though the labour of relaxation in three dimensions is prohibitively great, the future use of the new
electronic calculating machines in this connexion is a distinct possibility” – Fox, L. (1947)

44 / 58

How large is large?

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90

n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“The Ferranti PEGASUS computer, with a main store of 4096 words, can solve a maximum of 86
simultaneous equations by its standard subroutine and takes about 45 minutes to complete this calculation.”
– Wilson, L. B. (1959)

44 / 58

How large is large?

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500

n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“…the bound imposed by this is m + n ≤ 474. In addition, this number of equations would fill one standard
(1.800ft) reel of magnetic tape, and the fifty-odd hours taken in the calculation might be thought excessive.”
– Barron, Swinnerton-Dyer (1960)

44 / 58

How large is large?

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“…handling problems involving sets of simultaneous equations of two-thousandth order, and SAMIS available
through ”Cosmic” at the University of Georgia, which can treat up to 10,000 simultaneous equations.” –
Melosh, Schmele (1969)

44 / 58

How large is large?

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“The mini-computer cost algorithm is applied to the same complex shell problem used previously, with 9120
degrees of freedom […]. The running times, however, are 40 and 70 hr, respectively! It would appear that
improvement of mini-computer speeds is required…” – Kamel, McCabe (1978)

44 / 58

How large is large?

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6

n ∼ 106,7
n ∼ 10≥8

“For instance, Pomerell in 1994 reports on successful application of preconditioned Krylov methods for very
ill-conditioned unstructured finite element systems of order up to 210,000 that arise in semiconductor device
modeling.” – Saad Y., van der Vorst, H.A. (2000)

44 / 58

How large is large?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7

n ∼ 10≥8

“As a second example, we show results (Table VIII) for a problem arising in ocean modeling (barotropic
equation) with n = 370, 000 unknowns and approximately 3.3 million nonzero entries…” – Benzi, M. (2002)

44 / 58

How large is large?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7

n ∼ 10≥8

“Problem: Large, mesh size: 180× 60× 30,] unknowns (in simulation): 1,010,160, Solution time 45.7 h” –
Wang, de Sturler, Paulino (2006)

44 / 58

How large is large?

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7

n ∼ 10≥8

“The parallel GMRES was tested on the Tesla T10P GPU using a set of matrix data from the oil field
simulation data of Conoco Phillips. The order of the system ranges from ∼ 2000 to ∼ 1.1 million.” – M.
Wang, H. Klie, M. Parashar, H. Sudan (2009)

44 / 58

How large is large?

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

The exascale challenge, using computer that do 1015 Flops, targeting next-gen systems
doing 1018 Flops to solve problems with tens of billions of unknowns.

44 / 58

The philosophy behind the effort

(Leiserson et al. 2020)

“As miniaturization wanes, the
silicon-fabrication improvements at the

Bottom will no longer provide the predictable,
broad-based gains in computer performance
that society has enjoyed for more than 50
years. Software performance engineering,
development of algorithms, and hardware

streamlining at the Top can continue to make
computer applications faster in the

post-Moore era.”

45 / 58

Where we want to solve it1

System Cores Rmax (TFlops/s)

1 Fugaku 7,630,848 442,010.0
2 Summit 2,414,592 148,600.0
3 Sierra 1,572,480 94,640.0
...

...
...

...
18 Marconi-100 347,776 21,640.0
...

...
...

...
20 Piz Daint 387,872 21,230.0
...

...
...

...
74 MareNostrum 153,216 6,470.8

Marconi-100 - CINECA

Piz Daint - CSCS• Machines with hundreds of MPI cores,
• Hybrid form of parallelism: MPI, OpenMP, CUDA/OpenCL, …
1TOP500 list, November 2021 – https://www.top500.org

46 / 58

https://www.top500.org

What do we ask to it?

Solve the preconditioned system:
B−1Ax = B−1b,

with matrix B−1 ≈ A−1 (left preconditioner) such that:

Algorithmic scalability maxi λi(B−1A) ≈ 1 being independent of n (all the work we did on the K
constant!),

Linear complexity the action of B−1 costs as little as possible, the best being O(n) flops,

Implementation scalability in a massively parallel computer, B−1 should be composed of local
actions, performance should depend linearly on the number of processors employed.

47 / 58

PSCToolkit – psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS:
• Existing software standards:

• MPI, OpenMP, CUDA
• Serial sparse BLAS,

• (Par)Metis,
• AMD

• Attention to performance using modern Fortran;
• Research on new preconditioners;
• No need to delve in the data structures for the user;
• Tools for error and mesh handling beyond simple algebraic operations;
• Standard Krylov solvers

48 / 58

psctoolkit.github.io

PSCToolkit – psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS:
• Domain decomposition preconditioners
• Algebraic multigrid with aggregation schemes

• Parallel coupled weighted matching based aggregation
• Parallel decoupled smoothed aggregation (Vaněk, Mandel, Brezina)

• Parallel Smoothers (Block-Jacobi, DD-Schwartz, Hybrid-GS/SGS/FBGS,
`1 variants) that can be coupled with specialized block (approximate)
solvers MUMPS, SuperLU, incomplete factorizations ((H)AINV,
(H)INVK/L, (H)ILU-type)

• V-Cycle, W-Cycle, K-Cycle

48 / 58

psctoolkit.github.io

PSCToolkit – psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS.

Github Freely available from: https://psctoolkit.github.io,

LINUX Open Source with BSD 3 Clause License.

People involved: S. Filippone, P. D’Ambra, F. Durastante.

Contributors: Soren Rasmussen, Zaak Beekman, Ambra Abdullahi Hassan,
Alfredo Buttari, Daniela di Serafino, Michele Martone, Michele Colajanni, Fabio
Cerioni, Stefano Maiolatesi, Dario Pascucci

48 / 58

psctoolkit.github.io
https://psctoolkit.github.io

What is our recipe?

• The smoother M is a standard iterative solver with good parallel properties, e.g.,
`1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

• The coarse solver is again a preconditioned CG method.

49 / 58

What is our recipe?

• The smoother M is a standard iterative solver with good parallel properties, e.g.,
`1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

• The coarse solver is again a preconditioned CG method.

49 / 58

What is our recipe?

• The smoother M is a standard iterative solver with good parallel properties, e.g.,
`1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

• The coarse solver is again a preconditioned CG method.

49 / 58

What is our recipe?

• The smoother M is a standard iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT , where D = diag(A) and L = tril(A) is
intrinsically sequential!

HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process
the method acts as the GS method.

`1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize
App = Lpp + Dpp + LT

pp for Dpp = diag(App) and Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPU
application!

49 / 58

What is our recipe?

• The smoother M is a standard iterative solver with good parallel properties:
GS A = M − N, with M = L + D and N = −LT , where D = diag(A) and L = tril(A) is

intrinsically sequential!

HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process
the method acts as the GS method.

`1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize
App = Lpp + Dpp + LT

pp for Dpp = diag(App) and Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPU
application!

49 / 58

What is our recipe?

• The smoother M is a standard iterative solver with good parallel properties:
GS A = M − N, with M = L + D and N = −LT , where D = diag(A) and L = tril(A) is

intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process

the method acts as the GS method.

`1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize
App = Lpp + Dpp + LT

pp for Dpp = diag(App) and Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPU
application!

49 / 58

What is our recipe?
• The smoother M is a standard iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT , where D = diag(A) and L = tril(A) is
intrinsically sequential!

HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process
the method acts as the GS method.

`1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize
App = Lpp + Dpp + LT

pp for Dpp = diag(App) and Lpp = trilu(App) and select:

M`1−HGS =diag((M`1−HGS)p)p=1,...np ,

(M`1−HGS)p =Lpp + Dpp + D`1p ,

(d`1)
nb
i=1 =

∑
j∈Ωnb

p

|aij |.

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPU
application!

49 / 58

What is our recipe?

• The smoother M is a standard iterative solver with good parallel properties:
GS A = M − N, with M = L + D and N = −LT , where D = diag(A) and L = tril(A) is

intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process

the method acts as the GS method.
`1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LT
pp for Dpp = diag(App) and Lpp = trilu(App) and select:

M`1−HGS = diag((M`1−HGS)p)p=1,...np ,

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPU
application!

49 / 58

What is our recipe?
• The prolongator P is built by dofs aggregation based on matching in the weighted

(adjacency) graph of A.
Given w ∈ Rn, let P ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator and a complementary
prolongator, such that:

Rn = Range(P)⊕⊥ Range(Pf), n = nc + nf

w ∈ Range(P): coarse space Range(Pf): complementary space

[P ,Pf]
T A[P ,Pf] =

(
PT AP PT APf
PT

f AP PT
f APf

)
=

(
Ac Acf
Afc Af

)
Ac : coarse matrix Af : hierarchical complement

Sufficient condition for efficient coarsening
Af = PT

f APf as well conditioned as possible, i.e.,
Convergence rate of compatible relaxation: ρf = ‖I − M−1

f Af ‖Af � 1

49 / 58

But how we achieve it?

Weighted graph matching
Given a graph G = (V, E) (with adjacency matrix A), and a weight
vector w we consider the weighted version of G obtained by
considering the weight matrix Â:

(Â)i,j = âi,j = 1−
2ai,jwiwj

ai,iw2
i + aj,jw2

j
,

• a matching M is a set of pairwise non-adjacent edges,
containing no loops;

• a maximum product matching if it maximizes the product of
the weights of the edges ei 7→j in it.

We divide the index set into
matched vertexes
I =

⋃np
i=1 Gi , with

Gi ∩ Gj = ∅ if i 6= j, and
unmatched vertexes, i.e., ns

singletons Gi .

50 / 58

But how we achieve it?

Weighted graph matching
Given a graph G = (V, E) (with adjacency matrix A), and a weight
vector w we consider the weighted version of G obtained by
considering the weight matrix Â:

(Â)i,j = âi,j = 1−
2ai,jwiwj

ai,iw2
i + aj,jw2

j
,

• a matching M is a set of pairwise non-adjacent edges,
containing no loops;

• a maximum product matching if it maximizes the product of
the weights of the edges ei 7→j in it.

We divide the index set into
matched vertexes
I =

⋃np
i=1 Gi , with

Gi ∩ Gj = ∅ if i 6= j, and
unmatched vertexes, i.e., ns

singletons Gi .

50 / 58

From the matching to the prolongator
We can formally define a prolongator:

P =

we1 0 0

0
. . . 0

0 0 wenp

np

2np 0

0
w1/|w1| 0 0

0
. . . 0

0 0 wns/|wns |

ns

ns

nc=np+ns=J

n
=

2
n p

+
n s

=

[
P̃ O
O W

]
= [p1, . . . , pJ], we =

1√
w2

i + w2
j

[
wi
wj

]
.

⇒ The M on Â produces Af with diagonal entries âij for (i , j) ∈ M of maximal product.
51 / 58

From the matching to the prolongator
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . , pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of

I − BlAl = (I − (Ml)
−T Al)(I − PlBl+1(Pl)

T Al)(I − M−1
l Al) ∀l < nl ,

where Al+1 = (Pl)
T AlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,
• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobi

smoother,
• To increase the robustness we can use a non stationary solver as smoother.

51 / 58

From the matching to the prolongator
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . , pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of

I − BlAl = (I − (Ml)
−T Al)(I − PlBl+1(Pl)

T Al)(I − M−1
l Al) ∀l < nl ,

where Al+1 = (Pl)
T AlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,

• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobi
smoother,

• To increase the robustness we can use a non stationary solver as smoother.

51 / 58

From the matching to the prolongator
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . , pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of

I − BlAl = (I − (Ml)
−T Al)(I − PlBl+1(Pl)

T Al)(I − M−1
l Al) ∀l < nl ,

where Al+1 = (Pl)
T AlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,
• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobi

smoother,
P s

l = (I − ωD−1
l Al)Pl , for Dl = diag(Al).

• To increase the robustness we can use a non stationary solver as smoother.

51 / 58

From the matching to the prolongator
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . , pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of

I − BlAl = (I − (Ml)
−T Al)(I − PlBl+1(Pl)

T Al)(I − M−1
l Al) ∀l < nl ,

where Al+1 = (Pl)
T AlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,
• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobi

smoother,
• To increase the robustness we can use a non stationary solver as smoother.

51 / 58

Comparison with Hypre - CPU Runs - MareNostrum
Comparison with the preconditioners available in the Hypre, a state of the art
preconditioning library from LLNL.
Hand-point-right Run on the MareNostrum machine up to 8192 cores
Hand-point-right Test: 3D Constant coefficient Poisson Problem with FCG
Hand-point-right DoF: 256k unknown × MPI core
Filter Measures: Operator Complexity opc =

∑nl−1
l=0 nnz(Al)
nnz(A0)

and Solve Time (s).

Scaling
There are two common notions of scalability:

• Strong scaling is defined as how the solution time varies with the number of processors for a
fixed total problem size.

• Weak scaling is defined as how the solution time varies with the number of processors for a
fixed problem size per processor.

52 / 58

Comparison with Hypre - CPU Runs - MareNostrum
Comparison with the preconditioners available in the Hypre, a state of the art
preconditioning library from LLNL.
Hand-point-right Run on the MareNostrum machine up to 8192 cores
Hand-point-right Test: 3D Constant coefficient Poisson Problem with FCG
Hand-point-right DoF: 256k unknown × MPI core
Filter Measures: Operator Complexity opc =

∑nl−1
l=0 nnz(Al)
nnz(A0)

and Solve Time (s).

Scaling
There are two common notions of scalability:

• Strong scaling is defined as how the solution time varies with the number of processors for a
fixed total problem size.

• Weak scaling is defined as how the solution time varies with the number of processors for a
fixed problem size per processor.

52 / 58

Comparison with Hypre - CPU Runs - MareNostrum
Giving a name to preconditioners with many parameters:

K PMC3 l1HGS PKR

Cycle

K
V

Aggregation

Unsmoothed Parallel
Matching 3/4
Smoothed Parallel
Matching 3/4
Smoothed VBM

Smoother
Hybrid Gauss-Seidel
l1–Hybrid
Gauss-Seidel
Hybrid INVK
l1–Hybrid INVK
l1–Jacobi

Coarsest solver
Preconditioned
Krylov Method

For Hypre we test HMIS and Falgout coarsening schemes.
53 / 58

Comparison with Hypre - CPU Runs - MareNostrum
1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

2

3

4

5

number of MPI cores

Operator Complexity

VFLGHGS1DS VHMISHGS1DS VHMIS1HGS1DS
KPMC3HGS1PKR VUVBMHGS1PKR

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

10

20

30

40

number of MPI cores

Iterations

54 / 58

Comparison with Hypre - CPU Runs - MareNostrum
1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

2

4

number of MPI cores

Execution Time for Solve (sec.)

VFLGHGS1DS VHMISHGS1DS VHMISH1GS1DS
KPMC3HGS1PKR VUVBM1HGS1PKR

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

100

101

102

number of MPI cores

Speedup of the Solve

54 / 58

Weak Scalability - CPU/GPU Runs - Piz Daint

The resulting performance of the multigrid preconditioner in term of implementation
scalability depends also on how effective the coarsening procedure is, and on how well
balanced is the distribution of the coarsest matrix.
Hand-point-right Run on the Piz Daint machine up to 28800 cores and 2048 GPUs
Hand-point-right Test: 3D Constant coefficient Poisson Problem with FCG
Hand-point-right DoF: 256k/512k/1M unknown × MPI core and 3M/6M per GPUs
Filter Measures: execution time for solve

55 / 58

Weak Scalability - CPU/GPU Runs - Piz Daint

105 106 107 108 109 1010 1011
10−1

100

101

1 2 4 8 16 32 64 1282565121024
2048

40968192 16384
27000

1
2 4

8 16
32 64 128

256
512

1024 2048

dofs

Execution Time for Solve (s) - K-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

6M dof x GPU
3M dof x GPU
256k dof x MPI core
512k dof x MPI core
1M dof x MPI core

56 / 58

Weak Scalability - CPU/GPU Runs - Piz Daint

105 106 107 108 109 1010 1011
10−1

100

101

1
2 4

8 16 32 64 128256512
1024

2048
4096

8192
16384

27000

1
2 4

8 16
32 64

128 256 512
1024

2048

dofs

Execution Time for Solve (s) - VS-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

6M dof x GPU
3M dof x GPU
256k dof x MPI core
512k dof x MPI core
1M dof x MPI core

56 / 58

A Large Eddy Scale simulation inside Alya

Bolund is an isolated hill situated in Roskilde
Fjord, Denmark. An almost vertical

escarpment in the prevailing W-SW sector
ensures flow separation in the windward edge

resulting in a complex flow field.

• Model: 3D incompressible unsteady Navier-Stokes
equations for the Large Eddy Simulations of
turbulent flows,

• Discretization: low-dissipation mixed FEM (linear
FEM both for velocity and pressure),

• Time-Stepping: non-incremental fractional-step for
pressure, explicit fourth order Runge-Kutta method
for velocity.

Alya
Alya is a simulation code for high performance computational mechanics. It solves coupled
multiphysics problems using high performance computing techniques for distributed and shared
memory supercomputers, together with vectorization and optimization at the node level.

57 / 58

https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational

Bolund Test Case - Strong Scaling - Pressure Eq.
Fixed size problem with n = 5, 570, 786;43, 619, 693;345.276.325 dofs, 100 time steps

Total number of linear
iterations is smaller and
stable for increasing
number of cores,

the
time needed per each
iteration decreases for
increasing number of
cores.

58 / 58

Bolund Test Case - Strong Scaling - Pressure Eq.
Fixed size problem with n = 5, 570, 786;43, 619, 693;345.276.325 dofs, 100 time steps

Total number of linear
iterations is smaller and
stable for increasing
number of cores, the
time needed per each
iteration decreases for
increasing number of
cores.

58 / 58

Bolund Test Case - Strong Scaling - Pressure Eq.
Fixed size problem with n = 5, 570, 786;43, 619, 693;345.276.325 dofs, 100 time steps

Total number of linear
iterations is smaller and
stable for increasing
number of cores, the
time needed per each
iteration decreases for
increasing number of
cores.

58 / 58

Bibliography I

Bell, N., L. N. Olson, and J. Schroder (2022). “PyAMG: Algebraic Multigrid Solvers in Python”.
In: Journal of Open Source Software 7.72, p. 4142. doi: 10.21105/joss.04142. url:
https://doi.org/10.21105/joss.04142.
Brandt, A. (2000). “General highly accurate algebraic coarsening”. In: vol. 10. Multilevel
methods (Copper Mountain, CO, 1999), pp. 1–20.
Briggs, W. L., V. E. Henson, and S. F. McCormick (2000). A multigrid tutorial. Second.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, pp. xii+193. isbn:
0-89871-462-1. doi: 10.1137/1.9780898719505. url:
https://doi.org/10.1137/1.9780898719505.
Leiserson, C. E. et al. (2020). “There’s plenty of room at the Top: What will drive computer
performance after Moore’s law?” In: Science 368.6495. issn: 0036-8075. doi:
10.1126/science.aam9744. eprint:
https://science.sciencemag.org/content/368/6495/eaam9744.full.pdf. url:
https://science.sciencemag.org/content/368/6495/eaam9744.

https://doi.org/10.21105/joss.04142
https://doi.org/10.21105/joss.04142
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1126/science.aam9744
https://science.sciencemag.org/content/368/6495/eaam9744.full.pdf
https://science.sciencemag.org/content/368/6495/eaam9744

Bibliography II
Ruge, J. W. and K. Stüben (1987). “Algebraic multigrid”. In: Multigrid methods. Vol. 3.
Frontiers Appl. Math. SIAM, Philadelphia, PA, pp. 73–130.
Trottenberg, U., C. W. Oosterlee, and A. Schüller (2001). Multigrid. With contributions by A.
Brandt, P. Oswald and K. Stüben. Academic Press, Inc., San Diego, CA, pp. xvi+631. isbn:
0-12-701070-X.
Vaněk, P., J. Mandel, and M. Brezina (1996). “Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems”. In: vol. 56. 3. International GAMM-Workshop on
Multi-level Methods (Meisdorf, 1994), pp. 179–196. doi: 10.1007/BF02238511. url:
https://doi.org/10.1007/BF02238511.
Vassilevski, P. S. (2008). Multilevel block factorization preconditioners. Matrix-based analysis
and algorithms for solving finite element equations. Springer, New York, pp. xiv+529. isbn:
978-0-387-71563-6.
Xu, J. and L. Zikatanov (2017). “Algebraic multigrid methods”. In: Acta Numer. 26,
pp. 591–721. issn: 0962-4929. doi: 10.1017/S0962492917000083. url:
https://doi.org/10.1017/S0962492917000083.

https://doi.org/10.1007/BF02238511
https://doi.org/10.1007/BF02238511
https://doi.org/10.1017/S0962492917000083
https://doi.org/10.1017/S0962492917000083

	The Multigrid Idea
	Multigrid based on geometry
	A general two grid formulation
	Smooth and stable components

	Algebraic multigrid
	Ruge-Stuben Splitting Algorithm
	Aggregation-based multigrids
	Compatible relaxation
	Available libraries

	Extreme scale applications
	The Poisson benchmark
	A Large Eddy Scale simulation

	Bibliography
	References

