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George Pólya (1887–1985)

“In order to solve this differ-
ential equation you look at it
till a solution occurs to you.”

How to Solve It (Princeton 1945)

We are gonna settle for approximating its solution.
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Basic Concepts
Consider the two-point boundary value problem (BVP):

−
d2u
dx2 = f , in (0, 1),

u(0) = 0, u ′(1) = 0.

If u is the solution and v ∈ V is a sufficiently regular for which v(0) = 0, then integration
by parts yields:

(f , v) =
∫1

0
f (x)v(x)dx = −

∫1

0
u ′′(x)v(x)dx

=

∫1

0
u ′(x)v ′(x)dx = a(u, v).

Then the solution u to our BVP is characterized by
find u ∈ V such that a(u, v) = (f , v) ∀ v ∈ V .
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Sobolev Spaces: multi-index notation

What do we mean with “sufficiently regular”? What should we select for V ?

First some notation
Given a multi-index α ∈ Nn we denote with

|α| =

n∑
i=1
αi ,

the length of the multi-index. For a function ϕ ∈ C∞, we denote the usual pointwise
partial derivative by

Dαϕ = Dα
x ϕ =

(
∂

∂x

)α

ϕ = ϕ(α) = ∂αxϕ =

(
∂

∂x1

)α1

· · ·
(
∂

∂xn

)αn

ϕ.
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Sobolev Spaces: building blocks

Definition: compact support functions

Let Ω ⊆ Rn a domain. We denote by D(Ω) or C∞
0 (Ω) the set of

C∞(Ω) functions with compact support in Ω, i.e., the C∞(Ω)
functions for which the closure of the set of the points in which they
are not zero is compact in Ω. −1 1

Definition: locally integrable functions
Given a domain Ω we define the set of locally integrable functions as

L1
loc(Ω) = {f : f ∈ L1(K)∀K ⊂

◦
ΩK compact}.
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Sobolev Spaces: weak derivatives

Definition: weak derivative
We say that a function f ∈ L1

loc(Ω) has a weak derivative, Dα
w f provided that there exists

a function g ∈ L1
loc(Ω) such that∫

Ω

g(x)ϕ(x)dx = (−1)|α|
∫
Ω

f (x)ϕ(α)(x)dx , ∀ϕ ∈ C∞
0 (Ω).

If such g exists then we define Dα
w f = g .
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g(x)ϕ(x)dx = (−1)|α|
∫
Ω

f (x)ϕ(α)(x)dx , ∀ϕ ∈ C∞
0 (Ω).

If such g exists then we define Dα
w f = g .

A couple of examples:
• f (x) = 1 − |x | admits as first weak derivative D1

w f = g = χx<0 + χx>0,
• If f ∈ C |α|(Ω) for an arbitrary α, then Dα

w f = Dαf .
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Sobolev space

Definition: Sobolev norms and spaces
Let k ∈ N, f ∈ L1

loc(Ω), suppose that the weak derivative Dα
w f exists for all |α| ≤ k. We

define the Sobolev norm

‖f ‖W k
p (Ω) =



 ∑
α : |α|≤k

‖Dα
w f ‖p

Lp(Ω)

 1
p

, 1 ≤ p < +∞
max

α : |α|≤k
‖Dα

w f ‖L∞(Ω), p = ∞.
We define the Sobolev space W k

p (Ω) as

W k
p (Ω) =

{
f ∈ L1

loc(Ω) : ‖f ‖W k
p (Ω) <∞}

.
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Sobolev space: a collection of results
Theorem(s)
(i) The Sobolev space W k

p (Ω) is a Banach space,
(ii) Let Ω be any open set, then C∞(Ω) ∩ W k

p (Ω) is dense in W k
p (Ω) for p <∞,

(iii) k,m ∈ N, k ≤ m, 1 ≤ p ≤ ∞ ⇒ W m
p (Ω) ⊂ W k

p (Ω),
(iv) Ω bounded, k ∈ N, 1 ≤ p ≤ q ≤ ∞ ⇒ W k

q (Ω) ⊂ W k
p (Ω),
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(iv) Ω bounded, k ∈ N, 1 ≤ p ≤ q ≤ ∞ ⇒ W k
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Definition: Lipschitz boundary
Let n ∈ N, Ω ⊂ Rn. Ω is a Lipschitz domain if ∀ p ∈ ∂Ω exists a hyperplane H of
dimension n − 1 through p, a Lipschitz-continuous function g : H → R over that
hyperplane, and reals r > 0 and h > 0 such that
• Ω ∩ C = {x + y~n | x ∈ Br (p) ∩ H, −h < y < g(x)},
• (∂Ω) ∩ C = {x + y~n | x ∈ Br (p) ∩ H, g(x) = y },

where ~n is a unit vector that is normal to H, Br (p) := {x ∈ Rn | ‖x − p‖ < r } is the open
ball of radius r , C := {x + y~n | x ∈ Br (p) ∩ H, −h < y < h}.
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p (Ω) is a Banach space,
(ii) Let Ω be any open set, then C∞(Ω) ∩ W k

p (Ω) is dense in W k
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p (Ω) ⊂ W k

p (Ω),
(iv) Ω bounded, k ∈ N, 1 ≤ p ≤ q ≤ ∞ ⇒ W k

q (Ω) ⊂ W k
p (Ω),

(v) If Ω ⊂ Rn has a Lipschitz boundary, ∀ k ∈ N, 1 ≤ p ≤ ∞, there exist
E : W k

p (Ω) → W k
p (Rn) satisfying Ev |Ω = v ∀, v ∈ W k

p (Ω), and
‖Ev‖W k

p (Rn) ≤ C‖v‖W k
p (Ω) with C independent of v ,

(vi) If Ω ⊂ Rn has a Lipschitz boundary, ∀ k ∈ N, 1 ≤ p <∞, and m < k, then

∃C > 0 : ∀u ∈ W k
p (Ω) ‖u‖W m∞(Ω) ≤ C‖u‖W k

p (Ω)

{
k − m ≥ n, p = 1,
k − m > n

p , p > 1.

And there exist a function in Cm in the Lp equivalence class of u.
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Sobolev space: finally we have got an answer!
If you have forgotten the question, we were trying to understand for what V the solution
u characterized by

find u ∈ V such that a(u, v) = (f , v) ∀ v ∈ V .

was a meaningful solution to our initial BVP.

The space

V = {v ∈ W 1
2 (Ω) : v(0) = 0}.

By the extension property and the Sobolev inequality we now know that pointwise
values are well defined for functions W 1

2 (Ω).

But all this machinery was needed just to validate the formulation, how do we go to a
discrete solution?
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Building a discrete space
To move to a discrete setting, we need to select a finite subspace S ⊂ V . With this, we
can impose the Ritz-Galerkin conditions:

find uS ∈ S such that a(uS , v) = (f , v) ∀ v ∈ S.
• Since S is finite-dimensional, there exists a basis φ1, . . . , φn of S,
• Thus, uS =

∑n
i=1 Uiφi ∈ S, Ui ∈ R for i = 1, . . . , n,

• Ritz-Galerkin conditions are now a system of linear equations for the unknown
coefficients Ui :

KU = F,
with

• U = (U1, . . . ,Un)
T ∈ Rn,

• F = (F1, . . . ,Fn)
T ∈ Rn, for Fi = (f , φi),

• K = (Kij) ∈ Rn×n, for Kij = a(φi , φj).
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• K = (Kij) ∈ Rn×n, for Kij = a(φi , φj).
What are examples of such S?
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Lagrange basis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Li

ne
ar

La
gr

an
ge

Let 0 = x0 < x1 < x2 < . . . < xn = 1, we consider the linear space of functions v ∈ S s.t.
(i) v ∈ C0([0, 1]),
(ii) v |[xi−1,xi ] is a linear polynomial, i = 1, . . . , n, and
(iii) v(0) = 0.
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Lagrange basis
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Let 0 = x0 < x1 < x2 < . . . < xn = 1, we consider the linear space of functions v ∈ S s.t.
(i) v ∈ C0([0, 1]),
(ii) v |[xi−3,xi ] is a cubic polynomial, i = 3, . . . , n, and
(iii) v(0) = 0.
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Convergence and approximation properties
We have a theoretical framework for solutions, examples of discrete spaces, but what
about convergence?

To investigate convergence we move to a more richer setting: Hilbert
spaces.

Sobolev meets Hilbert
W k

p is a Hilbert space for p = 2, with inner product

〈f , g〉W k
2 (Ω) =

∑
|α|≤k

(Dαf ,Dαg).

We write: Hk(Ω) ≡ W k
2 (Ω), and Hk

0 (Ω) = {v ∈ W k
2 (Ω) : v ≡ 0 on ∂Ω}.

Our V space

V = H1
0 ([0, 1]).
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Convergence and approximation properties
Variational problem
For a given Hilbert space V , a bilinear form a : V × V → R and a linear functional
F : V → R, find u ∈ V such that:

a(u, v) = F (v), for all v ∈ V . (VP)

Theorem (Lax-Milgram).
Let V be a Hilbert space, a : V × V → R a bilinear form, and F : V → R a linear
functional s.t.

Coercivity ∃ c1 > 0 s.t. a(v , v) ≥ c1 ‖v‖2
V for all v ∈ V .

Continuity ∃ c2, c3 > 0 s.t. a(v ,w) ≤ c2 ‖v‖V ‖w‖V , and F (v) ≤ c3 ‖v‖V for all
v ,w ∈ V .⇒ ∃! u ∈ V satisfying (VP), and ‖u‖V ≤ 1

c1
‖F‖V ∗ .
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Convergence and approximation properties

In the conforming Galerkin approach we chose a (finite-dimensional) closed subspace
Vh ⊂ V and look for uh ∈ Vh satisfying

a(uh, vh) = F (vh) for all vh ∈ Vh. (VPh)
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In the conforming Galerkin approach we chose a (finite-dimensional) closed subspace
Vh ⊂ V and look for uh ∈ Vh satisfying

a(uh, vh) = F (vh) for all vh ∈ Vh. (VPh)

Theorem
Under the assumptions of the Lax-Milgram, for any closed subspace Vh ⊂ V , there exists a
unique solution uh ∈ Vh of (VPh) satisfying

‖uh‖V ≤ 1
c1

‖F‖V ∗ .
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Convergence and approximation properties
In the conforming Galerkin approach we chose a (finite-dimensional) closed subspace
Vh ⊂ V and look for uh ∈ Vh satisfying

a(uh, vh) = F (vh) for all vh ∈ Vh. (VPh)

Céa’s lemma
Let uh be the solution of (VPh) for given Vh ⊂ V and u be the solution of variational
problem (VP). Then,

‖u − uh‖V ≤ c2
c1

inf
vh∈Vh

‖u − vh‖V ,

where c1 and c2 are the constants from the coercivity and continuity assumptions.

The conforming idea
The error of the conforming Galerkin approach is determined by the approximation
error of the exact solution in Vh.
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Error estimate on 1D problem

The test problem we consider is{
−uxx = f (x), x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω

for f (x) = 2 cos(x)/ex and
g(x) = sin(x)/ex on Ω = (0, 10).
We discretize it with Lagrangian 1,
2 and 3 elements and report the
computed error: ‖u − uex‖L2(Ωh) on
the uniform grid with N points.

10
2

10
3

N

10
−12

10
−10

10
−8

10
−6

10
−4

‖
·‖

2

P1

P1 Error

P2

P2 Error

P3

P3 Error
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Python FEniCSx Code Example
We can implement this simple case in the FEniCSx Library in few lines of code

1. First we need to load some packages
from mpi4py import MPI # Needed for the MPI environment
import numpy as np # The numpy package support
from dolfinx import mesh # Handler for the meshes
from dolfinx import fem # FEM building blocks
from dolfinx.fem import FunctionSpace # FEM Function Spaces
import ufl # Language for building up variational formulations

2. Then we build the mesh and the function space
3. Then we need a bit of work to impose essential boundary conditions
4. We create test and trial functions
5. We build the source and the variational formulation
6. Finally we solve the linear system (directly…it’s 1D!)
7. and compute the error: Error_L2 : 1.14e-04
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f = fem.Function(V)
f.interpolate(lambda x: 2.0*np.cos(x[0])/np.exp(x[0]))
a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
F = f * v * ufl.dx

6. Finally we solve the linear system (directly…it’s 1D!)
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3. Then we need a bit of work to impose essential boundary conditions
4. We create test and trial functions
5. We build the source and the variational formulation
6. Finally we solve the linear system (directly…it’s 1D!)

problem = fem.petsc.LinearProblem(a, F, bcs=[bc],
petsc_options={"ksp_type": "preonly", "pc_type": "lu"})↪→

uh = problem.solve()

7. and compute the error: Error_L2 : 1.14e-04
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Python FEniCSx Code Example
We can implement this simple case in the FEniCSx Library in few lines of code

1. First we need to load some packages
2. Then we build the mesh and the function space
3. Then we need a bit of work to impose essential boundary conditions
4. We create test and trial functions
5. We build the source and the variational formulation
6. Finally we solve the linear system (directly…it’s 1D!)
7. and compute the error: Error_L2 : 1.14e-04

V2 = fem.FunctionSpace(Omegah, ("CG", 2))
uex = fem.Function(V2)
uex.interpolate(lambda x: np.sin(x[0])/np.exp(x[0]))
L2_error = fem.form(ufl.inner(uh - uex, uh - uex) * ufl.dx)
error_local = fem.assemble_scalar(L2_error)
error_L2 = np.sqrt(Omegah.comm.allreduce(error_local, op=MPI.SUM))
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Python FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code
1. First we need to load some packages
2. Then we build the mesh and the function space
3. Then we need a bit of work to impose essential boundary conditions
4. We create test and trial functions
5. We build the source and the variational formulation
6. Finally we solve the linear system (directly…it’s 1D!)
7. and compute the error: Error_L2 : 1.14e-04

To run the example there is a PythonPython notebook using FEniCSx shared through
Github bit.ly/3tTEBfI (and executed on GOOGLE oogle Colab).
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FEM Spaces
We can build many different types of Finite Elements.

FE Definition (Ciarlet, 1978)
A finite element is a triple (K ,P,N ) where
(i) K ⊂ Rn is a simply connected bounded open set with piecewise smooth boundary

(element domain);
(ii) P is a finite-dimensional space of functions defined on K (space of shape functions);
(iii) N = {N1, . . . ,Nd } is a basis of P∗ (degrees of freedom).

Dual basis definition
Let (K ,P,N ) be a finite element. A basis {ψ1, . . . , ψd } of P is called dual basis or nodal
basis to N if Ni(ψj) = δij .
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A lineup of some usual (and unusual) suspects

20 / 77



FEM Spaces: triangular finite elements
K any triangle, space Pk of bivariate polynomials of degree ≤ k,

L3

L1L2

z1 z2

z3

Linear Lagrange element

z1 z2

z3

z4z5

z6

Quadratic Lagrange element

z1 z2 z3 z4

z5

z6

z7

z8

z9
z10

Cubic Lagrange element

“ ” Point evaluations determining the N = {N1, . . . ,N 1
2 (k+1)(k+2)}.
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FEM Spaces: triangular finite elements

z2z3

z1

Linear nonconforming
Crouzeix-Raviart element

z1 z2

z3

z4

Cubic Hermite element Quintic Argyris element

Point evaluations, Gradient evaluations, Three second derivative, ↑ Normal
derivative.
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FEM Spaces: rectangular finite elements
K any rectangle, space Qk =

{∑
j cjpj(x)qj(x), pj , qj ∈ P≤k [x ]

}
,

L1

L2

L3

L4

z1 z2

z3z4

Bilinear Lagrange element

z1 z2

z3z4

z5

z6

z7

z8
z9

Biquadratic Lagrange element

Point evaluations for N = {N1, . . . ,Nd }, d = dimQk = (dimP≤k [x ])2.
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Periodic Table of the Finite Elements
k = 0 k = 0 k = 0 k = 0

r = 1

r = 1

r = 1

n = 1

n = 2

n = 3

r = 2

r = 2

r = 2

r = 3

r = 3

r = 3

k = 1 k = 1 k = 1 k = 1k = 2 k = 2 k = 2 k = 2k = 3 k = 3 k = 3 k = 3

The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces 
are the two primary families of finite element spaces for meshes of 

 and 
are the two primary families of finite element spaces for meshes of 

 on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of differential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.
The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant ,1 and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill. 2 The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec, 4 while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec. 6 The unified treatment and notation of the 

 in 2 dimensions, its generalization to 3 dimensions again 
 

and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus, 7 extending earlier work of Hiptmair  for the 

 family. 8 The space  is the span of the elementary forms 
introduced by Whitney. 9 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Boffi, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential 
Equations by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, ACM Transactions 
on Mathematical Software 40, 2014.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou. 11 

The finite elements in this table have been implemented as part of 
the FEniCS Project.12, 13, 14 Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space 

 by giving its family, shape, and degree, with the 
 may 

be referred to in UFL as:
FiniteElement("N2E", tetrahedron, 3) 

Alternatively, the elements may be accessed in a uniform fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", shape, r, k)

for 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, 
FiniteElement("S", shape, r, k)

, and 
FiniteElement("S", shape, r, k)

, respectively.

("P", interval, 1) ("P", interval, 1)("DP", interval, 0) ("DP", interval, 1)

("P", interval, 2) ("P", interval, 2)("DP", interval, 1) ("DP", interval, 2)

("P", interval, 3) ("P", interval, 3)("DP", interval, 2) ("DP", interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1dP0 dP1

P2 P2dP1 dP2

P3 P3dP2 dP3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 812 246 181 4

27 2054 4836 398 10

64 32144 84108 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

("P", triangle, 1) ("P", triangle, 1) ("Q", quadrilateral, 1) ("S", quadrilateral, 1)("RTC[E,F]", quadrilateral, 1) ("BDMC[E,F]", quadrilateral, 1)("DQ", quadrilateral, 0) ("DPC", quadrilateral, 1)

("Q", quadrilateral, 2) ("S", quadrilateral, 2)("RTC[E,F]", quadrilateral, 2) ("BDMC[E,F]", quadrilateral, 2)("DQ", quadrilateral, 1) ("DPC", quadrilateral, 2)

("Q", quadrilateral, 3) ("S", quadrilateral, 3)("RTC[E,F]", quadrilateral, 3) ("BDMC[E,F]", quadrilateral, 3)("DQ", quadrilateral, 2) ("DPC", quadrilateral, 3)

("Q", hexahedron, 1) ("S", hexahedron, 1)("NCE", hexahedron, 1) ("AAE", hexahedron, 1)("NCF", hexahedron, 1) ("AAF", hexahedron, 1)("DQ", hexahedron, 0) ("DPC", hexahedron, 1)
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("Q", hexahedron, 3) ("S", hexahedron, 3)("NCE", hexahedron, 3) ("AAE", hexahedron, 3)("NCF", hexahedron, 3) ("AAF", hexahedron, 3)("DQ", hexahedron, 2) ("DPC", hexahedron, 3)

("DP", triangle, 0) ("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2) ("P", triangle, 2)("DP", triangle, 1) ("DP", triangle, 2)

("P", tetrahedron, 2) ("P", tetrahedron, 2)

("P", triangle, 3) ("P", triangle, 3)("DP", triangle, 2) ("DP", triangle, 3)

("P", tetrahedron, 3) ("P", tetrahedron, 3)

("RT[E,F]", triangle, 1) ("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1) ("N2E", tetrahedron, 1)("N1F", tetrahedron, 1) ("N2F", tetrahedron, 1)("DP", tetrahedron, 0) ("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2) ("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2) ("N2E", tetrahedron, 2)("N1F", tetrahedron, 2) ("N2F", tetrahedron, 2)("DP", tetrahedron, 1) ("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3) ("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3) ("N2E", tetrahedron, 3)("N1F", tetrahedron, 3) ("N2F", tetrahedron, 3)("DP", tetrahedron, 2) ("DP", tetrahedron, 3)

P1 P1 Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

dP0 dP1

P1

P1

P1

P2 P2dP1 dP2

P2 P2

P3 P3dP2 dP3

P3 P3

N11 N21 N21N11

N12 N12

N13 N13

dP0 dP1

dP1 dP2

dP2 dP3

N1e N1f

N1e N1f

N1e N1f

("Q", interval, 1) ("S", interval, 1)("DQ", interval, 0) ("DPC", interval, 1)

("Q", interval, 2) ("S", interval, 2)("DQ", interval, 1) ("DPC", interval, 2)

("Q", interval, 3) ("S", interval, 3)("DQ", interval, 2) ("DPC", interval, 3)

2 21 2

3 32 3

4 43 4

Q1 S1dQ0 dPc1

Q2 S2dQ1 dPc2

Q3 S3dQ2 dPc3

n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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FEM Spaces: it’s a vast world

Much of what we discussed and of what we are going to discuss in the next slides can be
applied to FEM-adjacent methods, a (obviously not exhaustive) list of ideas:

DG: Discontinuous Galerkin, (Cockburn, Karniadakis, and Shu 2000) for a general
overview, linear solvers (Ayuso de Dios et al. 2014; Dobrev et al. 2006)…

IgA: Isogeometric Analysis, (Cottrell, Hughes, and Bazilevs 2009) for a general
overview, adaptive meshes (Giannelli, Jüttler, and Speleers 2012; Patrizi and
Dokken 2020), linear solvers (Donatelli et al. 2015; Hornı́ková, Vuik, and
Egermaier 2021; Sangalli and Tani 2016)…

VEM: Virtual Elements, (Beirão da Veiga et al. 2014, 2016) for a general overview,
linear solvers (Antonietti, Mascotto, and Verani 2018; Dassi and Scacchi
2020)…

Another nice source of information is: defelement.com.
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Variational crimes

“The crime is now logical and reasonable.”

Murder for Christmas, A. Christie
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The Penal Code

BOMB Petrov–Galerkin approaches, where the function u satisfying a(u, v) for all v ∈ V is an
element of U 6= V ;

BOMB non-conforming approaches, where the discrete spaces Uh and Vh are not subspaces of
U and V , respectively; and

BOMB non-consistent approaches, where the discrete problem involves a bilinear form ah 6= a
(and ah might not be well-defined for all u ∈ U).

We thus need a more general framework that covers these cases as well.
• U, V be Banach spaces, with V reflexive, U∗, V ∗ denote their topological duals
• Given a : U × V → R bilinear, F ∈ V ∗ continuous we look for u ∈ U satisfying

a(u, v) = F (v) for all v ∈ V . (W)
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Existence and uniqueness in a world full of crimes
Theorem Banach–Nečas–Babuška
Let U and V be Banach spaces and V be reflexive. If a : U × V → R and F : V → R satisfy:

(i) Inf–sup condition: there exists a c1 > 0 such that

inf
u∈U

sup
v∈V

a(u, v)
‖u‖U ‖v‖V

≥ c1.

(ii) Continuity: there exist c2, c3 such that

|a(u, v)| ≤ c2 ‖u‖U ‖v‖V , |F (v)| ≤ c3 ‖v‖V , ∀ u ∈ U, ∀ v ∈ V

(iii) Injectivity: for any v ∈ V a(u, v) = 0 for all u ∈ U implies v = 0.

Then there exists a unique solution u ∈ U to (W), which satisfies

‖u‖U ≤ 1
c1

‖F‖V∗ .
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Mixed Methods - The Poisson equation
Let us start again from the Poisson equation with homogeneous Dirichlet conditions{

−∆u = −∇ · ∇u = −∇2u = − div grad u = f , x ∈ Ω ⊂ Rn

u = 0, x ∈ ∂Ω.

We introduce an auxiliary variable σ = ∇u ∈ L2(Ω)n and rewrite it as{
∇u − σ = 0,
−∇ · σ = f .

This system can be formulated in variational form in two different ways:
1. we formally integrate by parts in the second equation ⇒ primal approach,
2. we formally integrate by parts in the first equation ⇒ dual approach.

28 / 77



Mixed Methods - The Poisson equation - Primal
We look for (σ, u) ∈ L2(Ω)n ×H1

0(Ω) satisfying{
(σ, τ) − (τ,∇u) = 0 for all τ ∈ L2(Ω)n,

−(σ,∇v) = −(f , v) for all v ∈ H1
0(Ω).

that we can restate in abstract form as

a(σ, τ) = (σ, τ) : V × V → R, b(v , µ) = −(v ,∇µ) : V × M → R,

on the two (reflexive) Banach spaces V = L2(Ω)n and M = H1
0(Ω) for the problem

Find u, λ s.t.
{

a(u, v) + b(v , λ) = 〈f , v〉V ∗,V for all v ∈ V ,
b(u, µ) = 〈g , µ〉M∗,M for all µ ∈ M.
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Mixed Methods - Abstract Saddle-Point formulation

To uncover the connection with the discrete case we are aiming at, let us reformulate the
previous in operator form by introducing

A : V → V ∗, 〈Au, v〉V ∗,V = a(u, v) for all v ∈ V ,
B : V → M∗, 〈Bu, µ〉M∗,M = b(u, µ) for all µ ∈ M,
B∗ : M → V ∗, 〈B∗λ, v〉V ∗,V = b(v , λ) for all v ∈ V .

From which we rewrite our problem as

Find u, λ s.t.
{

Au + B∗λ = f in V ∗,

Bu = g in M∗.

At this stage, this should be very familiar!
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Mixed Methods - Abstract Saddle-Point formulation

Abstract Saddle-Point

Find u, λ s.t.
{

Au + B∗λ = f in V ∗,

Bu = g in M∗.

• If B is invertible ⇒ existence and uniqueness first of u and then of λ follow
immediately,

• Usually, we are not this lucky, remember our starting example:

< Bσ, µ >(H1
0)

∗,H1
0
= b(σ, µ) = −(σ,∇µ),

that is we have to require that A is injective and coercive on ker B to obtain a
unique u…

• …for the existence of λ we then need B∗ to be surjective.

31 / 77



Mixed Methods - Abstract Saddle-Point formulation

Abstract Saddle-Point

Find u, λ s.t.
{

Au + B∗λ = f in V ∗,

Bu = g in M∗.

• If B is invertible ⇒ existence and uniqueness first of u and then of λ follow
immediately,

• Usually, we are not this lucky, remember our starting example:

< Bσ, µ >(H1
0)

∗,H1
0
= b(σ, µ) = −(σ,∇µ),

that is we have to require that A is injective and coercive on ker B to obtain a
unique u…

• …for the existence of λ we then need B∗ to be surjective.

31 / 77



Mixed Methods - Abstract Saddle-Point formulation

Abstract Saddle-Point

Find u, λ s.t.
{

Au + B∗λ = f in V ∗,

Bu = g in M∗.

• If B is invertible ⇒ existence and uniqueness first of u and then of λ follow
immediately,

• Usually, we are not this lucky, remember our starting example:

< Bσ, µ >(H1
0)

∗,H1
0
= b(σ, µ) = −(σ,∇µ),

that is we have to require that A is injective and coercive on ker B to obtain a
unique u…

• …for the existence of λ we then need B∗ to be surjective.
31 / 77



Mixed Methods - Banach–Nečas–Babuška
Theorem (Continuous Brezzi)
We assume that
(i) a : V × V → R satisfies the conditions of the Banach–Nečas–Babuška Theorem for

U = V = ker B
(ii) b : V × M → R is such that the Ladyzhenskaya–Babuška–Brezzi condition holds

∃β > 0 : inf
µ∈M

sup
v∈V

b(v , µ)
‖v‖V ‖µ‖M

≥ β.

⇒ ∃! (u, λ) ∈ V × M solving the mixed saddle-point system and satisfying

‖u‖V + ‖λ‖M ≤ C(‖f ‖V ∗ + ‖g‖M∗).

Chess-Knight a(u, v) has to satisfy the BNB condition only on ker B, not on all of V !
Chess-queen LBB condition couples V and M spaces, this is going to have repercussions in a
moment!
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Mixed Methods - Back to Poisson
Mixed Continuous Primal Poisson Problem
Find (σ, u) ∈ L2(Ω)n ×H1

0(Ω) s.t.{
(σ, τ) − (τ,∇u) = 0 ∀ τ ∈ L2(Ω)n,

−(σ,∇v) = −(f , v) ∀ v ∈ H1
0(Ω).

Coercivity: a is coercive on V with constant α = 1,
LBB: chose v ∈ H1

0(Ω) = M and take τ = −∇v ∈ L2(Ω)n = V , then

sup
τ∈V

b(τ, v)
‖τ‖V

= sup
τ∈V

−(τ,∇v)
‖τ‖L2(Ω)n

≥ (∇v ,∇v)
‖∇v‖L2(Ω)n

= |v |H1 ≥ c−1
Ω ‖v‖M

Eye to get C−1
Ω we use Poincaré inequality: for 1 ≤ p <∞, Ω an open bounded set ⇒

∃ cΩ : ‖f ‖W 1
p (Ω) ≤ cΩ|f |W 1

p (Ω) depending only on p and Ω.
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Mixed Methods - Galerkin Approach

Abstract Saddle-Point

Find u, λ s.t.
{

Au + B∗λ = f in V ∗,

Bu = g in M∗.

• Vh ⊂ V , Mh ⊂ M,
Chess-queen Vh and Mh cannot be selected

independently!

Theorem (Discrete Brezzi)

If ∃αh > 0 : inf
uh∈ker Bh

sup
vh∈ker Bh

a(uh, vh)

‖uh‖V ‖vh‖V
≥ αh,

If ∃βh > 0 : inf
µh∈Mh

sup
vh∈Vh

b(vh, µh)

‖vh‖V ‖µh‖M
≥ βh.

⇒ ∃! (uh, λh) ∈ Vh × Mh solving the discrete saddle-point and satisfying
‖uh‖V + ‖λh‖M ≤ Ch(‖f ‖V ∗ + ‖g‖M∗).
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Mixed Methods - Galerkin Approach
Abstract Discrete Saddle-Point
Find uh, λh such that{

a(uh, vh) + b(vh, λh) = 〈f , vh〉V ∗,V ∀ vh ∈ Vh,

b(uh, µh) = 〈g , µh〉M∗,M ∀µh ∈ Mh.

• Vh ⊂ V , Mh ⊂ M,
Chess-queen Vh and Mh cannot be selected

independently!

Theorem (Discrete Brezzi)

If ∃αh > 0 : inf
uh∈ker Bh

sup
vh∈ker Bh

a(uh, vh)

‖uh‖V ‖vh‖V
≥ αh,

If ∃βh > 0 : inf
µh∈Mh

sup
vh∈Vh

b(vh, µh)

‖vh‖V ‖µh‖M
≥ βh.

⇒ ∃! (uh, λh) ∈ Vh × Mh solving the discrete saddle-point and satisfying
‖uh‖V + ‖λh‖M ≤ Ch(‖f ‖V ∗ + ‖g‖M∗).

34 / 77



Mixed Methods - Dual approach
We integrate by parts the first equation:∫

Ω

(div τ)w dx +

∫
Ω

τ · ∇w dx =

∫
∂Ω

(τ · ν)w dx

We need to define the proper Sobolev space.

H(div)
We define the space

H(div) = {τ ∈ L2(Ω)n : div τ ∈ L2(Ω)},

with the norm
‖τ‖2

H(div) := ‖τ‖2
L2(Ω)n + ‖ div τ‖2.

Well posedness of the normal trace.
C∞(Ω)n is dense in L2(Ω)n ⊃ H(div) ⇒ τ ∈ H(div) has (τ|∂Ω · ν) ∈ H−1/2(∂Ω).
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Mixed Methods - Dual approach

The dual problem is then

find (σ, u) ∈ H(div)× L2 s.t.
{
(σ, τ) + (div τ, u) = 0 ∀ τ ∈ H(div),
(divσ, v) = −(f , v) ∀v ∈ L2.

• we have used that u|∂Ω = 0,

• This is a general saddle problem with V = H(div), and M = L2:

a(σ, τ) = (σ, τ), b(σ, v) = (divσ, v).

and a and b bounded by Cauchy–Schwarz inequality.
•
• We now need to verify the LBB condition. This requires some work.
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• This is a general saddle problem with V = H(div), and M = L2:

a(σ, τ) = (σ, τ), b(σ, v) = (divσ, v).
and a and b bounded by Cauchy–Schwarz inequality.

• For the existence of the solution we need to prove coercivity for a.
ker B = {τ ∈ H(div) : (div τ, v) = 0 ∀ v ∈ L2}

Since div τ ∈ L2 we have ‖ div τ‖L2 = 0 whenever τ ∈ ker B ⊂ H(div), and therefore
a(τ, τ) = ‖τ‖2

L2(Ω)n = ‖τ‖2
H(div) ∀ v ∈ ker B,

indeed we have just proved coercivity with α = 1.

• We now need to verify the LBB condition. This requires some work.
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• The form a is coercive on ker B with α = 1,
• We now need to verify the LBB condition. This requires some work.

36 / 77



Mixed Methods - Dual approach - LBB
Assumption:
We make the simplifying assumption of having ∂Ω represented by a C1 function or,
analogously, having Ω convex.

Lemma (Surjectivity)
For any f ∈ L2, there exists a function τ ∈ H(div) with div τ = f and ‖τ‖H(div) ≤ C‖f ‖L2 .

• The space H1(Ω)n ⊂ H(div), thus if we take a v ∈ M = L2 and the corresponding
τv ∈ H(div) given by the surjectivity lemma (i.e., div τv = v) we find

sup
τ∈V

b(τ, v)
‖τ‖V

= sup
τ∈V

(div τ, v)
‖τ‖H(div)

≥ (τv , v)
‖τv‖H(div)

≥ (v , v)
C‖v‖L2(Ω)

=
1
c ‖v‖L2(Ω).

We have then proved the LBB condition for β = 1
C .

• By Continuous Brezzi we have ∃! (σ, u) ∈ V × M solving the saddle problem and
such that

‖σ‖H(div) + ‖u‖L2(Ω) ≤ C‖f ‖L2(Ω).

• The solution u we have obtained seem to be only in L2…but u satisfies
(σ, τ) + (div τ, u) = 0,

thus an integration by parts shows that u has a weak derivative and satisfies
boundary conditions, that is, u is where it should be u ∈ H1

0(Ω).
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Mixed Methods - Galerkin Approach for Poisson
Let us build the discrete problem.

A property of the form
We can (but won’t) show that for any partition Ωh of Ω{

τ ∈ L2(Ω)n : τ|Ωj ∈ H1(Ωj) and τ|Ωj · n̂ = τΩi · n̂ ∀Ωi ∩Ωj 6= ∅
}
⊂ H1(Ω).

In layman terms, piecewise differentiable functions with continuous normal traces across
elements are in H1(Ω).

This observation is crucial for building conformal FEM spaces for this problem.
• We could consider are the Raviart-Thomas elements (Raviart and Thomas 1977),
• The other usual option are the Brezzi-Douglas-Marini elements (Brezzi, Douglas,

and Marini 1985),

• To build the matrices we will use the code from (Zhang 2015).
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Mixed Methods - Test problem
We consider a more general formulation of the Poisson problem
Ω ⊂ R2 a polygonal domain, with boundary
∂Ω = ΓD ∩ ΓN (ΓD ∩ ΓN = ∅, µ(ΓD) 6= 0)

−∇ · (α(x)∇u) = f , in Ω,
−α∇u · n̂ = gN , on ΓN ,
u = gD , on ΓD .

With
• f ∈ L2(Ω),
• gD ∈ H1/2(ΓD) and gN ∈ L2(ΓN),
• α(x) positive piecewise constant.

Existence theory is not substantially different, just longer to write, see (Boffi, Brezzi, and
Fortin 2013, Chapter 7).
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0 on ΓN}.
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Mixed Methods - Galerkin Approach for Poisson
To apply the discrete version of Brezzi’s Theorem, for which we select the
Brezzi-Douglas-Marini and piecewise constant elements to build our mixed space.

Mesh: shape-regular affine
triangulation Ωh

• Mesh:
RefinementLevels = 2;
node = [-1 1; 0 1; 1 1; -0.5 0.5; 0.5 0.5; -1 0; 0 0; 1 0;

-0.5 -0.5; 0.5 -0.5;-1.0 -1.0; 0.0 -1.0;1.0 -1.0];↪→
elem =[4 2 1;4 1 6;4 6 7;4 7 2;5 3 2;5 2 7;5 7 8;5 8 3;9

7 6; 9 6 11;9 11 12;9 12 7;10 8 7;10 7 12;10 12 13;10
13 8];

↪→
↪→
bdEdge = [2 0 0;1 0 0; 0 0 0;0 0 0;2 0 0;0 0 0;0 0 0;1 0

0; 0 0 0;1 0 0;1 0 0;0 0 0;0 0 0;0 0 0;1 0 0;1 0 0];↪→
for i=1:RefinementLevels
[node,elem,bdEdge] = uniformrefine(node,elem,bdEdge);
end

• The BDM1 elements
• The P0 elements
• For the convergence analysis see (Brezzi, Douglas, and

Marini 1985, Section 3 and 4).
• And look at the code for assembling the matrix

NT = size(elem,1); % Number of triangles
NE = size(edge,1); % Number of edges
sol = zeros(2*NE+NT,1); % Space to store the solution
inva =1./exactalpha((node(elem(:,1)) + node(elem(:,2)) +

node(elem(:,3)))/3);↪→
[a,b,area] = gradlambda(node,elem);
M = assemblebdm(NT,NE,a,b,area,elem2edge,signedge,inva);
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inva =1./exactalpha((node(elem(:,1)) + node(elem(:,2)) +

node(elem(:,3)))/3);↪→
[a,b,area] = gradlambda(node,elem);
M = assemblebdm(NT,NE,a,b,area,elem2edge,signedge,inva);
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Mixed Methods - The Saddle-Point Matrix
We can finally look at our first saddle-point matrix for the Poisson problem.
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Mixed Methods - Eigenvalue Bounds
One of the results you have seen in the morning lectures concerns eigenvalue bounds for
these matrices. Let us look at it numerically.

Theorem (Rusten and Winther 1992)
Let µ1 ≥ µ2 ≥ . . . ≥ µn > 0 be the eigenvalues of A, σ1 ≥ σ2 ≥ . . . ≥ σm > 0 the
singular values of B. If we denote as σ(A) the spectrum of A, then

σ(A) ⊂ I = I− ∪ I+,

where

I− =

[
1
2

(
µn −

√
µ2

n + 4σ2
1

)
,
1
2

(
µ1 −

√
µ2

1 + 4σ2
m

)]
,

I+ =

[
µn,

1
2

(
µ1 +

√
µ2

1 + 4σ2
1

)]
.
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Mixed Methods - Eigenvalue Bounds
We can compute the bounds with few lines of code:
lambda = eig(M(freeDof,freeDof));
mun = eigs(A,1,'smallestabs');
mu1 = eigs(A,1,'largestabs');
sigma1 = svds(BT,1,'largest');
sigmam = svds(BT,1,'smallest');

Iminus(1) = 0.5*(mun - sqrt(mun^2+4*sigma1^2));
Iminus(2) = 0.5*(mu1 - sqrt(mu1^2+4*sigmam^2));
Iplus(1) = mun;
Iplus(2) = 0.5*(mu1 + sqrt(mu1^2 +

4*sigma1^2));↪→

Calendar-plus Next week, after you become familiar with
iterative methods, we will focus on preconditioning.
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Mixed Methods - The Stokes equation
Let us consider the Stokes equations for the steady flow of a very viscous fluid{

−∇2u +∇p = 0, Momentum equation,
∇ · u = 0, Incompressibility constraint.

• u is a vector-valued function representing the velocity of the fluid,
• p is a scalar function representing the pressure.

Modeling assumption
The crucial modeling assumption is that the flow is “low speed” we neglect effects due
to convection.

Why do we care?
Stokes equations represent a limiting case of the more general Navier–Stokes equations
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The Stokes equation: weak formulation
Let us build the weak formulation

−∇2u +∇p = 0,
∇ · u = 0,

• Here ∇u : ∇v is the componentwise scalar product
• We select boundary conditions ∂Ω = ΓN ∪ ΓD ΓD ∩ ΓN = ∅, µ(ΓD) 6= 0:

u = w on ΓD ,
∂u
∂n − pn̂ = s on ΓN

• We define the spaces

H1
E = {u ∈ H1(Ω)d | u = w on ΓD }, H1

E0 = {v ∈ H1(Ω)d | v = 0 on ΓD }.
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The Stokes equation: weak formulation
Let us build the weak formulation

Find (u, p) ∈ H1
E × L2(Ω) s.t.

{∫
Ω∇u : ∇v −
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Ω p∇ · v −
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The Stokes equation: issues with BCs

Find (u, p) ∈ H1
E × L2(Ω) s.t.

{∫
Ω∇u : ∇v −

∫
Ω p∇ · v −

∫
∂Ω s · v = 0, ∀ v ∈ H1

E0
,∫

Ω q∇ · u = 0, ∀ q ∈ L2.

Words of caution
1. For a unique velocity solution the Dirichlet part of the boundary has to be nontrivial,
2. If the velocity is fixed everywhere on the boundary (ΓD ≡ ∂Ω) the pressure solution is

only unique up to a constant (hydrostatic pressure level) and w has to satisfy

0 =

∫
Ω

∇ · u =

∫
∂Ω

u · n̂ =

∫
∂Ω

w · n̂,

i.e., the volume of fluid entering the domain must be matched by the volume of fluid
flowing out of it.
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The Stokes equation: Mixed Elements
As we have done for Poisson, we need to select Vh ⊂ V = H1

E0
and Mh ⊂ M = L2(Ω):

Find (uh, ph) ∈ Vh×Mh s.t.


∫
Ω

∇uh : ∇vh −

∫
Ω

ph∇ · vh −

∫
∂Ω

s · vh = 0, ∀ vh ∈ Vh,∫
Ω

qh∇ · uh = 0, ∀ qh ∈ Mh.

To determine the subspaces Vh and Mh we want to apply the Theorem (Discrete Brezzi)

min
qh 6=const.

max
vh 6=0

|(qh,∇ · vh)|

‖vh‖V ‖qh‖M
≥ β.

where
• ‖v‖V =

(∫
Ω v · v +∇v : ∇v

) 1
2 ,

• ‖q‖M = ‖q − µ(Ω)−1 ∫
Ω q‖.
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The Stokes equation: Mixed Elements

LIGHTBULB Idea for finding inf-sup stable elements
The idea is to consider “local enclosed flow Stokes problems” posed on a subdomain
M ⊂ Ω (w · n̂ = 0 on ∂M) called a macroelement that has a topology that is regular and
simple enough (so that we can actually do estimates and computations).

Q2-Q1 Elements

Two velocity components

We approximate the 2 components of velocity with a
single Q2 FEM space

{φ1, . . . ,φ2n} ={(φ1, 0)T , . . . , (φn, 0)T ,

(0, φ1)
T , . . . , (0, φn)

T }
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The idea is to consider “local enclosed flow Stokes problems” posed on a subdomain
M ⊂ Ω (w · n̂ = 0 on ∂M) called a macroelement that has a topology that is regular and
simple enough (so that we can actually do estimates and computations).

Q2-Q1 Elements

Pressure

We approximate the 2 components of velocity with a
single Q2 FEM space {φj }

nu
j=1. And the scalar pressure

component with Q1 FEM space {ψj }
np
j=1 giving:

A =

 A O BT
x

O A BT
y

Bx By O

 ai ,j =
∫
Ω∇φi · ∇φj ,

bx ,ki = −
∫
Ωψk∂xφi ,

by ,kj = −
∫
Ωψk∂yφj .

Since we have an enclosed flow ker BT = {1}.
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The Stokes equation: Mixed Elements

LIGHTBULB Idea for finding inf-sup stable elements
The idea is to consider “local enclosed flow Stokes problems” posed on a subdomain
M ⊂ Ω (w · n̂ = 0 on ∂M) called a macroelement that has a topology that is regular and
simple enough (so that we can actually do estimates and computations).

Q2-Q1 Macroelement
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Three interior velocity nodes
and six pressure nodes.

BT is a 6 × 6 matrix, with some effort we can
compute all the entries and verify that ker BT = {1}
(part of the computations are done in (Elman, Silvester,
and Wathen 2014, Section 3.3.1)).
• Then stability holds for all patches of elements with

the same topology,
• Any grid made of of an even number of cell can be

decomposed this way.
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The Stokes equation: other stable elements
Q2-P−1 Elements

Velocity

Pressure, and pressure
derivatives

P2-P1 Elements

Velocity

Pressure

P2∗-P−1 Element

Velocity

Pressure, and pressure
derivatives
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The Stokes equation: the associated saddles
The P2-P1 (Taylor-Hood) case for the colliding flow test problem.
• Ω = [−1, 1]× [−1, 1]
• ux = 20xy3, uy = 5x4 − 5y4,

p = 60x2y − 20y3 + c,
• Dirichlet boundary condition on

all the square
ψ(x , y) = 5xy4 − x5.
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%% Building the mesh
RefinementLevels = 2;
square = [0,1,0,1];
h = 0.25;
[node,elem] = squaremesh(square,h);
for i=1:RefinementLevels
[node,elem] = uniformrefine(node,elem);

end
%% Building the test problem: colliding flows
bdFlag = setboundary(node,elem,'Dirichlet');
pde = Stokesdata1;
options.solver='none'; % We just perform the build
[soln,eqn,info] =

StokesP2P1(node,elem,bdFlag,pde,options);↪→

Question:
Can we apply (Rusten and Winther 1992)?
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The Stokes equation: properties of the matrix
Theorem (Elman, Silvester, and Wathen 2014, Theorem 3.2.1)
With P1, P2, Q1 or Q2 approximation on a shape-regular, quasi-uniform subdivision of R2,
the matrix A for the discrete vector Laplacian satisfies

ch2 ≤ < Av, v >
< v, v > ≤ C ∀ v ∈ Rnu ,

where h is the length of the longest edge in the mesh, and c and C are constants
independent of h.

☼ This gives us information
the behavior of the
smallest and largest
eigenvalue of A (Rayleigh
Principle)!

h2 λmin(A) h2/λmin(A) λmax(A)

0.0156 0.0768 0.2035 10.5391
0.0039 0.0193 0.2028 10.6346
0.0010 0.0048 0.2027 10.6586
0.0002 0.0012 0.2027 10.6647
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The Stokes equation: properties of the matrix
To uncover information on the B matrices, we need to introduce a discrete representation
of the norm of Mh ⊂ L2:

ph ∈ Mh : ‖ph‖ =< Qph, ph >
1/2, Q = (qkl), qk,l =

∫
Ω

ψkψl , k, l = 1, . . . , np .

Exclamation The matrix Q is called mass matrix for the pressure space, in general, we call
mass-matrices all the matrices obtained in this way for the basis of a given FEM space.

Generalized singular values
We call generalized singular values the real numbers σ associated with the following
generalized eigenvalue problem[

O BT

B O

] [
v
q

]
= σ

[
A O
O Q

] [
v
q

]
.
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The Stokes equation: properties of the matrix
Generalized singular values
We call generalized singular values the real numbers σ associated with the following
generalized eigenvalue problem[

O BT

B O

] [
v
q

]
= σ

[
A O
O Q

] [
v
q

]
.

σ = 0 this implies BT q = 0, and Bv = 0,

σ 6= 0 we select vector (vT ,−qT )T and obtain
< v,BT q >− < q,Bv >= 0 = σ (< v,Av > − < q,Qq >)⇒ < Av, v >=< Qq, q > .

That is
< BA−1BT q, q >
< Qq, q > = σ2 =

< BT Q−1Bv, v >
< Av, v > .
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The Stokes equation: properties of the matrix

< BA−1BT q, q >
< Qq, q > = σ2 =

< BT Q−1Bv, v >
< Av, v > .

• If ker BT = 0 then B has np positive singular values.
• This is linked to the inf-sup condition:

β ≤ min
qh 6=const

max
vh 6=0

|(qh,∇ · vh)|

‖∇vh‖‖qh‖
= min

q 6=1
max
v 6=0

| < q,Bv > |

< Av, v >1/2< Qq, q >1/2

=min
q 6=1

1
< Qq, q >1/2

max
w=A1/2v 6=0

| < q,BA−1/2w > |

< w,w >1/2

=min
q 6=1

< A−1/2BT q,A−1/2BT q >1/2

< Qq, q >1/2
= min

q 6=1

< BA−1BT q, q >1/2

< Qq, q >1/2
= σmin
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The Stokes equation: properties of the matrix

Theorem (Elman, Silvester, and Wathen 2014, Theorem 3.22)
Let ∂Ω ≡ ΓD , the Stokes problem discretized with a uniformly stable mixed approximation
on a shape-regular, quasi-uniform subdivision of R2, has a Schur complement matrix
BA−1BT that is spectrally equivalent to the pressure mass matrix Q:

β2 ≤ < BA−1BT q, q >
< Qq, q > ≤ 1, ∀ q ∈ Rnp : q 6= 1.

The inf-sup constant β is bounded away from zero independently of h and the condition
number (discarding the zero eigenvalue) κe(BA−1BT ) ≤ C/(cβ)2 for c and C given by

ch2 ≤ < Qq, q >
< q, q > ≤ Ch2, ∀ q ∈ Rnp .
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The Stokes equation: properties of the matrix
We can run this test on the usual test problem
by running the code in the folder

CODE E3-Stokes/stokesmatrixproperties.m

This tests both:
1. The bound on the vector Laplacian,
2. The bounds on the Schur complement.

for the P2-P1 elements.

h λ2 λnp

0.2500 0.1352 0.9932
0.1250 0.1341 0.9996
0.0625 0.1336 1.0000
0.0312 0.1334 1.0000

Generalized eigenvalues for:
BA−1BT x = λQx

Other tests
The code contains generator for the matrix of other discretization you can test.

Why do we care?
As you will see in the following, these information are useful for the design of iterative
solvers.
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The code contains generator for the matrix of other discretization you can test.

Why do we care?
As you will see in the following, these information are useful for the design of iterative
solvers.
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The Stokes equation: stabilized discretizations

We have seen that the matter of obtain a stable discretization depends on the null-space
of BT .

LIGHTBULB Idea behind stabilization
If the discretization is not stable ∃p 6= 1 such that BT p = 0, that is (0T , pT )T is a null
vector for the homogeneous saddle-point system. The idea behind stabilization is relaxing
the incompressibility constraint so that this vector is no longer in the kernel and we still
obtain a reasonable error bound for the convergence of the method.

WRENCH Technique
The technique to devise stabilization is again using macroelements.
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The Stokes equation: stabilized Q1-P0

Velocity

Pressure

• This is the simplest unstable element,

• To devise a stabilization we need a 2 × 2 macroelement
• The pressure coefficient p solves

BA−1BT p = BA−1f − g,

the Schur complement BA−1BT has two eigenvectors for the
0 eigenvalue: 1, and q2 = (1,−1, 1,−1)T .

• We relax the incompressibility constraint

Sγp ≡ (BA−1BT + γC)p = BA−1f − g,

selecting C such that CT = C , C ≥ 0, Sγ ≥ 0 and
ker Sγ = {1}.

• What about γ?
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The Stokes equation: stabilized Q1-P0
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• We have moved the 0 eigenvalue with eigenvector q2 to 4γ, if
we take γ = 1/4 we get a spectral orthogonal projector for C ,

• But γ has to be selected to balance both stability and
accuracy, a natural choice would be selecting

γ∗ =
1
4hxhy , hxhy = “area of the element”

If Q is the mass matrix associate with the P0 elements
(Q = hxhy × I), then γ∗ is the largest value for which

γ
pT C∗p
pT Qp ≤ 1 ∀p ∈ Rnp .

• Complete stabilization matrix: C = blockdiag(C∗, . . . ,C∗).
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The Stokes equation: stabilized Q1-P0

Other stabilization are possible
This is not the only possible stabilization matrix, other choices are possible, consider, e.g.,

C∗ = hxhy


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 that has again the same eigenvectors of S0, and is
called the jump stabilization matrix.

We can visually see the
effect of the stabilization
on the same colliding flow
problem.

γ =

01/4
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The Stokes equation: stabilized matrix properties
What can we say about the spectral properties of the stabilized matrices?
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A BT
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u
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=

[
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g

]

• To substitute the inf-sup condition we introduce the
operator:
s(qh) : Mh → R

qh 7→ s(qh) = max
vh 6=0

(qh,∇ · vh)

‖∇vh‖
+ c(qh, qh)

1/2,

where c(·, ·) is the stabilization operator that
generates the matrix C .

Uniform stabilization
The Stokes problem is said to be uniformly stabilized if
there exists β indepedent of h such that

s(qh) ≥ β2‖qh‖, ∀qh ∈ Mh.
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The Stokes equation: stabilized matrix properties
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• As we have done for the stable case, we can express
everything in terms of matrices ∀ q ∈ Rnp

< BA−1BT q, q >1/2 + < Cq, q >1/2≥ 1
2β

2 < Qq, q >1/2 .

• Then the generalized inf-sup conditions is

β2 = 2 min
q 6=1

< (BA−1BT + C)q, q >
< Qq, q > .
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The Stokes equation: stabilized matrix properties
Theorem (Elman, Silvester, and Wathen 2014, Theorem 3.29)
Let ∂Ω ≡ ΓD , the Stokes problem discretized with an ideally stabilized mixed approximation
on a shape-regular, quasi-uniform subdivision of R2, has a Schur complement matrix
BA−1BT + C that is spectrally equivalent to the pressure mass matrix Q:

β2 ≤ < (BA−1BT + C)q, q >
< Qq, q > ≤ 2, ∀ q ∈ Rnp : q 6= 1.

The generalized inf-sup constant β is bounded away from zero independently of h.

The colliding flow problem can be tested with

CODE E3-Stokes/stokesmatrixpropertiesstab.m

`(h = 2−`) β2 λnp

3 0.280929 1.7238
4 0.252201 1.74406
5 0.233876 1.74859
6 0.221837 1.74965
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The Navier-Stokes Equation
We add to the Stokes problem a forcing term and a convection term obtaining

−ν∇2u + u · ∇u +∇p = f ,
∇ · u = 0,

where• ν > 0 is the kinematic viscosity,
• u is the velocity of the fluid,
• p is the pressure of the fluid.

• The equation is nonlinear!
• We need boundary conditions on ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅:

u = w on ΓD , ν
∂u
∂n − n̂p = 0 on ∂ΓN

∂Ω ≡ ΓD
If the velocity is specified everywhere on the boundary, then the pressure solution to the
Navier–Stokes problem is only unique up to a hydrostatic constant.
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The Navier-Stokes Equation: normalization
We normalize the system

−ν∇2u + u · ∇u +∇p = f ,
∇ · u = 0,

to better highlight if the system is diffusion dominated or advection dominated.
• Let L denote a characteristic length scale for the domain Ω,
• we scale space variables as ξ = x/L.

• Let U be a reference-value for the velocity so that u = Uu∗,
• we scale the pressure so that p(Lξ) = U2p∗(ξ).

Reynolds number
We call R = UL/ν the Reynolds number. If R ≤ 1 then the problem is diffusion dominated,
for increasing values of R we get instead convection dominated problems.
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The Navier-Stokes Equation: weak formulation
Can be written similarly to the Stokes problem

Find (u, p) ∈ V × M :


ν

∫
Ω

∇u : ∇v +

∫
Ω

(u · ∇u) · v −

∫
Ω

p(∇ · v) =
∫
Ω

f · v ,∫
Ω

q(∇ · u) = 0.

We need again the suitable spaces
• u ∈ H1

E = {u ∈ H1(Ω)d |u = w on ΓD } ≡ V , p ∈ L2(Ω) ≡ M,
• v ∈ H1

E0
= {v ∈ H1(Ω)d | v = 0 on ΓD },

• New addition is a trilinear form for the velocity term:

c : H1
E0 ×H1

E0 ×H1
E0 → R

(z,u, v) 7→ c(z,u, v) =
∫
Ω

(z · ∇u) · v.
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The Navier-Stokes Equation: existence
This is a non linear problem, so for existence we need both Lax-Milgram and a result for
nonlinear systems of algebraic equations.

To simplify the proof we restrict to the case ∂Ω ≡ ΓD and w = 0, that is, a fluid confined
into a fixed domain Ω, by this choice V = H1

E ≡ H1
E0

≡ H1
0(Ω)d .

• We restate the problem

Find (u, p) ∈ V × M :

{
a(u, v) + c(u, u, v) + b(v, p) = (f , v), ∀ v ∈ V ,
b(u, q) = 0, ∀, q ∈ M,

(NS)

with

a(w, v) = ν(∇w,∇v) : V × V → R, b : V × Q → R = −(q,∇ · v),

c(u, u, v) =
d∑

i ,j=1

(
uj
∂ui
∂xj
, vi

)
: V × V × V → R
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The Navier-Stokes Equation: existence
The existence proof then follows in few steps.

1. We consider the problem on the space Vdiv = {v ∈ H1(Ω)d : div v = 0}, then a
solution of (NS) is a solution also of the problem on this space

Find u ∈ Vdiv : a(u, v) + c(u, u, v) = (f , v), ∀ v ∈ Vdiv. (NSdiv)

2. Then we prove that to a solution on the reduced space corresponds a solution of the
full problem.

Lemma (Quarteroni and Valli 1994, Lemma 10.1.1)
Let u be a solution of (NSdiv). Then there exists a unique p ∈ M such that (u, p) is a
solution of problem (NS).

3. Prove that (NSdiv) has a unique solution.
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The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli 1994, Theorem 10.1.1)
Let f ∈ Hdiv = {v ∈ L2(Ω)d | div v = 0 in Ω, v · n̂ = 0 on ∂Ω}, with

‖f‖ < ν2

ĈC 1/2
Ω

,

where Ĉ > 0 is the continuity constant for the trilinear form c, i.e.,

|c(w, z, v)| ≤ Ĉ |w|1|z|1|v|1 ∀w, z, v ∈ H1
0(Ω)d ,

and CΩ is Poincaré constant for the domain under consideration. Then, there exist a unique
solution u ∈ Vdiv to (NSdiv).
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Let f ∈ Hdiv = {v ∈ L2(Ω)d | div v = 0 in Ω, v · n̂ = 0 on ∂Ω}, with

‖f‖ < ν2

ĈC 1/2
Ω

,

where Ĉ > 0 is the continuity constant for the trilinear form c, i.e.,

|c(w, z, v)| ≤ Ĉ |w|1|z|1|v|1 ∀w, z, v ∈ H1
0(Ω)d ,

and CΩ is Poincaré constant for the domain under consideration. Then, there exist a unique
solution u ∈ Vdiv to (NSdiv).

Idea of the proof.
1. Use Lax-Milgram for problem Aw(z, v) = (f , v), ∀, v ∈ Vdiv and
Aw(z, v) = a(z, v) + c(w, z, v) to prove existence for every w.
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Let f ∈ Hdiv = {v ∈ L2(Ω)d | div v = 0 in Ω, v · n̂ = 0 on ∂Ω}, with

‖f‖ < ν2

ĈC 1/2
Ω

,

where Ĉ > 0 is the continuity constant for the trilinear form c, i.e.,

|c(w, z, v)| ≤ Ĉ |w|1|z|1|v|1 ∀w, z, v ∈ H1
0(Ω)d ,

and CΩ is Poincaré constant for the domain under consideration. Then, there exist a unique
solution u ∈ Vdiv to (NSdiv).

Idea of the proof.
2. The solution we look for is then a fixed point of the map Φ : w → z. First we prove that
such solution is in a ball in Vdiv.

67 / 77



The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli 1994, Theorem 10.1.1)
Let f ∈ Hdiv = {v ∈ L2(Ω)d | div v = 0 in Ω, v · n̂ = 0 on ∂Ω}, with

‖f‖ < ν2

ĈC 1/2
Ω

,

where Ĉ > 0 is the continuity constant for the trilinear form c, i.e.,

|c(w, z, v)| ≤ Ĉ |w|1|z|1|v|1 ∀w, z, v ∈ H1
0(Ω)d ,

and CΩ is Poincaré constant for the domain under consideration. Then, there exist a unique
solution u ∈ Vdiv to (NSdiv).

Idea of the proof.
3. Finally, we apply Banach contraction Theorem (using the hypothesis on f ) to prove that
there exist a unique fixed point for the problem.
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The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli 1994, Theorem 10.1.1)
Let f ∈ Hdiv = {v ∈ L2(Ω)d | div v = 0 in Ω, v · n̂ = 0 on ∂Ω}, with

‖f‖ < ν2

ĈC 1/2
Ω

,

where Ĉ > 0 is the continuity constant for the trilinear form c and CΩ is Poincaré constant for the
domain under consideration. Then, there exist a unique solution u ∈ Vdiv to (NSdiv).

Conditions - 1
It is not restrictive to assume f ∈ Hdiv, any f ∈ L2(Ω)d can be decomposed as the sum of
a function in Hdiv and a function that is a gradient of an H1(Ω) function. The gradient
component of the external force field f doesn’t play a role, (v,∇q) = 0 ∀ q ∈ H1 and
v ∈ Hdiv.
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Theorem (Quarteroni and Valli 1994, Theorem 10.1.1)
Let f ∈ Hdiv = {v ∈ L2(Ω)d | div v = 0 in Ω, v · n̂ = 0 on ∂Ω}, with

‖f‖ < ν2

ĈC 1/2
Ω

,

where Ĉ > 0 is the continuity constant for the trilinear form c and CΩ is Poincaré constant for the
domain under consideration. Then, there exist a unique solution u ∈ Vdiv to (NSdiv).

Conditions - 2
The smallness condition on the viscosity ν is necessary for proving uniqueness, and is
restrictive. The solution may not be unique when ν is small w.r.t. f , even for reasonable f .
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The Navier-Stokes Equation: linearizations
Since we only now how to solve linear problems, to face (NS) we discuss two types of
nonlinear iteration with a linearized problem being solved at every step.

Newton Method Picard’s Iteration
We introduce both method first in the continuous context.
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The Navier-Stokes Equation: Newton method
1. We have a guess {uk , pk } for the solution,
2. We compute the residual pairs

[
Rk
rk

]
=


∫
Ω

f · v − c(uk , uk , v) − ν
∫
Ω

∇uk : ∇v +

∫
Ω

pk(∇ · v)

−

∫
Ω

q(∇ · uk)

 v ∈ H1
E0
,

q ∈ L2(Ω).

3. Then update the solution as

uk+1 = uk + δuk , pk+1 = pk + δpk ,

for δuk ∈ H1
E0

and δpk ∈ L2(Ω) the solution of
c(δuk ,uk , v) + c(uk , δuk , v) + ν

∫
Ω

∇δuk : ∇v −

∫
Ω

δpk(∇ · v) = Rk , ∀v ∈ H1
E0
,∫

Ω

q(∇ · δuk) = rk , ∀ q ∈ L2
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The Navier-Stokes Equation: Discrete Newton
As we have done for the Stokes problem we select Vh ⊂ H1

E0
and Mh ⊂ L2(Ω),

• The Newton updates are then computed by solving ∀v ∈ Vh, ∀qh ∈ Mh
c(δu(k)

h ,u(k)
h , vh) + c(u(k)

h , δu(k)
h , v) + ν

∫
Ω

∇δu(k)
h : ∇vh −

∫
Ω

δp(k)
h (∇ · vh) = R (k)

h∫
Ω

qh(∇ · δu(k)
h ) = r (k)h

where Rk(vh), and rk(qh) are the nonlinear residuals w.r.t. discrete formulation.
• Selecting basis Vh = Span{φj }, Mh = Span{ψj } and representing (dropping the k)

uh =

nu∑
j=1

ujφj +

nu+n∂∑
nu+1

ujφj , ph =

np∑
k=1

pkψk ,

and
δuh

nu∑
j=1

+δujφj , δph =

np∑
k=1

δpkψk ,

we get the corresponding discrete system 70 / 77
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• we get the corresponding discrete system
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νA + N + W BT

B O

] [
δu
δp

]
=

[
f
g

]
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δp(k)
h (∇ · vh) = R (k)

h∫
Ω

qh(∇ · δu(k)
h ) = r (k)h

where Rk(vh), and rk(qh) are the nonlinear residuals w.r.t. discrete formulation.
• we get the corresponding discrete system

Aδ =
[
νA + N + W BT

B O

] [
δu
δp

]
=

[
f
g

] A =

[
A O
O A

]
ai ,j =

∫
Ω∇φi · ∇φj ,

B =
[
Bx By

]
bx ,ki = −

∫
Ωψk∂xφi ,

by ,kj = −
∫
Ωψk∂yφj .
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The Navier-Stokes Equation: Discrete Newton
As we have done for the Stokes problem we select Vh ⊂ H1

E0
and Mh ⊂ L2(Ω),

• The Newton updates are then computed by solving ∀v ∈ Vh, ∀qh ∈ Mh
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h ,u(k)
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h (∇ · vh) = R (k)

h∫
Ω

qh(∇ · δu(k)
h ) = r (k)h

where Rk(vh), and rk(qh) are the nonlinear residuals w.r.t. discrete formulation.
• we get the corresponding discrete system

Aδ =
[
νA + N + W BT

B O

] [
δu
δp

]
=

[
f
g

] N =

[
N O
O N

]
ni ,j =

∫
Ω(uh · ∇φj) · φi ,

W =

[
Wxx Wxy
Wyx Wyy

]
wi ,j =

∫
Ω(φj · ∇uh) · φi ,
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The Navier-Stokes Equation: Discrete Newton

As we have done for the Stokes problem we select Vh ⊂ H1
E0

and Mh ⊂ L2(Ω),
• The Newton updates are then computed by solving ∀v ∈ Vh, ∀qh ∈ Mh
c(δu(k)

h ,u(k)
h , vh) + c(u(k)

h , δu(k)
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∫
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δp(k)
h (∇ · vh) = R (k)

h∫
Ω

qh(∇ · δu(k)
h ) = r (k)h

where Rk(vh), and rk(qh) are the nonlinear residuals w.r.t. discrete formulation.
• we get the corresponding discrete system

Aδ =
[
νA + N + W BT

B O

] [
δu
δp

]
=

[
f
g

]
fi =

∫
Ω f · φi −

∫
Ω uh · ∇uh · φi

−ν
∫
Ω∇uh : ∇φi +

∫
Ω ph(∇ · φi),
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h∫
Ω
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where Rk(vh), and rk(qh) are the nonlinear residuals w.r.t. discrete formulation.
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B O
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=

[
f
g

]
gk =

∫
Ω

ψk(∇ · uh).
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The Navier-Stokes Equation: Discrete Newton
As we have done for the Stokes problem we select Vh ⊂ H1

E0
and Mh ⊂ L2(Ω),

• The Newton updates are then computed by solving ∀v ∈ Vh, ∀qh ∈ Mh
c(δu(k)

h ,u(k)
h , vh) + c(u(k)

h , δu(k)
h , v) + ν

∫
Ω

∇δu(k)
h : ∇vh −

∫
Ω

δp(k)
h (∇ · vh) = R (k)

h∫
Ω

qh(∇ · δu(k)
h ) = r (k)h

where Rk(vh), and rk(qh) are the nonlinear residuals w.r.t. discrete formulation.
• we get the corresponding discrete system

Aδ =
[
νA + N + W BT

B −ν−1C

] [
δu
δp

]
=

[
f
g

]
• If we use unstable elements, we need a stabilization matrix.
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The Navier-Stokes Equation: Picard’s Iteration
The second approach for linearization is Picard’s iteration, we start again from

1. We have a guess {uk , pk } for the solution,
2. We compute the residual pairs[

Rk
rk

]
=


∫
Ω

f · v − c(uk , uk , v) − ν
∫
Ω

∇uk : ∇v +

∫
Ω

pk(∇ · v)

−

∫
Ω

q(∇ · uk)

 v ∈ H1
E0
,

q ∈ L2(Ω).

3. Then update the solution as
uk+1 = uk + δuk , pk+1 = pk + δpk ,

for δuk ∈ H1
E0

and δpk ∈ L2(Ω) the solution of
c(δuk ,uk , v) + c(uk , δuk , v) + ν

∫
Ω

∇δuk : ∇v −

∫
Ω

δpk(∇ · v) = Rk , ∀v ∈ H1
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,∫

Ω

q(∇ · δuk) = rk , ∀ q ∈ L2
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The Navier-Stokes Equation: Picard’s Iteration
The second approach for linearization is Picard’s iteration, we start again from

1. We have a guess {uk , pk } for the solution,
2. We compute the residual pairs[

Rk
rk

]
=
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∫
Ω

f · v − c(uk , uk , v) − ν
∫
Ω

∇uk : ∇v +

∫
Ω

pk(∇ · v)

−

∫
Ω

q(∇ · uk)

 v ∈ H1
E0
,

q ∈ L2(Ω).

3. Then update the solution as
uk+1 = uk + δuk , pk+1 = pk + δpk ,

for δuk ∈ H1
E0

and δpk ∈ L2(Ω) the solution of the Oseen system
c(uk , δuk , v) + ν

∫
Ω

∇δuk : ∇v −

∫
Ω

δpk(∇ · v) = Rk , ∀v ∈ H1
E0
,∫

Ω

q(∇ · δuk) = rk , ∀ q ∈ L2
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The Navier-Stokes Equation: Discrete Picard
The discrete system is the same of the Newton method without the Newton matrix W:

Aδ =
[
νA + N BT

B O

] [
δu
δp

]
=

[
f
g

]

• If we use unstable elements, we need a stabilization matrix.

Theorem
Consider the generic saddle-point system

A =

[
F BT

B −C

]
,

where C is symmetric and positive-semidefinite matrix. If < Fu, u > 0 ∀u 6= 0, then

kerA =

{[
0
p

]∣∣∣∣ .p ∈ ker(BF−1BT + C)

}
.
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The Navier-Stokes Equation: Newton and Picard

Newton

A =

νA + N + Wxx Wxy BT
x

Wyx νA + N + Wyy BT
y

Bx By O


• Coupled A1,1 block,
• Quadratic convergence,
• Locally convergent for “large enough” ν,

and “close enough” initial guess.

Picard

A =

νA + N O BT
x

O νA + N BT
y

Bx By O


• Decoupled A1,1 block,
• Linear convergence,
• Converges under the existence condition:

‖f‖ < ν2/ĈC
1/2
Ω .

Next week we will delve into some numerical experiments, and try several
preconditioners discussed in the morning lectures.
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Navier-Stokes: backward facing step

Test problem:
• L-shaped domain Ω, parabolic inflow boundary

condition, natural outflow boundary condition,
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-0.2
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0.6

0.8

1
Q1-Q1 finite element subdivision

You can run the example as CODE E4-NavierStokes/navierstokes_solution.m.
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Navier-Stokes: backward facing step

Test problem:
• L-shaped domain Ω, parabolic inflow boundary

condition, natural outflow boundary condition,

Poiseuille flow
It is a steady horizontal flow in a channel driven by a
pressure difference between the two ends

ux = 1 − y2, uy = 0, p = −2νx + constant.
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Navier-Stokes: backward facing step

Test problem:
• L-shaped domain Ω, parabolic inflow boundary

condition, natural outflow boundary condition,
• Inflow x = −1, 0 ≤ y ≤ 1,

No flow on the boundary,
Neumann condition at the outflow x = L,
−1 < y < 1.

• Discretized with (unstable) Q1-Q1 elements.
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Navier-Stokes: backward facing step
Initial guess:

1

0

Pressure field
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Streamlines: uniform

Solution of the associated Stokes problem.

Picard’s Iteration
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Navier-Stokes: backward facing step

• For this test problem convergence of the
Newton method from the Stokes initial
data is quite poor, what can we do?

• We start from Stokes, then perform few
steps of Picard’s iteration, and finally
accelerate with Newton.

• The “mess” doesn’t end here –
unfortunately or fortunately, I’m not yet
sure…boundary layers, bifurcations,
absence of stable flows,…
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