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“In order to solve this differ-
ential equation you look at it
till a solution occurs to you.”

How to Solve It (Princeton 1945)

George Pdlya (1887-1985)
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“In order to solve this differ-
ential equation you look at it
till a solution occurs to you.”

How to Solve It (Princeton 1945)

George Pdlya (1887-1985)

We are gonna settle for approximating its solution.
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Overview

1. Basic Concepts
2. Finite Element Spaces
3. Variational crimes

4. Mixed methods
4.1 The Poisson Equation
4.2 The Stokes Equation
Stable discretizations
Stabilized discretizations
4.3 The Navier-Stokes Equation

3/77



The main sources

AL MATHEMATICS

S. C. Brenner and L. R. Scott D SCIENTIFC COMPLINTION
(2008). The mathematical theory

of finite element methods. Third. [:1mte blcn}1erzrs and
Susanne C. Brenner . X Fast Iterative Solvers
L. Ridgway Scott Vol. 15. Texts in Applied

pe—— Mathematics. Springer, New York,
i

pp. xviii+397. ISBN:

The Mathematical 978-0-387-75933-3
Theory of Finite H. C. Elman, D. J. Silvester, and
Element Methods A. J. Wathen (2014). Finite

elements and fast iterative
solvers: with applications in
incompressible fluid dynamics.
Second. Numerical Mathematics
and Scientific Computation.
Oxford University Press, Oxford,
pp. xiv+479. ISBN:
978-0-19-967880-8

4777



Basic Concepts

Consider the two-point boundary value problem (BVP):
_du
dx?2
u(0)=0, u'(1)=0.
If uis the solution and v € V is a sufficiently regular for which v(0) = 0, then integration
by parts yields:

= fa in (0)1))

(f,v) Jl f(x)v(x)dx = —Jl u" (x)v(x) dx

0 0

1
:J u' (x)v'(x)dx = a(u, v).
0

Then the solution v to our BVP is characterized by
find u € V such that a(u, v) = (f, v) YveV.
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Sobolev Spaces: multi-index notation

What do we mean with “sufficiently regular"? What should we select for V7
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Sobolev Spaces: multi-index notation

What do we mean with “sufficiently regular"? What should we select for V7

First some notation

Given a multi-index & € N” we denote with

n
ol =) «;,
i=1

the length of the multi-index. For a function @ € C*, we denote the usual pointwise
partial derivative by

o\“* D\ ™ 3\ %
0x 0x1 0Xp,
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Sobolev Spaces: building blocks

Definition: compact support functions

Let O C R" a domain. We denote by D(Q) or C§°(Q) the set of

C*(Q) functions with compact support in Q, i.e., the C*(Q)

functions for which the closure of the set of the points in which they

are not zero is compact in Q. 1 1
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Sobolev Spaces: building blocks

Definition: compact support functions

Let O C R" a domain. We denote by D(Q) or C§°(Q) the set of

C*(Q) functions with compact support in Q, i.e., the C*(Q)

functions for which the closure of the set of the points in which they

are not zero is compact in Q. 1 1

Definition: locally integrable functions
Given a domain Q we define the set of locally integrable functions as

Li (Q)={f: f e LY(K)VK C Q K compact}.

loc
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Sobolev Spaces: weak derivatives

Definition: weak derivative

We say that a function f € L1 _(Q) has a weak derivative, D&f provided that there exists

loc

a function g € Lt _(Q) such that

loc

J g(x)@(x)dxz(—l)'“J Fe@dx, Ve eCP(Q.
Q Q

If such g exists then we define D3f = g.
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Sobolev Spaces: weak derivatives

Definition: weak derivative

We say that a function f € L1 _(Q) has a weak derivative, D&f provided that there exists

loc

a function g € Lt _(Q) such that

loc

J g(x)cp(x)dxz(—l)'“J Fe@xdx, Ve e
Q Q

If such g exists then we define D3f = g.

A couple of examples:
® f(x) =1— |x| admits as first weak derivative D} f = g = Xx<0 + Xx>0.
e If f € C1¥(Q) for an arbitrary «, then D&f = D*f.
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Sobolev space

Definition: Sobolev norms and spaces

Let k € N, f € LL_(Q), suppose that the weak derivative DXf exists for all || < k. We

loc
define the Sobolev norm

:E:: ||[);:f1|ﬁip((1) y 1<p<+oo
I llwe) = \o:ladk
ma DEFl| oo = 00.
cx:locék” w ”]L (Q)» P

We define the Sobolev space W;(Q) as
WA(Q) = {f € LL(Q) : [fllwya < oo}
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Sobolev space: a collection of results

Theorem(s)
(i) The Sobolev space W;(Q) is a Banach space,
(i) Let Q be any open set, then C*°(Q) N W;(Q) is dense in W;(Q) for p < oo,
(i) kkmeN, k<m, 1<p<oo= W(Q)C WKQ),
(iv) Q bounded, ke N, 1<p<g< o= W;(Q) C W;(Q),
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Sobolev space: a collection of results

Theorem(s)
(i) The Sobolev space W;(Q) is a Banach space,
Definition: ALAipAsAchiAti-bodndaAryA ‘
Let n€ N, QO Cc R*. Q is a Lipschitz domain if YV p € 9Q exists a hyperplane H of

dimension n — 1 through p, a Lipschitz-continuous function g : H — R over that
hyperplane, and reals r > 0 and h > 0 such that

e ONC={x+yn|xeB(p)NH, —h<y<g(x)}

* (0Q)NC={x+ynl|xe€ B/ (p)NH, glx)=y}
where 7 is a unit vector that is normal to H, B,(p) :={x € R" | ||x — p|| < r} is the open
ball of radius r, C:={x+yn|x € B,(p)NH, —h<y < h}.
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Sobolev space: a collection of results
Theorem(s)
(i) The Sobolev space WI;‘(Q) is a Banach space,
(ii) Let Q be any open set, then C*(Q) N W;‘(Q) is dense in Wlf(Q) for p < oo,
(i) kkmeN, k<m,1<p<oco= WIQ)C W,f(Q),
(iv) Q bounded, keN,1<p<g<oo= Wé‘(Q) C W;(Q),
(v) If Q C R" has a Lipschitz boundary, Vk € N, 1 < p < o0, there exist

E : W;‘(Q) - WA‘(R”) satisfying Evio = v V,v € W;(Q), and
HEv||ka(Rn) < C||v\|WPk(Q) with C independent of v,

(vi) If Q C R" has a Lipschitz boundary, Vk € N, 1 < p < 0o, and m < k, then

k—m>n, p=1
3C>0: Yue WAQ) |lullwea < Cllu o )
5 (Q) lulwgia) < Cllullwyay {k_m>g, o1

And there exist a function in C™ in the ILP equivalence class of u. )
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Sobolev space: finally we have got an answer!

If you have forgotten the question, we were trying to understand for what V the solution
u characterized by

find u € V such that a(u, v) = (f,v) YveV.

was a meaningful solution to our initial BVP.

The space
V={ve Wi Q) : v(0) =0}

By the extension property and the Sobolev inequality we now know that pointwise
values are well defined for functions Wj (Q).

But all this machinery was needed just to validate the formulation, how do we go to a
discrete solution?
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Building a discrete space

To move to a discrete setting, we need to select a finite subspace S C V. With this, we
can impose the Ritz-Galerkin conditions:

find us € S such that a(us, v) = (f, v) YveS.

® Since S is finite-dimensional, there exists a basis ¢1,...,d, of S,
® Thus, us =3[ Uip;eS U eRfori=1,...,n,
® Ritz-Galerkin conditions are now a system of linear equations for the unknown
coefficients U;:
KU =F,
with
e U=(U,...,U,)T eR",
°F= (Fl)---)Fn)T € R", for F; = (f)d)i),
o K= (K’J) c Rnxn, for KU = a(d),-,d)j).
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Building a discrete space

To move to a discrete setting, we need to select a finite subspace S C V. With this, we
can impose the Ritz-Galerkin conditions:

find us € S such that a(us, v) = (f, v) VveS.

® Since S is finite-dimensional, there exists a basis ¢1,...,b, of S,
® Thus, us =3[, Uip;eS U eRfori=1,...,n,
® Ritz-Galerkin conditions are now a system of linear equations for the unknown
coefficients U;:
KU =F,
with
e U= (Uy,...,U,)T e R",
* F=(F,...,F,)T €R", for F; = (f, b)),
e K= (K,J) & Rnxn, for K,J = a(d),-,cbj).

What are examples of such S7
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Lagrange basis
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Let 0 =xg < x1 < xp <...<x, =1, we consider the linear space of functions v € S s.t.
(i) ve CO([0, 1),
(i) VI 4% is a linear polynomial, i =1,...,n, and

(i) v(0) = 0.
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Lagrange basis

1,

NN NN N NN

Quadratic Lagrange

"L ANARNAR

Let 0 =xg < x1 < x» < ...< X, =1, we consider the linear space of functions v € S s.t.

(i) v ec(lo, 1),
(i) Vlix 5% is @ quadratic polynomial, i =2,...,n, and
(iii) v(0) =0.

13/77



Lagrange basis
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Let 0 =xg < x1 < xp <...<x, =1, we consider the linear space of functions v € S s.t.
(i) v ecO([o,1]),

(i) VI 5] is a cubic polynomial, i = 3,..., n, and

(iii) v(0) =0.



Convergence and approximation properties

We have a theoretical framework for solutions, examples of discrete spaces, but what
about convergence?

Sobolev meets Hilbert

W,f is a Hilbert space for p = 2, with inner product

<f>g>w2k(Q) = Z (D*f,D%).
o<k

We write: H¥(Q) = Wzk(Q), and H(’)‘(Q) ={ve Wzk(Q) : v=0on0Q}
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Convergence and approximation properties

We have a theoretical framework for solutions, examples of discrete spaces, but what
about convergence? To investigate convergence we move to a more richer setting: Hilbert

spaces.

Sobolev meets Hilbert

W,f is a Hilbert space for p = 2, with inner product

(f, g>W2k(Q_) = Z (D*f,D%).
o<k

We write: HK(Q) = Wzk(Q), and H(’)‘(Q_) ={ve Wzk(Q) : v=0on0Q}

V = H3([0,1]).
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Convergence and approximation properties

Variational problem

For a given Hilbert space V/, a bilinear form a: V x V — R and a linear functional
F:V — R, find u € V such that:

a(u,v) = F(v), forall v e V.

(VP)
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Convergence and approximation properties

Variational problem

For a given Hilbert space V/, a bilinear form a: V x V — R and a linear functional
F:V — R, find u € V such that:

a(u,v) = F(v), forall ve V. (VP)

Theorem (Lax-Milgram).

Let V be a Hilbert space, a: V x V — R a bilinear form, and F: V — R a linear
functional s.t.

Coercivity 3¢ > 0s.t. a(v,v) > ||v||%/ for all v € V.

Continuity 3,3 > 0s.t. a(v,w) < o v, [|wl],/, and F(v) < c3||v]|,, for all
v,w e V.

1
= 3Jlu € V satisfying (VP), and ||uf|,, < - | F -
1
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Convergence and approximation properties

In the conforming Galerkin approach we chose a (finite-dimensional) closed subspace
Vi, C V and look for up € V}, satisfying

alup,vp) = F(vy)  forall vy € Vi (VPR)
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Convergence and approximation properties

In the conforming Galerkin approach we chose a (finite-dimensional) closed subspace
Vi, C V and look for up € V), satisfying

alup, vp) = F(vy)  for all vy € V. (VPh)

Theorem
Under the assumptions of the Lax-Milgram, for any closed subspace V}, C V/, there exists a
unique solution up, € V}, of (VP}) satisfying

1
lunlly < —1Flly- -
1
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Convergence and approximation properties

In the conforming Galerkin approach we chose a (finite-dimensional) closed subspace
Vi, C V and look for up € V), satisfying

alup, vp) = F(vy)  forall vy € V. (VPp)

Céa's lemma

Let up be the solution of (VP}) for given V, C V and u be the solution of variational
problem (VP). Then,

(S,
u—u < = inf |[lu—yv
le—wlly <2 inf lu—wily,

where ¢; and ¢ are the constants from the coercivity and continuity assumptions.
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Convergence and approximation properties

In the conforming Galerkin approach we chose a (finite-dimensional) closed subspace
Vi, C V and look for up € V), satisfying

alup, vp) = F(vy)  forall vy € V. (VPp)

Céa's lemma

Let up be the solution of (VP}) for given V, C V and u be the solution of variational
problem (VP). Then,

(S,
u—u < = inf |[lu—yv
le—wlly <2 inf lu—wily,

where ¢; and ¢, are the constants from the coercivity and continuity assumptions.

The conforming idea

The error of the conforming Galerkin approach is determined by the approximation
error of the exact solution in V.
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Error estimate on 1D problem

The test problem we consider is

—Uxx = f(X))
u(x) = g(x),
for f(x) = 2cos(x)/€* and
g(x) =sin(x)/e* on Q = (0, 10).
We discretize it with Lagrangian 1,
2 and 3 elements and report the

computed error: ||u — Uex||12(q,) ON
the uniform grid with N points.

x € Q,
x € 0Q)

| — B

P, Error

P, Error

2] — Py .

P; Error \\\\\
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@ FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code
1. First we need to load some packages

from mpidpy import MPI # Needed for the MPI environment
import numpy as np # The numpy package support
from dolfinx import mesh # Handler for the meshes
from dolfinx import fem # FEM building blocks
from dolfinx.fem import FunctionSpace # FEM Function Spaces
import ufl # Language for building up wvariational formulations
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@ FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code
1. First we need to load some packages
2. Then we build the mesh and the function space

nx = 500

Omegah = mesh.create_interval (comm=MPI.COMM_WORLD, nx=nx,
— points=(0,10))

V = FunctionSpace(Omegah, ("CG", 1))
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@ FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code
1. First we need to load some packages
2. Then we build the mesh and the function space
3. Then we need a bit of work to impose essential boundary conditions
g = fem.Function(V)
g.interpolate(lambda x: np.sin(x[0])/np.exp(x[0]))
tdim = Omegah.topology.dim
fdim = tdim - 1
Omegah.topology.create_connectivity(fdim, tdim)

boundary_facets =

— np.flatnonzero(mesh.compute_boundary_facets(Omegah.topology))
boundary_dofs = fem.locate_dofs_topological(V, fdim,

<~ boundary_facets)

bc = fem.dirichletbc(g, boundary_dofs)
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@ FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code
1. First we need to load some packages
2. Then we build the mesh and the function space
3. Then we need a bit of work to impose essential boundary conditions
4. We create test and trial functions

u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
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@ FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code

1.

First we need to load some packages

2. Then we build the mesh and the function space
3.
4
5

Then we need a bit of work to impose essential boundary conditions

. We create test and trial functions

. We build the source and the variational formulation

f = fem.Function(V)

f.interpolate(lambda x: 2.0*np.cos(x[0])/np.exp(x[0]))
a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx

F=1Ff v *ufl.dx
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@ FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code

1.

o ok wnN

First we need to load some packages

Then we build the mesh and the function space

Then we need a bit of work to impose essential boundary conditions
We create test and trial functions

We build the source and the variational formulation

Finally we solve the linear system (directly..it's 1D!)

problem = fem.petsc.LinearProblem(a, F, bcs=[bc],
— petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
uh = problem.solve()
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@ FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code

1.

N oo RN

First we need to load some packages

Then we build the mesh and the function space

Then we need a bit of work to impose essential boundary conditions
We create test and trial functions

We build the source and the variational formulation

Finally we solve the linear system (directly...it's 1D!)

and compute the error: Error_L2 : 1.14e-04

V2 = fem.FunctionSpace(Omegah, ("CG", 2))

uex = fem.Function(V2)

uex.interpolate(lambda x: np.sin(x[0])/np.exp(x[0]))
L2_error = fem.form(ufl.inner(uh - uex, uh - uex) * ufl.dx)
error_local = fem.assemble scalar (L2 error)

error_L2 = np.sqrt(Omegah.comm.allreduce(error_local, op=MPI.SUM))
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@ FEniCSx Code Example

We can implement this simple case in the FEniCSx Library in few lines of code

1.

No oo A~ wDd

To run the example there is a %@ Python notebook using FEniCSx shared through

First we need to load some packages

Then we build the mesh and the function space

Then we need a bit of work to impose essential boundary conditions
We create test and trial functions

We build the source and the variational formulation

Finally we solve the linear system (directly..it's 1D!)

and compute the error: Error_L2 : 1.14e-04

O bit.ly/3t TEBfl (and executed on Google Colab).
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https://bit.ly/3tTEBfI

FEM Spaces

We can build many different types of Finite Elements.

FE Definition (Ciarlet, 1978)

A finite element is a triple (K, P, N') where
(i) K C R" is a simply connected bounded open set with piecewise smooth boundary
(element domain);
(ii) P is a finite-dimensional space of functions defined on K (space of shape functions);

(i) N ={Ny,..., Ny} is a basis of P* (degrees of freedom).
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FEM Spaces

We can build many different types of Finite Elements.

FE Definition (Ciarlet, 1978)
A finite element is a triple (K, P, N') where
(i) K C R" is a simply connected bounded open set with piecewise smooth boundary
(element domain);
(ii) P is a finite-dimensional space of functions defined on K (space of shape functions);
(i) N ={Ny,..., Ny} is a basis of P* (degrees of freedom).

Dual basis definition

Let (K,P,N) be a finite element. A basis {{1,...,P4} of P is called dual basis or nodal
basis to N if N,(lbj) = 5,J
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A lineup of some usual (and unusual) suspects
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FEM Spaces: triangular finite elements

K any triangle, space Py of bivariate polynomials of degree < k,

z3 Z3
L2 Ll Zx Z4
i
zZ1 L3 Z2 V4l Zg Z2
Linear Lagrange element Quadratic Lagrange element Cubic Lagrange element

"®" Point evaluations determining the N = {N1,..., N1 1)1}

2
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FEM Spaces: triangular finite elements

Z3
23 22 z
L
®
P4l 71 z
Linear nonconforming Cubic Hermite element Quintic Argyris element

Crouzeix-Raviart element

@ Point evaluations, @ Gradient evaluations, Three second derivative, T Normal
derivative.
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FEM Spaces: rectangular finite elements

K any rectangle, space Q) = {Zj cipi(x)qi(x), pjyqj € ng[X]},

Z4 L3 Z3 Z4 z7 z3
o  J ® @ @
29
Lq Ly Z3 @ ° ® %
® @ ® @ @
7 Ly 7 7 z5 7
Bilinear Lagrange element Biquadratic Lagrange element

® Point evaluations for N = {Ny,..., Ny}, d = dim Qx = (dim P<,[x])?.

23/77



Per:odnc Table of the lete Elements




FEM Spaces: it’s a vast world

Much of what we discussed and of what we are going to discuss in the next slides can be
applied to FEM-adjacent methods, a (obviously not exhaustive) list of ideas:

DG: Discontinuous Galerkin, (Cockburn, Karniadakis, and Shu ) for a general
overview, linear solvers (Ayuso de Dios et al. ; Dobrev et al. )-
IgA: Isogeometric Analysis, (Cottrell, Hughes, and Bazilevs ) for a general
overview, adaptive meshes (Giannelli, Juttler, and Speleers : Patrizi and
Dokken ), linear solvers (Donatelli et al. : Hornikovd, Vuik, and
Egermaier ; Sangalli and Tani ).
VEM: Virtual Elements, (Beirdo da Veiga et al. , ) for a general overview,
linear solvers (Antonietti, Mascotto, and Verani : Dassi and Scacchi

)..

Another nice source of information is: defelement.com.
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https://defelement.com/

Variational crimes

“The crime is now logical and reasonable.”

Murder for Christmas, A. Christie
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The Penal Code

@ Petrov—Galerkin approaches, where the function u satisfying a(u, v) for all v € V is an
element of U # V;

@ non-conforming approaches, where the discrete spaces Uy, and V/, are not subspaces of
U and V, respectively; and

@ non-consistent approaches, where the discrete problem involves a bilinear form a;, # a
(and a might not be well-defined for all u € U).

We thus need a more general framework that covers these cases as well.
® U, V be Banach spaces, with V reflexive, U*, V* denote their topological duals
® Given a: U x V — R bilinear, F € V* continuous we look for u € U satisfying

a(u,v) = F(v) forallve V. (w)
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Existence and uniqueness in a world full of crimes

Theorem Banach—Necas—Babuska

Let U and V be Banach spaces and V be reflexive. If a: U x V — R and F : V — R satisfy:

(i) Inf=sup condition: there exists a ¢; > 0 such that

. a(u, v)
inf sup

_ > (1.
ueU ey ||U||u ||V||v

(i) Continuity: there exist ¢, c3 such that

la(u, V)| < e flully IvIly s IFWI L allvlly, Yue U, VveV

(iii) Injectivity: for any v € V a(u,v) =0 for all u € U implies v =0.

Then there exists a unique solution u € U to (W), which satisfies

1
< —|IFlly- -
lully < Z-IFly
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Mixed Methods - The Poisson equation

Let us start again from the Poisson equation with homogeneous Dirichlet conditions

—Au=-V -Vu=-V?u=—divgradu=f, xe QCR"
u=0, x € 0Q).

We introduce an auxiliary variable 0 = Vu € L2(Q)" and rewrite it as

Vu—0o =0,
—V.-0o =f.
This system can be formulated in variational form in two different ways:

1. we formally integrate by parts in the second equation = primal approach,

2. we formally integrate by parts in the first equation = dual approach.
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Mixed Methods - The Poisson equation - Primal

We look for (o, u) € L2(Q)" x H(l)(Q) satisfying

(0,7) — (t,Vu) =0 for all T € L?(Q)",
—(o,Vv) =—(f,v) for all VEH%(Q).

that we can restate in abstract form as
alo,t) =(0,1): VXV R, b(v,u) =—(v,Vu): VXM —= R,
on the two (reflexive) Banach spaces V =1L2(Q)" and M = H}(Q) for the problem

a(u) )+b( )}\):<f) >V*,V for a” & V,

Find u, A s.t.
b(u, 1) = (g, 1) pp« 1 for all L e M.
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Mixed Methods - Abstract Saddle-Point formulation

To uncover the connection with the discrete case we are aiming at, let us reformulate the
previous in operator form by introducing

AV = Ve (Ay, vy =alu,v)  forallv eV,

B:V — M* (Bu, p.>M b(u, u)  forallpe M,

B*: M — V*, (B*A,v)y., =b(v,A) forallveV.
From which we rewrite our problem as

Find u )\ st. Au+B*A=f in V¥
Bu=g in M*.

At this stage, this should be very familiar!
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Mixed Methods - Abstract Saddle-Point formulation

Au+B*A=f in V¥
Bu=g in M*.

Find u, A s.t. {

® |f B is invertible = existence and uniqueness first of u and then of A follow
immediately,
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Mixed Methods - Abstract Saddle-Point formulation

Abstract Saddle-Point

Au+B*A=f in V¥
Bu=g in M*.

Find u, A s.t. {

® |f B is invertible = existence and uniqueness first of u and then of A follow
immediately,

® Usually, we are not this lucky, remember our starting example:
< Bo,n >(Hé)*,H(1): b(o, ) =—(0o, V),

that is we have to require that A is injective and coercive on ker B to obtain a
unique u...
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Mixed Methods - Abstract Saddle-Point formulation

Abstract Saddle-Point

Au+B*A=f in V¥
Bu=g in M*.

Find u, A s.t. {

® |f B is invertible = existence and uniqueness first of u and then of A follow
immediately,

® Usually, we are not this lucky, remember our starting example:
< Bo,n >(Hé)*,H(1): b(o, ) =—(0o, V),

that is we have to require that A is injective and coercive on ker B to obtain a
unique u...
e _for the existence of A we then need B* to be surjective.
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Mixed Methods - Banach—Necas—Babuska

Theorem (Continuous Brezzi)

We assume that
(i) a:V x V — R satisfies the conditions of the Banach—Ne¢as—Babuska Theorem for

U=V =kerB
(i) b:V x M — R is such that the Ladyzhenskaya—Babuska—Brezzi condition holds

b(v
Jp >0 : inf sup¥ > B.
neM ey [Ivly [[ully

A) € V x M solving the mixed saddle-point system and satisfying

= 3! (u,
lully + M < CUFl s + llglipge)-
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Mixed Methods - Banach—Necas—Babuska

Theorem (Continuous Brezzi)

We assume that
(i) a:V x V — R satisfies the conditions of the Banach—Ne¢as—Babuska Theorem for
U=V =kerB
(i) b:V x M — R is such that the Ladyzhenskaya—Babuska—Brezzi condition holds

b(v
3B >0: 1nfsup£ > B.
neM ey [Ivly [[ully

= 3! (u,A) € V x M solving the mixed saddle-point system and satisfying
lully + Al < CUFlTy~ + [181Twe)-
A a(u,v) has to satisfy the BNB condition only on ker B, not on all of V!
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Mixed Methods - Banach—Necas—Babuska

Theorem (Continuous Brezzi)

We assume that

(i) a:V x V — R satisfies the conditions of the Banach—Ne¢as—Babuska Theorem for

U=V =kerB
(i) b:V x M — R is such that the Ladyzhenskaya—Babuska—Brezzi condition holds

b(v
3B >0: 1nfsup& > B.
weM ey [[vIly Il

= 3! (u,A) € V x M solving the mixed saddle-point system and satisfying
lully + Al < CUFlTy~ + [181Twe)-
A a(u,v) has to satisfy the BNB condition only on ker B, not on all of V!

W [ BB condition couples V and M spaces, this is going to have repercussions in a

moment!
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Mixed Methods - Back to Poisson
Mixed Continuous Primal Poisson Problem

Find (o, u) € L?(Q)" x Hé(Q) s.t

(0,7) — (T,Vu) =0 Vtel?(Q)",
—(0,Vv) =—(f,v) VveHQ).

Coercivity: a is coercive on V with constant o =1,
LBB: chose v € H}(Q) = M and take T = —Vv € L?(Q)" = V, then

sup b(T> V) = sup —(T,VV) (VV)VV) _ |V| L > C—l ”VH
- > = |Vl >
ev [Ty wev ITlieiqp — Vg © M

@ to get C&l we use Poincaré inequality: for 1 < p < 0o, ) an open bounded set =
Jeq HfHW1 ) < C_O_|f|W1 ) depending only on p and Q.
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Mixed Methods - Back to Poisson
Mixed Continuous Primal Poisson Problem

Find (o, u) € L?(Q)" x Hé(Q) s.t

(0,7) — (T,Vu) =0 Vtel?(Q)",
—(0,Vv) =—(f,v) VveHQ).

Coercivity: a is coercive on V with constant o =1,
LBB: chose v € H}(Q) = M and take T = —Vv € L?(Q)" = V, then
b(t,v) —(1,Vv) (Vv,Vv)

sup = sup > = [Vl > B [|v]|
ev [Ty wev Tl — [IVViLzq)n M

@ to get C&l we use Poincaré inequality: for 1 < p < 0o, ) an open bounded set =
Jeq HfHW1 ) < C_O_|f|W1 ) depending only on p and Q.
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Mixed Methods - Galerkin Approach
Abstract Saddle-Point o V,CV, My CM,

Au+ B*A=1f in V¥ W V/}, and M, cannot be selected
Bu=g in M*. independently!

Find u, A s.t. {
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Mixed Methods - Galerkin Approach

Find up, Ap such that .. Vo C V. My M,
{a(uh, Vi) + b(vin, An) = (F, Vh)\/*’v Yy € Vi, w V), and M}, cannot be selected

independently!
b(uny 1n) = (&) 1h) g1 ¥ 1o € M. P Y

Theorem (Discrete Brezzi)

If 3, >0 : inf sup M > oy,
uneker By v, eker By ||Unlly [|Vally

If 3B, >0 : inf sup b(vi, 1n)

> .
wh€Mn v vy Ivally lIeall

= 3! (up, Ap) € Vi x Mp, solving the discrete saddle-point and satisfying
lunlly + 1Anllyg < CalllFll v + llgl -
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Mixed Methods - Dual approach

We integrate by parts the first equation:

Jﬂ(div T)w dx + JQ

We need to define the proper Sobolev space.

T-Vwdx :J (T-v)wdx
20
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Mixed Methods - Dual approach

We integrate by parts the first equation:

Jﬂ(div T)w dx + JQ

We need to define the proper Sobolev space.

H(div)
We define the space

T-Vwdx :J (T-v)wdx
20

H(div) = {t € L*(Q)" : divt € L3(Q)},

with the norm )
1Tl = ITlE2(n + I div .
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Mixed Methods - Dual approach

We integrate by parts the first equation:

J (div’r)wdx—i—J T-Vwdx = J (t-v)wdx
Q Q 20

We need to define the proper Sobolev space.

H(div)

We define the space
H(div) = {t € L?(Q)" : divt € L?(Q)},

with the norm )
1Tl = ITlE2(n + I div .

Well posedness of the normal trace.

C*®(Q)" is dense in L2(Q)" D H(div) = 7 € H(div) has (tlaa - v) € H1/2(0Q).
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Mixed Methods - Dual approach

The dual problem is then

(0,7)+ (divt,u) =0 VT e H(div),

find € H(div) x L2 s.t.
ind (o, u) (div) S {(diVO', v) =—(f,v) Vv € L2,

® we have used that ulgo =0,
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Mixed Methods - Dual approach

The dual problem is then

(0,7)+ (divt,u) =0 VT e H(div),

find (0. u) € H(div) x L2 s.t.
n ( )U) ( IV) S {(diVU,V):_(f)V) VVE]LP.

® we have used that ulgno =0,
® This is a general saddle problem with V = H(div), and M = L?:

alo,t) = (0, 1), b(o,v) = (div o, v).

and a and b bounded by Cauchy-Schwarz inequality.
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Mixed Methods - Dual approach

The dual problem is then

(o,7)+ (divt,u) =0 VT e H(div),

find (0. u) € H(div) x L2 s.t.
n ( )U) ( IV) S {(diVU,V):_(f)V) VVE]LP.

® we have used that ulgn =0,
e This is a general saddle problem with V = H(div), and M = L?:
alo,t) = (0, 1), b(o,v) = (div o, v).

and a and b bounded by Cauchy—Schwarz inequality.
® For the existence of the solution we need to prove coercivity for a.

ker B = {t € H(div) : (divt,v) =0Vv e L?}
Since div T € L2 we have || div T|| 2 = 0 whenever T € ker B C H(div), and therefore
a(t, 1) = |2 qyn = lITlliasy) Vv € ker By

indeed we have just proved coercivity with o« = 1.
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Mixed Methods - Dual approach

The dual problem is then

(0,7)+ (divt,u) =0 VT e H(div),

find (0. u) € H(div) x L2 s.t.
n ( )U) ( IV) S {(diVU,V):_(f)V) VVE]LP.

® we have used that ulgno =0,
This is a general saddle problem with V = H(div), and M = L%

alo,t) = (0, 1), b(o,v) = (div o, v).

and a and b bounded by Cauchy-Schwarz inequality.

The form a is coercive on ker B with o« = 1,

® \We now need to verify the LBB condition. This requires some work.
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Mixed Methods - Dual approach - LBB

Assumption:
We make the simplifying assumption of having 0Q represented by a C* function or,
analogously, having Q convex.

Lemma (Surjectivity)
For any f € L2, there exists a function T € H(div) with divt = f and ||t||gaiv) < C||f|L2.

® The space H'(Q)" C H(div), thus if we take a v € M =12 and the corresponding
T, € H(div) given by the surjectivity lemma (i.e., divt, = v) we find
S b(T) V) _ Sup (dIVT) V) > (TV) V] (V) V) _ 1 ||V|| )
' — > e = — L2(Q)*
ev Ity <ev Il = vl = Cliviieg) ¢

We have then proved the LBB condition for f = %
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Mixed Methods - Dual approach - LBB

Assumption:
We make the simplifying assumption of having 0Q represented by a C* function or,
analogously, having Q convex.

Lemma (Surjectivity)
For any f € L2, there exists a function T € H(div) with divt = f and ||t||gaiv) < C||f|L2.

® \We have then proved the LBB condition for 3 = %
e By Continuous Brezzi we have 3! (o, u) € V x M solving the saddle problem and

such that
lollaaiv) + llulliz) < Cllifllzq)-
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Mixed Methods - Dual approach - LBB

Assumption:

We make the simplifying assumption of having 0Q represented by a C* function or,
analogously, having QO convex.

Lemma (Surjectivity)

For any f € L2, there exists a function T € H(div) with divt = f and ||T[|gaiy) < C||f|L2.
® The solution u we have obtained seem to be only in L?..but u satisfies
(o,7) + (divT,u) =0,

thus an integration by parts shows that v has a weak derivative and satisfies
boundary conditions, that is, u is where it should be u € H(l)(Q).
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Mixed Methods - Galerkin Approach for Poisson

Let us build the discrete problem.

A property of the form

We can (but won't) show that for any partition Qj of Q

{teL?(Q)" : 1o, € H'(Q)) and Tlg, - fi = T0, - AVQ; N Q; # 0} C H'(Q).

In layman terms, piecewise differentiable functions with continuous normal traces across

elements are in H}(Q).
This observation is crucial for building conformal FEM spaces for this problem.
® We could consider are the Raviart-Thomas elements (Raviart and Thomas 1977),
® The other usual option are the Brezzi-Douglas-Marini elements (Brezzi, Douglas,

and Marini 1985),
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Mixed Methods - Galerkin Approach for Poisson

Let us build the discrete problem.

A property of the form

We can (but won't) show that for any partition Qj of Q

{teL?(Q)" : 1o, € H'(Q)) and Tlg, - fi = T0, - AVQ; N Q; # 0} C H'(Q).

In layman terms, piecewise differentiable functions with continuous normal traces across

elements are in H}(Q).
This observation is crucial for building conformal FEM spaces for this problem.
® We could consider are the Raviart-Thomas elements (Raviart and Thomas 1977),
® The other usual option are the Brezzi-Douglas-Marini elements (Brezzi, Douglas,

and Marini 1985),

® To build the matrices we will use the code from (Zhang 2015).
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Mixed Methods - Test problem

We consider a more general formulation of the Poisson problem
Q C R? a polygonal domain, with boundary
0Q=TpnNTy (FD Ny = 0, LL(FD) 75 0)

—V - (x(x)Vu) =1, inQ,

—oaVu- i = gy, on Iy,
u=gp, on I'p.
With
e fcL?(Q),

* gp € HY2(Tp) and gy € L2(Ty),

® x(x) positive piecewise constant.
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Mixed Methods - Test problem

We consider a more general formulation of the Poisson problem
Q C R? a polygonal domain, with boundary

The weak form is then for
00 =TpNTy (MpNTy =0, uT 0
o N (To Ny H{To) #0) (T, v) € Hy(div) x L2(Q)
—V - (x(x)Vu) =1, inQ, . ' .
_ (a0, 1) — (divT, u) = —(T-1,8p)r,
_vau'ﬁ_gN) on Iy,
(div o, v) = (f, v)
u=gp, on I'p.
With where |
o fcL2(Q), ° H(;I:((;o;(x){Vu |SE’Ic(h§ ﬂ)ux, X
® Iv) =T € iv) :T-01 =
* gp € HY2(Ip) and gy € L2(Ty), 0 g’n .

® x(x) positive piecewise constant.
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Mixed Methods - Test problem

We consider a more general formulation of the Poisson problem
Q C R? a polygonal domain, with boundary

The weak form is then for
00 =TpNTy (MpNTy =0, uT 0
o N (To Ny H{To) #0) (T, v) € Hy(div) x L2(Q)
—V - (x(x)Vu)=1f, inQ, . ' .
_ (O( o, T)_(dIVT> U) :—(T'n)gD)FD
_vau'ﬁ_gN) on Ty,
(divo, v) = (f, v)
u=gp, on I'p.
With where |
o fcL2(Q), ° H(;I:((;o;(x){Vu |sE’Ic(h§ ﬂ)ux, X
® Iv) =T € iv) :T-01 =
* gp € HY2(Ip) and gy € L2(Ty), 0 g’n .

® x(x) positive piecewise constant.
Existence theory is not substantially different, just longer to write, see (Boffi, Brezzi, and
Fortin , Chapter 7).
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Mixed Methods - Galerkin Approach for Poisson

To apply the discrete version of Brezzi’s Theorem, for which we select the
Brezzi-Douglas-Marini and piecewise constant elements to build our mixed space.

® Mesh:
RefinementLevels = 2;
node = [-1 1; 0 1; 1 1; -0.5 0.5; 0.5 0.5; -1 0; 0 0; 1 0;
— -0.5 -0.5; 0.5 -0.5;-1.0 -1.0; 0.0 -1.0;1.0 -1.0];
elem =[4 2 1;4 1 6;4 6 7;4 7 2356 3 2;5 2 7;5 7 8;5 8 3;9
< 7 6; 96 11;9 11 12;9 12 7;10 8 7;10 7 12;10 12 13;10
< 13 81;
bdEdge = [2 0 0;1 0 0; 0 0 0;0 0 0;2 0 0;0 0 0;0 0 0;1 0
< 0; 000;100;100;000;000;000;100;100];

for i=1:RefinementLevels
[node,elem,bdEdge] = uniformrefine(node,elem,bdEdge) ;

Mesh: shape-regular affine end
triangulation
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Mixed Methods - Galerkin Approach for Poisson

To apply the discrete version of Brezzi’s Theorem, for which we select the
Brezzi-Douglas-Marini and piecewise constant elements to build our mixed space.

e Mesh: Q,

® The BDM; elements
In general, ¢ € BDM, = (PP4)?, thus
divq € Py_1, and to complete the
definition we impose the values on the
normal trace = q-fi on 0K
belonging to

Mesh: shape-regular affine (dld € L2(K), dlan € Pih
triangulation Qp,
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Mixed Methods - Galerkin Approach for Poisson

To apply the discrete version of Brezzi’s Theorem, for which we select the
Brezzi-Douglas-Marini and piecewise constant elements to build our mixed space.

e Mesh: Q,
® The BDM; elements

® The P, elements

Po :{V : V|K S Po(K), VK € Qh}.

Mesh: shape-regular affine
triangulation Qp,
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Mixed Methods - Galerkin Approach for Poisson

To apply the discrete version of Brezzi’s Theorem, for which we select the
Brezzi-Douglas-Marini and piecewise constant elements to build our mixed space.

e Mesh: Q,
® The BDM; elements ~» V),
® The Py elements ~~ M,

® For the convergence analysis see (Brezzi, Douglas, and
Marini , Section 3 and 4).

Mesh: shape-regular affine
triangulation Qp,
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Mixed Methods - Galerkin Approach for Poisson

To apply the discrete version of Brezzi’s Theorem, for which we select the
Brezzi-Douglas-Marini and piecewise constant elements to build our mixed space.

e Mesh: Q,
The BDM; elements
The Py elements

® For the convergence analysis see (Brezzi, Douglas, and
Marini , Section 3 and 4).

And look at the code for assembling the matrix

NT = size(elem,1); % Number of triangles

. . NE = size(edge,1); % Number of edges

Mesh: Shape_regU|ar affine sol = zeros(2*NE+NT,1); 7/ Space to store the solution
triar1gu|atior1 Qp inva =1./exactalpha((node(elem(:,1)) + node(elem(:,2)) +

< node(elem(:,3)))/3);

[a,b,area] = gradlambda(node,elem);

M = assemblebdm(NT,NE,a,b,area,elem2edge,signedge,inva);
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Mixed Methods - The Saddle-Point Matrix

We can finally look at our first saddle-point matrix for the Poisson problem.

0 0
2000
2000 4000
6000
4000 |-
8000
10000
6000 |-
12000
0 5000 10000 0 2000 4000
8000 | nz = 94656 nz = 24128
0
10000
500
1000
12000 1 1500
2000
14000 [ 2500
3000
3500
16000 | L — ) 4
L T W L T W L L 4000
J 2000 4000 6000 8000 10000 12000 14000 16000 0 1000 2000 3000 4000
nz = 142912 =
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Mixed Methods - Eigenvalue Bounds

One of the results you have seen in the morning lectures concerns eigenvalue bounds for
these matrices. Let us look at it numerically.

Theorem (Rusten and Winther )

Let w1 > up > ... > w, > 0 be the eigenvalues of A, 01 > 02 > ... > 0y > 0 the
singular values of B. If we denote as o(.A) the spectrum of A, then

olA)cl=I"uUl"

where
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Mixed Methods - Eigenvalue Bounds

We can compute the bounds with few lines of code:

lambda = eig(M(freeDof,freeDof));
mun = eigs(A,1,'smallestabs');
mul = eigs(A,1,'largestabs');
sigmal = svds(BT,1,'largest');
sigmam = svds(BT,1, 'smallest');

Iminus(1) = 0.5%(mun - sqrt(mun~2+4*sigmal~2));
Iminus(2) = 0.5%(mul - sqrt(mul~2+4*sigmam”2));
Iplus(1l) = mun;

Iplus(2) = 0.5%(mul + sqrt(mul~2 +

— 4xsigmal”2));

-
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Mixed Methods - Eigenvalue Bounds

We can compute the bounds with few lines of code:

lambda = eig(M(freeDof,freeDof));
mun = eigs(A,1,'smallestabs');
mul = eigs(A,1,'largestabs');
sigmal = svds(BT,1,'largest');
sigmam = svds(BT,1, 'smallest');

Iminus(1) = 0.5%(mun - sqrt(mun~2+4*sigmal~2));
Iminus(2) = 0.5%(mul - sqrt(mul~2+4*sigmam”2));
Iplus(1l) = mun;

Iplus(2) = 0.5%(mul + sqrt(mul~2 +

— 4xsigmal”2));

&3 Next week, after you become familiar with
iterative methods, we will focus on preconditioning.

-

M e x
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n
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Mixed Methods - The Stokes equation

Let us consider the Stokes equations for the steady flow of a very viscous fluid

—V?u+Vp=0, Momentum equation,

V.-u=0, Incompressibility constraint.
® u is a vector-valued function representing the velocity of the fluid,
® pis a scalar function representing the pressure.

Modeling assumption

The crucial modeling assumption is that the flow is “low speed” we neglect effects due
to convection.

44/ 77



Mixed Methods - The Stokes equation

Let us consider the Stokes equations for the steady flow of a very viscous fluid

—V?u+Vp=0, Momentum equation,
V.-u=0, Incompressibility constraint.

® u is a vector-valued function representing the velocity of the fluid,
® pis a scalar function representing the pressure.

Modeling assumption

The crucial modeling assumption is that the flow is “low speed” we neglect effects due
to convection.

Why do we care?

Stokes equations represent a limiting case of the more general Navier—Stokes equations
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The Stokes equation: weak formulation

Let us build the weak formulation

—V?u+Vp=0,
V-u=0,
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The Stokes equation: weak formulation

Let us build the weak formulation, we select (v,q) € V x M

J V- (—V2u+Vp) =0,
Q

J gV -u =0,
Q
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The Stokes equation: weak formulation

Let us build the weak formulation, we select (v,q) € V x M

J Vu:Vv—J pV-v—J <au—pﬁ>-v: ,
o o a0 \ 0

J gV -u=0,
Q

® Here Vu: Vv is the componentwise scalar product, e.g., in dimension 2, this is

Vuy - Vvx+Vu, - Vy,
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The Stokes equation: weak formulation

Let us build the weak formulation, we select (v,q) € V x M

J Vu:Vv—J pV-v—J <au—pﬁ>-v: ,
Q Q a0 \ 0

J gV -u=0,
Q

® Here Vu: Vv is the componentwise scalar product

e We select boundary conditions 0Q =Ty UTp Tp NTy =0, u(Tp) # 0:
ou

u=won [p, a——pﬁ:son Iy
n
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The Stokes equation: weak formulation

Let us build the weak formulation, we select (v, q) € Hg x L?

J Vu:Vv—J pV-v—J (au—pﬁ)~v— ,
Q Q 00 \ 0n

® Here Vu: Vv is the componentwise scalar product

e We select boundary conditions 0Q =Ty UTp Tp NTy =0, u(Tp) # O0:

ou

— —pii=son
on P N

u=won [p,

® \We define the spaces

Hg ={ue H'(Q)|lu=won Tp}, Hg ={veH(Q) v=0o0nTp}
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The Stokes equation: weak formulation

Let us build the weak formulation, we select (v, q) € Hg x L?

® Here Vu: Vv is the componentwise scalar product

e We select boundary conditions 9Q =Ty UTp Tp N Ty =0, w(l'p) # 0:

0
—u—pﬁ:son Iy
n

u=won [p, 5

® \We define the spaces

He ={ue H'(Q)|u=wonTp}, Hg ={veH (Q) v=0onTp}
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The Stokes equation: weak formulation

Let us build the weak formulation

JoVu:Vv— [ pV-v—[,58-v=0, VVEHlEO

Find (u,p) € HE x L2(Q) s.t.

® Here Vu: Vv is the componentwise scalar product
e We select boundary conditions 0Q =Ty UTp Tp NTy =0, u(Tp) # O0:

ou
u=wonlp, — —pi=sonly

on

® We define the spaces

HE ={u € HY(Q)?|u=w on Ip)}, ]HI}:-O ={veH (Q)|v=00nTp
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The Stokes equation: issues with BCs

Vaua:Vv— |[,pV-v— s-v=0, VvecHE,
Q Q 20 Eo
JaqV-u=0, Vgel2.

Words of caution

1. For a unique velocity solution the Dirichlet part of the boundary has to be nontrivial,

2. If the velocity is fixed everywhere on the boundary (I'p = 0Q) the pressure solution is
only unique up to a constant (hydrostatic pressure level) and w has to satisfy

O:J V-u:J u~ﬁ:J w- 1,
Q 20 20

i.e., the volume of fluid entering the domain must be matched by the volume of fluid
flowing out of it.

Find (u,p) € HE x L2(Q) s.t. {
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The Stokes equation: Mixed Elements

As we have done for Poisson, we need to select V}, C V = ]HllE0 and M, c M =12(Q):

J Vuh:Vvh—J phV‘vh—J s-vp=0, Vv,€E Vp,
Find (up, pp) € Vax My s.t. {2 o 00

J th~uh:O, Y gp € M.
Q

To determine the subspaces V}, and M}, we want to apply the Theorem (Discrete Brezzi)
. (gn, V - Vil
min e 2
anconst. vi0 ||Vl v || qnllm

where .
o vy = (va-v+VV2Vv)§,
° llgllm=llg—nQ)*[,aql-
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The Stokes equation: Mixed Elements

@ Idea for finding inf-sup stable elements

The idea is to consider “local enclosed flow Stokes problems” posed on a subdomain
MCQ (w-0=0o0n dM) called a macroelement that has a topology that is regular and
simple enough (so that we can actually do estimates and computations).

-Q: El t : . .
@ Qle ements We approximate the 2 components of velocity with a

single Q> FEM space

! ¢ I {¢1)"'7¢2n} :{(d)l)O)T)---)(d)mO)T)
° (O)d)l)T)--')(O)d)n)T}

Two velocity components
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The Stokes equation: Mixed Elements

@ Idea for finding inf-sup stable elements

The idea is to consider “local enclosed flow Stokes problems” posed on a subdomain
MCQ (w-0=0o0n dM) called a macroelement that has a topology that is regular and
simple enough (so that we can actually do estimates and computations).

®Q2-Q1 Elements

@

©

Pressure

)

We approximate the 2 components of velocity with a
single Q2 FEM space {¢; J’.’il. And the scalar pressure

component with Q1 FEM space {1])1};'21 giving:

A 0 B]l aij=[gVbi -V
A=]10 A B] Xk,z—jgwkaxcb,,
By By o Y»k.l_ jawkay‘bj

Since we have an enclosed flow ker BT = {1}.
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The Stokes equation: Mixed Elements

@ Idea for finding inf-sup stable elements

The idea is to consider “local enclosed flow Stokes problems” posed on a subdomain
MCQ (w-0=0o0n dM) called a macroelement that has a topology that is regular and
simple enough (so that we can actually do estimates and computations).

Q>-Q; Macroelement

6 14 5 13 4
@ O
16 7 8 9 12
[ ] b
1 10 2 11 3
& O

Three interior velocity nodes
and six pressure nodes.

BT is a 6 x 6 matrix, with some effort we can
compute all the entries and verify that ker BT = {1}

(part of the computations are done in (Elman, Silvester,

and Wathen , Section 3.3.1)).

® Then stability holds for all patches of elements with

the same topology,

® Any grid made of of an even number of cell can be

decomposed this way.
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The Stokes equation: other stable elements

@>-P_1 Elements P>-P; Elements P>.-P_1 Element
o [} o
Velocity Velocity Velocity
Pressure, and pressure Pressure Pressure, and pressure
derivatives derivatives
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The Stokes equation: the associated saddles

The P,-P; (Taylor-Hood) case for the colliding flow test problem.

e ) — [_1) 1] x [_1’ 1] 4% Building the mesh
RefinementLevels = 2;
i Ux:2OXy3: Uy:5X4_5y4v square = [0,1,0,1];
p = 60x%y —20y3 + c, h = 0.25;

[node,elem] = squaremesh(square,h);

e Diri "
Dirichlet boundary condition on £ = " . tlevels

all the square [node,elem] = uniformrefine(node,elem);
B(x,y) = 5xy* —x°. end
4% Building the test problem: colliding flows
- "\ bdFlag = setboundary(node,elem, 'Dirichlet');
o0 A\ \ pde = Stokesdatal;
snnnk\\ & options.solver='none'; [ We just perform the build
“000 == [soln,eqn,info] =
\\ < StokesP2P1(node,elem,bdFlag,pde,options);
l\\ NN

9000
0 2000 4000 6000 8000
nz = 140084
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The Stokes equation: the associated saddles

The P,-P; (Taylor-Hood) case for the colliding flow test problem.
e O=[-1,1] x [-1,1]

® u, =20xy3, u, =5x*—5y

p = 60x%y — 20y3 + ¢,

® Dirichlet boundary condition on

all the square

P(x,y) =5xy* —x
\‘\\\

1000

2000

3000

4000

5000

6000

7000

8000

9000
0

5

AN

N\

—

AN

E

\

2000 4000 6000
nz

= 140084

8000

/4% Building the mesh
RefinementLevels = 2;
square = [0,1,0,1];
h = 0.25;
[node,elem] = squaremesh(square,h);
for i=1:RefinementLevels
[node,elem] = uniformrefine(node,elem);
end
4% Building the test problem: colliding flows
bdFlag = setboundary(node,elem, 'Dirichlet');
pde = Stokesdatal;
options.solver='none'; [ We just perform the build
[soln,eqn,info] =
< StokesP2P1(node,elem,bdFlag,pde,options);

Can we apply (Rusten and Winther 1992)7
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The Stokes equation: properties of the matrix

Theorem (Elman, Silvester, and Wathen , Theorem 3.2.1)

With P1, P>, Q1 or Q> approximation on a shape-regular, quasi-uniform subdivision of R2,
the matrix A for the discrete vector Laplacian satisfies

< Av,v >
<V,v>

ch® < <C Vv eR™,

where h is the length of the longest edge in the mesh, and ¢ and C are constants
independent of h.

h? Amin(A)  7/Amin(4) Amax (A)

O This gives us information

the behavior of the 0.0156 0.0768  0.2035  10.5391
smallest and largest 0.0039 0.0193 0.2028  10.6346
eigenvalue of A (Rayleigh 0.0010 0.0048  0.2027  10.6586
Principle)! 0.0002 0.0012 0.2027  10.6647

51/77



The Stokes equation: properties of the matrix

To uncover information on the B matrices, we need to introduce a discrete representation
of the norm of M, C L2:

ph € Myt ||pnll =< Qpnypn >"%,  Q = (qu)y Gk = Lll)kll)/, kyl=1,...,np.

! The matrix Q is called mass matrix for the pressure space, in general, we call
mass-matrices all the matrices obtained in this way for the basis of a given FEM space.
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The Stokes equation: properties of the matrix

To uncover information on the B matrices, we need to introduce a discrete representation
of the norm of M, C L2:

Ph € My : [|pall =< Qpn, pr >, Q = (qur), Gi,/ :J Py, kI=1,...,np.
o

! The matrix Q is called mass matrix for the pressure space, in general, we call
mass-matrices all the matrices obtained in this way for the basis of a given FEM space.

Generalized singular values

We call generalized singular values the real numbers o associated with the following
generalized eigenvalue problem

5 Slll=16 ¢l ]
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The Stokes equation: properties of the matrix

Generalized singular values

We call generalized singular values the real numbers o associated with the following
generalized eigenvalue problem

5 o) la=c16 i)

o =0 this implies BTq =0, and Bv =0,
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The Stokes equation: properties of the matrix

Generalized singular values

We call generalized singular values the real numbers o associated with the following
generalized eigenvalue problem

o BT|[v s A Of |v
B O]la] [0 Qla]’
o =0 this implies BTq =0, and Bv =0,
o # 0 we select vector (v',—q”)7 and obtain
<v,BTq>—<q,Bv>=0=0(<v,Av>— < q,Qq >)
= < Av,v >=< Qq,q > .

That is
< BA'BTq,q > 2 <BTQ 'Bv,v>

< Qq,q > < Av,v >
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The Stokes equation: properties of the matrix

<BA'BTq,q> 2 < B"Q 'Bv,v >
<Qq,q> <Av,v>

® If ker BT = 0 then B has n, positive singular values.

® This is linked to the inf-sup condition:

5 min ma @V Vel L I<aBv>
" gpFconst v, £0 HVV/,HthH q#l v£0 < AV,V >1/2< Qq,q >1/2
) 1 | < q, BA °w > |
=min ———- max T
a#1 < Qq,q > w=AY2v0 < W, W > /2
=min = A—1/2BTq, A—l/ZBTq > = min = BA_lBTq’ 9 > = Omj
a1 < Qq,q > Al < Qq,q > -
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The Stokes equation: properties of the matrix

<BA'BTq,q> 2 < B"Q 'Bv,v >
<Qq,q> <Av,v>

® If ker BT = 0 then B has n, positive singular values.

® This is linked to the inf-sup condition:

. (qn, V- vp)l | < q,Bv>|
f < min max —————— = min max : -
anconst vi20 ||V vpllllanll — a1 v20 < Av,v >Y°< Qq,q >¥?
i 1 |<ABTq,w>|
=min ———- max -
a7l < Qq) q> /2 W:A1/2V7£0 < W,wW > /2
— min = A-2BTq, A2BT q > < BA1BTq,q > o
q#1 < Qq,q >12 q#1 < Qq,q > 12 mm
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The Stokes equation: properties of the matrix

Theorem (Elman, Silvester, and Wathen , Theorem 3.22)

Let 0Q) = I'p, the Stokes problem discretized with a uniformly stable mixed approximation
on a shape-regular, quasi-uniform subdivision of R?, has a Schur complement matrix
BA1BT that is spectrally equivalent to the pressure mass matrix Q:

B2 < <BA'BTq,q >
- < Qq,q >

<1, VqeR™ :q#1.

The inf-sup constant 3 is bounded away from zero independently of h and the condition
number (discarding the zero eigenvalue) k¢(BA~1BT) < C/(cp)? for ¢ and C given by

Ch2< <Qq)q>
- <q,q9>

< Ch?, VYqeR™.
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The Stokes equation: properties

of the matrix

We can run this test on the usual test problem
by running the code in the folder

¢[>E3-Stokes/stokesmatrixproperties.m

This tests both:
1. The bound on the vector Laplacian,
2. The bounds on the Schur complement.

for the P>-P; elements.

h

A2

An,

0.2500
0.1250
0.0625
0.0312

0.1352
0.1341
0.1336
0.1334

0.9932
0.9996
1.0000
1.0000

Generalized eigenvalues for:
BA71BTx = AQx
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The Stokes equation: properties of the matrix

We can run this test on the usual test problem
by running the code in the folder

<[> E3-Stokes/stokesmatrixproperties.m

This tests both:
1. The bound on the vector Laplacian,
2. The bounds on the Schur complement.

for the P>-P; elements.

Other tests

h

A2

An,

0.2500
0.1250
0.0625
0.0312

0.1352
0.1341
0.1336
0.1334

0.9932
0.9996
1.0000
1.0000

Generalized eigenvalues for:
BA71BTx = AQx

The code contains generator for the matrix of other discretization you can test.
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The Stokes equation: properties of the matrix

We can run this test on the usual test problem
by running the code in the folder h Ao An,

</>EB—Stokes/stokesmatrixproperties.m 0.2500 0.1352 0.9932
0.1250 0.1341 0.9996

This tests both: 0.0625 0.1336 1.0000

1. The bound on the vector Laplacian, 0.0312 0.1334 1.0000
2. The bounds on the Schur complement. Generalized eigenvalues for:
for the P,-P; elements. BA71BTx = AQx

Other tests
The code contains generator for the matrix of other discretization you can test.

Why do we care?

As you will see in the following, these information are useful for the design of iterative

solvers.
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The Stokes equation: stabilized discretizations

We have seen that the matter of obtain a stable discretization depends on the null-space
of BT.
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The Stokes equation: stabilized discretizations

We have seen that the matter of obtain a stable discretization depends on the null-space
of BT.

@ Idea behind stabilization

If the discretization is not stable 3p # 1 such that BTp =0, that is (07,p”) " is a null
vector for the homogeneous saddle-point system. The idea behind stabilization is relaxing
the incompressibility constraint so that this vector is no longer in the kernel and we still
obtain a reasonable error bound for the convergence of the method.

57/77



The Stokes equation: stabilized discretizations

We have seen that the matter of obtain a stable discretization depends on the null-space
of BT.

@ Idea behind stabilization

If the discretization is not stable 3p # 1 such that BTp =0, that is (07,p”) " is a null
vector for the homogeneous saddle-point system. The idea behind stabilization is relaxing
the incompressibility constraint so that this vector is no longer in the kernel and we still
obtain a reasonable error bound for the convergence of the method.

/& Technique

The technique to devise stabilization is again using macroelements.
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The Stokes equation: stabilized Q:-FP,

® This is the simplest unstable element,

Velocity

Pressure
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The Stokes equation: stabilized Q:-FP,

® This is the simplest unstable element,

¢ > o ® To devise a stabilization we need a 2 x 2 macroelement
4 3

4 5 6
1 2

il 2 3
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The Stokes equation: stabilized Q:-FP,

® This is the simplest unstable element,

& i o ® To devise a stabilization we need a 2 x 2 macroelement
4 3 ® The pressure coefficient p solves
! ’ ] BA7'BTp = BA7lf —g,
1 2
) ) 5 the Schur complement BA™1B has two eigenvectors for the
& © 0 eigenvalue: 1, and qo = (1,—1,1,—1)7.
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The Stokes equation: stabilized Q:-FP,

® This is the simplest unstable element,

7 8 9
@ P ® To devise a stabilization we need a 2 x 2 macroelement
4 3 ® The pressure coefficient p solves
4 5 6
BA7'BTp = BA7lf —g,
1 2
) ) 5 the Schur complement BA™1B has two eigenvectors for the
& © 0 eigenvalue: 1, and qo = (1,—1,1,—1)7.
® \We relax the incompressibility constraint
-
[A B ] H _ H S;p=(BA BT +yClp=BA g,
B —yC] |p g

selecting C such that cT=¢, C>0, Sy >0and
ker S, = {1}.
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The Stokes equation: stabilized Q:-FP,

® This is the simplest unstable element,

7 8 9
@ P ® To devise a stabilization we need a 2 x 2 macroelement
4 3 ® The pressure coefficient p solves
4 5 6
BA7'BTp = BA7lf —g,
1 2
) ) 5 the Schur complement BA™1B has two eigenvectors for the
& © 0 eigenvalue: 1, and qo = (1,—1,1,—1)7.
® \We relax the incompressibility constraint
-
[A B ] H _ H S;p=(BA BT +yClp=BA g,
B —yC][p g
- selecting C such that cT=¢, C>0, Sy >0and
G =@, ker S, = {1}.
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The Stokes equation: stabilized Q:-FP,

This is the simplest unstable element,

7 8 9
@ P ® To devise a stabilization we need a 2 x 2 macroelement
4 3 ® The pressure coefficient p solves
4 5 6
BA7'BTp = BA7lf —g,
1 2
) ) 5 the Schur complement BA™1B has two eigenvectors for the
& © 0 eigenvalue: 1, and qo = (1,—1,1,—1)7.
® \We relax the incompressibility constraint
-
[A B ] H _ H S;p=(BA BT +yClp=BA g,
B —yC] |p g

selecting C such that CT=cC, C>0, Sy >0and
G =qoq] _
2 ker S, = {1}.

What about y?
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The Stokes equation: stabilized Q:-FP,

J 8 0 ® We have moved the 0 eigenvalue with eigenvector q, to 4y, if
we take vy = 1/4 we get a spectral orthogonal projector for C,
4 3
4 5 6
1 2
1 2 3
& )
5 S bl -1
B —yC][p g
G = %,(12‘127—
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The Stokes equation: stabilized Q:-FP,

J 3 0 ® We have moved the 0 eigenvalue with eigenvector q, to 4y, if
we take v = 1/4 we get a spectral orthogonal projector for C,
4 3 ® But v has to be selected to balance both stability and
A > 6 accuracy, a natural choice would be selecting
1 1
. , 2 X Vi = thhy, hxh, = "area of the element”
& )
If Q is the mass matrix associate with the Py elements
(Q = hchy x I), then v, is the largest value for which
5 S bl
B —C N Tc,
- p'Qp
C* = q29,
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The Stokes equation: stabilized Q:-FP,

J 3 0 ® We have moved the 0 eigenvalue with eigenvector q, to 4y, if
we take v = 1/4 we get a spectral orthogonal projector for C,
4 3 ® But v has to be selected to balance both stability and
A > 6 accuracy, a natural choice would be selecting
1 1
. , 2 X Vi = thhy, hxh, = "area of the element”
& )
If Q is the mass matrix associate with the Py elements
(Q = hchy x I), then v, is the largest value for which
5 S bl
B —C N Tc,
- p'Qp
C* = q29,

e Complete stabilization matrix: C = blockdiag(C,,..., C).
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The Stokes equation: stabilized (Q-F;
Other stabilization are possible

This is not the only possible stabilization matrix, other choices are possible, consider, e.g.,

that has again the same eigenvectors of Sy, and is
called the jump stabilization matrix.
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The Stokes equation: stabilized Q:-FP,

Other stabilization are possible

This is not the only possible stabilization matrix, other choices are possible, consider, e.g.,

1 2 —-1 o0 that has again the same eigenvectors of Sy, and is
C* = hih, 0 -1 2 -1 called the jump stabilization matrix.

We can visually see the
effect of the stabilization
on the same colliding flow
problem.

pressure field

y=0
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The Stokes equation: stabilized Q:-FP,

Other stabilization are possible

This is not the only possible stabilization matrix, other choices are possible, consider, e.g.,

1 2 —-1 o0 that has again the same eigenvectors of Sy, and is
C* = hih, 0 -1 2 -1 called the jump stabilization matrix.

We can visually see the N "
effect of the stabilization

on the same colliding flow
problem.

Y= VYa
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The Stokes equation: stabilized matrix properties

What can we say about the spectral properties of the stabilized matrices?

. ® To substitute the inf-sup condition we introduce the

100 \ \\\ operator:
X
X s(an) : My — R

300

N (gn, V - vp) 12
400 X h’—>5( h :maxi—#—d hy Gh
500 \\

o0 where ¢(-,-) is the stabilization operator that
generates the matrix C.

70i

=
Z
/
/
,;’
=
Z
/
/
;;’

800

0 100 200 300 400 500 600 700 800
nz = 8706

%I
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The Stokes equation: stabilized matrix properties

What can we say about the spectral properties of the stabilized matrices?

. ® To substitute the inf-sup condition we introduce the

100 \ \\\ operator:
X
N S(qn): My — B

300

N (gn, V - vp) 12
400 X h’—>5( h :maxi—#—d hy Gh
500 \\

o0 where ¢(-,-) is the stabilization operator that
generates the matrix C.

0 100 200 300 400 500 600 700 800 . oy .
nz - 8706 Uniform stabilization

A BTl Tua £ The Stokes problem is said to be uniformly stabilized if
[B —C] [ ] = [ ] there exists 3 indepedent of h such that

70i

=
Z
/
/
,;’
=
Z
/
/
;;’

800

b g

s(qn) > B2llgnll, Ygn € Mp.
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The Stokes equation: stabilized matrix properties

What can we say about the spectral properties of the stabilized matrices?

0

X
100 Xo
X,
a0 X ® As we have done for the stable case, we can express
N

a0 everything in terms of matrices Vq € R"

\
400 \
\\ 1T 1/2 1/2 1.9 /2
500 \\\ <BA B q,q> +<Cq,q> ZEB <Qq,q> .

600

70i

800

=
Z
/
/
,;’
=
Z
/
/
;5’

0 100 200 300 400 500 600 700 800
nz = 8706

2 -1
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The Stokes equation: stabilized matrix properties

What can we say about the spectral properties of the stabilized matrices?

0

X
100 Xo
X,
a0 X ® As we have done for the stable case, we can express
N

a0 everything in terms of matrices Vq € R"

\
400 \
\\ 1T 1/2 1/2 1.9 /2
500 \\\ <BA B q,q> +<Cq,q> ZEB <Qq,q> .

600

70i

® Then the generalized inf-sup conditions is

=
Z
/
/
//
=
Z
/
/
//

800

1 41 7 -1 T
0 100 200 3oonzgos7oféoc 600 700 800 [52 2 min < (BA B' + C)q)q >.

a1 < Qq,q >
A BT][u] [f
5 2=l
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The Stokes equation: stabilized matrix properties

Theorem (Elman, Silvester, and Wathen , Theorem 3.29)

Let 0Q = T'p, the Stokes problem discretized with an ideally stabilized mixed approximation
on a shape-regular, quasi-uniform subdivision of R?, has a Schur complement matrix
BA™1BT + C that is spectrally equivalent to the pressure mass matrix Q:

g2 < <(BATBT + Clayq >

<2, VqeR™ : 1.
< Qq,q > =57 a7

The generalized inf-sup constant 3 is bounded away from zero independently of h.
_ ot
{(h=27") B2 An,

3 0.280929 1.7238
4 0.252201 1.74406
5 0.233876 1.74859
6 0.221837 1.74965

The colliding flow problem can be tested with

<[> E3-Stokes/stokesmatrixpropertiesstab.m
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The Navier-Stokes Equation

We add to the Stokes problem a forcing term and a convection term obtaining
—vV?u+4u-Vu+Vp=Hf,
V-u=0,

where ) ) o ]
® v > 0 is the kinematic viscosity,
® u is the velocity of the fluid,

® pis the pressure of the fluid.
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The Navier-Stokes Equation

We add to the Stokes problem a forcing term and a convection term obtaining

—vVu+u-Vu+Vp=f,
V.-u=0,
where
v > 0 is the kinematic viscosity,
u is the velocity of the fluid,
p is the pressure of the fluid.
The equation is nonlinear!
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The Navier-Stokes Equation

We add to the Stokes problem a forcing term and a convection term obtaining

—vV?u+u-Vu+Vp=f,
V.-u=0,
where
v > 0 is the kinematic viscosity,
u is the velocity of the fluid,
p is the pressure of the fluid.
The equation is nonlinear!
We need boundary conditions on 0Q =Tp U Ty, Ip N Ty = 0:

0
u=won [p, va—u—ﬁp:OonarN
n
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The Navier-Stokes Equation

We add to the Stokes problem a forcing term and a convection term obtaining
—vV2u+u-Vu+ Vp =f,
V-u=0,

where ) ) o ]
® v > 0 is the kinematic viscosity,

u is the velocity of the fluid,

® pis the pressure of the fluid.

® The equation is nonlinear!

e We need boundary conditions on 0Q =Tp UTy, Tp N Ty = 0:
u=won Ip, v%—ﬁpzﬂonaﬂv

If the velocity is specified everywhere on the boundary, then the pressure solution to the
Navier—Stokes problem is only unique up to a hydrostatic constant.

62/77



The Navier-Stokes Equation: normalization

We normalize the system
—vV?u+u-Vu+ Vp =f,
V-u=0,

to better highlight if the system is diffusion dominated or advection dominated.

® |et L denote a characteristic length scale for the domain Q,

® we scale space variables as & = x/L.
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The Navier-Stokes Equation: normalization

We normalize the system
—vV?u+u-Vu+ Vp =f,
V-u=0,

to better highlight if the system is diffusion dominated or advection dominated.

® |et L denote a characteristic length scale for the domain Q,

® we scale space variables as & = x/L.
® |et U be a reference-value for the velocity so that u = Uu,,

e we scale the pressure so that p(LE) = U?p.(&).
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The Navier-Stokes Equation: normalization

We normalize the system

—&V2u, +u, - Vu, + Vp, = Lf, R=U/
V-u, =0,
to better highlight if the system is diffusion dominated or advection dominated.
® |et L denote a characteristic length scale for the domain Q,
® we scale space variables as & = ¥/L.
® |Let U be a reference-value for the velocity so that u = Uu,,

® we scale the pressure so that p(LE) = U?p.(&).

Reynolds number

We call R = UL/v the Reynolds number. If R < 1 then the problem is diffusion dominated,
for increasing values of R we get instead convection dominated problems.
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The Navier-Stokes Equation: weak formulation

Can be written similarly to the Stokes problem

VJ Vu:Vv—i—J (u-Vu)-v—J p(V-v):J f v,
Find (u,p) € V x M : o o o o

JQ g(V-u)=0.

We need again the suitable spaces
cucHL={ucHY(Q)|u=wonTp}=V, pelL3(Q) =M,
e ve HlEO ={veHY(Q)Y|v=0o0nTp},
® New addition is a trilinear form for the velocity term:
c: Hg, x Hg, x Hg, - R
(zyu,v) — c(z,u,v) :J (z-Vu) -v.
Q
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The Navier-Stokes Equation: existence

This is a non linear problem, so for existence we need both Lax-Milgram and a result for
nonlinear systems of algebraic equations.
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The Navier-Stokes Equation: existence

This is a non linear problem, so for existence we need both Lax-Milgram and a result for
nonlinear systems of algebraic equations.

To simplify the proof we restrict to the case 0Q) = T'p and w = 0, that is, a fluid confined
into a fixed domain Q, by this choice V = ]HI}:- = H}:-O = Hcl)(Q)d.
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The Navier-Stokes Equation: existence

This is a non linear problem, so for existence we need both Lax-Milgram and a result for
nonlinear systems of algebraic equations.

To simplify the proof we restrict to the case 0Q) = T'p and w = 0, that is, a fluid confined
into a fixed domain Q, by this choice V = ]HI}:- = H}:-O = Hcl)(Q)d.
® We restate the problem

Find (i p) € V x M : {a(u, v) + c(u,u,v) + b(v,p) = (f,v), YveV,

(NS)
b(u>q):0) V,q e M,

with

alw,v) =v(Vw,Vv): VXV SR, b:VxQ—o>R=—(q,V-v),

clu,u,v) = Z (ujaui,v,-> VxVxV-oR
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The Navier-Stokes Equation: existence

The existence proof then follows in few steps.

1. We consider the problem on the space Vi, ={v € H(Q)9 : divv = 0}, then a
solution of (NS) is a solution also of the problem on this space

Find u € Vg, : a(u,v) + c(u,u,v) = (f,v), Vve Vyy. (NSgiv)
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The Navier-Stokes Equation: existence

The existence proof then follows in few steps.

1. We consider the problem on the space Vi, ={v € H(Q)9 : divv = 0}, then a
solution of (NS) is a solution also of the problem on this space

Find u € Vg, : a(u,v) + c(u,u,v) = (f,v), Vve V. (NSgiv)
2. Then we prove that to a solution on the reduced space corresponds a solution of the
full problem.
Lemma (Quarteroni and Valli , Lemma 10.1.1)

Let u be a solution of (NSgiy). Then there exists a unique p € M such that (u,p) is a
solution of problem (NS).
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The Navier-Stokes Equation: existence

The existence proof then follows in few steps.

1. We consider the problem on the space Vi, ={v € H(Q)9 : divv = 0}, then a
solution of (NS) is a solution also of the problem on this space

Find u € Vg, : a(u,v) + c(u,u,v) = (f,v), Vve V. (NSgiv)
2. Then we prove that to a solution on the reduced space corresponds a solution of the
full problem.
Lemma (Quarteroni and Valli , Lemma 10.1.1)

Let u be a solution of (NSgiy). Then there exists a unique p € M such that (u,p) is a
solution of problem (NS).

3. Prove that (NSg,) has a unique solution.
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The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli , Theorem 10.1.1)
Let f € Hyy = {v € L2(Q)9| divv=0in Q, v-fi =0 on 0Q}, with
2
v
£l < —=7>
cel

where C > 0 is the continuity constant for the trilinear form ¢, i.e.,
|C(W> Z)V)| S 6|W|1|Z|1|V|1 VW, Z,V S H%)(Q)d)

and Cq is Poincaré constant for the domain under consideration. Then, there exist a unique
solution u € Vi, to (NSgiy)-
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The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli , Theorem 10.1.1)
Let f € Hyjy ={v € L2(Q)9|divv=0in Q, v-fi =0 on 0Q}, with
2
v
£ < @>

where C > 0 is the continuity constant for the trilinear form ¢, i.e.,
|C(W» Z)V)l S 6|W|1|Z|1|V|1 \V/W,Z,V € Htl)(Q)d)

and Cq is Poincaré constant for the domain under consideration. Then, there exist a unique
solution u € Vi, to (NSgi)-

Idea of the proof.
1. Use Lax-Milgram for problem Ay(z,v) = (f,v), V,v € Vg, and
Aw(z,v) = a(z,v) + c(w, z, V) to prove existence for every w.
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The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli , Theorem 10.1.1)
Let f € Hyy ={v e L2(Q)9| divv=0in Q, v-fi =0 on 0Q}, with
2
v
]l < @)

where € > 0 is the continuity constant for the trilinear form ¢, i.e.,
|C(W)Z)V)| S 8|W|1|Z|1|V|1 VW,Z,V € H(]i(ﬂ)d)

and Cq is Poincaré constant for the domain under consideration. Then, there exist a unique
solution u € Vi, to (NSgiy)-

Idea of the proof.
2. The solution we look for is then a fixed point of the map @ : w — z. First we prove that

such solution is in a ball in V.
67/77



The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli , Theorem 10.1.1)

Let f € Hyyy ={v € L?(Q)Y| divv=0in Q, v-fi =0 on 9Q}, with
V2

6c1/2

£l <

where C > 0 is the continuity constant for the trilinear form ¢, i.e.,
1
lc(w,2,v)| < Clwhlzhivl Vw,z,v € Hy(Q)?,

and Cq is Poincaré constant for the domain under consideration. Then, there exist a unique
solution u € Vi, to (NSgiy)-

Idea of the proof.
3. Finally, we apply Banach contraction Theorem (using the hypothesis on f) to prove that

there exist a unique fixed point for the problem.
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The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli , Theorem 10.1.1)

Let f € Hyy = {v € L2(Q)9| divv=0in Q, v-fi =0 on 0Q}, with
N

I < 5

where C > 0 is the continuity constant for the trilinear form ¢ and Cq is Poincaré constant for the
domain under consideration. Then, there exist a unique solution u € Vi, to (NSqi)-

Conditions - 1

It is not restrictive to assume f € Hyg;y, any f € L?(Q)9 can be decomposed as the sum of
a function in Hg;, and a function that is a gradient of an H'(Q) function. The gradient
component of the external force field f doesn't play a role, (v,Vq) =0V q € H' and

v € Hgiy-

d
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The Navier-Stokes Equation: existence

Theorem (Quarteroni and Valli , Theorem 10.1.1)

Let f € Hyy = {v € L2(Q)9| divv=0in Q, v-fi =0 on 0Q}, with

V2

ccr’

I1£]] <

where C > 0 is the continuity constant for the trilinear form ¢ and Cq is Poincaré constant for the
domain under consideration. Then, there exist a unique solution u € Vg, to (NSgqi,)-

Conditions - 2

The smallness condition on the viscosity v is necessary for proving uniqueness, and is
restrictive. The solution may not be unique when v is small w.r.t. f, even for reasonable f.
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The Navier-Stokes Equation: linearizations

Since we only now how to solve linear problems, to face (NS) we discuss two types of
nonlinear iteration with a linearized problem being solved at every step.
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The Navier-Stokes Equation: linearizations

Since we only now how to solve linear problems, to face (NS) we discuss two types of
nonlinear iteration with a linearized problem being solved at every step.

Newton Method Picard's Iteration
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The Navier-Stokes Equation: linearizations

Since we only now how to solve linear problems, to face (NS) we discuss two types of
nonlinear iteration with a linearized problem being solved at every step.

_ Newton Method _ Picard's Iteration
We introduce both method first in the continuous context.
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The Navier-Stokes Equation: Newton method

1. We have a guess {uy, px} for the solution,
2. We compute the residual pairs

|:Rk:| _ Jﬂf-v—c(uk,uk,v)—VJQVuk:Vv—i—J px(V -v) VGH}:‘O»

0
_J q(V -uy) q € L?(Q).
ol

Tk

3. Then update the solution as
U1 = Uk + duk,  p+1 = pk + Opk,
for duy € ]HllE0 and &py € L?(Q) the solution of

c(duy, ug, v) + c(ug, duy, v) + VJ
Q

Vouy : VV—J Opk(V-v) =Ry, Vve HlEO,
Q

J gV - Sug) = i, Vqel?

Q
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The Navier-Stokes Equation: Discrete Newton

As we have done for the Stokes problem we select V}, C H}:-O and M, C L2(Q),
® The Newton updates are then computed by solving Vv € Vj,, Vg, € M,

c(éugk), u;k],vh) + c(u;k), 6u£7k),v) + VJ

Q
J (V- suy) =
Q

vouy : Vv, — L 5t (V - vp) = R

where R, (vp), and r(qgp) are the nonlinear residuals w.r.t. discrete formulation.
® Selecting basis Vj, = Span{d)l} M}, = Span{1;} and representlng (dropping the k)

ny+ny

uh_Zu_](b_]—"_ Z ujd)_]) Ph—Zpkwka

ny,+1
and ny
duy Z +8u;d, dpn = Z Spii,
j=1
we get the corresponding discrete system

70/77



The Navier-Stokes Equation: Discrete Newton

As we have done for the Stokes problem we select V), C H}EO and M, C L2(Q),
® The Newton updates are then computed by solving Vv € Vj,, Vg, € M,

c(éuLk), u;k],vh) + c(u;k), 6u§7k),v) + VJ

Véuzk) : Vv —J Bka)(V “vp) = R,Ek)
Q Q

J, an(v - ufhy = ¥

where R, (vp), and ri(qp) are the nonlinear residuals w.r.t. discrete formulation.

® we get the corresponding discrete system

s [VA+ N+ W BT] [éu] _ H

B O||op g
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The Navier-Stokes Equation: Discrete Newton

As we have done for the Stokes problem we select V), C H}:-O and M, C L2(Q),
® The Newton updates are then computed by solving Vv € Vj,, Vg, € M,

c(6u§7k), ugk),vh) + c(uE,k), SuE,k],v) + \/J

Vouy : Yy, —J 5py (V- vy) = RIF
Q Q

J qn(V - éuﬁk)) = rlgk)

Q

where R, (vp), and r(qgp) are the nonlinear residuals w.r.t. discrete formulation.
® we get the corresponding discrete system

A O
A:{O A] ai,jZfQVd)i'V‘bj»

B = [BX By] xkl - lepka d)l)
byij == o Widyd;.

A5 — {vA+N+W BT] {éu] _ [f]

B O | |ép g
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The Navier-Stokes Equation: Discrete Newton

As we have done for the Stokes problem we select V), C H}:-O and M, C L2(Q),
® The Newton updates are then computed by solving Vv € Vj, Vg, € M,

c(6u;7k), uglk),vh) + c(uE,k), éuﬁ,k],v) + \/J

Vouy : Yy, —J 5py (V- vy) = RIF
Q Q
J qn(V - éuﬁk)) = ri(,k)

Q

where R, (vp), and r(qp) are the nonlinear residuals w.r.t. discrete formulation.
® we get the corresponding discrete system

=0

N
vVA+N+W BT] [su f N:[O ] n;;j = [o(un-Vy) - b,
s ol w

e W ] wij = [o(dj- Vup) - b,

Y
Yy
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The Navier-Stokes Equation: Discrete Newton

As we have done for the Stokes problem we select V), C H}EO and M, C L2(Q),
® The Newton updates are then computed by solving Vv € Vj,, Vg, € M,

c(éuLk), u;k],vh) + c(u;k), 6u§7k),v) + VJ

Véuzk) : Vv —J Bka)(V “vp) = R,Ek)
Q Q

J, an(v - ufhy = ¥

where R, (vp), and ri(qp) are the nonlinear residuals w.r.t. discrete formulation.

® we get the corresponding discrete system

Aé_[vA—i-N—i-W BT] [Su]_[f] fi= [of-di—[qun-Vuy,-d;
B B o op B g _VJ‘Qvuh:vd)i‘i'fQPh(v'd)i))
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The Navier-Stokes Equation: Discrete Newton

As we have done for the Stokes problem we select V), C H}EO and M, C L2(Q),
® The Newton updates are then computed by solving Vv € Vj,, Vg, € M,

c(éuLk), u;k],vh) + c(u;k), 6u§7k),v) + VJ

Véuzk) : Vv —J Bka)(V “vp) = R,Ek)
Q Q

J, an(v - ufhy = ¥

where R, (vp), and ri(qp) are the nonlinear residuals w.r.t. discrete formulation.

® we get the corresponding discrete system

A — vVA+N+W BT} [Su] _ [f

B ol |sp g} gk:Jﬂlbk(V'uh)-
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The Navier-Stokes Equation: Discrete Newton

As we have done for the Stokes problem we select V), C HlEO and M, C L2(Q),
® The Newton updates are then computed by solving Vv € V},, Vq, € My,

c(éuzk), ug,k),vh) + c(u;f(), 6u£,k),v) + VJ

Véugk) : Vv, —J 5p2k)(v V) = R,Ek)
Q
| an(v-oufy =¥

Q

Q

where Ry (vp), and ri(qp) are the nonlinear residuals w.r.t. discrete formulation.
® we get the corresponding discrete system

_[vVA+N+W BT |[su] [f
o=t sl -l

® |f we use unstable elements, we need a stabilization matrix.
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The Navier-Stokes Equation: Picard’s Iteration

The second approach for linearization is Picard’s iteration, we start again from
1. We have a guess {uy, pi} for the solution,
2. We compute the residual pairs

f-v—clug,ug,v)—v| Vu :Vv+J V-v
[Rk]: JQ (uk, ug, v) JQ k ka( ) v € HL,

rk _Jﬂq(v_uk) geL?(Q).

3. Then update the solution as
Wiyt =Wk + 0, Pii1 = Pk + Opx,
for duy € HlEO and &py € L?(Q) the solution of

c(duy, ug, v) + c(ug, duy, v) + VJ Vouy : Vv —J Opk(V-v) =Ry, Vve H}:-O,
Q Q

J q(V - duy) = ry, Vqel?
Q
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The Navier-Stokes Equation: Picard’s Iteration

The second approach for linearization is Picard’s iteration, we start again from
1. We have a guess {uy, pi} for the solution,
2. We compute the residual pairs

f-v—clug,ug,v)—v| Vu :Vv+J V-v
[Rk]: JQ (uk, ug, v) JQ k ka( ) v € HL,

rk _Jﬂq(v_uk) geL?(Q).

3. Then update the solution as

U1 = Uk +duk,  pr+1 = pk + Opk,
for duy € HlEO and 8py € L?(Q) the solution of the Oseen system

c(ug, duy, v) + \/J
Q

Vouy : VV—J opk(V-v) =Ry, Vve H}:-O,
Q

J q(V - duy) = ry, Vqel?

Q
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The Navier-Stokes Equation: Discrete Picard

The discrete system is the same of the Newton method without the Newton matrix W:

VAN BT] [511} _ m

Aé_[ B O | |6p
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The Navier-Stokes Equation: Discrete Picard

The discrete system is the same of the Newton method without the Newton matrix W:

_|[VA+N BT dul |f
as= 5 D] o] =4

® |f we use unstable elements, we need a stabilization matrix.
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The Navier-Stokes Equation: Discrete Picard

The discrete system is the same of the Newton method without the Newton matrix W:
T
A5 — vA+N Bf1 du _ f
B —v—-C| | ép g

® |f we use unstable elements, we need a stabilization matrix.

Theorem
Consider the generic saddle-point system

ofs %)

B —C

where C is symmetric and positive-semidefinite matrix. If < Fu,u > 0 Vu # 0, then

ker A = { [ﬂ ‘ p € ker(BF BT + C)} .
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The Navier-Stokes Equation: Newton and Picard

Newton
VA+ N+ Wiy Wiy BJ
A= Wyx vA+ N+ Wyy B}:r
B, B, 0]

® Coupled A;; block,

® Quadratic convergence,

® | ocally convergent for “large enough” v,

and “close enough” initial guess.

Picard
vA+ N 0] B]
A= @) vA+ N ByT
B. B, 0

® Decoupled A;; block,
® Linear convergence,

e Converges under the existence condition:
I£]] < v¥/ecs.
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The Navier-Stokes Equation: Newton and Picard

Newton
VA+ N+ Wiy Wiy BJ
A= Wyx vA+ N+ Wyy B;—
B, B, 0]

® Coupled A;; block,
e Quadratic convergence,

® | ocally convergent for “large enough” v,
and “close enough” initial guess.

Picard
vA+ N 0] B]
A= @) vA+ N ByT
B. B, 0

® Decoupled A;; block,
® Linear convergence,

e Converges under the existence condition:
I£]] < v¥/ecs.

Next week we will delve into some numerical experiments, and try several
preconditioners discussed in the morning lectures.
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Navier-Stokes: backward facing step

Test problem:

® [-shaped domain Q, parabolic inflow boundary
condition, natural outflow boundary condition,

You can run the example as ¢/*> E4-NavierStokes/navierstokes_solution.m.
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Navier-Stokes: backward facing step

Test problem:

® | -shaped domain Q, parabolic inflow boundary

condition, natural outflow boundary condition,

Poiseuille flow

It is a steady horizontal flow in a channel driven by a

pressure difference between the two ends

Uy =1—y?% u, =0, p = —2vx + constant.

You can run the example as ¢/*> E4-NavierStokes/navierstokes_solution.m.
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Navier-Stokes: backward facing step

Test problem:

® | -shaped domain Q, parabolic inflow boundary
condition, natural outflow boundary condition,
e Inflow x =—1,0< y <1,
No flow on the boundary,
Neumann condition at the outflow x = L,
—1l<y<1.

® Discretized with (unstable) Q1-Q1 elements.

You can run the example as ¢/*> E4-NavierStokes/navierstokes_solution.m.
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Navier-Stokes: backward facing step

Initial guess: Picard’s Iteration

o
Streamlines: uniform
500

0 500 1000 1500 2000
nz=38511

Pressure field

Solution of the associated Stokes problem.
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Navier-Stokes: backward facing step

Initial guess: Picard’s Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 1
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Navier-Stokes: backward facing step

Initial guess:

Picard’s lteration

Streamlines: uniform Streamlines: uniform

Pressure field

Solution of the associated Stokes problem. Iteration 2
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field

Solution of the associated Stokes problem. Iteration 3
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Navier-Stokes: backward facing step

Initial guess: Picard’s lteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.02
10 004
5 -0.06 1
-0.08
-1 1 0 1 2 3 4 E
Iteration 4

Solution of the associated Stokes problem.
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 5
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 6
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Navier-Stokes: backward facing step

Initial guess:

Picard’s lteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.02
10 -0.04
5 -0.06 1
-0.08
4 - 0 1 2 3 4 s !
Solution of the associated Stokes problem. Iteration 7
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 8
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 9
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Navier-Stokes: backward facing step

Initial guess: Picard’s Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.02
-0.04

-0.06

Solution of the associated Stokes problem. Iteration 10
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.02
-0.04
-0.06

Solution of the associated Stokes problem. Iteration 11
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.02
-0.04

-0.06

Solution of the associated Stokes problem. Iteration 12
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.02

0.04

-0.06

Solution of the associated Stokes problem. Iteration 13
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Navier-Stokes: backward facing step

Initial guess: Picard’s lteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 14
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Navier-Stokes: backward facing step

Initial guess: Picard's Iteration

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

0.02

0.04

-0.06

Solution of the associated Stokes problem. Iteration 15
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Navier-Stokes: backward facing step

Newton Method
Initial guess: .

Streamlines: uniform 500 \
—— 1000
1500
] \

0 500 1000 1500 2000
nz=49575

Pressure field

Solution of the associated Stokes problem.
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Navier-Stokes: backward facing step

Initial guess: Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 1
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Navier-Stokes: backward facing step

Initial guess: Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field

Solution of the associated Stokes problem. Iteration 2
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.02
0.04
-0.06
-0.08

Solution of the associated Stokes problem. Iteration 3
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 4
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 5
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Navier-Stokes: backward facing step

Initial guess: Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 6

76 /77



Navier-Stokes: backward facing step

Initial guess: Newton Method

Streamlines: uniform

Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 7
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 8
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 9
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.02
0.04
-0.08
0.08

Solution of the associated Stokes problem. Iteration 10
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

-0.05

-0.1

Solution of the associated Stokes problem. Iteration 11
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 12
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field

-0.02
0.04
-0.08
-0.08

Solution of the associated Stokes problem. Iteration 13
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field Pressure field

Solution of the associated Stokes problem. Iteration 14
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Navier-Stokes: backward facing step

Initial guess:

Newton Method

Streamlines: uniform Streamlines: uniform

Pressure field

-0.02
0.04
-0.06
-0.08

Solution of the associated Stokes problem. Iteration 15
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Navier-Stokes: backward facing step

® For this test problem convergence of the
Newton method from the Stokes initial
data is quite poor, what can we do?

-0 Picard
=o= Newton

—4 \ \
10 0 5 10 15

Iteration

Nonlinear residual
—_
S
N
T \HHH‘ T \HHH‘ T \HHH‘ T T 11T
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Navier-Stokes: backward facing step

® For this test problem convergence of the 10-21 ‘ | |
Newton method from the Stokes initial _%’
data is quite poor, what can we do? @ e o
® We start from Stokes, then perform few g 107> o |
steps of Picard'’s iteration, and finally _qc_) —o— Picard
accelerate with Newton. 2107 Newton 1
= B Picard(4)+Newtep
10—14 | |
0 5 10 15

Iteration
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Navier-Stokes: backward facing step

Streamlines: uniform

® For this test problem convergence of the
Newton method from the Stokes initial
data is quite poor, what can we do?

e We start from Stokes, then perform few
steps of Picard’s iteration, and finally
accelerate with Newton.

® The “mess” doesn't end here —
unfortunately or fortunately, I'm not yet
sure...boundary layers, bifurcations,
absence of stable flows,... o

-0.02

-0.04
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