
From Optimal Control to Saddle Point
Matrices

Iterative Methods for Large-Scale Saddle-Point Problems

Fabio Durastante
Università di Pisa

Envelope fabio.durastante@unipi.it

May, 2022

mailto:fabio.durastante@unipi.it


“In the land of Mordor, in the fires of
Mount Doom, the Dark Lord Sauron
forged, in secret, a Master Ring to
control all others. And into this
Ring he poured his cruelty, his malice
and his will to dominate all life. One
Ring to rule them all.” – Galadriel

Whether you are lawful good or lawful evil, control is paramount.
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Applications

When we know how to simulate a physical phenomenon, the next question we usually ask
ourselves is: can we control it to benefit from it?
• Stationary problem of magnetohydrodynamics (Griesse and Kunisch 2006),
• Fluid-mechanics (Gunzburger and Manservisi 1999),
• Multi-phase flow in porous media (Hazra and Schulz 2005),
• Aerodynamic Shape Optimization (Jameson 1989),
• Nonlocal diffusion (Cipolla and Durastante 2018),
• …
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The abstract problem

We will consider problem of this form:

min
w∈W

J(w) subject to e(w) = 0, c(w) ∈ K, w ∈ C,

where
• J : W → R is the objective function,
• e : W → Z , and c : W → R ,
• W , Z and R are real Banach spaces,
• K ⊂ R is a closed convex cone,
• C ⊂ W is a closed convex set.
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The (less) abstract problem
We can turn everything to the finite-dimensional case

min
w∈W

J(w) subject to e(w) = 0, c(w) ∈ K, w ∈ C,

where
W = Rn, Z = Rl , R = Rm, K = (−∞, 0]m, C = Rn.

Assuming

• J , c, e continuously differentiable,
• Constraint qualification (CQ)

KKT Conditions
Exist Lagrange multipliers p ∈ Rl ,
λ ∈ Rm such that (w , p, λ) solves

∇J(w) + c ′(w)Tλ+ e′(w)T p = 0,

e(w) = 0,

c(w) ≤ 0, λ ≥ 0, c(w)Tλ = 0.
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A stationary model problem
Let us consider the simplest problem we can formulate:

min
(y ,u)∈Y×U

J(y , u) = 1

2
‖y − z‖2L2(Ω) +

α

2
‖u‖2U ,

s.t.


Ay ≡ −∆y = Bu, in Ω,

y = 0, on ∂Ω,
u ∈ Uad ⊆ U, y ∈ Yad ⊆ Y .

(P0)

• R 3 α > 0, Ω ⊂ Rn a convex
polyhedral domain,

• Y = H1
0 (Ω) = Yad,

B : U → H−1(Ω) ≡ Y ∗,
• Uad ⊂ U closed and convex.

Theorem: existence and uniqueness
Let α ≥ 0, Uad ⊂ U convex, closed and in the case α = 0 bounded, Yad ⊂ Y convex and
closed, such that (P0) has a feasible point, A ∈ L(Y ,Z) have a bounded inverse. Then
(P0) has an optimal solution (y , u), moreover, if α > 0 such solution is unique.
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The reduced problem

We need to derive the KKT conditions for a given problem, we proceed by steps
1. we reduce the problem to a minimization problem in the control u function,
2. we use the adjoint approach to derive the conditions we have to solve for.

We start again from:

min
y∈Y
u∈U

J(y , u) subject to e(y , u) = 0, (y , u) ∈ Wad ⊂ W = Y × U, e : Y × U → Z ,
J : Y × U → R,

with W a nonempty closed subset of the product Banach space.
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Definition
Let F : U ⊂ X → Y be an operator between Banach spaces X , Y and U 6= ∅ open
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‖F (x + h)− F (x)− F ′(x)h‖Y = o(‖h‖X ) for ‖h‖X → 0.
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The reduced problem
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J(y , u) subject to e(y , u) = 0, (y , u) ∈ Wad ⊂ W = Y × U, e : Y × U → Z ,
J : Y × U → R,

with W a nonempty closed subset of the product Banach space. We assume also that J
and e are continuously Fréchet differentiable and that the state equation possesses for
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The reduced problem
Implicit Function Theorem
Let X ,Y ,Z be Banach spaces and let F : G → Z be a continuously Fréchet differentiable
map from an open set G ⊂ X × Y → Z . Let (x̄ , ȳ) ∈ G be such that F (x̄ , ȳ) = 0 and that
Fy (x̄ , ȳ) ∈ L(Y ,Z) has a bounded inverse.
Then there exists an open neighborhood UX (x̄)× UY (ȳ) ⊂ G of (x̄ , ȳ) and a unique
continuous function w : UX (x̄)) → Y such that
• w(x̄) = ȳ ,
• ∀ x ∈ Ux(x̄) ∃! y ∈ UY (ȳ) with F (x , y) = 0, i.e., y = w(x).

Moreover, the mapping w : UX (x̄) → Y is continuously Fréchet differentiable with
derivative

w ′(x) = Fy (x ,w(x))−1FX (x ,w(x)).

If F : G → Z is m-times continuously Fréchet differentiable then also w UX (x̄) → Y is
m-times continuously Fréchet differentiable.
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The reduced problem
We need to derive the KKT conditions for a given problem, we proceed by steps

1. we reduce the problem to a minimization problem in the control u function,
2. we use the adjoint approach to derive the conditions we have to solve for.

We start again from:

min
y∈Y
u∈U

J(y , u) subject to e(y , u) = 0, (y , u) ∈ Wad ⊂ W = Y × U, e : Y × U → Z ,
J : Y × U → R,

with W a nonempty closed subset of the product Banach space. We assume also that J
and e are continuously Fréchet differentiable and that the state equation possesses for
each u ∈ U a unique corresponding solution y(u) ∈ Y :

∃ u ∈ U 7→ y(u) ∈ Y , ey (y(u), u) ∈ L(Y ,Z) continuosly invertible.

Then the Implicit Function Theorem ensures that y(u) is continuously differentiable.
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The reduced problem

We need to derive the KKT conditions for a given problem, we proceed by steps
1. we reduce the problem to a minimization problem in the control u function,
2. we use the adjoint approach to derive the conditions we have to solve for.

The reduced problem
An equation for the derivative of y(u) is then obtained by

ey (y(u), u)y ′(u) + eu(y(u), u) = 0,

and the reduced problem

min
u∈U

Ĵ(u) = J(y(u), u) subject to u ∈ Ûad = {u ∈ U : (y(u), u) ∈ Wad}.
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The adjoint approach
We have now

min
u∈U

Ĵ(u) = J(y(u), u) subject to u ∈ Ûad = {u ∈ U : (y(u), u) ∈ Wad},

with ey (y(u), u)y ′(u) + eu(y(u), u) = 0.

We now try to represent the derivative of Ĵ

< Ĵ ′(u), s >U∗,U= < Jy (y(u), u), y ′(u)s >Y ∗,Y + < Ju(y(u), u), s >U∗,U

=< y ′(u)∗Jy (y(u), u), s >U∗,U + < Ju(y(u), u), s >U∗,U ,

and thus

Ĵ ′(u) =y ′(u)∗Jy (y(u), u) + Ju(y(u), u)
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Ĵ ′(u) =y ′(u)∗Jy (y(u), u) + Ju(y(u), u)
=− eu(y(u), u)∗ey (y(u), u)−∗Jy (y(u), u) + Ju(y(u), u)

13 / 43



The adjoint approach
We have now

min
u∈U
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Ĵ(u) = J(y(u), u) subject to u ∈ Ûad = {u ∈ U : (y(u), u) ∈ Wad},

with ey (y(u), u)y ′(u) + eu(y(u), u) = 0.

We represent the derivative of Ĵ

Ĵ ′(u) = ey (y(u), u)∗p(u) + Ju(y(u), u),

where p = p(u) ∈ Z∗ is called the adjoint state and solves

ey (y(u), u)∗p = −Jy (y(u), u). (Adjoint Equation)

We compute the derivative of Ĵ(u) by:
1. solving the adjoint equation for p,
2. and computing Ĵ ′(u) = eu(y(u), u)∗p + Ju(y(u), u).
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The Linear–Quadratic Optimal Control Problem
Let’s apply the theory developed till here to the following problem

min
(y ,u)∈Y×U

J(y , u) = 1
2‖Qy − qd‖2H + α

2 ‖u‖2U ,

subject to Ay + Bu = g , u ∈ Uad, y ∈ Yad,

where
• H, U are Hilbert spaces,
• Y , Z are Banach spaces,
• qd ∈ H is the desired state, g ∈ Z is a source term,
• A ∈ L(Y ,Z), B ∈ L(Y ,H).

• We get the form for which we have proved both Existence, Uniqueness, and the
adjoint characterization, by setting

e(y , u) = Ay + Bu − g , Wad = Yad × Uad.

• The reduced problem is then obtained by means of the continuous affine linear solution
operator: U 3 u 7→ y(u) = A−1(g − Bu) ∈ Y .
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=Q∗(Qy − qd),

Ju(y , u) =α(u, ·)U = αu,
ey (y , u) =A,
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14 / 43



The Linear–Quadratic Optimal Control Problem
Let’s apply the theory developed till here to the following problem

min
(y ,u)∈Y×U

J(y , u) = 1
2‖Qy − qd‖2H + α

2 ‖u‖2U ,

subject to e(y , u) ≡ Ay + Bu − g = 0, (y , u) ∈ Wad,

We can thus recover the expressions for the operators

Jy (y , u) =Q∗(Qy − qd), ey (y , u) =A,
Ju(y , u) =αu, eu(y , u) =B.

The reduced functional is
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Optimality conditions

After all this manipulation we have managed rewriting our problem in the form

min
w∈W

J(w) subject to w ∈ C with
W Banach,
J : W → R Gâteaux differentiable,
C ⊂ W 6= ∅, closed and convex.

(*)

Theorem
Il J is defined on an open neighborhood of C, and ū is a local solution of (*) at which J is Gâteaux
differentiable. Then the following optimality condition holds:

w̄ ∈ C, < J ′(w̄),w − w̄ >W∗,W≥ 0 ∀w ∈ C.
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convex then there exists at most one solution.
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differentiable. Then the following optimality condition holds:

w̄ ∈ C, < J ′(w̄),w − w̄ >W∗,W≥ 0 ∀w ∈ C.

If W is reflexive, C is closed and convex, and J is convex and continuous with
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‖w‖W →∞

J(w) = +∞,

then there exist a global solution of the problem.
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Optimality conditions in the original notation
Let us roll-back to the original formulation and summarize all the conditions

min
(y ,u)∈Y×U

J(y , u) subject to e(y , u) = 0, u ∈ Uad.

Assumptions
• ∅ 6= Uad ⊂ U convex, and closed,
• J : Y × U → R, e : Y × U → R,

continuously differential on
Banach spaces U, Y , Z ,

• ∀ u ∈ V ⊂ U open neighborhood
of Uad the state equation has a
unique solution,

• ey (y(u), u) ∈ L(Y ,Z) has a
bounded inverse ∀u ∈ V ⊃ Uad.

Theorem
If the assumptions hold and ū is a local solution of
the reduced problem

min
u∈U

Ĵ(u) = J(y(u), u) s.t. u ∈ Uad

then ū satisfies the variational inequality

ū ∈ Uad and < Ĵ ′(u), u − û >U∗,U≥ 0, ∀ u ∈ Uad.
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Optimality conditions Linear-Quadratic Problem
We conclude the parabola by looking at the conditions for the Linear-Quadratic Problem

min
(y ,u)∈Y×U

J(y , u) =1

2
‖Qy − qd‖2H +

α

2
‖u‖2U ,

subject to Ay + Bu = g , u ∈ Uad

that take the form

Aȳ + Bū =g , State Equation
A∗p̄ =− Q∗(Qȳ − qd), Adjoint Equation

ū ∈ Uad, (αū + B∗p̄, u − ū) ≥0, ∀u ∈ Uad. Variational Inequality

Where are we?
Okay, but after all this mountain of calculations, where is the saddle-point matrix?
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A∗p̄ =− Q∗(Qȳ − qd), Adjoint Equation
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The distributed control of elliptic equations
We finally have all the machinery in place to approach the simplest problem

min J(y , u) = 1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

subject to
{
−∆y = βu, on Ω,

y = 0, on ∂Ω
This is an instance of the Linear-Quadratic Problem in which we have dropped the
bound on control u, i.e., Uad ≡ U ≡ L2(Ω).

We move to the weak formulation of the constraint, and find the first two conditions:∫
Ω
∇y · ∇v dx −

∫
Ω
βuv dx = 0, ∀ v ∈ H1

0(Ω), State equation∫
Ω
∇p · ∇w dx +

∫
Ω
(y − yd)w dw = 0, ∀w ∈ H1

0(Ω). Adjoint equation

Where we have used the fact that the bilinear for the elliptic equation, i.e., the operator A
of the general formulation, is self-adjoint.
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The distributed control of elliptic equations

To complete∫
Ω
∇y · ∇v dx −

∫
Ω
βuv dx = 0, ∀ v ∈ H1

0(Ω), State equation∫
Ω
∇p · ∇w dx +

∫
Ω
(y − yd)w dx = 0, ∀w ∈ H1

0(Ω). Adjoint equation

we need the variational inequality

ū ∈ Uad, (αū + B∗p̄, u − ū) ≥ 0, ∀u ∈ Uad.
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we need the variational inequality, in which we first observe that B∗ is indeed the product
by −β and Uad ≡ L2(Ω)

ū ∈ L2(Ω), (αū − βp̄, u − ū) ≥ 0, ∀u ∈ L2(Ω).
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(y − yd)w dx = 0, ∀w ∈ H1
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we need the variational inequality, in which we first observe that B∗ is indeed the product
by −β and Uad ≡ L2(Ω), therefore this is indeed an equality

αu − βp = 0. a.e.
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The distributed control of elliptic equations

The conditions are then∫
Ω
∇y · ∇v dx −

∫
Ω
βuv dx = 0, ∀ v ∈ H1

0(Ω), State equation∫
Ω
∇p · ∇w dx +

∫
Ω
(y − yd)w dx = 0, ∀w ∈ H1

0(Ω). Adjoint equation

αu − βp = 0. a.e. Gradient condition

We can now use our expertise on finite elements to discretize the three conditions obtaining

Adjoint equation
Gradient condition

State equation

M O A
O αM −βM
A −βM O

y
u
p

 =

Myd
0
0

 mi,j =
∫
Ω φiφj ,

ai,j =
∫
Ω∇φi · ∇φj ,
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A better look at the saddle
We now reduced ourselves to the problemM O A

0 αM −βM
A −βM O

y
u
p

 =

Myd
0
0

 ,

• We have selected the same FEM space both for u and y , this is not compulsory, but
permits us to rewrite the system in a simpler form:

αMu = βMp ⇒ u =
β

α
p ⇒

[
M A
A −β2

α M

] [
y
p

]
=

[
Myd

0

]
• Nevertheless both system have the same Schur complement

[A − βM]

[
M−1 O

O 1
αM−1

] [
A

−βM

]
= AM−1A +

β2

α
M
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A better look at the saddle
We now reduced ourselves to the problemM O A

0 αM −βM
A −βM O

y
u
p

 =

Myd
0
0

 ,
• To discuss the behavior of lower/upper bound, and thus of the ill-conditioning one

needs information on the actual FEM space used, for P1-Q1 elements on quasi-uniform
grids we can investigate an inf-sup condition

min
p

< (AM−1A + β2

α M)p,p >
< Ap,p > ≥min

p

< AM−1p,p >
< Ap,p > = min

w=Ap

< M−1w,w >

< A−1w,w >

= min
w=Ap

< Aw,w >

< Mw,w >
≥ cΩ,

for cΩ the Poincare constant, so the saddle-point system is “inf-sup stable”,
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A better look at the saddle
We now reduced ourselves to the problemM O A

0 αM −βM
A −βM O

y
u
p

 =

Myd
0
0

 ,
• analogously for the largest eigenvalue

max
p

< (AM−1A + β2

α M)p,p >
< Ap,p > ≥

{
maxw <Aw,w>/<Mw,w>,
β2

α maxp <Mp,p>/<Ap,p>.

Approximating the Schur complement
The matrix A is then far from being a good preconditioner for the Schur complement!
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An example

• Domain Ω = [−1, 1]2,
• Desired state:

yd =

{
x2
1 x2

2 , in Ω1 = [−1, 0]2,

0, in Ω \ Ω1

• We fix the Dirichlet boundary to match
the desired state.

• Fixing α = 10−5, β = 1 we solve.

We discretize with Q2-elements:

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Q2 finite element subdivision

Code for the example: CODE E5-OptimalPoisson/examplepoisson_control.m
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0, in Ω \ Ω1

• We fix the Dirichlet boundary to match
the desired state.

• Fixing α = 10−5, β = 1 we solve.

We discretize with Q2-elements. Obtaining
the saddle-point matrix:

0 100 200 300 400 500 600 700 800

nz = 18534

0

100

200

300

400

500

600

700

800
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Boxed constraints
Bounds on the control
In applications usually a “control function” costs something or has some type of natural
constraints, e.g., we are controlling a phenomena of chemotaxis and u is the amount of
medication, it has to stay in between a certain level before becoming toxic and a level that
is the minimum effective dosage; or if it is a mechanical controller it cannot exert forces at
every possible intensity.

When we work with U = L2(Ω), one of the most used form of this bound is given by
Uad = {u ∈ U : a ≤ u ≤ b a.e. a ≤ b} for a, b ∈ L2(Ω).

This type of limits are called box constraints.
To use them in practice we need to find a way to rewrite the variational inequality in a
more manageable way:

ū ∈ Uad and < Ĵ ′(u), u − û >U∗,U≥ 0, ∀ u ∈ Uad.
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Boxed constraints
Proposition
Let U ∈ L2(Ω), a, b ∈ L2, a ≤ b, and Uad be given by

Uad = {u ∈ U : a ≤ u ≤ b a.e. }.

Then the following conditions are equivalent:
(i) ū ∈ Uad (∇Ĵ(ū), u − ū)U ≥ 0 ∀ u ∈ Uad,

(ii) ū ∈ Uad ∇Ĵ(ū)


= 0, if a(x) < ū(x) < b(x),
≥ 0, if a(x) = ū(x) < b(x),
≤ 0, if a(x) < ū(x) = b(x),

for a.a. x ∈ Ω.

(iii) There λ̄a, λ̄b ∈ U∗ = L2(Ω) with

∇Ĵ(ū) + λ̄b − λ̄a = 0,

ū ≥ a, λ̄a ≥ 0, λ̄a(ū − a) = 0,

ū ≤ b, λ̄b ≥ 0, λ̄b(b − ū) = 0.
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The distributed control of elliptic equations

min J(y , u) = 1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

subject to
{
−∆y = βu, on Ω,

y = 0, on ∂Ω
a ≤ u ≤ b on Ω.

And use the new characterization for the variational inequality∫
Ω
∇y · ∇v dx −

∫
Ω
βuv dx = 0, ∀ v ∈ H1

0(Ω), State equation∫
Ω
∇p · ∇w dx +

∫
Ω
(y − yd)w dx = 0, ∀w ∈ H1

0(Ω). Adjoint equation

αū − γp̄ + λ̄b − λ̄a = 0,

ū ≥ a, λ̄a ≥ 0, λ̄a(ū − a) = 0, Gradient condition
ū ≤ b, λ̄b ≥ 0, λ̄b(b − ū) = 0,
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The distributed control of elliptic equations
But how de we solve such problems?

• We have to solve for both variational equality and inequalities,
• We transform them into a semismooth optimization problem using the following trick:

(x1, x2) ∈ R2 x1 ≥ 0, x2 ≥ 0, x1x2 = 0, ⇔ φ(x1, x2) = 0,

with φ : R2 → R.
An example of such function is indeed

φ(x1, x2) = min{x1, x2}

that satisfies our request but is not globally
differentiable.

LIGHTBULB Idea
Variational inequalities ⇔ nonsmooth equations.
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Semismooth optimization: projected gradient
For our problem we introduce the projection

Ps(w)(x) = P[a(x),b(x)](w(x)) = max(a(x),min(w(x), b(x))),

and rewrite the gradient condition as

Ψ(w) = w − Ps(w − θJ ′(w)) = 0, θ ∈ R+

To solve our optimization problem we need to find a suitable substitution for G ′.

Semismoothness
Let Ψ : X → Y be a continuous operator between Banach spaces. Furthermore, let
∂Ψ : X ⇒ Y be a set valued mapping with nonempty images, then

• Ψ is called ∂Ψ-semismooth at x ∈ X if

sup
M∈∂Ψ(x+d)

‖Ψ(x + d)−Ψ(x)− Md‖Y = o(‖d‖X ), for ‖d‖X → 0.
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Semismooth optimization: projected gradient
Clarke’s generalized derivative
Ψ(x) = P[a,b](x) : R → R, a < b, admits generalized derivative

∂clψ(x) =


0, x < a or x > b,
1, a < x < b,
[0, 1], a = a or x = b.

Theorem
Let Ω ⊂ Rn be measurable with 0 < |Ω| <∞, Ψ : Rm → R Lipschitz continuous and
semismooth. Let Y be a Banach space, 1 ≤ q < p ≤ ∞, and assume that
G : Y → Lq(Ω)m is continuously F -differentiable and that G maps Y locally Lipschitz
continuously to Lp(Ω), then the operator

ψG : Y → Lq(Ω), ψG(y)(x) = ψ(G(y))(x)

is ∂Ψ-semismooth, with

∂ΨG(y) ={M : Mv = gT (G ′(y)v), g ∈ L∞(Ω)m, g(x) ∈ ∂clψ(G(y)(x)) for a.a. x ∈ Ω
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Semismooth Newton
With this construction we can build an extension of the classical Newton method

Input: Semismooth function G
Choose x0 ∈ X
for k = 0, 1, 2, . . . do

Chose Mk ∈ ∂G(xk)
Obtain sk by solving

Mksk = −G(xk)

Set xk+1 = xk + sk .
end

Theorem
Let G : X → Y be continuous and ∂G-semismooth at
a solution of G(x) = 0. We assume that

∃C , δ > 0 : ‖M−1‖Y→X ≤ C ∀M ∈ ∂G(x)∀ x ∈ X
s.t. ‖x − x̄‖X < δ,

at a solution x̄ . Then, for all x0 ∈ X , ‖x0 − x̄‖X < δ
the semismooth Newton method converges to x̄
superlinearly.

The whole theory is quite laborious to develop, if you are interested a good starting point is the
book Ulbrich 2011.
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A worked out example
Since we are going to use Newton method, we modify our problem to a semilinear one

min J(y , u) =1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

subject to
{
−∇2y + y3 = 0 in Ω

y = 0, on ∂Ω.
u ≤ ub

We use the weak-formulation to derive the optimality conditions:∫
Ω
∇y · ∇v +

∫
Ω

y3∇v −
∫
Ω

uv = 0, ∀v ∈ H1
0(Ω), State equation∫

Ω
∇p · ∇w + 3

∫
Ω

y2pw −
∫
Ω
(y − yd)w , ∀w ∈ H1

0(Ω), Adjoint equation

αu + p + λ = 0, a.a. x ∈ Ω Gradient condition
λ− max{0, λ+ α(u − ub)} = 0 a.a. x ∈ Ω.
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A worked out example: details
• We need to prove existence for the solution of the semilinear equation, as we have

seen for the Navier-Stokes problem this is a difficult issue in general. This equation is
way simpler since it is of monotone type.

Theorem (Minty–Browder)
Let V be a separable, reflexive Banach space, then the variational equation

< A(y), v >V ′,V=< `, v >V ′,V ∀ v ∈ V ,

with
(i) Monotone A, i.e., ∀ u, v ∈ V < A(u)− A(v), u − v >V ′,V≥ 0,

(ii) Hemicontinuous, i.e., t 7→< A(u + tv),w >V ′,V is in C0([0, 1]) ∀, u, v ,w ∈ V ,

(iii) Coercive, <A(u),u>V ′,V/‖u‖V
‖u‖V →∞−→ +∞,

admits a solution. Furthermore, if A is strictly monotone, then such solution is unique.
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seen for the Navier-Stokes problem this is a difficult issue in general. This equation is
way simpler since it is of monotone type.

• We need to express the generalized derivative for the last equation, the mapping
max(0, ·) : Lq(Ω) → Lp(Ω), 1 ≤ p < q ≤ +∞ admits a generalized derivative of the
form

Gmax(0, y) =
{
1, y(x) > 0,

0, y(x) ≤ 0
: Lq(Ω) → L(Lq(Ω),Lp(Ω)).

• To compute this generalized derivatives we need the values of the function y in the
nodes, if we work by using FEM spaces, we are solving fo the coefficients in the basis
expansion. This means that we have to use interpolation (or Lagrangian schemes) to
obtain the desired results. To simplify the discussion, we go back to the strong
formulation and use finite differences.
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A worked out example: strong formulation
Our conditions in strong form read as{

−∇2y + y3 − u = 0, x ∈ Ω

y = 0, x ∈ ∂Ω{
−∇2p + 3y2p − (y − yd) = 0, x ∈ Ω

p = 0, x ∈ ∂Ω{
αu + p + λ = 0,

λ− max{0, λ+ α(u − ub)}

• If we call L the Finite Difference
discretization of the Laplacian operator
on Ω with 0 Dirichlet BCs then

F (y,u,p,λ) =


Ly + y3 − u

LT p + 3y2p − (y − yd)
αu + p + λ

λ− max{0,λ+ α(u − ub)}


Then the Jacobian is given by

JF =


L + 3Y 2 −I O O
−I + 6Y P 0 L + 3Y 2 O

O αI I I
O −αχ O I − χ



where
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−I + 6Y P 0 L + 3Y 2 O
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A worked out example
Let us select the desired state

yd(x , y) = exp(−30((x − 1/2)2 + (y − 1/2)2)),

and the values α = 10−3 and ub = 7.
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Control
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Y=spdiags(y,0,n^2,n^2);
P=spdiags(p,0,n^2,n^2);
Xi=spdiags(spones(max(0,lam+alpha*(u-ubvec))),

0,n^2,n^2);↪→

A=[L+3*Y.^2 -I O O
-I+6*Y.*P O L+3*Y.^2 O
O alpha*I I I
O -alpha*Xi O I-Xi];
F=[ -L*y-y.^3+u
-L*p-3*Y.^2*p+y-yd
-p-alpha*u-lam
-lam+max(0,lam+alpha*(u-ubvec))];

The example can be run with the code in
CODE E5-OptimalPoisson/boundedcontrol_fd.m
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Characterization via the reduced gradient
We rewrite our condition and use the LIGHTBULB semismooth idea to rewrite the conditions for

min
y∈H1

0(Ω)

u∈L2(Ω)

J(y , u) = 1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) s.t. Ay = r + Bu, a ≤ u ≤ b

1. We eliminate the state y = y(u) = A−1(r + Bu),
2. For the reduced gradient we obtain
3. B ∈ L(Lp′

(Ω),H−1(Ω), B∗ ∈ L(H1
0(Ω),Lp(Ω)) ⇒ H(u) is a continuous, linear, affine

mapping between L2(Ω) → Lp(Ω).
4. We rewrite then the gradient condition as

Φ(u) = u − P[a,b](−1/αH(u)) = 0.
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Characterization via the reduced gradient

The Newton system for

min
u∈L2(Ω)

J(y(u), u) = 1

2
‖y(u)− yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) s.t. a ≤ u ≤ b

is then given by (
I + 1

α
∂clΦ(−1/αH(uk))H ′(uk)

)
sk = −Φ(uk)

where ∂clΦ(·)H ′(·) is a short-hand for v 7→ ∂clΦ(·) · (H ′(·)v) and ∂clΦ(·) is Clarke’s
generalized derivative.

In operator terms we can rewrite it as
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Sparsity constraints

To conclude this gallery of optimization problems we consider the last case given by
problem with sparsity constraints:

min
(y ,u)

J(y , u) + β‖u‖1 s.t. e(y , u) = 0.
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(y ,u)

J(y , u) + β‖u‖1 s.t. e(y , u) = 0.

LIGHTBULB Sparsity promoting
Let x = (1, ε) ∈ R2, 0 < ε << 1, then ‖x‖1 = 1 + ε, and ‖x‖22 = 1 + ε2. An optimization process
reduces the magnitude of one of the two entries by 0 < δ < ε, then

x(1) = x − (δ, 0) ⇒ ‖x(1)‖p
p =

{
1− δ + ε, p = 1,

1− 2δ + δ2 + ε2, p = 2

or

x(1) = x − (0, δ) ⇒ ‖x(1)‖p
p =

{
1− δ + ε, p = 1,

1− 2δε+ δ2 + ε2, p = 2

For `2 reducing x1 does much
more than reducing x2,
putting things to zero has
diminishing returns with
respect to reducing “large
entries”. For `1 it is exactly
the same.
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Sparsity constraints
To conclude this gallery of optimization problems we consider the last case given by
problem with sparsity constraints:

min
(y ,u)

J(y , u) + β‖u‖1 s.t. e(y , u) = 0.

• As we always do we look at the reduced functional
min
u∈U

J(y(u), u) + β‖u‖L1(Ω)

• This is globally non smooth, but it is obtained as the sum of a regular part and of a
convex non differentiable function.

Theorem
Let U be a Banach space, j1 : U → R Gâteaux differentiable, j2 : U → R ∪ {+∞} convex
and continuous. If ū is a locally optimal solution to minu∈U j1(u) + j2(u), then it satisfies
the variational inequality

j ′1(ū) + j2(v)− j2(ū) ≥ 0, ∀ v ∈ U.
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Sparsity constraints: optimality conditions

Let us focus on our favorite problem

min
(y ,u)∈H1

0(Ω)×L2(Ω)
J(y , u) =1

2

∫
Ω
(y − yd)

2 +
α

2
‖u‖2L2(Ω) + β‖u‖L1(Ω),

subject to e(y , u) = 0.

If we apply the previous Theorem we get the variational inequality:

(y(ū)− yd , y ′(ū)(v − ū)) + α(ū, v − ū) + β‖v‖L1(Ω) − β‖ū‖L1(Ω) ≥ 0, ∀ v ∈ L2(Ω).

This an example of an Elliptic Variational Inequality of the Second Kind, see
(Glowinski 2008, Chapter 1.6), and there exist a way to rewrite them to a form to which we
can apply the LIGHTBULB semismooth idea through the use of a penalty function.

37 / 43



Sparsity constraints: optimality conditions

By a penalty argument we can prove the existence of a λ ∈ L2(Ω) such that the condition

(y(ū)− yd , y ′(ū)(v − ū)) + α(ū, v − ū) + β‖v‖L1(Ω) − β‖ū‖L1(Ω) ≥ 0, ∀ v ∈ L2(Ω).

is equivalent to

(y(ū)− yd , y ′(u)v) + (αū + λ, v) = 0, ∀ v ∈ U,
λ = β, in {x ∈ Ω : ū > 0},
|λ| ≤ β, in {x ∈ Ω : ū = 0},
λ = −β, in {x ∈ Ω : ū < 0},
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(y(ū)− yd , y ′(ū)(v − ū)) + α(ū, v − ū) + β‖v‖L1(Ω) − β‖ū‖L1(Ω) ≥ 0, ∀ v ∈ L2(Ω).

And permits to write the complete set of optimality conditions for any θ > 0:
e(ȳ , ū) = 0, State equation
ey (ȳ , ū)∗p = ȳ − yd , Adjoint equation{

p + αū + λ = 0,

ū − max{0, ū + θ(λ− β)} − min{0, ū + θ(λ+ β)} = 0.
Gradient condition

Semismooth Newton
We already now how to “derive” the max function, the minimum is completely analogous

Gmin{0, v}(x) =
{
0, if v(x) ≥ 0,

1, if v(x) < 0.
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A worked out example
We reuse our semilinear problem

min J(y , u) =1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + β‖u‖L1(Ω),

subject to
{
−∇2y + y3 = 0 in Ω

y = 0, on ∂Ω.

We state again the optimality conditions in strong form:{
−∇2y + y3 − u = 0, x ∈ Ω

y = 0, x ∈ ∂Ω

{
−∇2p + 3y2p − (y − yd) = 0, x ∈ Ω

p = 0, x ∈ ∂Ω
p + αu + λ = 0,

u − max{0, u + 1/α(λ− β)}
−min{0, u + 1/α(λ+ β)} = 0.
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A worked out example
Select the desired state is yd(x , y) = sin(2πx) sin(2πy) exp(2x)/6, and the values
α = 10−3 and ub = 0.008.
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Control
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Y=spdiags(y,0,n^2,n^2);P=spdiags(p,0,n^2,n^2);
Ximax=spdiags(spones(max(0,u+

1/alpha*(lam-beta))),0,n^2,n^2);↪→

Ximin=spdiags(spones(min(0,u+
1/alpha*(lam+beta))),0,n^2,n^2);↪→

Xi=Ximax+Ximin;
A=[L+3*Y.^2 -I O O
-I+6*Y.*P O L+3*Y.^2 O
O alpha*I I I
O I-Xi O -1/alpha*Xi];
F=[ -L*y-y.^3+u
-L*p-3*Y.^2*p+y-yd
-p-alpha*u-lam
-u+max(0,u+1/alpha*(lam-beta))

+min(0,u+1/alpha*(lam+beta))];↪→

The example can be run with the code in: CODE E5-OptimalPoisson/l1control_fd.m
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The rest of the world
What are we leaving out?

• Non-stationary problems: in many case we want to control the time-evolution of a
problem, e.g.,

min
y ,u

J(y , u) =1

2
‖y(T , x)− yT (x)‖2 +

1

2
αT

∫
Ω

∫ T

0
y‖u‖2,

subject to ut +∇ · (uy) = 0,

u(0, x) = u0.

• Other black-box methods: interior point methods, active sets, decomposition
methods (ADMM),…

• Coupled problems: there are many cases in which we are interested in phenomena
that are described by the coupling of ODEs and PDEs.
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