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The problem

Consider the primitive variables formulation of the incompressible
Navier–Stokes equations:

∂u
∂t − ν∆u + (u · ∇)u +∇p = f on Ω× (0,T ],

div u = 0 on Ω× [0,T ],
u = g on ∂Ω× [0,T ],

u(x, 0) = u0(x) on Ω

on a Lipschitz domain Ω ⊂ Rd (d = 2, 3), where u = u(x, t) and
p = p(x, t) are the unknown velocity and pressure fields, ν is the
kinematic viscosity (inversely proportional to the Reynolds number,
Re) and f, g and u0 are given functions.

More generally, both Dirichlet and Neumann boundary conditions
may be prescribed on different parts of ∂Ω.
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The problem (cont.)

The N–S equations are the fundamental model governing the flow
of an incompressible, viscous, Newtonian fluid and are widely used
in scientific, biomedical, and industrial applications, besides having
been the subject of intensive mathematical investigations for many
years.

They were first derived by Claude-Louis Navier and independently
by George Gabriel Stokes.

C.-L. Navier, Mémoire sur le lois du mouvement des fluides, Mémoires de
l’Académie Royale des Sciences, VI (1823), pp. 389–416.

G. G. Stokes, On the theories of the internal friction of fluids in motion,

and of the equilibrium and motion of elastic solids, Transactions of the

Cambridge Philosophical Society, VIII (1846), pp. 287–305.
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The problem (cont.)

For ν = 0 the Navier–Stokes equations reduce to the Euler
equations for an ideal inviscid fluid (1755).

In 2D, the global existence and uniqueness of smooth solutions of
the Navier–Stokes (and Euler) equations has been known for a
long time (Prodi, Serrin, J.-L. Lions,...).

In 3D, as is well known, the global well-posedness of the N-S
equations for arbitrarily “large” data remains open (it’s one of
the seven “Millennium Prize Problems” proposed by the Clay
Mathematics Institute).

Partial results are known: global existence and uniqueness for
“small” initial data u0, local existence and uniqueness for arbitrary
initial data, existence (but not uniqueness) of global weak solutions
(Leray), etc.
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The problem (cont.)

Complications also arise for the stationary Navier–Stokes equations: −ν∆u + (u · ∇)u +∇p = f on Ω,
div u = 0 on Ω,

u = g on ∂Ω,

For small ν (i.e., large Reynolds numbers), the problem becomes
convection-dominated and the solution can be expected to exhibit
difficult-to-capture boundary layers; moreover, uniqueness (of weak
solutions) may fail to hold unless the forcing term f satisfies a condition
of the form

‖f‖−1 := sup
〈f,u〉
‖∇u‖ ≤

ν2

Γ∗
. (1)

Here the supremum is taken over all divergence-free vector fields u 6= 0
with components in H1

0 (Ω) and Γ∗ is the best possible constant for which

c(z,u, v) :=

∫
Ω

(z · ∇u) · v dx ≤ Γ‖∇z‖‖∇u‖‖∇v‖

holds.
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Example 1: lid driven cavity problem

In the lid driven cavity problem, the flow is enclosed in a square
with u1 = 1− x4, u2 = 0 on the top to represent the moving lid.

Figure: Lid driven cavity (Q2-Q1, ν = 0.001, stretched 128 × 128 grid)
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Silvester).
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Example 2: backward facing step test problem

Figure: Backward facing step problem (Q2-Q1, ν = 0.005, uniform
64× 192 grid)
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The problem (cont.)

Closed-form solutions of the N-S equations are known only in a few
simple cases (e.g., laminar flow in a pipe).

The numerical solution of the Navier–Stokes equations requires the
following main steps:

1. Linearization;

2. Space and time discretization;

3. Solution of the discrete (algebraic) problem.

Different linearization strategies are in use, depending on the value
of the viscosity ν (equivalently, on the Reynolds number).

Note: We will only consider problems in the sub-critical Reynolds

number regime (e.g., laminar flow, such as blood flow in arteries), but

many of the techniques here described are also useful in certain

turbulence models.
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Linearizations

For highly viscous fluids (low Reynolds numbers), the nonlinear
convective terms can be dropped, leading to the Stokes problem:

∂u
∂t − ν∆u +∇p = f on Ω× (0,T ],

div u = 0 on Ω× [0,T ],
u = g on ∂Ω× [0,T ],

u(x, 0) = u0(x) on Ω

These equations are appropriate for low-speed, “creeping” flow, or
for describing the motion of narrowly confined fluids. This is a
well-studied problem, with many results and optimal iterative
solvers available.

D. J. Silvester and A. J. Wathen, SIAM J. Numer. Anal., 31 (1994),

pp. 1352–1367.
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Linearizations (cont.)

For moderate or high Reynolds numbers, the Stokes problem is a poor
approximation. Linearization requires replacing the nonlinear problem
with a sequence of linear problems the solutions of which converge, under
appropriate conditions, to the solution of the original nonlinear problem.

Two main linearization techniques exist: Newton’s method and Picard’s
iteration. Moreover, one can choose to first discretize, then linearize or to
first linearize, then discretize. Here we choose to first linearize, then
discretize.

Newton’s method is quadratically convergent, but it requires the initial
guess u(0) to be sufficiently close to the solution. For a steady problem,
the radius of the ball of convergence is typically proportional to ν.

Picard iteration, on the other hand, converges at a linear rate but is

globally convergent provided that the standard uniqueness condition (1)

is satisfied. The two methods are often combined in practice.
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Linearizations (cont.)

Picard’s iteration is simply a fixed-point iteration in function space.
Combined with an implicit time-stepping scheme (the simplest one
being backward Euler), it leads to a sequence of linear systems of
PDEs of the form

αu(k+1) − ν∆u(k+1) + (u(k) · ∇)u(k+1) +∇p(k+1) = f(k) on Ω,

div u(k+1) = 0 on Ω,

u(k+1) = g on ∂Ω,

(k = 0, 1, 2, . . .), where α = O((∆t)−1), with ∆t the time step.
For steady problems, α = 0. In this case usually u(0) = 0, so that
the first step consists in the solution of a Stokes problem.

The typical number of Picard iterations needed to converge to the
nonlinear solution is usually between 5 and 20, depending on the
size of α and ν. Convergence is slower for α = 0 and small ν.
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Linearizations (cont.)

Assume α = 0. Writing u for u(k+1) and w, f for u(k), f(k) we
obtain the steady Oseen problem:

−ν∆u + (w · ∇)u +∇p = f on Ω,
div u = 0 on Ω,

u = g on ∂Ω,

where w, the “wind”, satisfies div w = 0.

The rest of the talk will focus mainly on the numerical solution of
this problem, since this is where all the numerical difficulties are.

For ease of exposition, we will assume g = 0 unless otherwise
stated.
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Weak form and finite element discretization

Let 〈·, ·〉 denote the L2-inner product (we use the same notation
for both vector and scalar functions), and denote by L2

0(Ω) the
subspace of L2(Ω) consisting of all functions p with 〈p, 1〉 = 0.

Also, we write H1
0(Ω) for (H1

0 (Ω))d .

Weak formulation: Given f ∈ H−1(Ω), find (u, p) ∈ H1
0(Ω)× L2

0(Ω)
such that

α〈u, v〉+ν〈∇u,∇v〉+〈(w·∇) u, v〉−〈p, div v〉 = 〈f, v〉, v ∈ H1
0(Ω),

〈q, div u〉 = 0, q ∈ L2
0(Ω).

The weak form of the standard Oseen problem is obtained for
α = 0 (steady case).
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Weak form and finite element discretization (cont.)

Consider now finite-dimensional subspaces Vh ⊂ H1
0(Ω) and Qh ⊂ L2

0(Ω).

Here h denotes the mesh width, or spatial discretization parameter, and
the subspaces’ dimensions tend to infinity as h→ 0.

Weak discrete formulation: Find (uh, ph) ∈ Vh × Qh such that

α〈uh, vh〉+ν〈∇uh,∇vh〉+〈(wh·∇) uh, vh〉−〈ph, div vh〉 = 〈f, vh〉, vh ∈ Vh,

〈qh, div uh〉 = 0, qh ∈ Qh.

This discrete problem is known as the Galerkin formulation. In the finite

element method, Vh and Qh are subspaces spanned by polynomials of

low degree, locally supported on the cells (triangles, tetrahedra, etc.)

arising from the subdivision of Ω into small elements.
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Weak form and finite element discretization (cont.)

The choice of the velocity and pressure finite element spaces Vh

and Qh is a delicate matter.

In order to have a stable discretization, the two subspaces must
satisfy a compatibility condition known as the discrete inf-sup or
LBB condition (named after Ladyzhenskaya, Babuška, and Brezzi):

There exists a constant γ0 > 0 (independent of h) such that

inf
qh 6=const.

sup
vh 6=0

|〈qh, div vh〉|
‖∇v‖‖qh‖

≥ γ0. (2)

A pair Vh, Qh is inf-sup stable if it satisfies (2). Apparently natural

choices of finite element spaces, such as equal degree interpolation for

velocity and pressure, are not inf-sup stable. For example, both the

P1-P1 and the Q1-Q1 elements, which are the simplest globally

continuous approximations, are not stable.
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Weak form and finite element discretization (cont.)

Unstable finite element pairs can, however, be stabilized, at the
price of slightly relaxing the incompressibility condition.

See for example

H. Elman, D. Silvester and A. Wathen, Finite Elements and Fast
Iterative Solvers. With Applications in Incompressible Fluid
Dynamics, 2nd Ed., Oxford University Press, 2014.
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Weak form and finite element discretization (cont.)

A typical error estimate for FEM approximations is the following.

Theorem: Let {Th} be a regular family of triangulations of Ω
consisting of simplices, such that every T ∈ Th has at least one
vertex in the interior of Ω. Then the Taylor–Hood finite element
pair Pk -Pk−1 with k ≥ 2 is LBB stable.

Moreover, if the solution to the Oseen problem (u, p) belongs to
Hm(Ω)× Hm−1(Ω) with m ≥ 2, then for 2 ≤ m ≤ k + 1 the
following holds:

‖u− uh‖H1 + ‖p − ph‖L2 ≤ C hm−1(|u|m + |p|m−1),

with C a constant independent of h and of (u, p).
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Linear systems of saddle point type

Discretization of Oseen’s problem using finite elements leads to large,
sparse linear algebraic systems of the form(

A BT

B −C

)(
u
p

)
=

(
f
0

)
.

Systems of this form are called (stabilized) saddle point problems. Here
A is a block diagonal matrix with d blocks (d = 2 or 3), each of which is
a discrete convection-diffusion operator.

The block BT is a discrete gradient, and B a discrete (negative)
divergence operator.

The matrix C has small norm, and is zero for a stable finite element pair.

The entries of the vectors u, f , and p contain the coefficients of the

linear combinations expressing uh, fh, and ph with respect to the basis

functions spanning the spaces Vh and Qh, respectively.
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Linear systems of saddle point type (cont.)

In the case of the Stokes problem, A = AT and each diagonal block is a
discretization of the diffusion operator −ν∆. For a stable finite element
pair, the system is symmetric and takes the form(

A BT

B 0

)(
u
p

)
=

(
f
0

)
.

This system also arises from the method of Lagrange multipliers for
finding the minimum of the quadratic (energy) function

1

2
〈Au, u〉 − 〈f , u〉

subject to the constraint Bu = 0. Hence, the pressure has the meaning of
a Lagrange multiplier.

When A 6= AT we no longer have a genuine saddle point problem, but
the same terminology is used.

M. B., G. Golub, and J. Liesen, Acta Numerica, 14 (2005), pp. 1–137.
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Linear systems of saddle point type (cont.)

Without stabilization (C = O)
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Linear systems of saddle point type (cont.)

With stabilization (C 6= O)
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Solution of the linear algebraic system

Linear systems of saddle point type arising from incompressible flow
problems can be very challenging to solve, especially in the steady
case, for small values of the viscosity ν and on stretched meshes.

Direct methods based on the factorization of the coefficient matrix

A =

(
A BT

B 0

)
or A =

(
A BT

B −C

)
are generally not suitable for large scale problems, especially in the
3D case.

Instead, iterative methods must be used.
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Solution of the linear algebraic system (cont.)

When solving linear systems of the form Ah xh = bh arising from
the discretization of PDEs, the goal is to develop iterative methods
that are optimal, in the sense that

1. The rate of convergence is independent of h (the mesh size);

2. The cost per iteration scales linearly in the number n of
unknowns.

Clearly, with an optimal method it is possible to approximate the
solution within a prescribed accuracy with a cost that scales like
O(n), for n→∞ (that is, for h→ 0).

Ideally, the method should also be robust with respect to variations
in the problem parameters (for example, the viscosity or other PDE
coefficients).

Another desideratum is parallel scalability.
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Krylov subspace methods

Suppose x0 is an initial guess for the solution of a linear system
Ax = b, and let r0 = b − Ax0 be the corresponding residual.

Krylov subspace methods are iterative (approximation) schemes
whose kth iterate xk satisfies

xk ∈ x0 +Kk (A, r0), k = 1, 2, . . .

where
Kk (A, r0) ≡ span{r0,Ar0, . . . ,Ak−1r0}

denotes the kth Krylov subspace generated by A and r0. The
Krylov subspaces form a finite chain

K1(A, r0) ⊂ K2(A, r0) ⊂ · · · ⊂ Km(A, r0) = · · · = Kn(A, r0).

Note that the elements of Kk (A, r0) are of the form pk (A)r0,
where pk ia a polynomial of degree k − 1.
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Krylov subspace methods (cont.)

For k ≤ m, the kth Krylov subspace Kk (A, r0) has dimension k .
Thus, there are k degrees of freedom in the choice of the iterate xk .

Uniquely defined iterates are obtained by imposing k constraints,
in the form of orthogonality of the kth residual rk with respect to a
prescribed k-dimensional subspace Ck :

rk = b − Axk ∈ r0 + AKk (A, r0), rk ⊥ Ck .

This is known as a Petrov–Galerkin condition, or simply Galerkin
condition when Ck ≡ Kk (A, r0).

Different choices of the constraint subspace Ck lead to different
types of Krylov subspace methods.

Def.: If A is SPD, the A-norm of x ∈ Rn is ‖x‖A := (〈Ax , x〉) 1
2 .
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Krylov subspace methods (cont.)

Theorem (Saad): Assume dimKk (A, r0) = k , and let x∗ = A−1b.

1. If A is SPD and Ck = Kk (A, r0), then xk is uniquely defined
and satisfies

‖ek‖A ≡ ‖x∗−xk‖A = min
z∈x0+Kk (A,r0)

‖x∗−z‖A = min
p∈Πk

‖p(A)e0‖A.

2. If A is nonsingular and Ck = AKk (A, r0), then xk is uniquely
defined and satisfies

‖rk‖2 ≡ ‖b−Axk‖2 = min
z∈x0+Kk (A,r0)

‖b−Az‖2 = min
p∈Πk

‖p(A)r0‖2.

Here Πk denotes the set of all polynomials of degree at most k − 1
such that p(0) = 1.

The conjugate gradient (CG) method is of Type 1, while minimal
residual methods (like MINRES and full GMRES) are of Type 2.
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Minimal residual methods

Since the coefficient matrix in the discrete Stokes and Oseen
problems is not SPD, we are restricted to using minimal residual
methods like MINRES (Paige and Saunders, 1975) or GMRES
(Saad and Schultz, 1986).

In a nutshell, this method generates successive approximations xk

to the solution which minimize the Euclidean norm of the residual
rk = b − Axk over the (nested) Krylov subspaces of increasing
dimension. Note that ‖b − Axk‖2 cannot increase from one step to
the next.

These methods are efficient provided that good approximations xk

to x∗ can be obtained from a Krylov subspace of dimension k � n,
where n is the size of the linear system.
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Minimal residual methods (cont.)

Like all Krylov subspace methods, MINRES and GMRES are
projection methods; the original problem is projected onto a
subspace of lower dimension (the Krylov subspace) in which the
solution of the residual minimization problem can be easily found,
either by solving a small linear system or by solving a small least
squares problem.

As is well known, computing projections onto a subspace is greatly
facilitated if an orthonormal basis for the subspace is known. This
is also desirable for numerical stability reasons.

An orthonormal basis for a Krylov subspace can be efficiently
constructed using the Arnoldi process; in the symmetric case, this
is known as the Lanczos process (Arnoldi, 1951; Lanczos, 1952).
Both of these are efficient implementations of the classical
Gram–Schmidt process.
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Arnoldi’s process

For arbitrary A ∈ Rn×n and v ∈ Rn, v 6= 0, the Arnoldi process is:

I Set v1 = v/‖v‖2;
I For j = 1, . . . ,m do:

– hi,j = 〈Avi , vj〉 for i = 1, 2, . . . , j

– wj = Avj −
∑j

i=1 hi,jvi

– hj+1,j = ‖wj‖2

– If hj+1,j = 0 then STOP;
– vj+1 = wj/‖wj‖2
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Arnoldi’s process (cont.)

Remarks:

(i) If the algorithm does not stop before the mth step, the
Arnoldi vectors {v1, . . . , vm} form an ONB for the Krylov
subspace Km(A, v).

(ii) At each step j , the Arnoldi process requires one matrix-vector
product, j + 1 inner products, and j linked triads.

(iii) At each step the algorithm computes Avj and then
orthonormalizes it against all previously computed vj ’s.
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Arnoldi’s process (cont.)

Define Vm = [v1, . . . , vm] ∈ Rn×m. Introducing the (m + 1)×m
matrix Ĥm = [hij ] and the m ×m upper Hessenberg matrix Hm

obtained by deleting the last row of Ĥm, the following Arnoldi
relations hold:

AVm = VmHm + wmeT
m = Vm+1Ĥm

V T
m AVm = Hm

Hence, the m ×m matrix Hm is precisely the projected matrix
V T

m AVm. If A = AT , then Hm = HT
m = Tm is a tridiagonal matrix,

and the Arnoldi process becomes the Lanczos process, which is
much cheaper in terms of both operations and storage.

Thus, the Lanczos process consists of a three-term recurrence, with

constant operation count and storage costs per step, whereas the Arnoldi

process has increasing costs for increasing j . This is the main difference

between MINRES and GMRES.
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GMRES

The GMRES algorithm for solving Ax = b with A nonsingular is as
follows:

I Compute r0 = b − Ax0, β = ‖r0‖2, v1 = r0/β.
I Run m steps of the Arnoldi process on A and v1.
I Let Ĥm = [hi ,j ] where 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ m.

I Solve ‖βe1 − Ĥmym‖2 = min for ym and let xm = x0 + Vmym.

Remarks:

(i) The least squares problem can be efficiently solved via the QR
factorization Ĥm = QmRm using Givens rotations.

(ii) The modulus of the last component of gm := QT
m (βe1) is

equal to ‖b − Axm‖2 in exact arithmetic, hence we can
monitor convergence after each step.

(iii) A breakdown in the Arnoldi process (hj+1,j = 0) means the
projection is exact (A = VjHjV

T
j ) and the exact solution has

been found.
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Convergence of GMRES

The convergence of minimal residual methods for Ax = b can be
analyzed if we assume that A is diagonalizable: A = XDX−1, with
D diagonal. We denote the spectrum of A by σ(A).

After k steps we have

‖rk‖2 = ‖b − Axk‖2 = min
p∈Πk

‖p(A)r0‖2 = min
p∈Πk

‖Xp(D)X−1r0‖2

≤ ‖X‖2‖X−1‖2‖r0‖2 min
p∈Πk

‖p(D)‖2 = κ2(X )‖r0‖2 min
p∈Πk

max
λ∈σ(A)

|p(λ)|,

where we have set κ2(X ) = ‖X‖2‖X−1‖2. Hence, the residual at
step k satisfies

‖rk‖2

‖r0‖2
≤ κ2(X ) min

p∈Πk

max
λ∈σ(A)

|p(λ)|, k = 1, 2, . . . .

Note that the bound is only useful if the right-hand side is < 1.
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Convergence of GMRES (cont.)

If A is normal (AAT = ATA), in particular symmetric, then X can
be taken to be orthogonal and therefore κ2(X ) = 1. In this case
the bound becomes

‖rk‖2

‖r0‖2
≤ min

p∈Πk

max
λ∈σ(A)

|p(λ)|, k = 1, 2, . . . .

It has been shown that this bound is sharp. Even if A is not
normal, the bound can still yield useful information if κ2(X ) is not
too large.

Hence, in this case the eigenvalues of A are descriptive of the
convergence behavior.
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Convergence of GMRES (cont.)

On the other hand, if κ2(X )� 1 the bound is effectively useless,
since the right-hand side is often > 1.

This does not mean that converge will be slow: only that the
bound is not descriptive of the actual convergence behavior. In
other words, the bound can be very far from being sharp in the
highly non-normal case.

Furthermore, or general (non-normal) matrices the eigenvalues
alone are not sufficient to describe the convergence behavior
(examples by Greenbaum, Ptàk, and Strakoš).
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Restarted GMRES

Because GMRES needs to explicitly build and store an orthonormal
basis for the Krylov subspace Km(A, r0), its storage and arithmetic
costs increase with m. Unless convergence is fast, it is often
necessary to periodically “restart” the algorithm, say every m steps,
using the current approximation xm as the new starting vector.

This variant, denoted GMRES(m), is widely used in practice; the
choice of the restart parameter m is often dictated by the available
memory. Typical values are m = 20 or m = 30, but values as small
as m = 5 and as large as m = 50 are also used.

Restarting can drastically alter the convergence properties of
GMRES, since the global optimality of the method is lost. The
method may even fail to converge: perennial stagnation is possible,
for any m < n.
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Restarted GMRES (cont.)

Convergence of restarted GMRES is assured, for any m, if A is
positive definite, thanks to the following result due to Elman:

Theorem: Assume H = 1
2 (A + AT ) is SPD, and let σ = ‖A‖2 and

µ = λmin(H) > 0. Then the residuals in GMRES(m) satisfy

‖rk+1‖2 ≤
(

1− µ2

σ2

)
‖rk‖2.

It follows that if A is positive definite, GMRES(m) converges for all
m ≥ 1.

Note that convergence can be quite slow if µ ≈ 0 and σ = O(1).

A clear limitation of this result is that it may be difficult to prove
that H = 1

2 (A + AT ) is positive definite, particularly when
preconditioning is being used, and to estimate µ.
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The Faber–Manteuffel Theorem

We have seen so far that there exist Krylov subspace methods with
optimality properties, such CG, MINRES and GMRES. Some of
these methods are based on short recurrences (CG, MINRES),
others require long recurrences (GMRES). Truncating or restarting
the recurrences in GMRES leads to loss of global optimality.

Hence, in the Hermitian case (A = A∗) there are optimal
algorithms based on short recurrences. Methods with these
desirable properties have also been developed for skew-Hermitian
matrices, shifted skew-symmetric matrices, and shifted Hermitian
matrices of the form A = C + z I with C = C ∗ and z ∈ C.

However, in spite of much research, no such methods have been
found for general matrices.
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The Faber–Manteuffel Theorem (cont.)

In the early 1980s, Gene Golub offered a reward to anyone who
could find such a method, or prove that it cannot exist. In other
words, the problem is:

Completely characterize the class of matrices A for which an
optimal method based on short recurrences exist.

The challenge was taken up by V. Faber and T. Manteuffel. In
1984 they proved a deep theorem that in essence states that apart
from trivial cases, the only matrices for which such methods can be
defined are the Hermitian ones and “shifted and rotated
skew-Hermitian matrices” of the form A = eiθ(ρI + B) where
θ, ρ ∈ R and B = −B∗. This class includes all previously known
cases.

Note that all such matrices have spectra that are contained in a
straight line segment in C.
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Other Krylov subspace methods

While the Faber–Manteuffel Theorem put an end to the search for
optimal short-recurrence Krylov methods for general non-Hermitian
systems, several new Krylov subspace methods were introduced in
the early 1990s for solving such systems.

These methods give up or relax the global optimality requirement
and make use of coupled 2-term or 3-term recurrences.

The most successful methods are hybrid methods, obtained by
combining algorithms based on the nonsymmetric Lanczos process
with local residual minimization, and quasi-minimal residual
methods, obtained by relaxing the strict residual minimization
property.
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Other Krylov subspace methods (cont.)

For non-Hermitian linear systems, the most succesful alternatives
to GMRES are:

I Bi-CGStab (van der Vorst, 1991)

I QMR and its variants TFQMR and SQMR (Freund &
Nachtigal, 1991-1993)

All these methods have lower storage requirements than GMRES.
In terms of convergence rates, Bi-CGStab is often competitive with
restarted GMRES; SQMR is especially attractive for solving
symmetric indefinite linear systems if a symmetric indefinite
preconditioner is to be used.

It should be kept in mind that each iteration of Bi-CGStab and
TFQMR requires two matrix-vector multiplies with A and two
applications of the preconditioner.
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Other Krylov subspace methods (cont.)

A weakness of these methods is the possibility of breakdowns in
the underlying Lanczos process. Look-ahead techniques exist to
avoid breakdowns, at the cost of more complicated coding and
additional work.

Another weakness is the total lack of theoretical basis for the
convergence of these methods. The absence of optimality
properties makes it virtually impossible to analyze their
convergence properties.

It is our experience, moreover, that when a good preconditioner is
available, the differences between the various nonsymmetric Krylov
iterations tend to disappear.

For this reason, in the last 25 years or so much more effort has
been put in developing effective preconditioners than in research on
the Krylov methods themselves.
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Preconditioning

When GMRES is applied to the solution of systems obtained from
the linearization and discretization of the Navier–Stokes equations,
the convergence is hopelessly slow.

Moreover, the rate of convergence deteriorates rapidly as h→ 0,
especially for small viscosities.

The answer to this problem is to use preconditioning.

To precondition a linear system of equations means to transform it
into one with more favorable properties for iterative solvers like
GMRES. At the same time, the cost of this transformation should
be small (no more than O(n) operations if optimality is desired).
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Preconditioned GMRES

The right-preconditioned GMRES algorithm for solving Ax = b
with A nonsingular and preconditioner M also nonsingular reads:

I Compute r0 = b − Ax0, β = ‖r0‖2, v1 = r0/β.

I Run m steps of the Arnoldi process on AM−1 and v1.

I Let Ĥm = [hi ,j ] where 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ m.

I Solve ‖βe1 − Ĥmym‖2 = min for ym and let
xm = x0 + M−1Vmym.

Remark: Right preconditioning preserves the 2-norm of the
residual, which is the quantity being minimized at each step over
the Krylov subspace. In contrast, with left preconditioning the
quantity being minimized is the preconditioned residual
‖M−1(b − Axm)‖2. The same preconditioner M can lead to very
different convergence behavior depending on which side it is
applied to.
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Flexible GMRES

It happens frequently that the preconditioner M changes in the
course of an iterative process. For example, the preconditioner may
be computed adaptively; or, more often, the application of the
preconditioner requires itself one or more iterative processes. This
is the case of nested iterations, and of block preconditioners where
the blocks are handled iteratively.

Unless the inner iterations consist of a fixed number of steps of a
stationary iteration, the preconditioner will change from one
(outer) iteration to the next.

This is the case if the inner iteration consists of a Krylov method,
or if the inner iteration is stopped on the basis of a prescribed
residual norm reduction.
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Flexible GMRES (cont.)

When we have a variable preconditioner, we can no longer talk of
Krylov subspace methods. Methods like GMRES cannot be used
with a variable preconditioner.

Nevertheless, so-called flexible methods have been developed,
which allow for variable preconditioners M1,M2, . . . These
methods are very popular in a wide variety of applications.

The price to pay for the added flexibility is an increase in storage
costs.

For example, in flexible GMRES (FGMRES; Saad, 1993) one needs
to store not just the basis vectors v1, v2, . . . , vm produced by the
Arnoldi process, but also the preconditioned vectors

z1 = M−1
1 v1, z2 = M−1

2 v2, . . . , zm = M−1
m vm .

Note that only right preconditioning is allowed here.
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FGMRES

I Compute r0 = b − Ax0, β = ‖r0‖2, v1 = r0/β.
I For j = 1, . . . ,m do:

– Compute zj = M−1
j vj

– Compute w = Azj

– Compute hi,j = 〈w , vj〉 for i = 1, 2, . . . , j

– Compute wj = Avj −
∑j

i=1 hi,jvi

– Compute hj+1,j = ‖wj‖2

– If hj+1,j = 0 then STOP;
– Compute vj+1 = wj/‖wj‖2

– End do

I Let Ĥm = [hi ,j ] where 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ m

I Let Zm = [z1, z2, . . . , zm]

I Solve ‖βe1 − Ĥmym‖2 = min for ym and let xm = x0 + Zmym.

Remark: The 2-norm of the residual is now minimized over the
shifted subspace Sm = x0 + span {z1, . . . , zm}.
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Preconditioning (cont.)

For symmetric problems, the preconditioned system should have all
(or most) of its eigenvalues clustered away from zero. Indeed, in
this case there is a polynomial p of low degree such that p(0) = 1
and p(λ) ≈ 0 for λ ∈ σ(A).

For general systems it is trickier to specify the type of properties
required for fast convergence. Eigenvalues clustered near 1 usually
help, but this is not enough to establish desirable properties like
h-independent convergence.

However, rigorous results can be obtained in some cases by
studying the concept of field-of-values equivalence, see below.
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Preconditioning (cont.)

Consider again linear systems of the form Ah xh = bh, where the
problem dimension tends to infinity as h→ 0.

Informally, a preconditioner for Ah is a nonsingular matrix Ph such
that the preconditioned system P−1

h Ah xh = P−1
h bh is “easier” to

solve by an iterative method (like CG or GMRES).

It should be emphasized that neither P−1
h Ah nor P−1

h need to be
formed explicitly. Instead, the requisite matrix-vector products with
P−1

h Ah can be carried out by performing matrix-vector products
with Ah and solution of linear systems involving Ph.

Note the delicate trade-off between fast convergence and the
computational costs associated with the application of the
preconditioning operator P−1

h .
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Preconditioning (cont.)

If the preconditioned matrix P−1
h Ah is close to the identity Ih in

some norm, then convergence of a Krylov method will typically be
quite fast. Indeed, the preconditioned matrix would have all its
eigenvalues near 1 and would be nearly normal.

Another favorable situation would be to choose Ph such that
P−1

h Ah has minimum polynomial of low degree, since the degree of
this polynomial is an upper bound for the dimension of the Krylov
subspace generated by P−1

h Ah and P−1
h r0.

However, these properties are difficult to achieve in practice.
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Preconditioning (cont.)

Definition: Two families of SPD matrices {Ah}, {Ph} are said to
be spectrally equivalent if there exist positive constants α and β,
independent of h, such that

α ≤ 〈Ah x , x〉
〈Ph x , x〉

≤ β, ∀x 6= 0.

Note that this is equivalent to requiring that the eigenvalues of the
preconditioned matrices P−1

h Ah are all contained in the interval
[α, β], for all h > 0.

In other terms, the condition numbers κ2(P−1
h Ah) are uniformly bounded:

κ2(P−1
h Ah) ≤ β

α
, ∀h.

This guaranteees the h-independent convergence of Krylov methods like

CG or MINRES. The smaller the ratio β
α , the faster the convergence.
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Preconditioning (cont.)

The key to extending this result to general (nonsymmetric) problems is

the notion of field-of-values equivalence of two families {Ah}, {Ph}.

Def.: Let ah(·, ·) be positive definite, symmetric bilinear forms,
having coercivity and continuity constants independent of h. Then
{Ah}, {Ph} are said to be ah-field-of-values-equivalent if there
exist positive constants α and β, independent of h, s. t.

α ≤ ah(P−1
h Ah x , x)

ah(x , x)
≤ β, ∀x 6= 0.

Note that f.o.v.-equivalence reduces to spectral equivalence when {Ah},
{Ph} are SPD and ah(u, v) is the standard inner product.

If {Ah}, {Ph} are f.o.v-equivalent, the f.o.v’s of the matrices P−1
h Ah are

all contained in a compact region of the open right half-plane Re(z) > 0

independent of h. Therefore, GMRES will converge at an h-independent

rate.
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Preconditioning (cont.)

Mesh-independent preconditioners for solving the (steady) Oseen
problem were first developed around 2000 by Elman and by Kay,
Loghin and Wathen.

Unfortunately, these preconditioners are fairly sensitive to the
viscosity; indeed, for small ν the imaginary part of the eigenvalues
of the preconditioned matrices grows like O(ν−1).

In the following table we show iteration counts for solving two 2D
Oseen problems, one easy (constant convective term) and the
other harder (rotating vortex wind). An inf-sup stable finite
element pair is used.
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Preconditioning (cont.)

mesh size h viscosity ν

1 0.1 0.01 0.001 0.0001
constant wind

1/16 12 16 24 34 80
1/32 10 16 24 28 92
1/64 10 14 24 32 66
1/128 10 12 26 36 58
rotating vortex

1/16 8 12 40 188 –
1/32 8 12 40 378 –
1/64 6 12 40 > 400 –
1/128 6 10 44 > 400 –

Results for Kay-Loghin-Wathen preconditioner.
(Stopping criterion: ‖b−Axk‖2 < 10−6‖b‖2).
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Augmented Lagrangian formulation

Consider the augmented Lagrangian formulation given by(
A + γBTW−1B BT

B O

)(
u
p

)
=

(
f
0

)
, (3)

where γ > 0 and W is SPD. Note that this is equivalent to the
original problem, since Bu = 0. It can be interpreted as a form of
“grad-div stabilization” of the Navier–Stokes equations. The
addition of a SPD term to the (1,1)-block tends to move part of
the spectrum to the right.

Letting Aγ := A + γBTW−1B, we can rewrite (3) as(
Aγ BT

B O

)(
u
p

)
=

(
f
0

)
, or Â x = b̂. (4)
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Augmented Lagrangian formulation (cont.)

The following block triangular preconditioner for (4)

P =

(
Aγ BT

O Ŝ

)
, Ŝ−1 = −νM̂−1

p − γW−1. (5)

was first proposed in M. B. and M. A. Olshanskii, SIAM J. Sci.
Comput., 28 (2006), pp. 2095–2113.

Here M̂p is any SPD matrix that is spectrally equivalent to the
pressure mass matrix Mp (which is the Gramian associated with
the basis functions for the pressure space Qh: (Mp)ij = 〈φi , φj〉).

For example, we can take M̂p = diag(Mp) (Wathen).

Application of the action of the preconditioner P−1 at each step of
GMRES requires applying Ŝ−1 = −νM̂−1

p − γW−1 (easy!) and
solving a sparse linear system with matrix Aγ (non-trivial!).
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Convergence analysis

Theorem (B./Olshanskii, 2006): Let W = Mp, n = dim(Vh), and

m = dim(Qh). The matrix P−1Â has the eigenvalue λ = 1 of
multiplicity n; all the remaining m eigenvalues are contained in a
rectangle in the right half plane with sides independent of the
mesh size h, and bounded away from 0. Moreover, for γ = O(ν−1)
the rectangle does not depend on ν. When γ →∞, all the
eigenvalues tend to 1.

1

-1
ε > 0

b

≈ 2

Re(λ)

Im(λ)
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Convergence analysis (cont.)

A stronger (and much more difficult) result is the following.

Theorem (B./Olshanskii, 2011): Let γ = ‖(BA−1BT )−1Mp‖Mp . If
ν < 1, the residual norms in GMRES with the AL preconditioner
satisfy

‖b̂− Âxk‖ ≤ qk‖b̂− Âx0‖,
where q < 1 is independent of problem parameters h, ν (and ∆t in
the unsteady case).

This theorem is proved by constructing a suitable bilinear form ah(·, ·)
such that P and Â are ah-f.o.v-equivalent for all h, ν and ∆t. This

implies the above uniform convergence result for GMRES.
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Convergence analysis (cont.)

Numerical experiments confirm that GMRES combined with the
AL preconditioner is both h- and ν-independent, provided that the
action of P−1 on a vector is computed exactly, or at least to high
accuracy. Often using γ = 1 is sufficient.

A more practical option is to apply the preconditioner inexactly
(which can be done in O(n) work). Under appropriate conditions,
the resulting preconditioner is still h-independent, and only mildly
sensitive to the value of ν. However, a more careful choice of γ is
now necessary. Local Fourier analysis can be used here.

M. B., M. A. Olshanskii, and Z. Wang, Int. J. Numer. Methods Fluids,
66 (2011), 486–508.

M. B. and Z. Wang, SIAM J. Sci. Comput., 33 (2011), 2761–2784.

M. B. and M. A. Olshanskii, SIAM J. Numer. Anal., 49 (2011), 770–788.
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Numerical examples

mesh size h viscosity ν

1. 0.1 0.01 10−3 10−4

parameter γ

1. 1. 1. 0.1 0.02
constant wind

1/16 6 6 7 8 24
1/32 7 6 10 8 22
1/64 7 6 8 7 19
1/128 7 6 9 9 18
rotating vortex

1/16 6 6 7 13 25
1/32 5 6 9 11 32
1/64 4 5 10 11 37
1/128 4 4 10 12 34

Results for inexact Augmented Lagrangian preconditioner.

(Â−1
γ is one W(1,1)-cycle of multigrid.)
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Eigenvalues of preconditioned matrices
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Figure: Plots of the eigenvalues of the preconditioned Oseen matrix (lid
driven cavity, Q2-Q1, 32× 32 uniform grid, ν = 0.01). Left: with optimal
γ. Right: with γ chosen by local Fourier analysis.

The two values of γ are very close: 0.050 vs. 0.056.

The eigenvalue λ = 1 has multiplicity n (for all γ).
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Iteration counts with various values of γ

Figure: GMRES iterations with modified AL preconditioner (driven cavity,
Q2-Q1, two different grids, ν = 0.001)
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Extensions and parallel performance

Very recently, P. Farrell et al. have presented results with a 3D
parallel implementation of the AL preconditioner. Tests on
standard benchmark problems with up to more than 109 DoFs
showed excellent (weak) scalability going from 48 to 24576 MPI
processes, with scaling efficiencies around 80%.

Furthermore, J. Moulin et al. have also reported on a parallel
implementation of the (modified) AL preconditioner based on open
source packages (FreeFEM, PETSc, SLEPc) and observed 80%
parallel efficiency in the solution of 3D linear stability analysis
problems (flow around plates), on 256 to 2048 processes.

P. Farrell, L. Mitchell and F. Wechsung, SIAM J. Sci. Comput., 41
(2019), pp. A3073–A3096.

J. Moulin, P. Jolivet and O. Marquet, Computer Meth. Appl.
Mech. Engrg., 351 (2019), pp. 718–743.

Michele Benzi Fast Navier–Stokes Solvers



Dimensional Splitting preconditioner

When Picard linearization is used, the coefficient matrix A (in 2D)
ca be written as

A =

 A1 0 BT
1

0 A2 BT
2

−B1 −B2 0

 ,

with A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 and Bi ∈ Rm×ni , i = 1, 2.
The dimensional splitting of A is given by

A =

 A1 0 BT
1

0 0 0
−B1 0 0

+

 0 0 0
0 A2 BT

2

0 −B2 0

 = H1 + H2.
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Dimensional Splitting preconditioner (cont.)

The DS preconditioner is defined as P = 1
α(H1 + αI )(H2 + αI ), or

P =
1

α

 A1 + αI 0 BT
1

0 αI 0
−B1 0 αI

 αI 0 0
0 A2 + αI BT

2

0 −B2 αI


=

 αI + A1 − 1
αB

T
1 B2 BT

1

0 αI + A2 BT
2

−B1 −B2 αI

 .

Here α > 0 is a parameter.
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Dimensional Splitting preconditioner

I The difference between the preconditioner and the coefficient
matrix is

P −A =

 αI − 1
αB

T
1 B2 0

0 αI 0
0 0 αI


I As α→ 0, the diagonal entries vanish, but the off-diagonal

block blows up

I Choice of α requires a trade-off

I Proposed in M. B. and X.-P. Guo, Appl. Numer. Math., 61
(2011), pp. 66–76.
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RDF preconditioner

I An improved variant of the DS preconditioner may be
constructed as follows:

M =
1

α

 A1 0 BT
1

0 αI 0
−B1 0 αI

 αI 0 0
0 A2 BT

2

0 −B2 αI



=

 A1 − 1
αB

T
1 B2 BT

1

0 A2 BT
2

−B1 −B2 αI

 .

I This is the Relaxed Dimensional Factorization preconditioner
(RDF).

I Proposed in M. B., M. Ng, Q. Niu and Z. Wang,
J. Comput. Phys., 230 (2011), pp. 6185–6202.
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RDF preconditioner (cont.)

I The difference between this preconditioner and the coefficient
matrix is

M−A =

 0 − 1
αB

T
1 B2 0

0 0 0
0 0 αI


I This suggests a better performance of RDF, since more blocks

are zero and the remaining nonzero blocks are the same as
with DS.
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Eigenvalues of the RDF preconditioned matrix

Theorem 1. The preconditioned matrix AM−1 has an eigenvalue
at λ = 1 with multiplicity n1 + n2. The remaining
m eigenvalues are the eigenvalues µi of the matrix

Zα = α−1(S1 + S2)− 2α−2S1S2,

where
S1 = B1(A1 + α−1BT

1 B1)−1BT
1

and
S2 = B2(A2 + α−1BT

2 B2)−1BT
2 .
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Eigenvalues of the RDF preconditioned matrix (cont.)

Theorem 2. The eigenvalues µi of Zα are of the form

µi =
αλi

1 + αλi
, i = 1 : m,

where the λi ’s satisfy the generalized eigenproblem

BA−1BTφi = λi (α
2I + Ŝ1Ŝ2)φi ,

with Ŝk = BkA
−1
k BT

k (k = 1, 2).
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Eigenvalues of the RDF preconditioned matrix (cont.)

Eigenvalues of the preconditioned Oseen matrix on a 32× 32 grid
with Q2-Q1 finite elements. Top: DS preconditioner, bottom:
RDF preconditioner. Left: ν = 0.01, Right: ν = 0.001.
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Eigenvalues of the preconditioned matrix (cont.)

I Theorem 2 can be used to estimate the magnitude of the
eigenvalues λ 6= 1.

I It can be shown that they go to zero like O(α) for α→ 0+

and like O(α−1) for α→∞.

I In practice, diagonal scaling is applied to A before forming the
RDF preconditioner. This significantly improves performance.
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Applying the RDF preconditioner

Let Âi := Ai + α−1BT
i Bi (i = 1, 2). The RDF preconditioner can

be factored as

M =

(
A1 0 BT

1 /α
0 I 0
−B1 0 I

)(
I 0 0
0 A2 BT

2

0 −B2 αI

)
=

(
I 0 BT

1 /α
0 I 0
0 0 I

) Â1 0 0
0 I 0
−B1 0 I

 I 0 0

0 Â2 BT
2

0 0 αI

( I 0 0
0 I 0
0 −B2/α I

)
,

so only subsystems involving Â1 and Â2 need to be solved.
Moreover, these solves can be done inexactly.

Note: 3D case is analogous.
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Estimating the optimal α

I This is done using Fourier analysis

I We make the usual simplifying assumptions:

I the PDE problem has constant coefficients
I the problem is defined on the unit square/cube with periodic

boundary conditions
I the grid is uniform
I the matrices A1,A2,B1,B2 are all the same size and commute
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Estimating the optimal α (cont.)

I Under these assumptions, A1,A2,B1,B2 are all diagonalized
by the discrete Fourier transform; we denote their generic
eigenvalues by a1, a2, b1, b2.

I From this we obtain that Zα is also diagonalized by the
discrete Fourier transform and the eigenvalues of Zα are
given by

λ(α) = (s1 + s2)/α− 2s1s2/α
2

with s1 =
b2

1

a1 + b2
1/α

and s2 =
b2

2

a2 + b2
2/α

.
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Estimating the optimal α (cont.)

I For a finite difference discretization, we have

a1 = a2 = ν(2−e i2πhθ−e i2πhθ)+h(e i2πhθ−e−i2πhθ), θ = 1 : K

and
b1 = b2 = h(1− e−i2πhθ), θ = 1 : K .

I Following Theorem 1, we try to maximize clustering of the
eigenvalues of Zα around 1.

I To this end, we find the α that minimizes the average
distance of the eigenvalues of Zα from 1. Note that this is an
off-line computation.

I Numerical experiments show that performance is not overly
sensitive w.r.t. α
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Numerical experiments on model problems

I Mostly on a steady 2D lid-driven cavity discretized by Q2-Q1
or Q2-P1 finite elements using the MATLAB package IFISS

I Viscosity values ν = 0.1, ν = 0.01, ν = 0.001

I Experiments are performed on 16× 16, 32× 32, 64× 64 and
128× 128 (uniform and stretched) grids

I The preconditioner is applied as a right preconditioner with
restarted GMRES and maximum subspace dimension 20

I The linear solver stops when the relative residual drops below
10−6
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Leaky lid-driven cavity

Top: ν = 0.1, middle: ν = 0.01, bottom: ν = 0.001:
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Numerical results with LifeV

I Finite elements library
written in C++ (80’000
lines)

I LGPL license

I Used in the Mathcard
European project
(http://mathcard.eu).

LifeV relies on several external libraries:

I ParMetis/Metis for parallel mesh partitioning;

I Trilinos (10.8) for matrix and vector parallel distribution,
for parallel solvers, and for parallel preconditioners;

I Boost, SuiteSparse (UMFPACK), HDF5.
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Numerical results with LifeV (cont.)

The simulations were run on the CADMOS IBM Blue Gene/P at
EPFL, Lausanne, Switzerland.

4 racks, one row, wired as a 16x16x16 3D torus
4096 quad-core nodes, PowerPC 450, 850 MHz
Energy efficient, water cooled
56 Tflops peak, 46 Tflops LINPACK
16 TB of memory (4 GB per compute node)
1 PB of disk space, GPFS parallel file system
OS Linux SuSE SLES 10
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Hemodynamic problem (simulation of cerebral aneurysm)

P2-P1 finite elements (tetrahedral mesh)

Mesh Velocity DoFs Pressure DoFs hmin hmax hav

Medium 4,557,963 199,031 0.005 0.051 0.018
Fine 35,604,675 1,519,321 0.0026 0.0277 0.0097
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Hemodynamic problem (cont.)

Boundary conditions:

u = 0 on Γwall , u = ϕflux n on Γin, ν
∂u

∂n
− pn = 0 on Γout .

Michele Benzi Fast Navier–Stokes Solvers



Hemodynamic problem (cont.)

We impose the following inflow:

ϕflux (t) = a0 +
7∑

i=1

ak cos

(
2πkt

T

)
+ bk sin

(
2πkt

T

)

Baek, Jayaraman, Richardson, Karniadakis. Flow instability and wall shear stress variation in intracranial aneurysms.J R Soc Interface, 2010.
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Hemodynamic problem (cont.)

Other parameter settings:

I Unsteady problem, ∆t = 10−3

I Blood viscosity: ν = 0.035 cm2/s

I Nonlinear relative residual tolerance: 10−6

I Four Picard iterations needed

I Outer (F)GMRES relative residual tolerance: 10−6

I Inner GMRES relative residual tolerance: 0.05

I Inner GMRES sub-iterations preconditioned with ML (Trilinos)

I Relaxed Dimensional Factorization (RDF) preconditioner

M. B., S. Deparis, G. Grandperrin, and A. Quarteroni, Comput. Methods

Appl. Mech. Engrg., 300 (2016), pp. 129–145.
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Hemodynamic problem (cont.)

Mesh Cores Average iteration count Time

Medium 128 24.5 208.0
256 23.3 37.8
512 23.2 17.5

1024 23.2 8.6
2048 23.3 5.7

Fine 1024 23.2 106.4
2048 22.3 44.2
4096 21.6 20.2
8192 21.7 11.1

Table: Aneurysm test case: preconditioned (F)GMRES iterations
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Conclusions

I When implemented in combination with multigrid and domain
decomposition methods, the Augmented Lagrangian approach
results in robust and scalable preconditioners

I Both stable and stabilized discretizations can be accommodated

I Stretched grids do not pose any difficulties to the AL approach

I Techniques to obtain good estimates of the optimal parameter γ
have been developed

I AL approach is currently the state-of-the-art for low-viscosity steady
problems

I Parallel code now being developed by groups in UK, France

I Effective for other problens like buoyancy driven flow, coupled
Darcy–Stokes problem, etc.

I RDF approach also effective, but less developed so far
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