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Double saddle point problems

Consider the linear system

Au ≡

 A BT CT

B 0 0
C 0 −D


 x
y
z

 =

 b1
b2
b3

 ≡ b, (1)

where A ∈ Rn×n is symmetric positive definite (SPD), B ∈ Rm×n,
C ∈ Rp×n, and D ∈ Rp×p is symmetric positive semidefinite (SPS) and
possibly zero. Throughout the paper we assume that n ≥ m+ p.

Note that A is symmetric indefinite.

Linear systems of the form (1) arise in numerous applications. The term
double saddle point systems is sometimes used to descibe (1).

A. Ramage and E. C. Gartland, Jr., A preconditioned null space method for liquid
crystal director modeling, SIAM J. Sci. Comput., 35 (2013).
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Double saddle point problems (cont.)

Applications leading to double saddle point problems include:

Mixed-Hybrid FEM for second order elliptic PDEs;
Finite element discretization of liquid crystal director modeling;
Numerical modeling of non-Newtonian fluids;
Linear elasticity;
Coupled systems of PDEs (for example, Stokes-Darcy);
Interior point methods in constrained optimization.

Note that the block matrices

B =

 A CT BT

C −D 0
B 0 0

 and C =

 −D C 0
CT A BT

0 B 0

 ;

can be brought into the same form as matrix A by means of symmetric
permutations.
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Double saddle point problems (cont.)

Matrix A can be regarded as a 2× 2 block matrix in two different ways,
according to which of the following partitioning strategies is used:

A =

 A BT CT

B 0 0
C 0 −D

 or A =

 A BT CT

B 0 0
C 0 −D

 .
The first partitioning highlights the fact that problem (1) can in principle be
treated as a “standard" saddle point problem, possibly stabilized (or regularized)
when D 6= 0.

On the other hand, the second partitioning highlights the double saddle point
structure of A, since the (1,1) block is itself the coefficient matrix of a saddle
point problem.

Our main goal is to develop efficient solvers that exploit the 3× 3 block structure
of A.
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Double saddle point problems (cont.)

Some additional references:

D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and
Applications, Springer, 2013.

A. Aposporidis, E. Haber, M. Olshanskii, and A. Veneziani, A mixed formulation
of the Bingham fluid flow problem: Analysis and numerical solution, Computer
Meth. Appl. Mech. Engrg., 200 (2011).

P. Chidyagway, S. Ladenheim, and D. B. Szyld, Constraint preconditioning for
the coupled Stokes–Darcy system, SIAM J. Sci. Comput., 38 (2016).

B. Morini, V. Simoncini, and M. Tani, Spectral estimates for unreduced
symmetric KKT systems arising from Interior Point methods, Numer. Linear
Algebra Appl., 23 (2016).

J. Maryška, M. Rozložník, and M. Tůma, Schur complement systems in the
mixed-hybrid finite element approximation of the potential fluid flow problem,
SIAM J. Sci. Comput., 22 (2000).
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Conditions for a unique solution

Proposition 1. Assume that A � 0 and D � 0. Then A is nonsingular if
and only if BT has full column rank.

Proposition 2. Let A � 0 and D � 0, with D 6= 0. Assume that at least
one of A and D is positive definite and that BT has full column rank.
The following statements hold:

Case 1. Suppose that A � 0 and D < 0.
If ker(CT ) ∩ ker(D) = {0} and
range(BT ) ∩ range(CT ) = {0}, then A is nonsingular.
If A is nonsingular then ker(CT ) ∩ ker(D) = {0}.

Case 2. Suppose that A < 0 and D � 0.
If ker(A) ∩ ker(B) ∩ ker(C) = {0} and
range(BT ) ∩ range(CT ) = {0}, then A is nonsingular.
If A is nonsingular then
ker(A) ∩ ker(B) ∩ ker(C) = {0}.
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Conditions for a unique solution (cont.)

Proposition 3. Let A � 0 and assume that BT and CT have full column
rank. Consider the linear system (1) with D = 0. Then

range(BT ) ∩ range(CT ) = {0}

is a necessary and sufficient condition for the coefficient matrix A to be
nonsingular.

Remark. It should be stressed that in the case D = 0, both BT and CT
must have full column rank for A to be invertible. In contrast, in the case
that D � 0 and D 6= 0, only the matrix BT is required to have full column
rank while the matrix CT can be rank deficient.
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Example 1: The potential fluid flow problem
Our first example is a low-order Raviart–Thomas mixed-hybrid finite
element approximation of Darcy’s law and continuity equation describing
the 3D potential fluid flow problem in porous media:

k(x)u = −∇p, ∇ · u = q in Ω ⊂ R3,

where u is the fluid velocity, p is the piezometric potential (fluid pressure),
k(x) is the symmetric and uniformly positive definite second-rank tensor of
the hydraulic resistance of the medium with [k(x)]ij ∈ L∞(Ω) for
i, j = 1, 2, 3, and q represents the density of potential sources in the
medium.

The boundary conditions are given by

p = pD on ∂ΩD, u · n = uN on ∂ΩN ,

where ∂Ω = ∂ΩD ∪ ∂ΩN with ∂ΩD 6= ∅, ∂ΩD ∩ ∂ΩN = ∅, and n is the
outward normal vector defined (a.e.) on ∂Ω.
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Example 1: The potential fluid flow problem (cont.)
The discrete system is of the form A BT CT

B 0 0
C 0 0


 x
y
z

 =

 b1
b2
b3

 .
The solution vectors x and y correspond to velocity and pressure degrees
of freedom (respectively), while z is a vector of Lagrange multipliers. For
this problem we have that A � 0 and BT , CT have full column rank, and
that A is nonsingular.

Moreover, the A matrix is block diagonal, with 5× 5 blocks.

As a consequence, both matrices BA−1BT and CA−1CT retain a great
deal of sparsity and can be formed explicitly.

See J. Maryška, M. Rozložník, and M. Tůma, Schur complement systems in the
mixed-hybrid finite element approximation of the potential fluid flow problem,
SIAM J. Sci. Comput., 22 (2000).
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Example 1: The potential fluid flow problem (cont.)
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Sparsity pattern for potential fluid flow problem on the unit cube.
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Example 2: The liquid crystal director model (D 6= 0)

Mathematical models for understanding the orientational properties of
liquid crystals lead to the minimization of the free energy functional

F [u, v, w, U ] = 1
2

∫ 1

0

[
(u2
z + v2

z + w2
z)− α2(β + w2)U2

z

]
dz (2)

where u, v, w and U are functions of the space variable z ∈ [0, 1] that are
required to satisfy suitable end-point conditions, uz = du

dz (etc.), and α, β
are prescribed (positive) parameters. The problem is discretized by means
of a uniform piecewise-linear finite element method.

With a mesh-size h = 1
k+1 (with k + 1 the number of cells), using nodal

quadrature and the prescribed boundary conditions leads to replacing the
functional F with a function f of 4k variables:

F [u, v, w, U ] ≈ f(u1, . . . , uk, v1, . . . , vk, w1, . . . , wk, U1, . . . , Uk).
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Example 2: The liquid crystal director model (cont.)
The free energy functional (2) must be minimized subject to the unit
vector constraint. For the discrete (finite-dimensional) problem, this
constraint is enforced by imposing that the solution components uj , vj
and wj are such that

u2
j + v2

j + w2
j = 1, j = 1, . . . , k.

Introducing Lagrange multipliers λ1, . . . , λk, the problem reduces to
finding the critical points of the Lagrangian function

L = f + 1
2

k∑
j=1

λj(u2
j + v2

j + w2
j − 1).

Setting the partial derivatives of L to zero results in the nonlinear system
of 5k equations in as many unknowns ∇L(x) = 0, where the unknown
vector x ∈ R5k contains the values (uj , vj , wj) with 1 ≤ j ≤ k, λj with
1 ≤ j ≤ k, and Uj with 1 ≤ j ≤ k (in this order).
This nonlinear system is solved by Newton’s method.
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Example 2: The liquid crystal director model (cont.)
Newton’s method leads to a linear system of the form

∇2L(x(`)) δx(`) = −∇L(x(`)) (3)

at each step `, where ∇2L(x(`)) denotes the Hessian of L evaluated at the
current approximate solution x(`).

As shown by Ramage and Gartland (SISC 2013), the Hessian has the
following block 3× 3 structure:

∇2L =

 A BT CT

B 0 0
C 0 −D

 = A,

where A is n× n, B is m× n, C is p× n and D is p× p with n = 3k and
m = p = k. Hence, it is necessary to solve a system of the form (1) at
each Newton step.

All the nonzero blocks in A are sparse and structured.
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Example 2: The liquid crystal director model (cont.)
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Sparsity pattern for discretized liquid crystal director model.
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Block preconditioners for the case D = 0

Block diagonal and block triangular preconditioners have been extensively
studied in the saddle point literature; see, e.g., Elman, Silvester, and
Wathen (2005, 2014); B., Golub, and Liesen (2005).

These ‘classical’ preconditioners suggest different extensions to the 3× 3
block case, depending on the partitioning used for A. It is unclear, a priori,
which of these several possible preconditioners is better for a given
problem.

We first investigated the following block diagonal and block triangular
preconditioners for solving systems of the form (1) with D = 0:

P
D

=

 A 0 0
0 BA−1BT 0
0 0 CA−1CT

 , P
T

=

 A BT CT

0 −BA−1BT 0
0 0 −CA−1CT

 .
In the sequel, we let SB := BA−1BT and SC = CA−1CT .
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Block preconditioners for the case D = 0 (cont.)

Theorem 1. Suppose that A � 0, BT and CT have full column rank, and
that D = 0 in (1). Then

σ(P−1
D
A) ⊂

(
−1, 1−

√
1 + 4γ∗
2

)
∪ {1} ∪

(
1 +
√

1 + 4γ∗
2 , 2

)
,

with
γ∗ = min x

T (BTS−1
B B + CTS−1

C C)x
xTAx

> 0,

where the minimum is taken over all x ∈ Rn, x /∈ ker(B) ∩ ker(C), such
that (x; y; z) is an eigenvector of P−1

D
A.

The set {1} ∪
(

1+
√

1+4γ∗
2 , 2

)
contains n eigenvalues and the negative

interval
(
−1, 1−

√
1+4γ∗
2

)
contains m+ p eigenvalues. Furthermore, if

λ 6= 1 is an eigenvalue of P−1
D
A, then 1− λ is also an eigenvalue (though

not necessarily with the same multiplicity).
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Block preconditioners for the case D = 0 (cont.)

The previous result shows that the positive eigenvalues of P−1
D
A are nicely

bounded between 1 and 2.

The negative eigenvalues, on the other hand, lie between −1 and

1−
√

1 + 4γ∗
2 ,

and thus the upper bound approaches 0 (from the left) if

γ∗ = min x
T (BTS−1

B B + CTS−1
C C)x

xTAx
→ 0+,

which may well happen in practice.

For instance, for the potential fluid flow problem we found that the
smallest negative eigenvalue (and thus γ∗) approaches 0 as h→ 0, and the
performance of preconditioned MINRES deteriorates as the mesh is refined.
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Block preconditioners for the case D = 0 (cont.)

For the block triangular preconditioner PT we have the following result.

Theorem 2. Suppose that A � 0, BT and CT have full column rank, and
that D = 0. Then σ(P−1

T
A) ⊂ (0, 2), with λ = 1 being an eigenvalue of

multiplicity at least n. Moreover, the spectrum of P−1
T
A is symmetric with

respect to λ = 1; i.e., if λ1 6= 1 and λ2 6= 1 are two eigenvalues of P−1
T
A,

then λ1 + λ2 = 2.

Note: The proof of this result shows that the preconditioned matrix has
eigenvalues of the form

λ = xT (BTS−1
B B + CTS−1

C C)x
xTAx

,

which in some cases may approach zero as the mesh is refined (as in the
case of the potential fluid flow problem).
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Block preconditioners for the case D = 0 (cont.)

Other “natural" (ideal) preconditioners, corresponding to the first of the
two possible block partitionings of A, include

PGD =

 A 0 0
0 BA−1BT BA−1CT

0 CA−1BT CA−1CT


and

PGT,1 =

 A 0 0
B −BA−1BT −BA−1CT

C −CA−1BT −CA−1CT

 .

Note: In the potential fluid flow problem, all the blocks are sparse and
can be formed explicitly if needed.
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Block preconditioners for the case D = 0 (cont.)

Using instead the second possible block partitioning of A we obtain the
following block triangular preconditioner:

PGT,2 =

 A BT 0
B 0 0
C 0 −S

 ,
where

S = C(A−1 +A−1BTS−1
B
BA−1)CT .

Note: The standard Murphy–Golub–Wathen results apply to these three
ideal preconditioners.

22



Block preconditioners for the case D 6= 0

We focus on the following two block triangular preconditioners:

P̃T =

 A BT CT

0 −BA−1BT 0
0 0 −(D + CA−1CT )

 ,
and

P̂T =

 A BT CT

0 −BA−1BT −BA−1CT

0 0 −(D + CA−1CT )

 .

Note: These preconditioners wil be nonsingular if A � 0, BT has full column
rank, D � 0 and ker(D) ∩ ker(CT ) = {0}. We recall that these conditions also
guarantee the invertibility of A.
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Block preconditioners for the case D 6= 0 (cont.)

Theorem 3. Assume that A � 0, BT has full column rank, D � 0 and
ker(D) ∩ ker(CT ) = {0}. Then

σ(P̃−1
T
A) ⊂ (0, 1−

√
ξ] ∪ {1} ∪ [1 +

√
ξ, 2) ⊂ (0, 2),

where
ξ = λ̄min(CA−1CT )

λmax(D) + λ̄min(CA−1CT )

(here λ̄min is used to denote the smallest nonzero eigenvalue).
Moreover, λ = 1 is an eigenvalue of multiplicity at least n.

Note: This result implies that if λmax(D) ≈ 0, then the preconditioned
matrix may have tiny eigenvalues.
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Block preconditioners for the case D 6= 0 (cont.)

A much stronger result holds for P̂T if we require D � 0:

Theorem 4. Assume that A � 0, BT has full column rank, and D � 0.
Then σ(P̂−1

T
A) ⊆ {1} ∪ [1 + ξ, 1 + η] ⊂ [1, 2), where ξ is as in Theorem 3

and
η = λmax(CA−1CT )

λmin(D) + λmax(CA−1CT ) .

Moreover, if CT has full column rank then λ = 1 is an eigenvalue of
multiplicity at least n.

Note: Of course, as usual, “exact" application of all these preconditioners
may be very expensive or even impossible, and inexact versions are usually
necessary and/or faster (see below).
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Numerical experiments

We consider two model problems of the type (1), one with D = 0 and the
other with D 6= 0:

Mixed-hybrid FEM discretization of 3D potential fluid flow problems
Liquid crystals director modeling

All of the reported numerical results were performed on a 64-bit 2.45 GHz
core i7 processor and 8.00GB RAM using MATLAB version 8.3.0532.

In all of the experiments we have used right-hand sides corresponding to
random solution vectors, performing ten runs and then averaging the
CPU-times.

The iteration counts reported in the tables (under “Iter") are also averages
(rounded to the nearest integer).
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Numerical experiments (cont.)

All of the methods require repeated solution (whether “exact" or inexact)
of SPD linear systems as subtasks. These are either solved by sparse
Cholesky factorization with symmetric approximate minimum degree
(SYMAMD) reordering or by the preconditioned conjugate gradient (PCG)
method. When using PCG, unless otherwise specified, the preconditioner
used is a drop tolerance-based incomplete Cholesky factorization with drop
tolerance τ = 10−2.

In all of the numerical tests below, the initial guess is taken to be the zero
vector. The outher iterations are stopped once

‖b−Au(k)‖2 < 10−10‖b‖2.

For the inner PCG iterations (whenever applicable), the stopping
tolerances used are specified below.
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Implementation details
For the potential fluid flow problem, the best results were obtained with
inexact versions of the preconditioners PGD , PGT,1 and PGT,2 .

The first two of these preconditioners require solving linear systems with
the (1, 1) submatrix A (easy!) and with the Schur complement matrix

S =
[
BA−1BT BA−1CT

CA−1BT CA−1CT

]
=
[
B
C

]
A−1

[
BT CT

]
.

This matrix is sparse and inexpensive to form. Also, SB = BA−1BT turns
out to be a scalar multiple of identity, see Maryška et al. (SISC 2000).

Sparse direct solution of linear systems involving S, however, is costly. We
solve these linear systems with CG preconditioned by incomplete Cholesky
factorization.

The PCG convergence tolerance is 10−15 for “exact" solution, 10−4 for
inexact.
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Implementation details (cont.)

Each application of P−1
GT,2 requires solving a saddle point problem[
A BT

B 0

] [
w1
w2

]
=
[
r1
r2

]
, (4)

followed by solution of a linear systems with the coefficient matrix

S̄ = C(A−1 +A−1BTS−1
B
BA−1)CT .

The solution of (4) is very cheap and can be obtained in two steps as
follows:

Step I. Solve SBw2 = BA−1r1 − r2, to find w2.
Step II. Set w1 = A−1(r1 −BTw2).

The Schur complement matrix S̄ is also sparse for this problem. We use
PCG as before to solve linear systems involving S̄.
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Test results for 3D potential fluid flow problem

size Iter CPU-time
2125 3 0.0125
17000 3 0.0947
57375 3 0.4829
136000 3 1.6226
265625 3 3.9002
459000 3 8.8899

Table: Results for MINRES with block diagonal preconditioner P
GD

.

No surprise here...
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Test results for 3D potential fluid flow problem (cont.)

Preconditioner
PGT,1 PGT,2

size Iter CPU-time Iter CPU-time
2125 2 0.0191 2 0.0180
17000 2 0.1284 2 0.1180
57375 2 0.5247 2 0.4516
136000 2 1.5425 2 1.2936
265625 2 3.6811 2 3.1080
459000 2 7.9861 2 6.8368

Table: Results for GMRES with ideal block triangular preconditioners.

... or here. But what about the inexact case?
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Test results for 3D potential fluid flow problem (cont.)

Preconditioner
PGT,1 PGT,2

size Iter Iterpcg CPU-time Iter Iterpcg CPU-time
2125 5 25 0.0085 5 25 0.0073
17000 6 47 0.0575 6 53 0.0534
57375 6 66 0.2361 6 72 0.2265
136000 6 87 0.7480 6 95 0.6563
265625 6 108 1.8190 6 112 1.5220
459000 6 134 4.2658 5 117 3.0442

Table: Results for FGMRES with inexact block triangular preconditioners.

Note: Stopping tolerance for inner PCG iterations: 10−4.
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Implementation details (cont.)

For the liquid crystal director model we use the preconditioners P̃T and
P̂T . Both preconditioners require the solution of linear systems with SPD
coefficient matrices A, BA−1BT , and D + CA−1CT at each (outer)
GMRES or FGMRES iteration.

The matrices BA−1BT and D + CA−1CT are full and we never form
them explicitly.

Systems with these matrices are solved by PCG, with the preconditioners
described next.
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Implementation details (cont.)

For D + CA−1CT we use the Cholesky factors of D + CD−1
A CT ,

where DA = diag(A);
For BA−1BT we use the approximate inverse

BABT ≈ (BA−1BT )−1,

which only requires sparse matrix-vector products.

Note: For this problem, B has (nearly) orthogonal rows. We observe that
if B were an orthogonal matrix, then (BA−1BT )−1 = BABT .

Numerical experiments indicate that the spectrum of

(BABT )(BA−1BT )

is contained in the interval [1, 1.3944], independent of mesh size.
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Implementation details (cont.)

Preconditioner: P̃
T

P̂
T

Coefficient
matrix: A SB S̃C A SB S̃C

GMRES ? 1e–12 1e–12 ? 1e–12 1e–12
FGMRES 1e–02 1e–02 1e–01 1e–03 1e–03 1e–01

Table: Inner tolerance in PCG method used inside the preconditioned methods,
liquid crystal problem. A ‘?’ means that a sparse direct solver was used.
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Test results for liquid crystals model

Method
GMRES FGMRES

size Iter CPU Iter CPU
5115 10 0.53144 9 0.08461
10235 9 0.98055 9 0.14981
20475 9 1.9727 8 0.27168
40955 9 3.6642 8 0.53854
81915 9 8.4782 8 1.2848
163835 9 17.947 8 3.1012
327675 9 42.743 8 7.4957

Table: Results for ideal/inexact preconditioner P̃
T

Note that the inexactly preconditioned FGMRES iteration may converge
faster than the exactly preconditioned GMRES one!
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Test results for liquid crystals model (cont.)

Method
GMRES FGMRES

size Iter CPU Iter CPU
5115 6 0.32469 6 0.02981
10235 6 0.62408 6 0.05179
20475 6 1.2614 6 0.08967
40955 6 2.4815 6 0.17196
81915 6 5.4721 6 0.33430
163835 6 11.879 6 0.69814
327675 6 28.196 6 1.5901

Table: Results for ideal/inexact preconditioner P̂
T
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Concluding remarks

The 3× 3 block structure in double saddle point problems leads to a
number of possible block preconditoners
Important to choose best partitioning for a given problem
Some eigenvalue estimates derived; more theory needed
Good approximations to multiple Schur complements may be required
Inexact variants lead to efficient solvers
Scalable (or nearly so) solvers for model problems of potential fluid
flow and crystal directors (alternative to null space-based methods);
these problems display additional structure
See the paper for additional results and experiments for Uzawa-type
methods
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