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The coupled Stokes–Darcy system

The coupled Stokes–Darcy model describes the interaction between
free flow and porous media flow. It is a fundamental problem in
several fields.

In one subregion of the flow domain Ω a free-flowing fluid is
governed by the (Navier-)Stokes equations; in another subregion,
the fluid follows Darcy’s Law.

The equations are coupled by conditions across the interface
between the two subregions.

In this talk we will only consider the case of stationary problems
and Stokes flow.

5 / 42



The coupled Stokes–Darcy system (cont.)

Let Ω be a computational domain partitioned into two disjoint
subdomains Ω1 and Ω2, separated by an interface Γ12. We assume
that the flow in Ω1 is governed by the stationary Stokes equations:

−∇ · (2νD(u1)− p1I) = f1 in Ω1,

∇ · u1 = 0 in Ω1,

u1 = 0 on Γ1 = ∂Ω1 ∩ ∂Ω.

Here ν > 0 represents the kinematic viscosity, u1 and p1 denote
the velocity and pressure in Ω1, f1 is an external force acting on
the fluid, I is the identity matrix, and

D(u1) =
1

2

(
∇u1 +∇uT

1

)
is the rate of strain tensor.
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The coupled Stokes–Darcy system (cont.)

We also assume that the boundary Γ2 = ∂Ω ∩ ∂Ω2 of the porous
medium is partitioned into disjoint Neumann and Dirichlet parts
Γ2N and Γ2D , with Γ2D having positive measure.

The flow in Ω2 is governed by Darcy’s Law:

−∇ ·K∇p2 = f2 in Ω2,

p2 = gD on Γ2D ,

K∇p2 · n2 = gN on Γ2N .

Here p2 represents the Darcy pressure in Ω2, and the SPD matrix
K represents the hydraulic conductivity in the porous medium. The
Darcy velocity can be obtained from the pressure using

u2 = −K∇p2 in Ω2.
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The coupled Stokes–Darcy system (cont.)

Computational domain

• Let Ω be a bounded domain in R2 subdivided into disjoint

subdomains Ω1 and Ω2 by an interface Γ12

Γ2D

Γ2N Γ2N

Γ1

Ω2

Ω1

Γ12

• The boundary ∂Ω = Γ1 ∪ Γ2 with:

Γ1 = ∂Ω1\Γ12 and Γ2 = Γ2N ∪ Γ2D

1
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The coupled Stokes–Darcy system (cont.)

The coupling between the two flows comes from the following
interface conditions on the internal boundary Γ12:

Let n12 and t12 denote the unit normal vector directed from Ω1 to
Ω2 and the unit tangent vector to the interface. Then we impose

u1 · n12 = −(K∇p2) · n12,

(−2νD(u1) n12 + p1n12) · n12 = p2,

u1 · t12 = −2νG (D(u1) n12) · t12.

The first two conditions enforce mass conservation and the balance
of normal forces across the interface; the third condition represents
the Beavers–Joseph–Saffman (BJS) Law, in which G is an
experimentally determined constant.
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The coupled Stokes–Darcy system (cont.)

Let

X = {v1 ∈ (H1(Ω1))d | v1 = 0 on Γ1}, Q1 = L2(Ω1)

be the Stokes velocity and pressure spaces and let

Q2 = {q2 ∈ H1(Ω2) | q2 = 0 in Γ2D}

be the Darcy pressure space.

The weak formulation of the coupled Stokes-Darcy problem is:
find u1 ∈ X, p1 ∈ Q1 and p2 ∈ Q2 such that

a(u1, p2; v1, q2) + b(v1, p1) = f(v1, q2) ∀v1 ∈ X, ∀q2 ∈ Q2,

b(u1, q1) = 0 ∀q1 ∈ Q1.

The bilinear forms a and b and the functional f are given in the
next slide. Brezzi–Fortin theory ensures the well-posedness of the
problem.
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The coupled Stokes–Darcy system (cont.)

Here

a(u1, p2; v1, q2) = aΩ1(u1, v1) + aΩ2(p2, q2) + aΓ12(u1, p2; v1, q2)

where

aΩ1(u1, v1) = 2ν

∫
Ω1

D(u1) : D(v1) +
1

G

∫
Γ12

(u1 · t12)(v1 · t12),

aΩ2(p2, q2) =

∫
Ω2

K∇p2 · ∇q2,

aΓ12(u1, p2; v1, q2) =

∫
Γ12

(p2v1 − q2u1) · n12.

Also,

b(u1, q1) = −
∫

Ω1

(∇ · u1)q1,

and

f(v1, q2) =

∫
Ω1

f1 · v1 +

∫
Ω2

f2q2 +

∫
Γ2N

gNq2.

11 / 42



The discrete problem

The weak form is discretized using conforming finite elements
spaces Xh ⊂ X, Qh

1 ⊂ Q1 satisfying the inf-sup condition for the
Stokes velocity and pressure, such as the MINI and Taylor–Hood
elements.

For the Darcy pressure a space of piecewise continuous polynomials
Qh

2 ⊂ Q2 is used (linear in 2D, quadratic in 3D).

The discrete version of the coupled Stokes–Darcy system is of the
form

A x =

 AΩ2 AT
Γ12

0

−AΓ21 AΩ1 BT

0 B 0

 p̂2

û1

p̂1

 =

 f̂2
f̂1

0

 = b,

where AΩ2 , AΩ1 , AΓ12 are the matrices of the discrete bilinear
forms corresponding to aΩ2 , aΩ1 and aΓ12 , and B is the discrete
divergence. Under our assumptions AΩ2 and AΩ1 are SPD, B has
full row rank, and A is nonsingular.
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The discrete problem (cont.)

Iterative methods for the solution of this problem have been
developed by several authors, for example in

M. Discacciati and A. Quarteroni, Convergence analysis of a
subdomain iterative method for the finite element approximation of
the coupling of Stokes and Darcy equations, Comput. Vis. Sci.,
6:93–103, 2004.

M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain
decomposition methods for the Stokes–Darcy coupling, SIAM
J. Numer. Anal., 45:1246–1268, 2007.

M. Discacciati and A. Quarteroni, Navier–Stokes/Darcy coupling:
Modeling, analysis and numerical approximation,
Rev. Mat. Complut., 22:315–426, 2009.

M. Discacciati and L. Gerardo-Giorda, Optimized Schwarz methods
for the Stokes–Darcy coupling, IMA J. Numer. Anal., 38:1959–1983,
2018.

These authors focus on domain decomposition/iterative substructuring
methods.
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The discrete problem (cont.)

Here we are interested in the iterative solution of this block linear
system using preconditioned Krylov subspace methods. Our work
builds on the following papers:

M. Cai, M. Mu and J. Xu, Preconditioning techniques for a
mixed Stokes/Darcy model in porous media applications. J.
Comput. Appl. Math., 233:346–355, 2009.

P. Chidyagwai, S. Ladenheim and D. B. Szyld, Constraint
preconditioning for the coupled Stokes-Darcy system. SIAM J.
Sci. Comput., 38:A668–A690, 2016.

Our contributions include a new block preconditioner based on an
augmented Lagrangian formulation, together with spectral and
Field-of-Values analysis of the preconditioned matrices. We also
perform more extensive experiments with inexact inner solves,
especially in 3D.
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Block preconditioners

We now introduce a slight change of notation and rewrite the
discrete Stokes–Darcy system in the form

A x =

 A11 A12 0
A21 A22 BT

0 B 0

 u1

u2

u3

 =

 b1

b2

b3

 = b, (1)

where A11, A22 are both SPD, A21 = −AT
12 and B has full row

rank.

We observe in passing that this system is an example of a double
saddle point problem, and that similarly structured systems arise in
a number of applications, see

F. A. P. Beik and M. Benzi, Iterative methods for double
saddle point systems, SIAM J. Matrix Analysis & Applications,
39:902–921, 2018.
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Block preconditioners (cont.)

Cai et al. (2009) proposed the following block triangular
preconditioner:

PT1,ρ := PT1(ρ) =

 A11 0 0
0 A22 0
0 B −ρMp

 .
where Mp is the mass matrix coming from the Stokes pressure and
ρ > 0 a parameter.

Chidyagwai et al. (2016) in addition investigated the following
constraint preconditioners:

PconD =

 A11 0 0
0 A22 BT

0 B 0

 , PconT =

 A11 0 0
A21 A22 BT

0 B 0

 .
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An Augmented Lagrangian-type preconditioner

Here we propose and analyze a new efective block preconditioner,
defined as

Pr ,α =

 A11 A12 0
0 A22 + rBTQ−1B BT

0 0 − 1
αQ

 , (2)

applied to the equivalent augmented system of equations Â x = b̂,
where

Â =

 A11 A12 0
A21 A22 + rBTQ−1B BT

0 B 0

 , (3)

b̂ = [b1; b2 + rBTQ−1b3; b3], the matrix Q is SPD, r ≥ 0 and
α > 0 are given user-defined parameters.

Here we set r = α or r = 0. In the case that r = α, the
preconditioner is denoted by Pr .
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Eigenvalue bounds for P−1
r Â

Theorem: The eigenvalues of P−1
r Â are all real and positive.

More precisely, we have for all r > 0:

σ(P−1
r Â) ⊂

[
θ, 2 +

λmax(AT
12A
−1
11 A12)

λmin(A22)

]
,

where

θ =
ζ

2 + λmax(AT
12A
−1
11 A12)/λmin(A22)

with

ζ = min

{
r y∗BTQ−1By

y∗A22y + r y∗BTQ−1By

∣∣∣∣ y /∈ Ker(B)

}
.

Moreover, if A22 < AT
12A
−1
11 A12, then all the eigenvalues lie in the

interval [1, 2] in the limit as r →∞.
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Eigenvalue bounds for P−1
r Â (cont.)

Actually, it turns out that most of the eigenvalues of P−1
r A tend

to 1 as r →∞.

Indeed, the proof of the previous theorem reveals that if
λ ∈ σ(P−1

r Â), then there exists a nonzero vector y such that λ
satisfies the following quadratic equation:

λ2 − γλ+ η = 0, (4)

where

γ = 1+
y∗
(
AT

12A
−1
11 A12 + r BTQ−1B

)
y

y∗Â22 y
and η =

r y∗BTQ−1B y

y∗Â22 y
,

with Â22 = A22 + rBTQ−1B. Evidently, γ = 1 + γ̃ + η with

γ̃ =
y∗
(
AT

12A
−1
11 A12

)
y

y∗Â22 y
.
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Eigenvalue bounds for P−1
r Â (cont.)

If λ1 and λ2 are the roots of (4) then

λ1λ2 = η and λ1 + λ2 = γ.

Since η → 1 and γ̃ → 0 as r →∞ we conclude that if y /∈ Ker(B),
then

λ1λ2 → 1 and λ1 + λ2 → 2,

as r →∞, i.e., all the eigenvalues tend to 1 for r →∞.

Using large values of r > 0 leads to ill-conditioned subsystems that
must be solved at each outer iteration (but see my second talk for
this!).

In our numerical tests good results are obtained for moderate
values of r , not exceeding r = 30. Also, a practical choice of Q is
the diagonal of the pressure mass matrix Mp.
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Eigenvalue plots
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Figure: Eigenvalue distributions of Â (top) versus that of the
preconditioned matrix P−1

r Â (bottom) for different values of r , with
Q = diag(Mp) for a 3D coupled Stokes-Darcy problem with 1695 dof’s.
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The problem with eigenvalue bounds

Remark: It is well known that for non-normal problems, the
eigenvalues alone are not sufficient to characterize the convergence
rate of Krylov subspace methods. In particular, unlike in the SPD
case, we cannot conclude that nonsymmetric Krylov iterations will
converge with mesh-independent rates from the fact that the
eigenvalue spectra of the preconditioned matrices all lie in a fixed
interval excluding 0.

Something more than eigenvalue bounds is needed.
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Field-of-Values analysis

Recall that two families of symmetric positive definite matrices
{Ah} and {Bh} are said to be spectrally equivalent if there exist
h-independent constants α and β with

0 < α ≤ λi (B−1
h Ah) ≤ β, ∀i .

Equivalently, {Ah} and {Bh} are spectrally equivalent if the
spectral condition number κ2(B−1

h Ah) is uniformly bounded with
respect to h.

Yet another equivalent definition is that the generalized Rayleigh
quotients associated with Ah and Bh are uniformly bounded:

0 < α ≤ 〈Ahx, x〉
〈Bhx, x〉 ≤ β, ∀x 6= 0.

Note that this is an equivalence relation between families of
matrices.
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Field-of-Values analysis (cont.)

If a discretized PDE leads to a sequence of linear systems
Ahuh = bh, a family of spectrally equivalent preconditioners {Bh}
guarantees that the PCG method will converge in a number of
steps that is uniformly bounded with respect to the parameter h.

If h denotes some measure of the mesh size, the resulting PCG
iteration exhibits mesh-independent convergence.

If, in addition, the cost of applying the preconditioner Bh is linear
in the number of DOFs, we say that the preconditioner is optimal
with respect to the mesh size h.

In general, of course, the actual performance of the preconditioner
can be affected by other factors.
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Field-of-Values analysis (cont.)

When the preconditioned system is not symmetrizable with positive
eigenvalues, for example because the preconditioner is indefinite or
non-normal, then spectral equivalence is no longer the appropriate
tool to analyze the convergence of preconditioned Krylov methods,
and PCG cannot be applied.

In this case, the notions of norm equivalence and of Field-of-Values
equivalence, proposed by G. Starke and others, often provide the
theoretical framework needed to establish optimality of a class of
preconditioners for Krylov methods like GMRES.

Note: This work builds on earlier results in the form of
convergence bounds for Krylov methods for nonsymmetric
problems due to Elman, Eiermann, and others.
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Field-of-Values analysis (cont.)

A. Klawonn and G. Starke, Block triangular preconditioners for
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Field-of-Values analysis (cont.)

Definition: Let H ∈ Rn×n be SPD. Two nonsingular matrices
M,N ∈ Rn×n are H-norm-equivalent, M∼HN, if there exist
positive constants α0 and β0 independent of n such that

α0 ≤
‖Mx‖H
‖Nx‖H

≤ β0, ∀x 6= 0.

Note that M∼HN is equivalent to∥∥MN−1
∥∥
H
≤ β0 (5a)∥∥NM−1

∥∥
H
≤ α−1

0 (5b)

We recall that the matrix H-norm ‖A‖H is the operator norm

induced by the vector H-norm ‖x‖H = 〈Hx, x〉 1
2 .

Note: Of course, here M and N should be thought of as families
of matrices, parametrized by h.
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Field-of-Values analysis (cont.)

We assume that the matrix A ∈ Rn×n satisfies the following
stability conditions:

max
w∈Rn\{0}

max
v∈Rn\{0}

wTAv

‖w‖H‖v‖H
≤ c1, (6a)

min
w∈Rn\{0}

max
v∈Rn\{0}

wTAv
‖w‖H‖v‖H

≥ c2, (6b)

where c1 and c2 are positive constants independent of n, and the
matrix H is SPD. For the discrete Stokes-Darcy problem we take

H =

[
H1 0
0 H2

]
, H1 =

[
A11 0

0 A22

]
, H2 = Mp,

where Mp denotes the mass matrix for the Stokes pressure space.
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Field-of-Values analysis (cont.)

Definition: Two nonsingular matrices M,N ∈ Rn×n are said to be
H-field-of-values-equivalent, M≈HN, if there exist positive
constants α0 and β0 independent of n such that the following
holds for all nonzero x ∈ Rn:

α0 ≤
〈
MN−1x, x

〉
H

〈x, x〉H
and

∥∥MN−1
∥∥
H
≤ β0

Remark: If M and N are SPD and H = In, this reduces to spectral
equivalence.

In brief: if we can show that a preconditioner P is H-FoV-equivalent to

A for a certain choice of H, then the H-fields of values of the matrices

{AP−1}n are bounded and bounded away from 0 uniformly in n. As a

consequence of general convergence results (work by Elman, Eiermann,

Beckermann,...) this fact implies that preconditioned GMRES converges

at a rate that is independent of n, and therefore of h. For the constraint

preconditioners, this equivalence has been established in Chidyagwai et

al. (SISC, 2016).
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Field-of-Values analysis (cont.)

We now consider the preconditioner Pr . Note that Pr is an
extension of the augmented Lagrangian preconditioner studied,
e.g., in B. and Olshanskii (SISC, 2006).

Let us write down the matrix Â in the following form:

Â =

 A11 A12 0
A21 A22 + rBTQ−1B BT

0 B 0

 =

[
Ar CT

C 0n2×n2

]
(7)

where Ar ∈ Rn1×n1 and C = [ 0 B ] ∈ Rn2×n1 .

Similarly, we write

Pr =

 A11 A12 0
0 A22 + rBTQ−1B BT

0 0 −1
rQ

 =

[
Pr CT

0n2×n1 −1
rQ

]
,

where Q ∈ Rn2×n2 is SPD and r > 0 is given; in practice, we use
Q = diag(Mp).
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Field-of-Values analysis (cont.)

Theorem: Let Â, Pr be defined as before and satisfy the usual
assumptions. In addition, assume there exists a constant γ > 0
such that for any y ∈ Rn2 \ {0}, the following inequality holds:〈

SQ−1y, y
〉
H−1

2

〈y, y〉H−1
2

≥ γ,

where S = CP−1
r CT . If r > 1 and Ar ≈H−1 Pr , then there exists

ρ0 > 0 such that Â ≈H−1 Pr for all r ≥ ρ0 provided

‖ArP
−1
r − I‖H−1

1
≤ r−1.

The conditions of our theorem are satisfied by FEM discretizations
that satisfy the inf-sup condition. Hence, under our assumptions,
Pr guarantees mesh-independent convergence rates when used
with GMRES if r is sufficiently large.

Note: in the paper we show that the restriction r > 1 can be
removed in many cases.
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Numerical experiments

Our test problem is taken from Chidyagwai et al. (SISC, 2016). It
consists of a 3D coupled flow problem in the cube Ω = Ω1 ∪ Ω2

with

Ω1 = [0, 2]× [0, 2]× [1, 2] and Ω2 = [0, 2]× [0, 2]× [0, 1].

The porous medium Ω2 contains an embedded impermeable cube
[0.75, 1.25]× [0.75, 1.25]× [0, 0.50]. The hydraulic conductivities
of the porous medium and embedded impermeable enclosure are
κ1I an κ2I, respectively, with κ1 = 1 and κ2 = 10−10.

The kinematic viscosity is ν = 1.0.

On the horizontal part of Γ1 we prescribe u1 = (0, 0,−1)T at
z = 2 and the no-slip condition on the lateral sides of Γ1.

We prescribe homogeneous Dirichlet boundary conditions on Γ2

(z = 0) and homogeneous Neumann conditions on the rest of the
boundary of the porous medium.
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Numerical experiments (cont.)

We evaluate different variants of the PconD , PconT and PT1,ρ

preconditioners in conjunction with Flexible GMRES (FGMRES)
for solving the problem A x = b, and the preconditioner Pr for the
augmented Lagrangian formulation Â x = b̂.

All of the computations were performed using MATLAB R2020b
with an Intel Core i7-10750H CPU @ 2.60GHz processor and
16.0GB RAM.

In all of the experiments, we have used right-hand sides corresponding to
random solution vectors and averaged results over 10 test runs.
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Numerical experiments (cont.)

At each iteration of FGMRES, we need to solve at least two SPD
linear systems as subtasks. These are either solved by (P)CG using
loose tolerances.

For the linear systems arising as subtasks, the inner PCG solver for
A11 (A22 and A22 + rBTQ−1B) was terminated when the relative
residual norm was below 10−1 (resp., 10−2) or when the maximum
number of 5 (resp., 25) iterations was reached.

The preconditioner PT1,ρ requires applying the inverse of Mp. We
used PCG with tolerance 10−3 or a maximum of 20 iterations.

The preconditioners for PCG are incomplete Cholesky factorizations
constructed using the MATLAB function ichol(.,opts), where
opts.type =’ict’, with drop tolerances between 10−4 and 10−2.
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Numerical experiments (cont.)

In the following tables, outer iteration counts are reported under
“Iter”.

Under “Iterpcg i
” (“Itercg i

”), we report the total number of inner
PCG (or CG) iterations performed for solving the linear systems
corresponding to block (i , i) of the corresponding preconditioner,
where i = 1, 2.

In all of the following numerical tests, the initial guess is taken to
be the zero vector and the iterations are stopped as soon as
‖Axk − b‖2 < 10−6‖b‖2 (or ‖Âxk − b̂‖2 < 10−6‖b‖2), where xk
is the obtained k-th approximate solution. In all cases tested this
criterion produced sufficiently accurate solutions.
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Numerical experiments (cont.)

For solving the linear systems corresponding to A22 + rBTQ−1B,
we tested two strategies:

Approach I: The matrix is not formed explicitly and the CG
method is used without preconditioning.

Approach II: We formed A22 + rBTQ−1B and used PCG
where the preconditioner was constructed by

ichol(., struct(‘type‘,‘ict‘,‘droptol‘,1e-3,‘diagcomp‘,0.01)).

Remark: Whereas we could successfully compute the ichol factor
using zero shift for the first two problem sizes, we found that
adding the shift 0.01 was necessary for larger sizes.
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Table 1: Results for FGMRES in conjunction with
preconditioner Pr , Approach I.

r = 2 r = 5

size FGMRES Inner iterations FGMRES Inner iterations

Iter CPU time Iterpcg1
Itercg2

Iter CPU time Iterpcg1
Itercg2

1695 22 0.0521 70 432 15 0.0404 52 337
10809 20 0.7018 79 525 15 0.5293 63 387
76653 20 7.4126 93 570 15 5.7076 71 390
576213 23 71.439 110 595 21 63.847 98 536
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Table 2: Results for FGMRES in conjunction with
preconditioner Pr , Approach II.

r = 5 r = 10

size FGMRES Inner iterations FGMRES Inner iterations

Iter CPU time Iterpcg1
Iterpcg2

Iter CPU time Iterpcg1
Iterpcg2

1695 16 0.0864 57 150 13 0.0467 43 80
10809 15 1.3697 63 121 12 0.8918 49 69
76653 13 11.966 64 95 11 8.2454 50 56
576213 14 189.43 64 103 11 155.603 49 58

Note: Now the iteration counts are lower, but the iterations are
more expensive because of the cost of forming A22 + rBTQ−1B
and computing the corresponding incomplete factorizations. For
the largest problem size, solve times are more than doubled!
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Table 3: Results for FGMRES in conjunction with
preconditioners PT ,0.6 and P̃T1,0.6.

PT1,0.6 P̃T1,0.6

size FGMRES Inner iterations FGMRES Inner iterations

Iter CPU time Iterpcg1
Iterpcg2

Iter CPU time Iterpcg1
Iterpcg2

1695 21 0.1482 69 437 31 0.2066 97 680
10809 21 2.2306 57 418 37 3.9359 127 836
76653 21 22.175 63 466 38 26.219 117 511
576213 22 214.43 101 516 37 317.45 167 753

In the P̃T1,0.6 variant, the pressure mass matrix in the (3,3) block
of the preconditioner is replaced by its diagonal.
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Table 4: Results for FGMRES in conjunction with
preconditioners PconD and PconT .

PconD PconT
size FGMRES Inner iterations FGMRES Inner iterations

Iter CPU time Iterpcg1
Iterpcg2

Iter CPU time Iterpcg1
Iterpcg2

1695 21 0.1295 77 606 18 0.1001 68 462
10809 20 1.2693 97 697 19 1.2694 89 619
76653 29 18.417 109 975 26 16.920 103 860
576213 61 319.99 167 805 72 380.37 189 974

These results show that constraint preconditioners implemented
inexactly (with IC-PCG used for the inexact inner solves) suffer a
severe degradation as h→ 0 (unlike the other preconditioners),
hence they don’t appear to be competitive.
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Experimens with ARMS

In alternative to IC-CG, we performed some experiments with
Saad’s ARMS preconditioner for the subsystems associated with
the various block preconditioners.

With this approach all block preconditioners (including the
constraint ones) appear robust, displaying mesh-independent
convergence. The iteration times with all preconditioners tested
now show good scalability; the augmented Lagrangian-based
preconditioner Pr still outperforms all others, converging in 16
iterations (about 63.6s) when r = 5 on the largest size problem,
while the block triangular preconditioner PT ,0.6 takes 20 iterations
(about 82.8s).

The construction costs for ARMS, however, appear to be
prohibitive, at least in Matlab, completely off-setting any
gains in performance.
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Conclusions and future work

We have studied several block preconditioners for FEM
discretizations of the coupled Stokes-Darcy system

Preconditioners based on the augmented Lagrangian approach
show good performance on the test problems considered

“Ideal” variants of some of the preconditioners have been
shown to be FoV-equivalent to the system matrix, but...

... solution times do not scale perfectly when inexact solves
with IC-CG are used

Using ARMS leads to a scalable iterative solver but
preconditioner construction is too expensive; a better
alternative is needed (see next talk!)

To do: coupled Navier-Stokes-Darcy system.

42 / 42


