
Computers and Mathematics with Applications 144 (2023) 290–305

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Automatic coarsening in Algebraic Multigrid utilizing quality measures for

matching-based aggregations

Pasqua D’Ambra a, Fabio Durastante c,a,∗, Salvatore Filippone b,a, Ludmil Zikatanov d

a Institute for Applied Computing “Mauro Picone” (IAC), Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Naples, 80131, NA, Italy
b Department of Civil and Computer Engineering, University of Rome “Tor Vergata”, Via Politecnico 1, Rome, 00133, RM, Italy
c Department of Mathematics, University of Pisa, Largo Bruno Pontecorvo, 5, Pisa, 56127, PI, Italy
d Department of Mathematics, The Pennsylvania State University, McAllister Building, Pollock Rd, State College, 16802, PA, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

AMG

Convergence

Graph matching

Aggregation

Compatible relaxation

In this paper, we discuss the convergence of an Algebraic MultiGrid (AMG) method for general symmetric
positive-definite matrices. The method relies on an aggregation algorithm, named coarsening based on compatible
weighted matching, which exploits the interplay between the principle of compatible relaxation and the maximum
product matching in undirected weighted graphs. The results are based on a general convergence analysis theory
applied to the class of AMG methods employing unsmoothed aggregation and identifying a quality measure
for the coarsening; similar quality measures were originally introduced and applied to other methods as tools
to obtain good quality aggregates leading to optimal convergence for M-matrices. The analysis, as well as the
coarsening procedure, is purely algebraic and, in our case, allows an a posteriori evaluation of the quality of
the aggregation procedure which we apply to analyze the impact of approximate algorithms for matching
computation and the definition of graph edge weights. We also explore the connection between the choice
of the aggregates and the compatible relaxation convergence, confirming the consistency between theories for
designing coarsening procedures in purely algebraic multigrid methods and the effectiveness of the coarsening
based on compatible weighted matching. We discuss various completely automatic algorithmic approaches to
obtain aggregates for which good convergence properties are achieved on various test cases.
1. Introduction

We assess here the convergence of a MultiGrid method (MG) for the
solution of linear systems of the form

𝐴𝐮 = 𝐟 , (1)

on the finite-dimensional linear vector space 𝑉 equipped with an inner
product (⋅, ⋅), where 𝐴 ∶ 𝑉 → 𝑉 ′ is symmetric positive definite (SPD),
𝐟 ∈ 𝑉 ′ and 𝑉 ′ is the dual of 𝑉 ; by the Riesz representation theorem
𝑉 ′ can be identified with 𝑉 . More specifically, we focus on a recently
proposed method belonging to the class of Algebraic MultiGrid Methods
(AMG) with unsmoothed aggregation (UA-AMG) or plain aggregation [1,

2]. These can be seen as particular instances of a general stationary
linear iterative method for solving (1)

𝐮𝑚 = 𝐮𝑚−1 +𝐵(𝐟 −𝐴𝐮𝑚−1), 𝑚 = 1,2,…; given 𝐮0 ∈ 𝑉 , (2)

* Corresponding author.

E-mail address: fabio.durastante@unipi.it (F. Durastante).

where 𝐵 ∶ 𝑉 ′ → 𝑉 is a linear operator which can be interpreted as an
approximate inverse of 𝐴. An AMG method, or indeed any MG, is based
on the recursive use of a two-grid scheme combining the action of a
smoother, i.e., a convergent iterative method, and a coarse-grid correc-

tion, which corresponds to the solution of the residual equations on a
coarser grid. In completely general terms, the guiding design principle
of an AMG is the optimization of the choice of coarse space for a given
smoother. The most commonly used smoothers are the splitting-based
methods, such as the Gauss–Seidel method and the (modified or scaled)
Jacobi method.

As usual in the MG context, the final objective of any analysis is
to achieve uniform convergence with respect to the problem size (op-

timal convergence). Unfortunately, this is a property that can normally
be established only for the two-level AMG (TL-AMG); it is very rarely
extended to the multilevel case when no “geometric” information on
the matrix 𝐴 is available. Our task is then to ensure the selection of
an appropriate set of aggregates, i.e., the disjoint sets of fine grid un-
https://doi.org/10.1016/j.camwa.2023.06.026

Received 21 November 2022; Received in revised form 6 June 2023; Accepted 18 Ju

Available online 14 July 2023

0898-1221/© 2023 The Authors. Published by Elsevier Ltd. This is an open access a
ne 2023

rticle under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.camwa.2023.06.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2023.06.026&domain=pdf
mailto:fabio.durastante@unipi.it
https://doi.org/10.1016/j.camwa.2023.06.026
http://creativecommons.org/licenses/by/4.0/

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305
knowns to which the coarse grid unknowns are associated, to guarantee
a fast convergence at a reasonable cost per iteration. Of the many
possible ways of achieving such a result, we narrow down our inves-

tigation to the case of UA-AMG; see [3,4] for the first works in this
direction. Within this framework, we are going to exploit the unifying
theory outlined in the review [2] to assess convergence and to inves-

tigate and characterize the quality of the coarse spaces generated by
means of the aggregation procedure introduced in [5,6]. The latter is a
technique based on the use of matching algorithms for edge-weighted
graphs [7–9] that aims to achieve a purely algebraic and automatic ap-

proach for the solution of (1), with no further assumption on the SPD
system matrix, and independently of any user defined parameter. In-

deed, this approach fits within a trend of similar algebraic techniques,
e.g., those based on path-covering algorithms [10], or on the use of
matching to generate multilevel hierarchies for graph Laplacians rela-

tive to coarse subspaces in finite elements applications [11], striving for
purely algebraic aggregation procedures that are adaptive in nature and
allow for an a posteriori analysis of the quality of the generated coarse
spaces.

We observe that, as reported in [2, Section 8.5, Section 9.5], the
general convergence theory we specialized in this paper for the aggre-

gation based on matching in weighted graphs, was originally designed
for the AGMG method in [1,12] and extended in [13,14], to obtain AMG
methods based on unsmoothed aggregation with a user-defined bound
on the convergence rate. In [13] the authors show that, for the class
of nonsingular symmetric M-matrices with nonnegative row sum, if the
aggregates can be built in such a way that a meaningful local bound
is fulfilled, the resulting multilevel methods employing an appropriate
AMLI cycle [15] shows an optimal convergence with a guaranteed con-

vergence rate. The theory is extended to nonsymmetric M-matrices for
a TL-AMG in [14]. In [2] the theory is again extended to more general
SPD matrices and formalized as an abstract framework for the setup of
coarsening methods.

We finally note that the need to define local measures to assess
the quality of a coarse space also led to the introduction of the notion
of compatible relaxation. Compatible relaxation, first defined by Brandt
in [16], as a modified relaxation scheme that keeps the coarse-level vari-

ables invariant, was originally based on the idea to use a smoother to
detect slowly converging components. This principle has been widely
applied to define a general procedure for coarsening, both for selecting
coarse variables and to adapt the prolongators in adaptive AMG (see,
e.g., [17–20]). It was a basic guideline for the formulation of our coars-

ening and of its application in a bootstrap AMG based on composition
of multiple AMG hierarchies [5,6]. In our coarsening method, since we
explicitly define the complementary space to the coarse space, we can
apply a smoother to the only-fine variables and infer the quality of the
coarse space by an estimate of the corresponding convergence rate. Our
experiments show the coherency between the aggregation quality mea-

sure based on the general theory in [2], which has the advantage to be
independent of the smoother and only depends on the way we build ag-

gregates, and the quality measure based on the compatible relaxation.

The main contributions of this paper can be summarized as follows.

• We prove that the automatic aggregation-based coarsening, relying
on maximum weight matching in graphs equipped with a suitable
choice of edge weights, fulfills all the conditions to have a bounded
convergence rate of the corresponding TL-AMG for any SPD matrix.

• We show how the resulting quality measure for the aggregation
can be used to drive the choice of different (approximate) match-

ing algorithms and of the edge weights in the adjacency graph of
the system matrix, without resorting to heuristics and a priori in-

formation on the near kernel of the matrix.

• We emphasize the connection between the choice of the aggregates
and the compatible relaxation principle for the new coarsening,
confirming the consistency between the currently available theo-

ries for general coarsening in AMG.
291
The remainder of this paper is organized as follows: to begin with,
in Section 2 we introduce a quality measure for a general UA-AMG in
terms of the unifying theory from [2]. Then, in Section 3 we reintro-

duce the UA-AMG from [5,6] and specialize the convergence theory
and the quality measure for the aggregates from the previous section
to this case. Section 4 is entirely devoted to the application of the the-

ory to some standard benchmarks; specifically, we investigate how the
various matching algorithms applied for obtaining the aggregates influ-

ence their quality. Section 5 shows the coherency between the quality
of aggregates and the convergence ratio of a convergent smoother ap-

plied to the effective smoother space, i.e., to the complementary space
to the coarse space. Section 6 summarizes conclusions.

2. Convergence theory for TL-AMG algorithms and quality
measure for aggregates

The measure of the quality of the aggregates, and thus of the coarse
space, for a given TL-AMG algorithm we are interested in depends both
on the convergence ratio achieved by the resulting method and on the
cost needed for defining and applying the multigrid hierarchy. To set
the notation, and the context in which we are performing our analysis,
let us briefly recall the components of a TL-AMG method, i.e.:

• a convergent smoother, 𝑅 ∶ 𝑉 ′ → 𝑉 ;

• a coarse space 𝑉𝑐 ; this is either a subspace of 𝑉 or more generally
a space with a smaller dimension than 𝑉 . It is always linked to 𝑉
via a prolongation operator 𝑃 ∶ 𝑉𝑐 → 𝑉 ;

• a coarse space solver, 𝐵𝑐 ∶ 𝑉 ′
𝑐
→ 𝑉𝑐 ;

and how these components are related to its convergence properties.
We follow the approach discussed in [2] that permits to analyze the
convergence properties of a multigrid algorithm in a general way. To
this end, we need to introduce the inner product

(𝐮,𝐯)
𝑅
−1 = (𝑇

−1
𝐮,𝐯)𝐴 = (𝑅

−1
𝐮,𝐯), 𝑇 =𝑅𝐴, and 𝑅 =𝑅′ +𝑅−𝑅′𝐴𝑅,

together with the accompanying norm ‖ ⋅ ‖
𝑅
−1 , where 𝑅′ is the adjoint

operator of 𝑅 and 𝑅 is called the symmetrized operator of 𝑅. We assume,
moreover, that 𝑅 is SPD, which implies that the smoother 𝑅 is always
convergent and such that

‖𝐯‖2
𝐴
≤ ‖𝐯‖2

𝑅
−1 .

The restriction of (1) to the coarse space is then expressed as

𝐴𝑐𝐮𝑐 = 𝐟𝑐
where

𝐴𝑐 = 𝑃 ′𝐴𝑃 , 𝐟𝑐 = 𝑃 ′𝐟 , with 𝑃 ′ adjoint operator of 𝑃 .

For the sake of the analysis, the coarse space solver 𝐵𝑐 is often
chosen to be the exact solver, namely 𝐵𝑐 =𝐴−1

𝑐
, however, we should dis-

tinguish between an exact TL-AMG and an inexact TL-AMG when 𝐵𝑐 is
only an approximation of 𝐴−1

𝑐
. Given 𝐠 ∈ 𝑉 ′, a TL-AMG operator 𝐵, de-

fined by the above components is described in Algorithm 1. The corre-

sponding error propagation operator 𝐸 = 𝐼 −𝐵𝐴 is 𝐸 = (𝐼 −𝑅𝐴)(𝐼 −Π𝑐),
where Π𝑐 = 𝑃𝐴−1

𝑐
𝑃 ′𝐴 is the orthogonal projection on 𝑉𝑐 .

Algorithm 1: Two-level post-smoothed MG.

Data 𝐴: matrix, 𝑅: convergent smoother, 𝑃 : prolongator, 𝐵𝑐 : coarse solver, 𝐠:
arbitrary vector in 𝑉 ′

Result B𝐠: preconditioned vector

Coarse grid correction: 𝐰 ∶= 𝑃𝐵𝑐𝑃
′𝐠

Post-smoothing: 𝐵𝐠 ∶=𝐰 +𝑅(𝐠 −𝐴𝐰)

We can now explore the connection between the TL-AMG conver-

gence rate and the selection of the coarse spaces. Let us consider the

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305
prolongation operator 𝑃 , used in representing the operator Π𝑐 ; in our
case, 𝑃 will be a piecewise constant prolongation, a very common
choice. This means that the coarse grid correction computed on the
residual equation will be transferred back to the fine grid by assigning
the same value to all fine grid variables associated with a given coarse
variable.

A common alternative to this choice is to smooth out the prolongator
𝑃 by means of a number of smoothing iterations applied to a piecewise
constant tentative prolongator; this choice gives rise to the popular class
of AMG algorithms with smoothed aggregation [21,15,2], but they are
out of the scope of the present analysis.

We assume now that there exists a sequence of spaces 𝑉1, 𝑉2, … , 𝑉𝐽 ,
which are not necessarily subspaces of the vector space 𝑉 , and that each
of them is related to the original space 𝑉 by a linear operator

Π𝑗 ∶ 𝑉𝑗 → 𝑉 . (3)

We are moreover assuming that 𝑉 can be written as a sum of subspaces
as

𝑉 =
𝐽∑
𝑗=1

Π𝑗𝑉𝑗 .

Let 𝑊 = 𝑉1 × 𝑉2 ×… × 𝑉𝐽 , with the inner product

(𝐮,𝐯) =
𝐽∑
𝑗=1

(𝐮𝑗 ,𝐯𝑗),

with 𝐮 = (𝐮1, … , 𝐮𝐽)𝑇 and 𝐯 = (𝐯1, … , 𝐯𝐽)𝑇 . Let also Π𝑊 ∶𝑊 → 𝑉 be the
operator:

Π𝑊 𝐮 =
𝐽∑
𝑗=1

Π𝑗𝐮𝑗 , ∀𝐮 ∈𝑊 . (4)

We can then write

Π𝑊 = (Π1,… ,Π𝐽) and Π′
𝑊

= (Π′
1,… ,Π′

𝐽
)𝑇 .

We assume that for each 𝑗 there is an operator 𝐴𝑗 ∶ 𝑉𝑗 → 𝑉 ′
𝑗

which
is symmetric positive semi-definite, and we define 𝐴

𝑊
∶ 𝑊 → 𝑊 ′ as

follows:

𝐴
𝑊

= diag(𝐴1,𝐴2,… ,𝐴𝐽).

We also assume that for each 𝑗 there is a SPD operator 𝐷𝑗 ∶ 𝑉𝑗 → 𝑉 ′
𝑗
,

and define 𝐷 ∶𝑊 →𝑊 ′ as follows:

𝐷 = diag(𝐷1,𝐷2,… ,𝐷𝐽).

We associate a coarse space with each 𝑉𝑗 : 𝑉 𝑐
𝑗
⊂ 𝑉𝑗 , and consider the cor-

responding orthogonal projection 𝑄𝑗 ∶ 𝑉𝑗 → 𝑉 𝑐
𝑗

with respect to (⋅, ⋅)𝐷𝑗
.

We define 𝑄 ∶𝑊 →𝑊 ′ by 𝑄 = diag(𝑄1, … , 𝑄𝐽).
Let us assume the following hold:

• For all 𝐰 ∈𝑊 :

‖Π𝑊 𝐰‖2
𝐷
≤ 𝐶𝑝,2‖𝐰‖2𝐷 (5)

for some positive constant 𝐶𝑝,2 independent of 𝐰;

• For each 𝐰 ∈ 𝑉 , there exists 𝐰 ∈𝑊 such that 𝐰 =Π𝑊 𝐰 and

‖𝐰‖2
𝐴
𝑊

≤ 𝐶𝑝,1‖𝐰‖2𝐴, (6)

for some positive constant 𝐶𝑝,1 independent of 𝐰;

• For all 𝑗

𝑁(𝐴𝑗) ⊂ 𝑉 𝑐
𝑗
, (7)

where 𝑁(𝐴𝑗) is the kernel of 𝐴𝑗 .

The above assumptions imply that if 𝐰 ∈𝑁(𝐴), then 𝐰 ∈𝑁(𝐴1) ×… ×
𝑁(𝐴𝐽). We define the global coarse space 𝑉𝑐 by
292
𝑉𝑐 =
𝐽∑
𝑗=1

Π𝑗𝑉
𝑐
𝑗
. (8)

Furthermore, for each coarse space 𝑉 𝑐
𝑗

, we define:

𝜇−1
𝑗
(𝑉 𝑐

𝑗
) = max

𝐯𝑗∈𝑉𝑗
min
𝐯𝑐
𝑗
∈𝑉 𝑐

𝑗

‖𝐯𝑗 − 𝐯𝑐
𝑗
‖2
𝐷𝑗‖𝐯𝑗‖2𝐴𝑗

. (9)

In the context of linear algebraic problems arising from finite elements
methods, these are usually named the local Poincaré constants (see, e.g.,
[22, Section 1.5]); finally we define

𝜇𝑐 = min
1≤𝑗≤𝐽

𝜇𝑗 (𝑉 𝑐
𝑗
), (10)

which is finite thanks to assumption (7).

By TL-AMG convergence theory, if 𝐷𝑗 provides a convergent
smoother, then (1 − 𝜇−1

𝑗
(𝑉 𝑐

𝑗
)) is an upper bound of the convergence

rate for TL-AMG for 𝑉𝑗 with coarse space 𝑉 𝑐
𝑗

and the following theorem
holds:

Theorem 1. If all the previous assumptions hold, then for each 𝐯 ∈ 𝑉 we
have the error estimate:

min
𝐯𝑐∈𝑉𝑐

‖𝐯− 𝐯𝑐‖2𝐷 ≤ 𝐶𝑝,1𝐶𝑝,2𝜇
−1
𝑐
‖𝐯‖2

𝐴
.

Then the TL-AMG with coarse space defined in (8) converges with a
rate:

‖𝐸‖𝐴 ≤ 1 −
𝜇𝑐

𝐶𝑝,1𝐶𝑝,2𝑐
𝐷

(11)

with 𝑐𝐷 depending on the convergent smoother, i.e.,

𝑐𝐷‖𝐯‖2𝐷 ≤ ‖𝐯‖2
𝑅
−1 ≤ 𝑐𝐷‖𝐯‖2

𝐷
. (12)

From the above result it is clear why the constant 𝜇𝑐 in (10) repre-

sents the convergence quality measure for the aggregates that we were
looking for. We will use it in Section 3, to infer the convergence of the
TL-AMG based on coarsening relying on weighted matching described
in [5,6], as well as to evaluate the quality of the aggregates. Let us
also underline that many of the convergence results for TL-AMG meth-

ods can be described by means of this set of tools; see, e.g., [2, sections
12.4 and 13.1] for the application to the classical AMG and aggregation-

based AMG.

3. Generating aggregates from matching in weighted graphs

We now adopt the theory discussed in the previous section to an-

alyze the construction of the coarse space by means of the coarsening
based on compatible weighted matching as in [5,6]. We note that, as de-

scribed in the original papers, our aggregation approach is driven by
the idea to generate aggregates automatically, with no use of heuristics
nor a priori information on the near kernel of the linear system; how-

ever, after generating non-overlapped aggregates by applying maximum
weight matching, the setup of the prolongator operator is based on a
projection of an arbitrary vector (hopefully a sample of slow-convergent
error components, see Section 3.1 for discussion) on the aggregates, in a
way similar to the well-known approaches of AMG based on smoothed
aggregation [21].

We look at the graph 𝐺 = ( , ) associated with the sparse matrix1

𝐴, also known as the adjacency graph of 𝐴. This is the graph 𝐺 whose
set of nodes  corresponds to the row/column indices  = {1, … , 𝑛} of
𝐴, and whose set of edges 𝑒𝑖↦𝑗 = (𝑖, 𝑗) ∈  is induced by the sparsity

1 For the sake of simplicity, we are using the same notation for representing
linear operators and their corresponding matrices with the only change being
the substitution of the adjoint operator with the transpose.

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305
pattern of 𝐴. To this graph we associate an edge weight matrix 𝐴̂ with
the following entries:

(𝐴̂)𝑖,𝑗 = 𝑎̂𝑖,𝑗 = 1 −
2𝑎𝑖,𝑗𝑤𝑖𝑤𝑗

𝑎𝑖,𝑖𝑤
2
𝑖
+ 𝑎𝑗,𝑗𝑤

2
𝑗

,

where 𝑎𝑖,𝑗 are the entries of 𝐴 and 𝐰 = (𝑤𝑖)𝑛𝑖=1 is a given vector. For such
a graph, a matching  is a set of pairwise non-adjacent edges, contain-

ing no loops, i.e., no two edges share a common vertex. We call  a
maximum product matching if it maximizes the product of the weights of
the edges 𝑒𝑖↦𝑗 belonging to it, i.e., if it maximizes the product of the
entries of 𝐴̂ associated to the matched indices. We stress that for sub-

optimal matching algorithms, as discussed in Section 3.2, there may be
nodes which are not endpoints of any of the matched edges: we call such
nodes unmatched. By the above procedure we are choosing as 𝑉1, … , 𝑉𝑗
the spaces defined by the aggregates {𝑗}𝐽𝑗=1 for the row/column in-

dices  denoting the matrix entries; equivalently, we are decomposing
the index set as

 =
𝐽⋃
𝑖=1

𝑗 , 𝑖 ∩𝑗 = ∅ if 𝑖 ≠ 𝑗. (13)

More generally, to further reduce the dimension of the coarse space,
we can perform subsequent pairwise matching steps, i.e., we can iter-

ate 𝓁 times the matching procedure, acting each time on the graph 𝐺′

obtained by collapsing together the matched nodes from the previous
step.

Let us consider the case in which a single step of pairwise aggrega-

tion is performed. We can identify two types of aggregates 𝑗 : those
corresponding to pairs of matched nodes, for which 𝑉𝑗 =ℝ2, and those
corresponding to the unmatched nodes, for which 𝑉𝑗 =ℝ.

The next step in the construction is the definition of the global
prolongation matrix 𝑃 by means of the operators Π𝑗 ∶ 𝑉𝑗 → 𝑉 , for
𝑗 = 1, … , 𝐽 , in (3). Let us denote by 𝑛𝑝 = || the cardinality of the
graph matching , i.e., the number of matched nodes, and by 𝑛𝑠 the
number of unmatched nodes. We identify for each edge 𝑒𝑗1↦𝑗2

∈ the
vectors

𝐰𝑒𝑗1↦𝑗2
= 1√

𝑤2
𝑗1
+𝑤2

𝑗2

[
𝑤𝑗1
𝑤𝑗2

]
, 𝐰⟂

𝑒𝑗1↦𝑗2
= 1√

𝑤2
𝑗1

𝑎2
𝑗2 ,𝑗2

+
𝑤2
𝑗2

𝑎2
𝑗1 ,𝑗1

⎡⎢⎢⎣
−

𝑤𝑗1
𝑎𝑗2 ,𝑗2
𝑤𝑗2
𝑎𝑗1 ,𝑗1

⎤⎥⎥⎦ .
(14)

To build the local prolongator Π𝑗 we introduce the family of maps
{𝜂𝑗}𝐽𝑗=1 for

𝜂𝑗 ∶ {𝑗1, 𝑗𝑛𝑗 }→ {1,2,… , 𝑛}

𝜂𝑗 (𝑗𝑝) = 𝑖 ⟺ 𝑗 = {𝑗1, 𝑗𝑛𝑗 }, and 𝑖 = 𝑗𝑝,
(15)

where we assume that in the case of an unmatched node, i.e., when 𝑛𝑗 =
1, then 𝑗 = {𝑗1}. Thus we have defined the correspondence relation
between the indices in the local numbering on the aggregates and the
numbering in the global space, that is

{𝑗1, 𝑗𝑛𝑗 } =
{
𝜂𝑗 (𝑗1), 𝜂𝑗 (𝑗𝑛𝑗)

}
. (16)

Let now {𝛿𝑖}𝑛𝑖=1 and {𝑒𝑗,𝑗𝑝}
𝑛𝑗

𝑗𝑝=1
be the basis of 𝑉 and 𝑉𝑗 respectively

𝑉 = span{𝛿𝑖}𝑛𝑖=1, 𝑉𝑗 = span{𝑒𝑗,𝑗𝑝}
𝑛𝑗

𝑝=1.

We introduce the operator Π̂𝑗 and its dual with respect to the
Euclidean/𝓁2 inner product Π̂′

𝑗
, respectively, as

∀ 𝑠 ∈ 𝑉𝑗 , 𝑠 =
𝑛𝑗∑
𝑝=1

𝑠𝑝𝑒𝑗,𝑗𝑝
, then Π̂𝑗𝑠 =

𝑛𝑗∑
𝑝=1

𝑠𝑝𝛿𝜂𝑗 (𝑗𝑝),

and
293
∀𝑤 ∈ 𝑉 , Π̂′
𝑗
𝑤 ∈ 𝑉𝑗 , Π̂′

𝑗
𝑤 =

𝑛𝑗∑
𝑝=1

𝑤𝜂𝑗 (𝑗𝑝)𝑒𝑗,𝑗𝑝 ,

that has been obtained by direct computation of its 𝓁2 inner product.
Finally, we define the Π𝑗 associated with the aggregates as

Π𝑗 = Π̂𝑗Π̂′
𝑗
, 𝑗 = 1,… , 𝐽 , Π𝑗 =Π′

𝑗
, Π𝑗Π𝑘 = 0, whenever 𝑗 ≠ 𝑘. (17)

Then 𝐴
𝑊

= diag(𝐴1, 𝐴2, … , 𝐴𝐽) = diag(Π′
1𝐴Π1, Π′

2𝐴Π2, … , Π′
𝐽
𝐴Π𝐽) is the

block-diagonal operator corresponding to the restriction of 𝐴 to the un-

knowns belonging to the j-th aggregate, and the corresponding columns
of the projection matrix are given by

𝑃 = [𝐩1,… ,𝐩𝑛𝑝] for 𝐩𝑗 =Π𝑗𝐰𝑒𝑖↦𝑗
.

Remark 1. The vectors in (14) are by construction 𝐷–orthogonal with
respect to the local matrix

𝐷𝑒𝑖↦𝑗
= diag([𝑎𝑖,𝑖, 𝑎𝑗,𝑗]), i.e., 𝐰𝑇

𝑒𝑖↦𝑗
𝐷𝑒𝑖↦𝑗

𝐰⟂
𝑒𝑖↦𝑗

= 0.

To complete the construction of the prolongation matrix, we also
need to fix an ordering for the unmatched 𝑛𝑠 = 𝑛𝑐 − 𝑛𝑝 = 𝐽 − 𝑛𝑝 nodes,
where 𝑛𝑐 = 𝐽 finally denotes the dimension of the coarse space. The lo-

cal projector Π𝑗 is again the one in (17), but we apply it to the scalars
𝑤𝑘∕|𝑤𝑘|, 𝑘 = 1, … , 𝑛𝑠, thus obtaining the remaining columns of the pro-

longation matrix

𝑊 = [𝐩𝑛𝑝+1,… ,𝐩𝑛𝑝+𝑛𝑠] = [𝐩𝑛𝑝+1,… ,𝐩𝐽] for 𝐩𝑘 =Π𝑘

𝐰𝑘|𝐰𝑘| .
In an expanded form, the resulting prolongation matrix can then be
expressed as

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐰𝑒1
0 0

0 ⋱ 0
0 0 𝐰𝑒𝑛𝑝

⎤⎥⎥⎥⎦
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

𝑛𝑝

2𝑛𝑝 0

0
𝑤1∕|𝑤1| 0 0

0 ⋱ 0
0 0 𝑤𝑛𝑠∕|𝑤𝑛𝑠

|
⎤⎥⎥⎦

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
𝑛𝑠

𝑛𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎵⏞⏞⏞⎵

𝑛𝑐=𝑛𝑝+𝑛𝑠=𝐽

𝑛
=
2𝑛

𝑝
+
𝑛
𝑠

=
[
𝑃 𝑊

]
= [𝐩1,… ,𝐩𝐽],

(18)

which also allows to express the global coarse space as the space gen-

erated by the columns of 𝑃 , i.e., 𝑉𝑐 = span{𝐩1, … , 𝐩𝐽 }. The matrix 𝑃 we
have just built represents a piecewise constant interpolation operator.

3.1. Selecting the weight vector

We can now use again the general theory for the convergence of a
multigrid algorithm to discuss what is the optimal choice for the weight
vector 𝐰, and therefore identify the optimal prolongator operator 𝑃 . To
this aim we recall the following well known result [23,2,24].

Theorem 2. Let {𝜆𝑗 , 𝚽𝑗}𝑛𝑗=1 be the eigenpairs of 𝑇 = 𝑅𝐴 with 0 < 𝜆1 ≤

𝜆2 ≤⋯ ≤ 𝜆𝑛. Let us also assume that 𝚽𝑗 are orthogonal w.r.t. (⋅, ⋅)
𝑅
−1 . The

convergence rate ‖𝐸(𝑃)‖𝐴 is minimal for 𝑃 such that

range(𝑃) = range(𝑃 𝑜𝑝𝑡), where 𝑃 𝑜𝑝𝑡 =
[
𝚽1,… ,𝚽𝑛𝑐

]
.

In this case,

‖𝐸‖2
𝐴
= 1 − 𝜆𝑛𝑐+1.

Therefore, a sensible choice would be to include in the range of
𝑃 at least the first eigenvector 𝚽1; this would be sufficient to enforce
convergence, albeit possibly with a poor convergence ratio.

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305
Proposition 3. Using the same notation of Theorem 2, if the weight vector
𝐰 used to define the prolongator matrix 𝑃 in (18) is the 𝚽1 eigenvector of
𝑇 = 𝑅𝐴 then the 𝐴–norm of the error propagation matrix ‖𝐸‖2

𝐴
is less or

equal than

‖𝐸‖2
𝐴
≤ 1 − 𝜆2.

Proof. The range of the prolongation matrix 𝑃 in (18) includes the
original vector of the weights 𝐰, i.e., there exists 𝐡 ∈ℝ𝑛𝑐 such that 𝑃𝐡 =
𝐰. The conclusion follows immediately by a straightforward application
of Theorem 2. □

Unfortunately, this is not an optimal choice from a computational
point of view; if we did possess some a priori information on the eigen-

vector, then using this information could improve the quality of the
aggregates, and thus the convergence of the method.

In the case where we do not possess information on the eigenvec-

tor(s), selecting the appropriate vector 𝐰 may not be an easy task. To
obtain a good candidate in a completely black–box manner we could ex-

ploit the smoother 𝑅 to select as a weight vector an 𝜀–smooth algebraic
vector in the sense of the following [2]:

Definition 1. Let 𝑅 ∶ 𝑉 → 𝑉 be a smoothing operator such that its sym-

metrization 𝑅 is positive definite. Given 𝜖 ∈ (0, 1), we say that the vector
𝑣 is algebraically 𝜖-smooth with respect to 𝐴 if

‖𝐯‖2
𝐴
≤ 𝜖‖𝐯‖2

𝑅
−1 .

Such a vector can be obtained by performing a few iterations of the
smoother on either a random choice or on the initial theoretical guess.

The last possible adaptive refinement that we are going to consider
is the application of a bootstrap iteration exploiting the multigrid hier-

archy itself as in [6]. A whole hierarchy 𝐵0 associated with an initial
guess 𝐰0, again either a random or user-defined guess, is built in the first
step of the bootstrap procedure. Then the hierarchy is used to refine the
choice of vectors 𝐰 by means of the iteration (2) for the homogeneous
linear system, i.e.,

Given 𝐰0 compute

⎧⎪⎪⎨⎪⎪⎩

𝐰(0) =𝐰𝑟−1, 𝑟 = 1,… , 𝑘− 1,

𝐰(𝑗) =
𝑟−1∏
𝑝=0

(𝐼 −𝐵−1
𝑝
𝐴)𝐰(𝑗−1), 𝑗 = 1,… ,𝑚,

𝐰𝑟+1 =𝐰(𝑚).

(19)

To build the multigrid hierarchies 𝐵𝑝 for the bootstrap iteration (19)

we exploit now the vectors 𝐰𝑟 available at each 𝑟th step.

We stress that, from an operational point of view, this means that
if one knows at least one 𝜀-smooth vector 𝐰 to be used as 𝐰0, then
it is possible to use it to launch the bootstrap iteration (19) and ob-

tain hierarchies 𝐵0, 𝐵1, … , 𝐵𝑟−1, each satisfying the convergence result
in Theorem 1, and generating, when accumulated all–together, an al-

gorithm with improved convergence rate. Moreover, if the bootstrap
iteration is launched with a random vector then the TL–AMG algorithm
with the bootstrap procedure can still obtain an acceptable convergence
rate (see [6,25]).

3.2. Selecting the matching algorithm

One of the main costs in the construction of the multigrid hierarchy
is represented by the computation of the maximum product match-

ing needed to identify the aggregates. It is useful to distinguish here
between two different approaches. The first approach is to compute
an exact matching, i.e., a matching that achieves exactly the optimum
value for the product. The second approach computes a matching whose
product value is not optimal, but is guaranteed to be greater or equal
to 1∕2 of the maximum; this is called a 1 -approximate maximum product
2

294
matching. Relaxing the requirement to obtain the exact optimum allows
the achievement of both a reduction of the construction time, as well as
the possibility to perform the building phase in a parallel context with a
limited amount of data exchange. For the details regarding these com-

putational complexity aspects, we refer to the discussion in [6]; here we
focus on the quality of the aggregates obtained by using the different
matching algorithms.

For the class of exact algorithms, we employ the algorithm in [9]

that is implemented in the HSL_MC64 routine [26], while for the ap-

proximate class we refer to the 12 –approximation algorithm by Preis [8],
a parallel distributed-memory version of which is employed in [27], the
auction type algorithm from [28], and the suitor algorithm in [7], which
is what we applied in a parallel Graphics Processing Unit (GPU) setting
(see [29]).

3.3. Computing the 𝜇𝑐 constant

First we focus on the task of computing exactly the 𝜇𝑐 constant in
Theorem 1. Thus we first need to prove that the Assumptions in (5), (6)

and (7) hold for the construction discussed in Section 3.

Lemma 1. Let the two–grid hierarchy be constructed with the prolongator 𝑃
in (18). Then assumptions (5), and (6) hold true with 𝐶𝑝,1 = 1, and 𝐶𝑝,2 = 1.
Moreover, if 𝐴 is SPD, assumption (7) holds since 𝑁(𝐴𝑗) = {𝟎} for every 𝑗.

Proof. To prove (5) we observe that by (4) and (17) we have that for
all 𝐯 ∈𝑊

‖Π𝑊 𝐯‖2
𝐷
=

𝐽∑
𝑗=1
‖Π𝑗𝐯‖2𝐷𝑗

=
𝐽∑
𝑗=1

‖‖‖‖‖‖
[
𝑣
𝑗1
𝑣
𝑗2

]‖‖‖‖‖‖
2

𝐷𝑗

= ‖𝐯‖2
𝐷
,⇒ 𝐶𝑝,2 = 1.

To prove (5) we use the “local-to-global” maps in (16) to have the index
correspondence between the aggregates and the global matrix. Then,
noting that Π2

𝑗
=Π𝑗 , Π𝑘Π𝑗 = 0 for 𝑘 ≠ 𝑗, and that Π𝑗 =Π′

𝑗
, for 𝑗 = 1, … , 𝐽 ,

by a direct computation, we find that

‖𝐰‖2
𝐴
𝑊

=⟨𝐴
𝑊
𝐰,𝐰⟩𝓁2 =

⟨
𝐽∑
𝑗=1

Π𝑗𝐴Π𝑗𝐰,
𝐽∑
𝑘=1

Π𝑘𝐰
⟩

𝓁2

=
𝐽∑
𝑘=1

𝐽∑
𝑗=1
⟨Π𝑘Π𝑗𝐴Π𝑗𝐰,𝐰⟩𝓁2 = 𝐽∑

𝑗=1
⟨Π𝑗𝐴Π𝑗𝐰,𝐰⟩𝓁2

=
𝐽∑
𝑗=1
⟨𝐴Π𝑗𝐰𝑗 ,Π𝑗𝐰𝑗⟩𝓁2 = ‖𝐰‖2𝐴.

The kernel of the projected matrices 𝐴𝑗 is reduced to the zero vector
since the projector has orthogonal columns, and thus the projected ma-

trices on 𝑊 are SPD. □

The above assumptions practically depend on the fact that indepen-

dently from the number of aggregation sweeps we collect together, we
are decomposing the index set  as a direct sum of non-overlapping
indices as in (13).

This means that we can compute the global constant 𝜇𝑐 in (10) a
posteriori by solving the generalized eigenvalue problem

𝐷(𝐼 −𝑄)𝐱 = 𝜇−1
𝑐
𝐴𝐱, (20)

where 𝑄 has been built from the 𝐷𝑗–orthogonal projectors 𝑄𝑗 ∶ 𝑉𝑗 →
𝑉 𝑐
𝑗

, which in our case have the following representation matrices:

𝑄𝑗 =

{
𝐰𝑗 (𝐰𝑇

𝑗
𝐷𝑗𝐰𝑗)−1𝐰𝑇

𝑗
𝐷𝑗 , 𝑗 = 1,… , 𝑛𝑝

1, 𝑗 = 𝑛𝑝 + 1,… , 𝑛𝑝 + 𝑛𝑠 = 𝐽

and in aggregate form as the 𝐷–orthogonal projector represented by:

𝑄 = 𝑃 (𝑃𝑇𝐷𝑃)−1𝑃𝑇𝐷 = diag(𝑄1,… ,𝑄𝐽). (21)

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305
3.4. Estimating the 𝜇𝑐 constant

The general theory for an aggregation-based multigrid, as formal-

ized in [2] and specialized in the previous Section 3.3 for our method,
was originally applied in [1,12] for the case of disjoint aggregates with
piecewise constant prolongators having unit coefficients; refer also to
the bibliographical notes in [2, Section 8.5]. An additional tool provided
by the discussion in [12] is the possibility of carrying out a purely lo-

cal analysis by looking only at the restriction on the aggregates of the
operators 𝐴

𝑊
, and 𝐷 under stricter hypothesis on the matrix 𝐴 of the

system and on possible aggregates.

Specifically, to adopt the general strategy introduced in [12], we
identify these operators as the restriction of the operator 𝐴 to the ag-

gregates obtained through the matching algorithm, i.e.,

𝐴
𝑊

= (𝐴1,… ,𝐴𝐽), 𝐴𝑘 =𝐴|𝑉𝑘 , 𝐷 = (𝐷1,… ,𝐷
𝐽
), 𝐷𝑘 =𝐷|𝑉𝑘 . (22)

We can then write the complete matrix 𝐴 as the sum of the block diag-

onal matrix 𝐴
𝑊

and a remainder 𝐴𝑅 containing all the parts we have
discarded. Under the stricter hypothesis on 𝐴 discussed in [12] it is
possible to find symmetric and non-negative definite 𝐴

𝑊
and 𝐴𝑅. This

allows us to apply [12, Theorem 3.4] and obtain the ‘local’ bound to
the global 𝜇𝑐 constant in Theorem 1. We simply restate the result here
in the notation from [2] and the construction from Section 3.

Theorem 4 (Restatement of [12, Theorem 3.4]). Let 𝐴
𝑊

= (𝐴1, … , 𝐴𝐽)
and 𝐷 = (𝐷1, … , 𝐷

𝐽
) satisfy the splitting condition 𝐴 =𝐴

𝑊
+𝐴𝑅, with 𝐴

𝑊

and 𝐴𝑅 both symmetric and non-negative definite, that is, every {𝐴𝑗}𝐽𝑗=1 is
non-zero symmetric non-negative definite and 𝐷 is symmetric positive defi-

nite. Let 𝐩 be one of the columns of 𝑃 in (18), i.e., 𝐩 =𝐰𝑒𝑖→𝑗
for the indices

(𝑖, 𝑗) relative to the given aggregate.

Then 𝜇𝑐 is defined as in (10), and the 𝜇−1
𝑗
(𝑉 𝑐

𝑗
) are such that

𝜆−12 (𝐷−1
𝑗
𝐴𝑗) ≤ 𝜇−1

𝑗
(𝑉 𝑐

𝑗
) ≤ 𝜆−11 (𝐷−1

𝑗
𝐴𝑗).

Moreover, if either (𝐰𝑒𝑖→𝑗
, 𝜆1(𝐷−1

𝑗
𝐴𝑗)), or (𝐰⟂

𝑒𝑖→𝑗
, 𝜆2(𝐷−1

𝑗
𝐴𝑗)) are eigencou-

ples of the matrix 𝐷−1
𝑗
𝐴𝑗 , then

𝜇−1
𝑗
(𝑉 𝑐

𝑗
) = 𝜆−12 (𝐷−1

𝑗
𝐴𝑗).

We stress that while in general it is always possible to compute the
quantity 𝜇𝑐 in (10) by solving the eigenvalue problem in (20), and thus
estimate the overall quality of the matching procedure, application of
Theorem 4 to obtain the bound by using only local information requires
the stricter hypotheses on the splitting of 𝐴.

4. Numerical experiments

To highlight the results of Theorem 4 we consider the case study of
the 2D Laplace equation with variable coefficients on the unit square
Ω = [0, 1]2, discretized with 5–point finite differences, i.e. the equation{

−∇ ⋅ (𝑎(𝑥, 𝑦)∇𝑢(𝑥, 𝑦)) = 𝑓 (𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,
𝑢(𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ 𝜕Ω,

(23)

and discretized by Lagrangian P1 elements on an unstructured triangu-

lar grid. We focus on a 2D example so that we can graphically represent
the different aggregates. We concentrate first on the computation of
the bounds discussed in Theorem 4 and on the analysis of the different
bounds obtained for the different choices of the matching algorithm in
Section 3.2 while keeping fixed the choice of the weight vector 𝐰. Then,
in the second part of the numerical examples, we devote our attention
to the analysis of the quality of the aggregates for different choices of
the weight vectors 𝐰, while considering also the different refinement
strategies discussed in Section 3.1.

The version of the BootCMatch algorithm [6] we use here for the
tests is available on the repository https://github .com /bootcmatch /
295
BootCMatch. All the plots and the eigenvalues/eigenvectors computa-

tions are then performed in Matlab v. 9.6.0.1072779 (R2019a) on the
matrices exported in Matrix Market format.

4.1. Computing the 𝜇𝑐 constants

To confirm the applicability of the theory developed in Section 3

we compute both the “true” 𝜇𝑐 constants by solving the generalized
eigenvalue problem with the 𝐷–orthogonal projector 𝑄 in (21), and the
estimate obtained by means of Theorem 4, when the splitting for the
matrices 𝐴

𝑊
is available, for three different prototypical problems ob-

tained from different choices of the diffusion coefficient in (23). For
each of these cases we consider the various matching algorithms dis-

cussed in Section 3.2 and the application of 𝓁 = 1, 2 steps of pairwise
matching, i.e., we consider aggregates made by at most two or four fine
variables. In all cases, we consider the weight vector 𝐰 = (1, 1, … , 1)𝑇 ,
which is suggested by the structure of the matrix. We stress that all
the results obtained in the following subsections can be read alongside
the numerical experiments in [6] since they complement and further
explains the convergence behavior of the method discussed there. To
present a wider array of tests, we have given other examples in the Sup-

plementary materials A.1.

4.1.1. The constant coefficient diffusion

The first case is the Laplacian with homogeneous coefficients, i.e.,
𝑎(𝑥, 𝑦) = 1, on a uniform 𝑛 × 𝑛 grid. This gives rise to the matrix

𝐴𝑛2 = 𝐼𝑛 ⊗ 𝑇𝑛 + 𝑇𝑛 ⊗ 𝐼𝑛, 𝑇𝑛 = tridiag(−1,2,−1),

scaled in such a way that its coefficients are independent from the di-

mension 𝑛2 of the problem. We first visualize the different aggregates
generated by the various matching algorithms in Fig. 1. In this case the
aggregation based on the maximum product matching HSL_MC64 pro-

duces the same aggregates that can be obtained by using the standard
C∖F–splitting. Moreover, by (18) it is straightforward to observe that 𝑃
is a scalar multiple of the one obtained by choosing 𝐰𝑒𝑖

equal to the
vector of all ones; hence, the methods produce exactly the same 𝑄 of
the classical aggregation, and therefore the same bounds obtained for it
in [12, Theorem 3.4]. The aggregates also match the quality of the ag-

gregates in [30], in which the matching strategy for the identification of
the aggregates is applied directly to 𝐴 and coupled with the prolongator
𝑃 whose nonzero entries are all 1; see the results in Table 1.

Concerning the usage of alternative matching methods, we see that
the HSL_MC64 and the SUITOR algorithms do produce the same 𝜇𝑐
constants and bounds, even if SUITOR is only guaranteed to reach a
value of the objective function one half away from the optimal one.
In general, we can observe that in the cases 𝓁 = 1 the same constants
are reached for different aggregates. This suggests that reaching the
maximum weight is not mandatory and that different configurations
can yield the same results in terms of the overall quality of the ag-

gregates. To achieve the upper bound from Theorem 4, we use the
auxiliary splitting obtained by decreasing the diagonal blocks on the
various aggregates by a correction of the form ±𝛿𝑗𝐼 where each 𝛿𝑗 is
computed heuristically to enforce the hypotheses. In these cases, for
all the matching algorithms when we employ a single sweep, we use
𝛿𝑗 = 1∕3 min(𝐴𝑗𝟏), that is 1∕3 of the minimum row sum of the projection
of 𝐴 on the aggregate. When two sweeps are employed, we use instead
𝛿𝑗 = min(𝐴𝑗𝟏) for all the matching but the Auction case in which we
employ 𝛿𝑗 = 1∕2 min(𝐴𝑗𝟏). We stress that it is difficult to prescribe a for-

mula to achieve the splitting and the local bound without looking into
the matrices obtained from the matching procedure, since in general,
this may not exist; see, e.g., the next example in which we encounter
such a case for one of the matching algorithms.

4.1.2. Diffusion with axial anisotropies

As the second test case we consider having a simple spatial
anisotropy oriented with the 𝑦–grid lines, i.e.,

https://github.com/bootcmatch/BootCMatch
https://github.com/bootcmatch/BootCMatch

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 1. Constant coefficient diffusion problem. Aggregates obtained with the weight vector 𝐰 = (1, 1, … , 1)𝑇 , and the different matching algorithms for 𝓁 = 1, 2
pairwise matching steps.

Table 1

Constant coefficient diffusion problem. Comparison of the bound in Theorem 4 with true value
of 𝜇𝑐 in (10). Aggregates obtained with the weight vector 𝐰 = (1, 1, … , 1)𝑇 , and the different
matching algorithms for 𝓁 = 1, 2 pairwise matching steps.

n 𝓁 = 1 𝓁 = 2

bound 𝜇−1
𝑐

bound 𝜇−1
𝑐

12 2.000 1.940 2.000 1.959

24 2.000 1.984 2.000 1.989

48 2.000 1.996 2.000 1.997

96 2.000 1.999 2.000 1.999

(a) HSL_MC64 – exact matching

n 𝓁 = 1 𝓁 = 2

bound 𝜇−1
𝑐

bound 𝜇−1
𝑐

12 2.000 1.923 2.062 2.046

24 2.000 1.982 2.062 2.052

48 2.000 1.996 2.062 2.052

96 2.000 1.999 2.062 2.052

(b) PREIS – 1
2
–approximate matching

n 𝓁 = 1 𝓁 = 2

bound 𝜇−1
𝑐

bound 𝜇−1
𝑐

12 2.000 1.908 2.667 2.544

24 2.000 1.980 2.894 2.964

48 2.000 1.995 2.667 2.166

96 2.000 1.999 2.667 2.173

(c) AUCTION – 1
2
–approximate matching

n 𝓁 = 1 𝓁 = 2

bound 𝜇−1
𝑐

bound 𝜇−1
𝑐

12 2.000 1.923 2.000 1.954

24 2.000 1.982 2.000 1.988

48 2.000 1.996 2.000 1.997

96 2.000 1.999 2.000 1.999

(d) SUITOR – 1
2
–approximate matching
𝐴𝑛2 = 𝜀(𝐼𝑛 ⊗ 𝑇𝑛) + 𝑇𝑛 ⊗ 𝐼𝑛, 𝑇𝑛 = tridiag(−1,2,−1), 𝜀 = 100,

in which we are again using a scaling that makes the matrix coefficients
independent of the problem size. Intuitively, in this case, we would ex-

pect the aggregates to be oriented with the anisotropy, i.e., along the
𝑦–axis. If we look at the aggregates we obtain in Fig. 2 we observe that
the matching algorithms produce aggregates corresponding to our intu-

ition, with the exception of the PREIS algorithm that for 𝓁 = 2 produces
some aggregates that do not seem feasible.

Indeed, if we look also at the constants 𝜇𝑐 , and their estimates re-

ported in Table 2 we observe that, excluding the case of the PREIS

algorithm, the 𝜇𝑐 constant behaves consistently. The failure in obtain-

ing a bound in the case of the PREIS algorithm is due to the inability of
finding a suitable splitting for the aggregates generated by this match-

ing. Indeed, the existence of such splitting is a stricter hypothesis, and
cannot be guaranteed in general. We refer back to the discussion in [12]

where the original strategy for obtaining the local bound was devised.
It is interesting to compare the value of the constant for 𝓁 = 1 step of
matching for this case with the one obtained for the case with constant
coefficients in Table 1: observe in particular that the strong directional-

ity of the diffusion makes the pairwise aggregates much more effective.
296
On the other hand, we observe also that switching to larger aggregates
leads to a worse quality of the aggregates than in the case of an isotropic
problem.

4.1.3. Diffusion on an unstructured mesh

As a final test case, we consider again the Poisson problem with a
constant diffusion coefficient but on an unstructured triangular mesh
obtained via a Delaunay-based algorithm for which we report the sub-

sequent refinements in Fig. 3.

The aggregates obtained for this test problem are depicted in Fig. 4,
whereas the constants and bounds for 𝓁 = 1 step of matching are shown
in Table 3. Again for this case we could not find an appropriate splitting
to produce the local bound of Theorem 4 when 𝓁 = 2 steps of pairwise
matching were used. If we compare the results in Table 3 with the ones
in Table 1, then we observe that the quality of the aggregates, in this
case, is analogous to the structured homogeneous case. We also observe
that, again, the AUCTION algorithm manages to obtain aggregates with
better quality than the ones obtained by all other algorithms, including
the ones obtained by the exact matching algorithm. This is in agreement
with the computational results discussed in [6].

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 2. Diffusion problem with 𝑦–axis oriented anisotropy 𝜀 = 100. Aggregates obtained with the weight vector 𝐰 = (1, 1, … , 1)𝑇 , and the different matching algorithms
for 𝓁 = 1, 2 pairwise matching steps.

Table 2

Diffusion problem with 𝑦–axis oriented anisotropy 𝜀 = 100. Comparison of the bound in The-

orem 4 with true value of 𝜇𝑐 in (10) for 𝓁 = 1, 2 pairwise aggregation steps, while using the
various matching algorithm with weight vector 𝐰 = (1, 1, … , 1)𝑇 . The † represents a case in
which we could not find the splitting needed to apply Theorem 4.

n 𝓁 = 1 𝓁 = 2

bound 𝜇−1
𝑐

bound 𝜇−1
𝑐

12 1.980 1.010 5.025 3.443

24 1.980 1.010 5.025 3.447

48 1.980 1.010 5.025 3.448

96 1.980 1.010 5.025 3.448

(a) HSL_MC64 – exact matching

n 𝓁 = 1 𝓁 = 2

bound 𝜇−1
𝑐

bound 𝜇−1
𝑐

12 1.765 1.741 † 8.580

24 1.765 1.745 † 8.725

48 1.765 1.745 † 8.730

96 1.765 1.745 † 8.730

(b) PREIS – 1
2
–approximate matching

n 𝓁 = 1 𝓁 = 2

bound 𝜇−1
𝑐

bound 𝜇−1
𝑐

12 1.980 1.010 5.025 3.443

24 1.980 1.010 5.025 3.447

48 1.980 1.010 5.025 3.448

96 1.980 1.010 5.025 3.448

(c) AUCTION – 1
2
–approximate matching

n 𝓁 = 1 𝓁 = 2

bound 𝜇−1
𝑐

bound 𝜇−1
𝑐

12 1.111 1.010 3.448 3.442

24 1.111 1.010 3.448 3.447

48 1.111 1.010 3.448 3.448

96 1.111 1.010 3.448 3.448

(d) SUITOR – 1
2
–approximate matching

Fig. 3. Unstructured meshes for the Poisson problem, four levels of refinement using a Delaunay-based algorithm.
297

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 4. Diffusion problem with constant coefficients on an unstructured grid. Aggregates obtained with the weight vector 𝐰 = (1, 1, … , 1)𝑇 , and the different matching
algorithms for 𝓁 = 1 pairwise matching steps.

Table 3

Diffusion problem with constant coefficients on an unstructured
grid. Comparison of the bound in Theorem 4 with true value
of 𝜇𝑐 in (10). Aggregates obtained with the weight vector 𝐰 =
(1, 1, … , 1)𝑇 , and the different matching algorithms for 𝓁 = 1 pair-

wise matching steps.

dofs bound 𝜇−1
𝑐

185 3.000 1.613

697 3.000 1.562

2705 3.000 1.639

10657 3.000 1.897

(a) HSL_MC64 – exact
matching

dofs bound 𝜇−1
𝑐

185 2.396 1.830

697 2.306 1.667

2705 2.258 2.157

10657 2.249 2.001

(b) PREIS – 1
2
–approximate

matching

dofs bound 𝜇−1
𝑐

185 3.000 1.583

697 3.000 1.596

2705 2.103 1.794

10657 2.106 1.759

(c) AUCTION – 1
2
– approximate

matching

dofs bound 𝜇−1
𝑐

185 2.695 1.686

697 2.484 1.645

2705 2.258 1.690

10657 2.249 1.893

(d) SUITOR – 1
2
–approximate

matching
4.2. Selecting the weight vector

We consider here the same test problems of the previous section,
in which all the aggregates were computed by using the weight vector
𝐰 = (1, 1, … , 1)𝑇 , and compare them with the possible different choices
for the weight vector discussed in Section 3.1. In every case we compare
the aggregates obtained by using as weight vector 𝐰 either:

1. a random initial guess, refined by some smoother iterations,

2. the vector 𝐰 = (1, 1, … , 1)𝑇 , refined by some smoother iterations,

3. the eigenvector associated with the smallest eigenvalue.

Information on using the bootstrap procedure is contained in the Ap-

pendix Section Supplementary materials A.2.1.

4.2.1. Random weight

We start considering the choice of an initial random weight vector 𝐰
for all the test problems in Section 3.1, and consider using as smoother
for its refinement the 𝓁1–Jacobi method [31]; each refinement step,
in this case, has a cost that is dominated by a diagonal scaling. We
test the procedure for all the matching algorithms discussed in Sec-

tion 3.2, but we visualize the attained aggregates only for SUITOR.
From what we have seen in the previous section, the SUITOR match-

ing algorithm consistently gives good results for all the problems, and
is, from a computational point of view, the best candidate when look-

ing for the parallel applicability of the AMG algorithms [6]. In Fig. 5 we
report the results obtained; as we can observe, a random initial guess
without any refinement is a very poor choice, and we need several re-

finement steps to obtain constants 𝜇𝑐 that are comparable with the ones
we have seen in Section 4.1. However, we can still go below the results
298
obtained with the theoretical guess given by the constant weight vector
𝐰 = (1, 1, … , 1)𝑇 , at the cost of performing many refinement iterations.
Note also that the aggregates for which these results are obtained would
have been difficult to guess.

We consider for this case also a Poisson problem with an axially
rotated anisotropy of angle 𝜃 and modulus 𝜀 on the same unstructured
grid from Fig. 3, that is, we consider the discretization of{

−∇ ⋅ (𝐀∇𝑢) = 𝑓, (𝑥, 𝑦) ∈ Ω,
𝑢 = 0, (𝑥, 𝑦) ∈ 𝜕Ω,

𝐀 ∈ℝ2×2. (24)

Results for this test case are given in Fig. 6.

If we compare these results with the one in Fig. 5c, we observe
that there is a moderate increase in the convergence constant for all
combinations of rotation angle and modulus. Moreover, we can observe
that over-refinement of the weight vector does not improve the overall
quality of the aggregation procedure.

4.2.2. Refined uniform weight

As we have seen from the previous set of examples, a sufficient num-

ber of refinement steps on a random weight vector 𝐰 already improves
the quality of the aggregates obtained through the matching algorithms.
Therefore, we expect to obtain a similar result when we start from a
more reasonable guess for the weight vector. We consider the same ex-

perimental setting and only change the initial guess from a random 𝐰
to the uniform vector 𝐰 = (1, 1, … , 1)𝑇 . For this case, we plot in Fig. 7

the aggregates obtained with the AUCTION algorithm, which attains the
best constants. What is interesting to notice in this case is that very few
iterations of the smoother coupled with the AUCTION algorithm gener-

ate aggregates that are better than the ones obtained by the complete

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 5. Refinement of the weight vector starting from a random guess, and using the 𝓁1–Jacobi smoother. We report a graph containing the 𝜇−1
𝑐

constant up to 80
refinement steps for a single sweep of pairwise aggregation. The depicted aggregates are the ones obtained with the SUITOR algorithm.
299

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 6. Poisson problem on an unstructured grid with rotated anisotropy of angle 𝜃, and modulus 𝜀. Refinement of the weight vector starting from a random guess,
and using the 𝓁1–Jacobi smoother. We report a graph containing the 𝜇−1

𝑐
constant up to 80 refinement steps for a single sweep of pairwise aggregation. The depicted

aggregates are the ones obtained with the SUITOR algorithm.
300

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 6. (continued)
Table 4

Constants 𝜇−1
𝑐

obtained by using as weight vector 𝐰 the eigenvector rel-

ative to the smallest eigenvalue as suggested by Proposition 3.

n Homogeneous 𝑦–axis Homogeneous unstructured

𝓁 = 1 𝓁 = 2 𝓁 = 1 𝓁 = 2 dofs 𝓁 = 1 𝓁 = 2

12 1.476 2.336 0.973 2.699 185 1.5076 2.1977

24 1.737 3.826 1.001 3.249 697 1.5184 2.7255

48 1.809 4.274 1.008 3.401 2705 1.6349 3.1663

96 1.808 4.854 1.009 3.437 10657 1.7281 4.0177

matching algorithm HSL_MC64. The cases in which directionality in the
coefficient is present end up in reproducing the expected aggregates
with very few iterations.

As for the previous case, we consider again the Poisson problem on
an unstructured mesh with rotated anisotropy from (24). Again, if we
compare the results for this case in Fig. 8 with the ones in Fig. 7c we
observe that there is a decrease in the performance of the aggregation
procedure. Nevertheless, a small number of refinement iterations brings
the quality of the aggregates near to the one of the homogeneous case.

4.2.3. The eigenvector weight

To complete our analysis we consider the aggregates generated by
using as weight vector 𝐰 the eigenvector associated with the smallest
eigenvalue as in Proposition 3. Since this is a theoretical test, we con-

sider only the application of the full matching algorithm HSL_MC64.
We report the constants 𝜇𝑐 obtained by this choice in Table 4. If we
compare them with the results in Tables 1, 2, and A.6 we observe two
different behaviors. In the case of the simpler homogeneous problem se-

lecting the eigenvector makes for worse 𝜇𝑐 constants when 𝓁 = 2 steps
of pairwise aggregations are used with respect to the case in which the
vector 𝐰 = (1, 1, … , 1)𝑇 is used in Table 1. If we look at the aggregates
obtained by this choice in Fig. 9a and compare them with the one in
Fig. 1, we see that the new aggregates are very far from the box aggre-

gates obtained in that case, this causes that for certain aggregates we
get an 𝑀–matrix 𝐴𝑘

𝐴𝑘 =

⎡⎢⎢⎢⎢⎣
4 −1

4 −1 −1
−1 −1 4

−1 4

⎤⎥⎥⎥⎥⎦
, 𝐷𝑘 =

⎡⎢⎢⎢⎢⎣
4

4
4

4

⎤⎥⎥⎥⎥⎦
,

whose scaled version 𝐷−1
𝑘
𝐴𝑘 is not a matrix with constant row sum.

Therefore the associated 𝐰𝑒𝑘
is not an eigenvector, i.e., we get a 𝜇𝑘 con-

stant that is intermediate between 𝜆1 and 𝜆2, as discussed in Theorem 4.
On the other hand, the constant vector choice always provides an irre-

ducible and diagonally dominant 𝑀–matrix 𝐷−1𝐴𝑘, hence the vector

𝑘

301
𝐰𝑒𝑘
= (1, 1, 1, 1)𝑇 is the unique eigenvector associated with the smallest

eigenvalue, thus we obtain a better constant. Focusing now on the other
cases in Table 4, whose aggregates are also depicted in Fig. 9, we ob-

tain nearly the same results with the exception of the piecewise regular
coefficients in which we are able to improve the attained constants –
observe also that they are near the one obtained with the SUITOR al-

gorithm and the 𝐰 = (1, … , 1)𝑇 vector, even if the aggregates are very
different.

What we can conclude from testing the usage of the eigenvector
associated with the smallest eigenvalue is that, although guarantee-

ing the convergence due to Proposition 3, it can generate sub-optimal
aggregates. On the other hand, either selecting a vector knowing the
structure of the matrices {𝐴𝑘}𝑘, as in the constant coefficient case with
the 𝐰 = (1, 1, … , 1)𝑇 vector or refining a choice by means of the smooth-

ing procedure, can yield better results as we have seen.

5. Quality of the aggregates and the compatible relaxation
principle

As already mentioned in Section 1, the need to measure the quality
of a coarse space and to set up a general procedure for coarsening of
the widest range of linear systems led to the nice principle of compati-

ble relaxation. After its introduction in [16], it has been widely analyzed
and related to the general theories for AMG convergence in many pa-

pers, starting from [18]. This principle has been applied as a guideline
to define the coarsening method described in this paper, as emphasized
in the original papers [5,6]. In the following, we show that the results
obtained by the quality measure discussed in this paper are in good
agreement with a quality measure based on the convergence rate of a
compatible relaxation, showing the coherence of the convergence theo-

ries. Main advantage in using the constant 𝜇𝑐 in (11) is that it does not
depend on a selected smoother and often gives more accurate informa-

tion on the quality of the coarse space, as also shown in some of our
experiments. Furthermore, we observe that the setup of a compatible
relaxation scheme requires to build in an explicit way the complemen-

tary space to the coarse space, as explained in the following.

To introduce the measure based on compatible relaxation, we need
to define the following 2 × 2–block factorization[
𝑃𝑇
𝑓

𝑃 𝑇

]
𝐴
[
𝑃𝑓 𝑃

]
=
[
𝐴𝑓𝑓 𝐴𝑓𝑐

𝐴𝑐𝑓 𝐴𝑐𝑐

]
, for 𝑃𝑇𝐷𝑃𝑓 = 0, (25)

where range(𝑃𝑓) is the space in which the smoother should be effective;
this can be used to obtain a decomposition of the whole ℝ𝑛 since for all
𝐞 ∈ℝ𝑛 we have 𝐞 = 𝑃𝑓 𝐞𝑓 +𝑃 𝐞𝑐 . Exploiting the observation in Remark 1,
we can express the matrix 𝑃𝑓 through the block factorization (25) in a
straightforward way as

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 7. Refinement of the weight vector starting from the all one guess, and using the 𝓁1–Jacobi smoother. We report a graph containing the 𝜇−1
𝑐

constant up to 80
refinement steps for a single sweep of pairwise aggregation. The depicted aggregates are the ones obtained with the AUCTION algorithm.
302

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 8. Poisson problem on an unstructured grid with rotated anisotropy of angle 𝜃, and modulus 𝜀. Refinement of the weight vector starting from all one guess, and
using the 𝓁1–Jacobi smoother. We report a graph containing the 𝜇−1

𝑐
constant up to 80 refinement steps for a single sweep of pairwise aggregation. The depicted

aggregates are the ones obtained with the AUCTION algorithm.
303

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305

Fig. 8. (continued)

Fig. 9. Aggregates obtained by using as weight vector 𝐰 the eigenvector associated with the smallest eigenvalue as suggested by Proposition 3.
𝑃𝑓 =
[
𝑃𝑓
0

]
∈ℝ𝑛×𝑛𝑝 , where 𝑃𝑓 = [𝐩𝑓1 ,… ,𝐩𝑓

𝑛𝑝
] for 𝐩𝑓

𝑗
=Π𝑗𝐰⟂

𝑒𝑖↦𝑗
.

By this construction, each relaxation scheme that is well defined for the
block 𝐴𝑓𝑓 is then a compatible relaxation, i.e., a scheme that keeps the
values of the coarse variables intact, and therefore makes the smoothing
and coarse correction operators work each on the appropriate sub-

spaces.

To validate numerically this claim we then look at the convergence
radius 𝜌(⋅) of the iterative method induced by the restriction of the
𝓁1–Jacobi global smoother on the matrix 𝐴𝑓𝑓 in (25), i.e., we look at

𝜌𝑓 = 𝜌(𝐼 −𝑀−1
𝑓𝑓
𝐴𝑓𝑓) < 1, 𝑀𝑓𝑓 = 𝑃𝑇

𝑓
𝑀𝑃𝑓 , 𝐴𝑓𝑓 = 𝑃𝑇

𝑓
𝐴𝑃𝑓 , (26)

where 𝑀 is the iteration matrix of the 𝓁1–Jacobi global smoother for
𝐴. In Table 5 we report the value of 𝜌𝑓 for each combination of test
problem and matching algorithm, while setting the weight vector 𝐰 =
(1, 1, … , 1)𝑇 , and the number of matching steps to 𝓁 = 1.

If we compare the constants obtained here with the ones in the
columns for 𝓁 = 1 in the Tables 1, 2 and 3, we observe that the value of
the 𝜌𝑓 constants behaves consistently with quality measure 𝜇𝑐 within
the same experiment, while it is harder to use it to compare among the
aggregates for different test cases. This is specifically true for the case
of the unstructured mesh, where, even if the quality of the aggregates
seem to be degraded with respect to the corresponding finite difference
case, the convergence ratio of the compatible relaxation is only mildly
affected.

6. Conclusions

This paper has presented some theoretical results which complement
the available computational evidence on the convergence properties of
304
the coarsening based on compatible weighted matching. This is a purely al-

gebraic and automatic procedure, exploiting unsmoothed aggregation
for coarsening of general SPD matrices in AMG, introduced in [5,6].
We have shown that the necessary conditions for convergence of AMG,
as stated in [2], are satisfied. Furthermore, we used the theory to have
a quality measure of aggregates which we used as a posteriori guideline
to analyze the effectiveness of different edge weights and maximum
weight matching algorithms exploited in the coarsening procedure. We
have applied the theory to different test cases arising from scalar ellip-

tic PDEs, and we have shown that the good quality of the coarsening
procedure is preserved in the case of using sub-optimal algorithms for
computing maximum weight matching and that it appears also insensi-

tive to anisotropy and discontinuities in the coefficients of the consid-

ered test cases. A possible generalization of our results to the case of
smoothed aggregation, i.e., when prolongator operators are defined by
𝑃 = (𝐼 −𝜔𝐷−1𝐴)𝑃 for some suitable 𝜔, can be obtained by using results
in [2, Lemma 9.3]. Likely, our final TL-AMG algorithm will have better
convergence rate, as also demonstrated by experimental results in [27].

Funding

The research leading to these results received funding from Horizon
2020 Project “Energy oriented Centre of Excellence: toward exascale
for energy” (EoCoE–II), Project ID: 824158. The first three authors are
members of the INdAM–GNCS research group.

Data availability

The datasets generated during and/or analyzed during the cur-

rent study are available in the GitHub repository, https://github .com /
bootcmatch /BootCMatch.

https://github.com/bootcmatch/BootCMatch
https://github.com/bootcmatch/BootCMatch

P. D’Ambra, F. Durastante, S. Filippone et al. Computers and Mathematics with Applications 144 (2023) 290–305
Table 5

Convergence ratio 𝜌𝑓 of the compatible relaxation
scheme (26) for all the test problems. The coarse space is
built from a single step of all the matching algorithms from
Section 3.2 with weight vector choice 𝐰 = (1, 1, … , 1)𝑇 , and
no refinement iterations.

𝑛 HSL_MC64 PREIS AUCTION SUITOR

12 0.766 0.794 0.755 0.794

24 0.816 0.824 0.805 0.824

48 0.826 0.831 0.829 0.832

96 0.832 0.833 0.832 0.833

(a) Constant coefficient diffusion problem

𝑛 HSL_MC64 PREIS AUCTION SUITOR

12 0.969 0.963 0.978 0.963

24 0.986 0.986 0.989 0.986

48 0.993 0.777 0.994 0.871

96 0.996 0.994 0.996 0.994

(b) Diffusion problem with 𝑦–axis oriented anisotropy
𝜀 = 100

dofs HSL_MC64 PREIS AUCTION SUITOR

185 0.803 0.802 0.796 0.799

697 0.831 0.846 0.811 0.843

2705 0.851 0.863 0.862 0.854

10657 0.882 0.917 0.873 0.869

(c) Rotated anisotropy 𝜃 = 𝜋∕6 and 𝜀 = 100 on an
unstructured grid

dofs HSL_MC64 PREIS AUCTION SUITOR

185 0.723 0.756 0.729 0.725

697 0.735 0.750 0.754 0.743

2705 0.746 0.788 0.770 0.768

10657 0.785 0.794 0.775 0.800

(d) Constant coefficient problem on an unstructured grid

Acknowledgements

We thank the anonymous reviewers for their helpful comments
which allowed us to improve the presentation of the material.

Appendix A. Supplementary material

Supplementary material related to this article can be found online
at https://doi .org /10 .1016 /j .camwa .2023 .06 .026.

References

[1] Y. Notay, An aggregation-based algebraic multigrid method, Electron. Trans. Numer.
Anal. 37 (2010) 123–146.

[2] J. Xu, L.T. Zikatanov, Algebraic multigrid methods, Acta Numer. 26 (2017)
591–721, https://doi .org /10 .1017 /S0962492917000083.

[3] I. Marek, Aggregation Methods of Computing Stationary Distributions of Markov
Processes, Birkhäuser, Basel, Basel, 1991, pp. 155–169.

[4] R. Blaheta, A multilevel method with correction by aggregation for solving discrete
elliptic problems, Apl. Mat. 31 (5) (1986) 365–378.

[5] P. D’Ambra, P.S. Vassilevski, Adaptive AMG with coarsening based on compati-

ble weighted matching, Comput. Vis. Sci. 16 (2) (2013) 59–76, https://doi .org /10 .
1007 /s00791 -014 -0224 -9.

[6] P. D’Ambra, S. Filippone, P.S. Vassilevski, BootCMatch: a software package for boot-

strap AMG based on graph weighted matching, ACM Trans. Math. Softw. 44 (4)
(2018) 39, https://doi .org /10 .1145 /3190647.

[7] F. Manne, M. Halappanavar, New effective multithreaded matching algorithms, in:
2014 IEEE 28th International Parallel and Distributed Processing Symposium, 2014,
pp. 519–528.

[8] R. Preis, Linear time 1
2
-approximation algorithm for maximum weighted matching

in general graphs, in: STACS 99 (Trier), in: Lecture Notes in Comput. Sci., vol. 1563,
Springer, Berlin, 1999, pp. 259–269.

[9] I.S. Duff, J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Matrix Anal. Appl. 22 (4) (2001) 973–996, https://doi .org /
10 .1137 /S0895479899358443.

[10] X. Hu, J. Lin, L.T. Zikatanov, An adaptive multigrid method based on path
cover, SIAM J. Sci. Comput. 41 (5) (2019) S220–S241, https://doi .org /10 .1137 /
18M1194493.

[11] W. Xu, L.T. Zikatanov, Adaptive aggregation on graphs, J. Comput. Appl. Math. 340
(2018) 718–730, https://doi .org /10 .1016 /j .cam .2017 .10 .032.

[12] A. Napov, Y. Notay, Algebraic analysis of aggregation-based multigrid, Numer. Lin-

ear Algebra Appl. 18 (3) (2011) 539–564, https://doi .org /10 .1002 /nla .741.

[13] A. Napov, Y. Notay, An algebraic multigrid method with guaranteed convergence
rate, SIAM J. Sci. Comput. 34 (2) (2012) A1079–A1109, https://doi .org /10 .1137 /
100818509.

[14] Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equa-

tions, SIAM J. Sci. Comput. 34 (4) (2012) A2288–A2316, https://doi .org /10 .1137 /
110835347.

[15] P.S. Vassilevski, Multilevel block factorization preconditioners, in: Matrix-Based
Analysis and Algorithms for Solving Finite Element Equations, 1st edition, Springer
Science & Business Media, NY, New York, 2008.

[16] A. Brandt, General highly accurate algebraic coarsening, in: Multilevel Methods,
Copper Mountain, CO, 1999, Electron. Trans. Numer. Anal. 10 (2000) 1–20.

[17] O.E. Livne, Coarsening by compatible relaxation, Numer. Linear Algebra Appl.
11 (2–3) (2004) 205–227, https://doi .org /10 .1002 /nla .378.

[18] R.D. Falgout, P.S. Vassilevski, On generalizing the algebraic multigrid frame-

work, SIAM J. Numer. Anal. 42 (4) (2004) 1669–1693, https://doi .org /10 .1137 /
S0036142903429742.

[19] J.J. Brannick, R.D. Falgout, Compatible relaxation and coarsening in algebraic
multigrid, SIAM J. Sci. Comput. 32 (3) (2010) 1393–1416, https://doi .org /10 .1137 /
090772216.

[20] A. Brandt, J. Brannick, K. Kahl, I. Livshits, A.M.G. Bootstrap, SIAM J. Sci. Comput.
33 (2) (2011) 612–632, https://doi .org /10 .1137 /090752973.

[21] P. Vaněk, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems, in: International GAMM-Workshop on
Multi-Level Methods, Meisdorf, 1994, Computing 56 (3) (1996) 179–196, https://

doi .org /10 .1007 /BF02238511.

[22] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative Solvers:
with Applications in Incompressible Fluid Dynamics, 2nd edition, Numerical Math-

ematics and Scientific Computation, Oxford University Press, Oxford, 2014.

[23] R.D. Falgout, P.S. Vassilevski, L.T. Zikatanov, On two-grid convergence estimate,
Numer. Linear Algebra Appl. 12 (2005) 471–494, https://doi .org /10 .1002 /nla .437.

[24] J. Brannick, F. Cao, K. Kahl, R.D. Falgout, X. Hu, Optimal interpolation and compat-

ible relaxation in classical algebraic multigrid, SIAM J. Sci. Comput. 40 (3) (2018)
A1473–A1493, https://doi .org /10 .1137 /17M1123456.

[25] P. D’Ambra, P.S. Vassilevski, Improving solve time of aggregation-based adaptive
AMG, Numer. Linear Algebra Appl. 26 (E2269) (2019) 1–14, https://doi .org /10 .
1002 /nla .2269.

[26] HSL, A collection of Fortran codes for large–scale scientific computation, http://

www .hsl .rl .ac .uk/.

[27] P. D’Ambra, F. Durastante, S. Filippone, AMG preconditioners for linear solvers
towards extreme scale, SIAM J. Sci. Comput. 43 (5) (2021) S679–S703, https://

doi .org /10 .1137 /20M134914X.

[28] D.P. Bertsekas, Auction algorithms for network flow problems: a tutorial in-

troduction, Comput. Optim. Appl. 1 (1) (1992) 7–66, https://doi .org /10 .1007 /
BF00247653.

[29] M. Bernaschi, P. D’Ambra, D. Pasquini, AMG based on compatible weighted match-

ing on GPUs, Parallel Comput. 29 (2020), https://doi .org /10 .1016 /j .parco .2019 .
102599.

[30] H.H. Kim, J. Xu, L.T. Zikatanov, A multigrid method based on graph match-

ing for convection-diffusion equations, Numer. Linear Algebra Appl. 10 (1–2)
(2003) 181–195, https://doi .org /10 .1002 /nla .317, dedicated to the 60th birthday
of Raytcho Lazarov.

[31] A.H. Baker, R.D. Falgout, T.V. Kolev, U.M. Yang, Multigrid smoothers for ul-

traparallel computing, SIAM J. Sci. Comput. 33 (5) (2011) 2864–2887, https://

doi .org /10 .1137 /100798806.
305

https://doi.org/10.1016/j.camwa.2023.06.026
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib4E95920EEFBEBA7DD0CE58DDA5DD0A1As1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib4E95920EEFBEBA7DD0CE58DDA5DD0A1As1
https://doi.org/10.1017/S0962492917000083
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib2F0EB2B6BDD258D20F3A3EF52605A47Cs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib2F0EB2B6BDD258D20F3A3EF52605A47Cs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibCBD61FD31AFE9E34D9ED73C650085AE4s1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibCBD61FD31AFE9E34D9ED73C650085AE4s1
https://doi.org/10.1007/s00791-014-0224-9
https://doi.org/10.1007/s00791-014-0224-9
https://doi.org/10.1145/3190647
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibFA3813DF8A54E13AE44E3142BAB3101Bs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibFA3813DF8A54E13AE44E3142BAB3101Bs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibFA3813DF8A54E13AE44E3142BAB3101Bs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibB6A9921A18F214CD49C11B47502162FEs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibB6A9921A18F214CD49C11B47502162FEs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibB6A9921A18F214CD49C11B47502162FEs1
https://doi.org/10.1137/S0895479899358443
https://doi.org/10.1137/S0895479899358443
https://doi.org/10.1137/18M1194493
https://doi.org/10.1137/18M1194493
https://doi.org/10.1016/j.cam.2017.10.032
https://doi.org/10.1002/nla.741
https://doi.org/10.1137/100818509
https://doi.org/10.1137/100818509
https://doi.org/10.1137/110835347
https://doi.org/10.1137/110835347
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibEF95F653D3F6C4AEA52DFD58FB6C84ABs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibEF95F653D3F6C4AEA52DFD58FB6C84ABs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bibEF95F653D3F6C4AEA52DFD58FB6C84ABs1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib9FA25F469A3DF222AD5B42BD1F212902s1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib9FA25F469A3DF222AD5B42BD1F212902s1
https://doi.org/10.1002/nla.378
https://doi.org/10.1137/S0036142903429742
https://doi.org/10.1137/S0036142903429742
https://doi.org/10.1137/090772216
https://doi.org/10.1137/090772216
https://doi.org/10.1137/090752973
https://doi.org/10.1007/BF02238511
https://doi.org/10.1007/BF02238511
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib7D1B64567D1E5F4D4759672E9D3A97A6s1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib7D1B64567D1E5F4D4759672E9D3A97A6s1
http://refhub.elsevier.com/S0898-1221(23)00278-X/bib7D1B64567D1E5F4D4759672E9D3A97A6s1
https://doi.org/10.1002/nla.437
https://doi.org/10.1137/17M1123456
https://doi.org/10.1002/nla.2269
https://doi.org/10.1002/nla.2269
http://www.hsl.rl.ac.uk/
http://www.hsl.rl.ac.uk/
https://doi.org/10.1137/20M134914X
https://doi.org/10.1137/20M134914X
https://doi.org/10.1007/BF00247653
https://doi.org/10.1007/BF00247653
https://doi.org/10.1016/j.parco.2019.102599
https://doi.org/10.1016/j.parco.2019.102599
https://doi.org/10.1002/nla.317
https://doi.org/10.1137/100798806
https://doi.org/10.1137/100798806

	Automatic coarsening in Algebraic Multigrid utilizing quality measures for matching-based aggregations
	1 Introduction
	2 Convergence theory for TL-AMG algorithms and quality measure for aggregates
	3 Generating aggregates from matching in weighted graphs
	3.1 Selecting the weight vector
	3.2 Selecting the matching algorithm
	3.3 Computing the muc constant
	3.4 Estimating the muc constant

	4 Numerical experiments
	4.1 Computing the muc constants
	4.1.1 The constant coefficient diffusion
	4.1.2 Diffusion with axial anisotropies
	4.1.3 Diffusion on an unstructured mesh

	4.2 Selecting the weight vector
	4.2.1 Random weight
	4.2.2 Refined uniform weight
	4.2.3 The eigenvector weight

	5 Quality of the aggregates and the compatible relaxation principle
	6 Conclusions
	Funding
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

