
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-05989-y

1 3

Alya toward exascale: algorithmic scalability using
PSCToolkit

Herbert Owen1 · Oriol Lehmkuhl1 · Pasqua D’Ambra2 · Fabio Durastante2,3 ·
Salvatore Filippone2,4

Accepted: 9 February 2024
© The Author(s) 2024

Abstract
In this paper, we describe an upgrade of the Alya code with up-to-date parallel linear
solvers capable of achieving reliability, efficiency and scalability in the computation
of the pressure field at each time step of the numerical procedure for solving a Large
Eddy Simulation formulation of the incompressible Navier–Stokes equations. We
developed a software module in the Alya’s kernel to interface the libraries included
in the current version of PSCToolkit, a framework for the iterative solution of
sparse linear systems, on parallel distributed-memory computers, by Krylov meth-
ods coupled to Algebraic MultiGrid preconditioners. The Toolkit has undergone
various extensions within the EoCoE-II project with the primary goal of facing the
exascale challenge. Results on a realistic benchmark for airflow simulations in wind
farm applications show that the PSCToolkit solvers significantly outperform the
original versions of the Conjugate Gradient method available in the Alya’s kernel in
terms of scalability and parallel efficiency and represent a very promising software
layer to move the Alya code toward exascale.

Keywords Navier–Stokes equations · Iterative linear solvers · Algebraic MultiGrid ·
Parallel scalability

Mathematics Subject Classification 65F08 · 65F10 · 65M55 · 65Y05 · 65Z05

1 Introduction

Alya is a high-performance computational mechanics code for complex cou-
pled multi-physics engineering problems. In this work, we present the interfacing
between Alya and the PSCToolkit to overcome one of Alya’s main obstacles in
the path toward exascale, namely the lack of state-of-the-art parallel algebraic linear
solvers with adequate algorithmic scalability, as already identified in [29], where

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05989-y&domain=pdf

 H. Owen et al.

1 3

Alya’s strengths and weaknesses in facing the exascale challenge have been ana-
lyzed by scalability studies up to one hundred thousand cores.

Although Alya can be applied to a wide range of problems, in this work, we shall
concentrate on solving turbulent incompressible flow problems using a Large Eddy
Simulation (LES) approach. Due to the wide range of scales present in turbulent
high-Reynolds-number flows, their accurate solution requires computational meshes
with a huge number of degrees of freedom (dofs). Alya uses a Finite Element (FE)
spatial discretization, while its time discretization is based on finite difference meth-
ods; when an implicit time discretization is applied, the two main kernels of a simu-
lation are the assembly of stiffness matrices and the solution of the associated lin-
ear system at each time step. In [29], the authors observed that the FE assembly
implemented in Alya showed nearly perfect scalability, as one could a priory expect,
while the solution of linear systems by available iterative linear solvers was the main
weakness in the path toward exascale. The problem is related to Alya’s lack of solv-
ers with optimal algorithmic scalability, i.e., solvers able to obtain a given accuracy
employing an almost constant number of iterations for an increasing number of dofs.

Alya’s sparse linear algebra solvers are specifically developed with tight integra-
tion with the overall parallelization scheme; they include Krylov-based solvers, such
as Generalized Minimal Residual (GMRES) or Conjugate Gradient (CG), coupled
to some deflation approach or a simple diagonal preconditioner. As shown in [29],
when incompressible flow problems are considered, the solution of a Poisson-type
equation for the pressure field becomes challenging as the size of the problem
increases. Indeed, when a uniform mesh multiplication [19] is used to have succes-
sively finer mesh, each time the mesh is refined to obtain elements with half the size,
the number of iterations for solving the pressure equation is approximately doubled,
showing a mesh-size-dependent behavior. To overcome these scalability issues, we
interfaced PSCToolkit to Alya to take advantage of the Algebraic MultiGrid
(AMG) preconditioners available through the AMG4PSBLAS library; this effort has
been carried out in the context of the European Center of Excellence for Energy
(EoCoE) applications.

The rest of the paper is organized as follows. In Sect. 2, we describe the gen-
eral framework of Alya and the type of fluid dynamics problem we wish to test the
new solvers on; in Sect. 3, we give an overall description of PSCToolkit, and
then we focus on the AMG preconditioners employed in Sect. 3.1. Section 4 dis-
cusses the new module written to interface the solver library to the Alya software
and the related issues. Section 5 describes the actual test case, while Sect. 6 analyzes
the numerical scalability results in detail. Finally, Sect. 7 summarizes the results
obtained and illustrates the new lines of development.

2 Alya description

Alya is a high-performance computational mechanics code for complex coupled
multi-physics engineering problems. It can solve problems in the simulation of tur-
bulent incompressible/compressible flows, nonlinear solid mechanics, chemistry,
particle transport, heat transfer, and electrical propagation. Alya has been designed

1 3

Alya toward exascale: algorithmic scalability using…

for massively parallel supercomputers and exploits several parallel programming
models/tools. It relies on MPI to support a distributed-memory model; some kernels
support vectorization at the CPU level and GPU accelerators are exploited through
OpenACC pragmas or CUDA.

Multi-physics coupling is achieved following a multi-code strategy that uses MPI
to communicate different instances of Alya. Each instance solves a particular phys-
ics, enabling asynchronous execution. Coupled problems can be solved by retaining
the scalability properties of the individual instances. Alya is one of the two Compu-
tational Fluid Dynamic (CFD) codes of the Unified European Applications Bench-
mark Suite (UEBAS) [25]. It is also part of the Partnership for Advanced Comput-
ing in Europe (PRACE) Accelerator benchmark suite [26].

As mentioned in Sect. 1, large-scale CFD applications are the main problems tar-
geted by Alya; hence, the basic mathematical models include various formulations
of the Navier–Stokes equations, whose strong form for incompressible flows in a
suitable domain is the following:

where u and p are the velocity and pressure field respectively, �(u) = 1

2

(
∇u + ∇Tu

)

is the velocity strain rate tensor, � is the kinematic viscosity, and f denotes the vec-
tor of external body forces. The problem is supplied with an initial divergence-free
velocity field and appropriate boundary conditions.

The flow is turbulent for most real-world flow problems, and some turbulence
modeling is needed to make the problem solvable with currently available com-
putational resources. For all the examples presented in this work, we rely on the
functionalities of Alya, which apply the spatially filtered Navier–Stokes equations
coupled to the Vreman subgrid-scale model [30] for turbulence closure. In practice,
a spatially varying turbulent viscosity supplements the laminar viscosity and the
velocity and pressure unknowns correspond to spatially filtered values. Finally, since
the size of the dynamically important eddies at high Reynolds numbers becomes
too small to be grid resolved close to the wall, we employ a wall modeling tech-
nique [24] to impose the boundary conditions for the LES equations. For simplicity,
the nonlinear term has been written in its convective form, which is most commonly
encountered in computational practice.

Space discretization is based on a Galerkin FE approximation, employing
hybrid unstructured meshes, which can include tetrahedra, prisms, hexahedra,
and pyramids. Temporal discretization is performed through an explicit third-
order Runge–Kutta scheme, where the Courant–Friedrichs–Lewy number is set to
CFL = 1.0 for the cases presented in this work. A non-incremental fractional step
method is used to stabilize the pressure, allowing the use of finite element pairs that
do not satisfy the inf-sup condition [12], such as the equal order interpolation for
the velocity and pressure applied in this work. A detailed description of the above
numerical method, together with examples for turbulent flows, showing its high
accuracy and low dissipation, can be found in [22].

(1)�tu − 2�∇ ⋅ �(u) + u ⋅ ∇u + ∇p = f,

(2)∇ ⋅ u = 0,

 H. Owen et al.

1 3

The fractional step method allows uncoupling the solution of velocity and pres-
sure [12]. At each Runge–Kutta substep, an explicit approach computes an inter-
mediate velocity, and then a linear system coming from a Poisson-type equation
is solved for the pressure; finally, the incompressible velocity is recovered. In the
path toward exascale, the solution of the linear system for the pressure is the most
demanding step. To reduce the computational burden, for most problems, an approx-
imate projection method for Runge–Kutta time-stepping schemes is applied, which
allows solving for the pressure only at the final substep [10].

It is important to note that most flow problems solved with Alya use a fixed mesh.
For such problems, the linear system matrix for the pressure equation remains con-
stant during the whole simulation. Therefore, the matrix assembly and the setup of a
matrix preconditioner are needed only once at the beginning of the numerical proce-
dure. Given that the number of time steps for LES is usually of the order of 105 , it is
clear that the linear solver computational times and scalability are the most relevant
issues to be tackled.

3 PSCToolkit: PSBLAS and AMG4PSBLAS

We have interfaced Alya to exploit the solvers and preconditioners developed in
the PSCToolkit1 software framework for parallel sparse computations, proven
on current petascale supercomputers and targeting the next-generation exascale
machines. PSCToolkit is composed of two main libraries, named PSBLAS (Par-
allel Sparse Basic Linear Algebra Subprograms) [17, 18], and AMG4PSBLAS (Alge-
braic MultiGrid Preconditioners for PSBLAS) [16].

Both libraries are written in modern Fortran; PSBLAS implements algorithms
and functionalities of parallel iterative Krylov subspace linear solvers, while
AMG4PSBLAS is the package containing sophisticated preconditioners. In particu-
lar, AMG4PSBLAS provides one-level Additive Schwarz (AS) and Algebraic Multi-
Grid (AMG) preconditioners. In the following, we will describe in some detail the
AMG preconditioners we use within the Alya test cases.

3.1 AMG preconditioners

Algebraic MultiGrid methods can be viewed as a particular instance of a general
stationary iterative method:

for the solution of a linear system

x
(k) = x

(k−1) + B
(
b − Ax(k−1)

)
, k = 1, 2,… given x

(0) ∈ ℝ
n,

Ax = b, A ∈ ℝ
n×n, b ∈ ℝ

n,

1 See pscto olkit. github. io on how to obtain and run the code.

https://psctoolkit.github.io/

1 3

Alya toward exascale: algorithmic scalability using…

where A is symmetric and positive-definite (SPD), and the iteration matrix B is
defined recursively; see, e.g., [28] for an exhaustive account. AMG methods are
often employed as preconditioners for Krylov subspace solvers; what distinguishes
the methods implemented in AMG4PSBLAS are the specific details of the construc-
tion procedure for the B matrix.

We define A0 = A , and consider the sequence {Al}
n
�
−1

l=0
 of coarse matrices com-

puted by the triple-matrix Galerkin product:

where {Pl}
n
�
−1

l=0
 is a sequence of prolongation matrices of size nl × nl+1 , with

nl+1 < nl and n0 = n . To complete the formal construction we need also a sequence
{Ml}

n
�
−2

l=0
 of Al-convergent smoothers for the coarse matrices Al , i.e., matrices Ml for

which ‖Il −M−1
l
Al‖Al

< 1 holds true, where Il is the identity matrix of size nl and
‖v‖Al

=
√
vTAlv is the Al norm. The preconditioner matrix B for the V-cycle with �

pre- and post-smooth iteration is then given by the multiplicative composition of the
following error propagation matrices,

with Bn
�
≈ A−1

n
�

 , either as a direct solution or as a convergent iterative procedure with
a fine enough tolerance.

For the case at hand, we select each iteration matrix of the smoother sequence
{Ml}

n
�
−1

l=0
 as the one representing four iterations (� = 4) of the hybrid forward/

backward Gauss–Seidel method. We consider having A in a general row-block
parallel distribution over np processes, i.e., A is divided into np blocks of size
nb × n , and we call App the corresponding diagonal block of A. We then decom-
pose each block App as App = Lpp + Dpp + LT

pp
 , where Dpp = diag(App) , Lpp is

strictly lower triangular. To enforce symmetry in (3), we select Ml,pp as the block
diagonal matrices (Fig. 1)

Al+1 = PT
l
AlPl, l = 0,… , n

�
− 1,

(3)Il − BlAl = (Il −M−T
l

Al)
𝜈(Il − PlBl+1P

T
l
Al)(Il −M−1

l
Al)

𝜈 ∀l < n
�
,

Fig. 1 Depiction of the structure of the hybrid forward/backward Gauss–Seidel method on a general row-
block parallel distribution of symmetric positive definite matrix A

 H. Owen et al.

1 3

where � is a damping parameter. The overall procedure thus amounts essentially
to using four sweeps of the damped block-Jacobi method on the matrix of the cur-
rent level while solving the blocks with the forward, respectively backward, Gauss–Sei-
del method.

To build the prolongation (and thus the restriction) matrices, we employ the coars-
ening based on compatible weighted matching strategy; a full account of the deriva-
tion and detailed theoretical analysis may be found in [13, 15, 16]. This is a recursive
procedure that starts from the adjacency graph G = (V ,E) associated with the sparse
matrix A; this is the graph in which the vertex set V consists of either the row or column
indices of A and the edge set E corresponds to the indices pairs (i, j) of the nonzero
entries in A. The method works by constructing a matching M in the graph G to obtain
a partition into subgraphs. We recall that a graph matching is a subset of the graph’s
edges such that no two of them are incident on the same vertex. Specifically, we con-
sider more than a purely topological matching by taking into account the weights of
the edges, i.e., the values of the entries of the matrix A and of a suitable vector. In the
first step, we associate an edge weight matrix C, computed from the entries ai,j in A
and an arbitrary vector w ; then, we compute an approximate maximum product match-
ing of the whole graph to obtain the aggregates defining the coarse spaces. We define
C = (ci,j)i,j as

then, M is an approximate maximum product matching of G with edge weight
matrix C, i.e.,

The aggregates are then the subsets of indices {Gp}
|M|
p=1

 of the whole index set I of A
made of pairs of indices matched by the algorithm, where we denote with |M| the
cardinality of the graph matching M . In other terms, we have obtained the
decomposition

see, e.g., Fig. 2 in which the matching of a test graph is computed–in more detail,
Fig. 2a has a black dot corresponding to a non-zero element of the adjacency matrix;
Fig. 2b shows the corresponding graph obtained from it; while Fig. 2c highlights the
aggregated nodes, i.e., the Gp sets. In most cases, we will end up with a sub-optimal
matching, i.e., not all vertices will be endpoints of matched edges; thus, we usually
have unmatched vertices. To each unmatched vertex, we associate an aggregate Gs

Ml = blockdiag(Ml,pp)
np∕nb

pp=1
, Ml,pp = �

(
Ll,pp + Dl,pp

)
, l = 0,… , n

�
,

(4)ci,j = 1 −
2ai,jwiwj

ai,iw
2
i
+ aj,jw

2
j

;

(5)M ≈ argmax
M

�

∏

(i,j)∈M�

ci,j.

I = {1,… , n} =

nM⋃

p=1

Gp, Gp ∩ Gr = � if p ≠ r;

1 3

Alya toward exascale: algorithmic scalability using…

that is a singleton, and we denote with nS the total number of singletons. The main
computational cost of this phase is represented by the computation of the approxi-
mate graph matching on a graph that is distributed across thousands of processors.
The parallel coarsening implemented in AMG4PSBLAS uses the MatchBox-P
software library [11]; this implements a distributed parallel algorithm for the com-
putation of half-approximate maximum weight matching with complexity O(|E|Δ) ,
where |E| is the cardinality of the graph edge set and Δ is the maximum vertex
degree, i.e., the maximum number of edges incident on any given node of the graph.
The procedure guarantees a solution that is at least half of the optimal weight, i.e.,
the approximation in (5) holds within 1/2 of the optimum. The message aggregation
and overlapping between communication and computation employed by this strat-
egy reduces the impact of the data communication on parallel efficiency; we refer
the reader to [16] for a complete set of experiments showcasing this feature. Finally,
to build the prolongator matrices, the last ingredients we need are the vectors we
identifying for each edge ei↦j ∈ M the orthonormal projection of w on the non-sin-
gleton aggregate Gp . For the sake of the explanation, we consider an ordering of the
indices in which we move all the unknowns corresponding to unmatched vertices at
the bottom,2 and thus define a tentative prolongator

where:

W = diag(ws∕|ws|), s = 1,… , nS , corresponds to unmatched vertices. The result-
ing number of coarse variables is then given by nc = nM + nS . The matrix P̂ we
have just built is a piecewise constant interpolation operator whose range includes,
by construction, the vector w . The actual prolongator P is then obtained from P̂ as

(6)P̂ =

(
P̃ 0

0 W

)
∈ ℝ

n×nc ,

P̃ = blockdiag(we1
,… ,wenM

),

Fig. 2 Matching of the graph bcspwr01 from the Harwell-Boeing collection. The matched nodes in the
graph are highlighted by a bold red edge

2 This ordering is for explanatory purposes only, and is not actually enforced in practice.

 H. Owen et al.

1 3

P = (I − 𝜔D−1A)P̂ , where D = diag(A) and � = 1∕‖D−1A‖∞ ≈ 1∕�(D−1A) , with
�(D−1A) the spectral radius of D−1A . Indeed, the P we have built is an instance of
smoothed aggregation. Please observe that the procedure we have described pro-
duces, at best, a halving of the size of the system at each new level of the hierar-
chy. Given the size of the systems we are interested in, this may be unsatisfactory
since the number of levels in the hierarchy and thus the operational cost needed to
cross it would be too large. Fortunately, it is rather easy to overcome this issue: to
obtain aggregates of size greater than two, we just have to collect them together by
multiplying the corresponding prolongators (restrictors). This permits us to select
the desired size of the aggregates (2, 4, 8, and so on) as an input parameter of the
method.

To conclude the description of the preconditioners, we need to specify the
choice for the coarsest solver. While using a direct solver at the coarsest level is
the easiest way to ensure that the coarsest grid is resolved to the needed tolerance,
such an approach for an AMG method running on many thousands of parallel
cores can be very expensive. If the matching strategy has worked satisfactorily,
the coarsest-level matrix will tend to have both a small global size and a small
number of rows per core: in this case, the cost of data communication will domi-
nate the local arithmetic computations causing a deterioration of the method effi-
ciency. We use here a dual strategy: on the one hand, we employ a distributed
coarsest solver running on all the parallel cores, whilst on the other, we limit
the maximum size of the coarsest-level matrix to around 200 unknowns per core.
Specifically, we use the Flexible Conjugate Gradient (FCG) method with a block-
Jacobi preconditioner on which we solve approximately the blocks by an incom-
plete LU factorization with one level of fill-in, ILU(1), the stopping criterion is
based on the reduction of the relative residual of 3 orders of magnitude or a maxi-
mum number of iterations equal to 30.

To have a comparison with the preconditioner just discussed, we also consider
the same construction but with a different aggregation procedure: the decoupled
version of the classic smoothed aggregation of Vaněk et al. [27]. This is an aggre-
gation option that was already available in previous versions of the library [9,
14], and was already successfully used in CFD applications [2, 3]. The basic idea
is to build a coarse set of indices by grouping unknowns into disjoint subsets (the
aggregates) by using an affinity measure and defining a simple tentative prolonga-
tor whose range contains the so-called near null space of the matrix of the given
level, i.e., a sample of the eigenvector corresponding to the smallest eigenvalue.
The strategy is implemented in an embarrassingly parallel fashion, i.e., each pro-
cessor produces aggregates by only looking at local unknowns, i.e., the aggrega-
tion is performed in a decoupled fashion, in contrast to the previous matching
procedure that instead crosses the boundary of the single process.

Table 1 summarizes the different preconditioners we have discussed here and
that are used in the experiments of Sect. 6.1.

Remark 1 The AMG4PSBLAS library provides interfaces to some widely used paral-
lel direct solvers, such as SuperLU [23] and MUMPS [1]. Thus, we could have used

1 3

Alya toward exascale: algorithmic scalability using…

any of those within the damped block-Jacobi method, either on the smoother or on
the coarsest solvers. For what concerns the smoothers, it has been observed in the
literature [4, 16] that the combination with the Gauss–Seidel method delivers bet-
ter smoothing properties for the overall method. In the coarsest solver case, the size
of the local matrices is small enough to not usually show a significant performance
increase when using a direct solver. We also stress that the preconditioner described
in this section depends only on native PSCToolkit code, i.e., the user does not
have to install optional third-party libraries to use it.

4 Interfacing Alya to PSCToolkit

The Alya code is organized in a modular way, and its architecture is split into mod-
ules, kernel, and services, which can be separately compiled and linked. Each mod-
ule represents a physical model, i.e., a set of partial differential equations which can
interact for running a multi-physics simulation in a time-splitting approach, while
Alya’s kernel implements the functionalities for dealing with the discretization
mesh, the solvers and the I/O functionalities. As already mentioned, the governing
equations of a physical model are discretized in space by using FE methods and all
the functionalities to assemble the global stiffness matrix and right-hand-side (RHS)
of the corresponding set of equations, including boundary conditions and material
properties are the responsibility of the module. Instead, all the functionalities needed
to solve the algebraic linear systems are implemented in the kernel. Some work on
data structures and distribution of matrices and RHS was necessary to interface Alya
with libraries from PSCToolkit, as described in the following.

Alya uses the compressed sparse row matrix scheme for the internal represen-
tation of sparse matrices. This scheme is supported by PSCToolkit, so no sig-
nificant difficulty was met from this perspective. The main difficulty in the interfac-
ing process was how the data, i.e. the discretization mesh and the corresponding
unknowns, are distributed among the parallel processes and the way the related
sparse matrix rows and RHS are locally assembled. The Alya code is based on a
domain decomposition where the discretization mesh is partitioned into disjoint sub-
sets of elements/nodes, referred to as subdomains. Then, each subdomain is assigned
to a parallel process that carries out all the geometrical and algebraic operations

Table 1 Summary of the described preconditioners, the labels are used to describe the results in Sect. 6.1

Pre-smoother 4 iterations of hybrid forward Gauss–Seidel
Post-smoother 4 iterations of hybrid backward Gauss–Seidel
Coarsest solver FCG preconditioned by block-Jacobi with ILU(1) block solvers
Cycle V-cycle
Aggregation Coupled smoothed based on matching Decoupled classic

|G| ≤ 8 |G| ≤ 16 smoothed
Label MLVSMATCH3 MLVSMATCH4 MLVSBM

 H. Owen et al.

1 3

corresponding to that part of the domain and the associated unknowns. The interface
elements/nodes on the boundary between two subdomains are assigned to one of the
subdomains (see Fig. 3).

The sparse matrices expressing the linear couplings among the unknowns are dis-
tributed in such a way that each parallel process holds the entries associated with the
couplings generated on its subdomain. Two different options are possible for sparse
matrix distribution: the partial row format and the full row format [20], respectively.
In the full row format, if a mesh element/node and the corresponding unknown
belong to a process, all row entries related to that unknown are stored by that pro-
cess. In the partial row format, the row of a matrix corresponding to an unknown is
not full and needs contributions from unknowns belonging to different processes.
Alya uses a partial row format for storing the matrix.

The libraries from PSCToolkit build the preconditioners and apply the Krylov
methods on the assumption of a full row format; nevertheless, support for partial
row format was added to the libraries’ pre-processing stage so that the interfacing
can be as transparent as possible. The pre-processing support implies the retrieval
of remote information for those matrix contributions that correspond to elements on
the boundary; the data communication is split between the discovery of the needed
entries (which needs only be executed when the discretization mesh changes) and
the actual retrieval of the matrix entries, which must happen at any time step where
the matrix coefficients and/or vector entries may be rebuilt, prior to an invocation
of the solvers. When the topology of the mesh does not change, and there is only an
update in the coefficients, it is also possible to reuse the same preconditioner; this
may be full reuse of the overall matrices hierarchy, or partial reuse, employing the
same prolongators/restrictors to rebuild the AMG hierarchy and smoothers.

We developed a software module in Alya’s kernel for declaration, allocation, and
initialization of the library’s data structures as well as for using solvers and precon-
ditioners. PSBLAS makes available some of the widely used iterative methods based
on Krylov projection methods through a single interface to a driver routine, while
preconditioners for PSBLAS Krylov solvers are available through the AMG4PSB-
LAS package. The main functionalities for selecting and building the chosen precon-
ditioner are the responsibility of the software module included in the Alya’s kernel,
while the functionalities for applying it within the PSBLAS Krylov solver are com-
pletely transparent to the Alya code and are the responsibility of the library.

Fig. 3 Mesh partitioning into (3a) disjoint sets of nodes, and (3b) disjoint sets of elements

1 3

Alya toward exascale: algorithmic scalability using…

5 The Bolund test case

Our main aim was to test the libraries for systems stemming from fluid dynamics
simulation of incompressible flow arising in the study of wind-farm efficiency. The
test case is based on the Bolund experiment (Figs. 4 and 5), a classical benchmark
for microscale atmospheric flow models over complex terrain [5, 6]. An incompress-
ible flow treatment is used because the Mach number, i.e., the ratio of the speed of
the flow to the speed of sound, is much smaller than 0.3. The test case is based on a
small (12m) isolated steep hill at Roskilde Fjord in Denmark having a significantly
steep escarpment in the main wind direction and uniformly covered by grass so that
the resulting flow is not influenced by individual roughness elements. This is consid-
ered the ideal benchmark for the validation of neutral flow models and, hence a most
relevant scenario for the analysis of software modeling for wind energy. Though rel-
atively small, its geometrical shape induces complex 3D flow. Bolund was equipped

Fig. 4 Photograph of the Bolund hill [7]

Fig. 5 Volume rendering of the velocity over Bolund obtained with Alya

 H. Owen et al.

1 3

with several measurement masts with conventional meteorological instruments and
remote sensing Lidars to obtain detailed information of mean wind, wind shear, tur-
bulence intensities, etc. A publicly available database for evaluating currently avail-
able flow models and methodologies for turbine siting in complex terrain regarding
wind resources and loads is available at [7].

We discretize the incompressible Navier–Stokes Eq. (1) as described in Sect. 2.
At each time step of the LES procedure, we solved the SPD linear systems aris-
ing from the pressure equation employing the preconditioned flexible version of
the CG method (FCG) method by PSBLAS. Starting from an initial guess for pres-
sure from the previous time step, we stopped linear iterations when the Euclidean
norm of the relative residual was no larger than TOL = 10−3 . The Reynolds number
based on the friction velocity for this test case is approximately RE� = Uh∕� ≈ 107
with U = 10m s−1 . As discussed in [6, Section 2.1], we can neglect Coriolis force
in the horizontal direction and use the formulation (1) since the Rossby number
RO = 667 ≫ 1.

The next Sect. 6 details the scalability result obtained for this test case with the
new solvers and preconditioners from PSCToolkit described in Sect. 3.

6 Parallel performance results

In the following, we discuss the results of experiments run on two of the most pow-
erful European supercomputers. The first set of experiments aimed to analyze the
behavior of different AMG preconditioners available from AMG4PSBLAS and run
on the Marenostrum-4 supercomputer up to 12288 CPU cores. Marenostrum-4 is
composed of 3456 nodes with 2 Intel Xeon Platinum 8160 CPUs with 24 cores per
CPU. It is ranked 121th in the November 2023 TOP500 list3, with more than 10 peta-
flops of peak performance and is operated by the Barcelona Supercomputer Center.
The simulations have been performed with the Alya code interfaced to PSBLAS
(3.7.0.1) and AMG4PSBLAS (1.0), built with GNU compilers 7.2. The second set
of experiments aimed to reach very large scales and run by using only one of the
most promising preconditioners by AMG4PSBLAS on the Juwels supercomputer, up
to 23551 CPU cores. Juwels is composed of 2271 compute nodes with 2 Intel Xeon
Platinum 8168 CPUs, of 24 cores each. It is ranked 127th in the November 2023
TOP500 list, with more than 9 petaflops of peak performance, and is operated by the
Jülich Supercomputer Center. The simulations have been performed with the Alya
code interfaced to the same versions of the solvers libraries mentioned above, built
with GNU compilers 10.3.

6.1 Comparison of AMG preconditioners

In this section, we discuss results obtained on Marenostrum-4 and compare
the behavior of FCG coupled to the preconditioners described in Sect. 3.1 and

3 Available at www. top500. org.

https://www.top500.org

1 3

Alya toward exascale: algorithmic scalability using…

summarized in Table 1. We run both strong scalability analysis for unstructured
meshes of tetrahedra of three fixed sizes as well as weak scalability analysis,
obtained by fixing different mesh sizes per core and linearly increasing both mesh
size and the number of cores. A general row-block matrix distribution based on the
Metis 4.0 mesh partitioner [21] was applied for the parallel runs.

6.1.1 Strong scalability

We first focus on strong scalability results obtained on the Bolund experiment for
three fixed size meshes (small, medium and large) including n1 = 5570786 ≈ 6 × 106 ,
n2 = 43619693 ≈ 4.4 × 107 and n3 = 345276325 ≈ 0.35 × 109 dofs, respectively.
Three different configurations of the number of cores, obtained by doubling each
time the number of MPI cores with respect to the minimum number of cores (nodes)
needed to run at full load, were employed for the three different mesh sizes: from
minp = 48 to maxp = 192 cores in the case of the small mesh, from minp = 384
to maxp = 1536 cores for the medium mesh, and finally from minp = 3072 to
maxp = 12288 cores for the large mesh. We analyze the parallel efficiency and con-
vergence behavior of the linear solvers for 20 time steps after a pre-processing phase
so that we focus on the solvers’ behavior in the simulation of a fully developed flow.
Note that in the Alya code a master–slave approach is employed, where the master
process is not involved in the parallel computations.

In Figs. 6 and 7, we report a comparison of the different methods in terms of the
total number of iterations of the linear solvers and of the solve time per iteration (in

Fig. 6 Strong scalability: total iteration number of the linear solvers

 H. Owen et al.

1 3

seconds), respectively. Note that in the figures, we also have results obtained with a
version of Deflated CG (AlyaDefCG), available from the original Alya code.

We can observe that the total number of linear iterations is much smaller than
that with the original AlyaDefCG, for all three meshes, when AMG4PSBLAS multi-
level preconditioners are applied. For the small mesh, the minimum number of lin-
ear iterations is obtained by MLVSBM which shows a fixed number of 60 iterations
for all core counts, while MLVSMATCH3 requires 90 iterations for all core counts
except on 192 cores, where 1 less iteration was needed, and MLVSMATCH4 requires
100 iterations; in this case, the original AlyaDefCG requires 700 iterations for all
core counts.

In the case of the medium mesh, we observe a larger number of iterations of the
solvers employing AMG4PSBLAS preconditioners with respect to the large mesh.
We have a minimum number of iterations with MLVSMATCH3 ranging from 122
to 123 for all number of cores, while MLVSMATCH4 requires a range from 160 to
161 iterations and MLVSBM requires a range from 172 to 174 iterations. The origi-
nal AlyaDefCG requires a number of iterations ranging from 1040 to 1042 for the
medium mesh.

In the case of the large mesh, the number of iterations required by MLVSMATCH3
ranges between 108 on 3072 cores and 137 on 12288 cores, while MLVSMATCH4
requires a more stable number of iterations ranging from 115 to 117; a similarly sta-
ble behavior is observed for MLVSBM which requires a number of iterations ranging
from 121 to 123. AlyaDefCG requires a number of iterations ranging from 1404 to
1406 for the large mesh.

Fig. 7 Strong scalability: time per iteration of the linear solvers

1 3

Alya toward exascale: algorithmic scalability using…

The oscillations in the number of iterations seem to be mostly dependent on the
data partitioning obtained by Metis, which in turn, appears to have a larger impact
on the MLVSMATCH3 preconditioner in the case of the large mesh. A deeper analy-
sis of the impact of the data partitioner on the solver behavior, albeit interesting, is
out of the scope of our current work and would require a significant amount of com-
puting resources.

In all cases, the time needed per iteration decreases for an increasing number
of cores and, as expected, it is larger for the AMG preconditioners, where the cost
for the preconditioner application at each FCG iteration is larger than that of Alya-
DefCG. Depending on mesh size and number of cores, the AMG preconditioners
show very similar behavior, although MLVSBM always requires a smaller time per
iteration for the large mesh and for the medium mesh when 1536 cores are used.

In Figs. 8 and 9, we can see the total solve time spent in the linear solvers and the
resulting speedup for the preconditioners. Here, we define speedup as the ratio
Sp = Tminp

∕Tp , where Tminp
 is the total time for solving linear systems when the min-

imum number of total cores, per each problem size, is involved in the simulation,
and Tp is the total time spent in linear solvers for all the increasing number of cores
used for the specified mesh size.

We observe that the AMG preconditioners from AMG4PSBLAS gener-
ally achieve shorter execution times than the original AlyaDefCG; indeed, the
expected longer time per iteration is more than compensated by the large reduc-
tion in the number of iterations especially for the small and large mesh. In good

Fig. 8 Strong scalability: total solve time of the linear solvers

 H. Owen et al.

1 3

agreement with the behavior in terms of iterations and time per iteration, we
observe that MLVSBM generally shows the shortest execution time for the small
mesh, especially for small number of cores, while for the medium and large mesh,
MLVSMATCH3 and MLVSMATCH4 show some better or comparable behavior
with respect to MLVSBM. The best speedups are generally obtained, except for
the small mesh, by the original AlyaDefCG, while in the case of AMG precon-
ditioners, the very good convergence behavior and solve time on the smallest
number of cores limit the speedup for the increasing number of cores. For the
AMG4PSBLAS preconditioners, speedups are in good agreement with the total
solve times, showing that MLVSMATCH3 and MLVSMATCH4 are generally bet-
ter or comparable with respect to MLVSBM for all meshes when the small and
medium number of cores are used, while MLVSBM is better for medium and large
mesh when the largest number of cores is used.

In conclusion, the selected solvers from the PSCToolkit generally outper-
form the original Alya solver for the employed test case, and the choice of the
better preconditioner from AMG4PBLAS depends on target mesh size and number
of employed parallel cores. This appears as an advantage for Alya’s users that
having available a large set of parallel preconditioners through the interface to
PSCToolkit, can select the best one for their specific aims.

Fig. 9 Strong scalability: speedup of the linear solvers. We note that ideal values for speedups in all three
configurations are 1, 2 and 4, respectively.

1 3

Alya toward exascale: algorithmic scalability using…

6.1.2 Weak scalability

In this section, we analyze the weak scalability of the AMG4PSBLAS precondition-
ers, i.e., we observe the solvers looking at their behavior when we fix the mesh size
per core and increase the number of cores.

We considered the same test case and the three meshes of the previous section in
the three possible configurations of computational cores, from 48 up to 3072, from
96 up to 6144 and from 192 to 12288. The different configurations of cores corre-
spond to three different (decreasing) mesh sizes per core equal to nxcore1 = 1.1e5 ,
nxcore2 = 5.9e4 , and nxcore3 = 2.9e4 , respectively. Note that the medium and the
large mesh correspond to scaling factors of 8 and 64, respectively, with respect to
the small mesh; therefore in the same way, we scaled the number of cores for our
weak scalability analysis.

We can limit our analysis to observe the average number of linear iterations of the
different employed preconditioners per each time step in the various simulations and
to analyze execution times and scaled speedup for solve. In Fig. 10, we report the
average number of iterations for each time step. We can observe a general increase,
ranging from 35 to 70 for an increasing number of cores when the original Alya-
DefCG is employed. On the other hand, when AMG preconditioners from AMG4PS-
BLAS coupled with FCG by PSBLAS are applied, we observe a constant average
number of iterations equal to 5 for MLVSMATCH4 both for the small and the large
mesh, independently of the number of cores, while MLVSBM requires 3 iterations
for the small mesh and 6 for the large mesh. MLVSMACTH3 ranges from 4 to 6 iter-
ations on the small mesh and the large mesh, respectively. In the case of medium
mesh, in agreement with what was observed for the strong scalability analysis, all
the preconditioners require a larger average number of iterations, which is 8 for
MLVSBM and MLVSMATCH4, and 6 for MLVSMATCH3. This behavior indicates a
very promising algorithmic scalability of MLVSMATCH4. In Figs. 11 and 12, we
can see the total solve time and the corresponding scaled speedup. We can observe
that, as expected from the previous sections, all preconditioners from AMG4PSBLAS
generally lead to a smaller increase ratio in the solve times with respect to the

Fig. 10 Weak scalability: average number of linear iterations per time step. nxcore
1
 dofs per core (a),

nxcore
2
 dofs per core (b), nxcore

3
 dofs per core (c)

 H. Owen et al.

1 3

original AlyaDefCG, when the mesh size goes from the small to the large one. In
more detail, we observe that, for all mesh sizes per core, smaller increase ratios in
the execution time are generally obtained with MLVSMATCH3 and MLVSMATCH4.
This is better observed by looking at the scaled speedup. It is defined as
scalfactor × Tminp

∕Tp , where scalfactor = 1, 8, 64 , for the three increasing number of
cores, Tminp

 is the total time for solving linear systems when the minimum number of
total cores is involved in the simulation, per each mesh size per core, and Tp is the
total time spent in linear solvers for all the increasing number of cores used for the
specified mesh size per core. We observe that the best values are obtained with the
MLVSMATCH3 and MLVSMATCH4 preconditioners when nxcore1 and nxcore2 dofs
per core are used. In detail, for nxcore1 dofs per core, MLVSMATCH3 reaches the
best value of about 71% of scaled efficiency on 3072 cores and about 44% of scaled
efficiency on 6144 core when nxcore2 dofs per core are employed. This shows that
the scalability of MLVSMATCH3 and MLVSMATCH4 are very promising in facing
the exascale challenge, especially when the resources are used at their best in terms
of node memory capacity and bandwidth. On the other hand, in the case of nxcore3

Fig. 11 Weak scalability: total solve time (s) of the linear solvers. nxcore
1
 dofs per core (a), nxcore

2
 dofs

per core (b), nxcore
3
 dofs per core (c)

Fig. 12 Weak scalability: the scaled speedup of the linear solvers. nxcore
1
 dofs per core (a), nxcore

2
 dofs

per core (b), nxcore
3
 dofs per core (c)

1 3

Alya toward exascale: algorithmic scalability using…

dofs per core (12c), the scaled speedup of AlyaDefCG is better; this is essentially
due to the very large solve time spent by this solver on 192 cores.

6.2 Results at extreme scales

In this section, we discuss some results obtained on the Juwels supercomputer by
increasing the number of dofs till to n4 ≈ 2.9 × 109 . We limit our analysis to the
weak scalability results of one of the most promising solvers in PSCToolkit.
Indeed, due to the limited access to the Juwels resources and taking into account the
above preconditioners comparison, we only run experiments by using the MLVS-
MATCH4 preconditioner. A general row-block data distribution based on a parallel
geometric partitioning using Space Filling Curve (SFC) [8] was applied for these
experiments. As in the previous experiments, we analyze the parallel efficiency and
convergence behavior of the linear solver for 20 time steps after a pre-processing
phase so that we focus on the solver behavior in the simulation of a fully devel-
oped flow for all the meshes but the largest one, where we were not able to skip the
transient phase due to long simulation time. In this last case, we considered a total
number of time steps equal to 1379 and analyzed solver performance in the last 20
time steps. Note that increasing mesh size imposes a decrease in time step due to
stability constraints of the explicit time discretization that is preferred for LES simu-
lations. Therefore, the total simulated time depends on the mesh size. Furthermore,
to reduce observed operating oscillations associated with the full node runs, we used
only a total of 46 cores per node.

As already mentioned, we analyze the weak scalability of the solvers; we consid-
ered a mesh size per core equal to nxcore1 and used a scaling factor of 8 for going up
to the largest mesh size; therefore in the same way, we scaled the number of cores
for our weak scalability analysis. We can limit our analysis to observing the average
number of linear iterations of the solver per each time step and analyzing execution
times and scaled speedup for the solve phase. We compare the results obtained by
using the PSCToolkit’s solver against Alya’s Conjugate Gradient solver (hereby
AlyaCG). Observe that in these experiments, we also tried to use the Deflated CG
implemented in Alya, but it does not work for the two larger test cases, and AlyaCG
appears better in the case of smaller size meshes. In Fig. 13, we report the average

Fig. 13 Weak scalability: aver-
age number of linear iterations
per time step. Systems size from
n
1
 to n

4

 H. Owen et al.

1 3

number of iterations per each time step. We can observe a general increase, rang-
ing from 133 to 331 for an increasing number of cores, but on 368 cores where 95
average iteration count is obtained, when the original AlyaCG is employed, while
very good algorithmic scalability, with an average number of linear iterations per
each time step ranging from 4 to 6, when the PSCToolkit’s solver is applied. In
Fig. 14a,b, we can see the total solve time and the corresponding scaled speedup.
We can observe that the good algorithmic scalability of MLVSMATCH4 leads to
an almost flat execution time for solving when the first three meshes are employed,
while a decrease is observed for the simulation carried out with the largest mesh,
depending on a smaller average number of iterations per time step. On the contrary,
the original AlyaCG generally shows a huge increase for increasing number of cores
and mesh size, but in the second one, where a decrease in the average number of
iterations per time step is observed. Then we look at the scaled speedup, defined as
scalfactor × T45∕Tp , where scalfactor = 1, 8, 64, 512 , for increasing number of cores,
T45 is the total time for solving linear systems when 45 cores are involved in the sim-
ulation, and Tp is the total time spent in linear solvers for all the increasing number
of cores. We observe that for the two larger meshes, MLVSMATCH4 has a super-lin-
ear scaled speed-up of about 71 (up from the ideal speedup of 64) and 640 (up from
the ideal speedup of 512), respectively, showing that its very good algorithmic scal-
ability is coupled with excellent implementation scalability of all the basic compu-
tational kernels. This scalability is very promising in facing the exascale challenge.

7 Conclusions

In this paper, we presented our work on improving the linear solver capabilities
of a large-scale CFD code by interfacing it with a software framework, includ-
ing new and state-of-the-art algebraic linear solvers, specifically designed to
exploit the very large potential of current petascale supercomputers and aimed at

Fig. 14 Weak scalability: systems size from n
1
 to n

4

1 3

Alya toward exascale: algorithmic scalability using…

the early exascale supercomputers. Our activities were carried out in the context
of the European Center of Excellence for Energy applications, where one of the
lighthouse codes was the Alya code, developed at the Barcelona Supercomputing
Center (BSC) and applied to wind flow studies for renewable production. How-
ever, this work has a wider impact, and confirms the benefits of using third-party
software libraries developed by specialists, in complex, multi-component and
multi-physics simulation codes.

From Alya’s perspective, the most significant achievement has been obtaining
excellent algorithmic scalability thanks to multigrid preconditioners, as shown
in the weak scalability studies. This allows us to solve much bigger problems
efficiently. Our first objective for the future is to test the GPU version of PSC-
Toolkit. During EoCoE, we have significantly optimized the FE assembly on
GPUs, making it four times more energy efficient than the CPU version; integrat-
ing a competitive linear algebra GPU package is now the next priority. After that,
having the entire workflow for incompressible flow problems on GPUs should be
relatively straightforward. We expect to have a much higher number of unknowns
for problems running for MPI process when GPU accelerators are exploited.
Therefore, strong scalability should be much less critical. While we have focused
on a wind energy problem in this work, we wish to test the solver in other incom-
pressible flow problems in the future. Moreover, since the solver is fully inter-
faced with Alya, it will be interesting to test the suitability of PSCToolkit for
other problems, such as solid mechanics or heat transfer.

Acknowledgements We thank the two anonymous reviewers whose suggestions helped improve and
clarify this manuscript.

Author Contributions The first two authors are involved in the development of the Alya code and worked
on the integration of the PSCToolkit into Alya. Herbert Owen did main contribution in setup and running
of experiments. The last three authors are the developers of PSCToolkit and experts in Linear Algebra.
They have equally contributed in setup of suitable linear solvers, analyzing results and writing the paper.

Funding Open access funding provided by Consiglio Nazionale Delle Ricerche (CNR) within the CRUI-
CARE Agreement. The research received funding and PRACE grants for supercomputers access from
Horizon 2020 Project “Energy oriented Centre of Excellence: toward exascale for energy” (EoCoE–II),
Project ID: 824158. This work has been partially supported by the Italian Research Center on High-
Performance Computing, Big Data and Quantum Computing (ICSC) funded by MUR Missione 4 Com-
ponente 2 Investimento 1.4:Potenziamento strutture di ricerca e creazione di “campioni nazionali di
R\&S(M4C2-19)” - Next Generation EU (NGEU). F.D. acknowledges the MUR Excellence Depart-
ment Project awarded to the Department of Mathematics, University of Pisa, CUP I57G22000700001.
The last three authors are members of the INdAM Research Group GNCS.

Availability of data and materials PSCToolkit is available at https:// pscto olkit. github. io/ The data that
support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Ethical Approval N/A

Conflict of interest N/A

https://psctoolkit.github.io/

 H. Owen et al.

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Amestoy P, Duff I, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput Methods in Appl Mech Eng 184(2):501–520. https:// doi. org/ 10.
1016/ S0045- 7825(99) 00242-X, https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0045 78259
90024 2X

 2. Aprovitola A, D’Ambra P, Denaro F, et al (2011) Scalable algebraic multilevel preconditioners with
application to CFD. Lecture Notes in Computational Science and Engineering 74 LNCSE:15 - 27.
https:// doi. org/ 10. 1007/ 978-3- 642- 14438-7_2

 3. Aprovitola A, D’Ambra P, Denaro FM et al (2015) SParC-LES: Enabling large eddy simulations
with parallel sparse matrix computation tools. Comput Math Appl 70(11):2688–2700. https:// doi.
org/ 10. 1016/j. camwa. 2015. 06. 028

 4. Baker AH, Falgout RD, Kolev TV et al (2011) Multigrid smoothers for ultraparallel computing.
SIAM J Sci Comput 33(5):2864–2887. https:// doi. org/ 10. 1137/ 10079 8806

 5. Bechmann A, Sorensen NN, Berg J et al (2011) The Bolund experiment, Part II: Blind comparison
of microscale flow models. Bound -Layer Meteorol 141(2):245–271

 6. Berg J, Mann J, Bechmann A et al (2011) The Bolund experiment, Part I: flow over a steep. Three-
Dimensional Hill. Bound-Layer Meteorol 141(2):219. https:// doi. org/ 10. 1007/ s10546- 011- 9636-y

 7. Bolund (2022) The Bolund experiment. https:// www. bolund. vinde nergi. dtu. dk, accessed:
2022-09-27

 8. Borrell R, Cajas JC, Mira D et al (2018) Parallel mesh partitioning based on space filling curves.
Comput Fluids 173:264–272. https:// doi. org/ 10. 1016/j. compfl uid. 2018. 01. 040

 9. Buttari A, D’Ambra P, Di Serafino D et al (2007) 2LEV-D2P4: A package of high-performance
preconditioners for scientific and engineering applications. Appl Algebra Eng Commun Comput
18(3):223–239. https:// doi. org/ 10. 1007/ s00200- 007- 0035-z

 10. Capuano F, Coppola G, Chiatto M et al (2016) Approximate projection method for the incompress-
ible Navier–Stokes equations. AIAA J 54(7):2179–2182. https:// doi. org/ 10. 2514/1. J0545 69

 11. Catalyürek UV, Dobrian F, Gebremedhin A, et al (2011) Distributed-memory parallel algorithms for
matching and coloring. In: 2011 IEEE international symposium on parallel and distributed process-
ing workshops and Phd forum, pp 1971–1980, https:// doi. org/ 10. 1109/ IPDPS. 2011. 360

 12. Codina R (2001) Pressure stability in fractional step finite element methods for incompressible
flows. J Comput Phys 170:112–140

 13. D’Ambra P, Vassilevski PS (2013) Adaptive AMG with coarsening based on compatible weighted
matching. Comput Vis Sci 16(2):59–76. https:// doi. org/ 10. 1007/ s00791- 014- 0224-9

 14. D’Ambra P, di Serafino D, Filippone S (2010) MLD2P4: a package of parallel algebraic multilevel
domain decomposition preconditioners in Fortran 95. ACM Trans Math Software 37(3):23. https://
doi. org/ 10. 1145/ 18248 01. 18248 08

 15. D’Ambra P, Filippone S, Vassilevski PS (2018) BootCMatch: a software package for bootstrap
AMG based on graph weighted matching. ACM Trans Math Software 44(4):25. https:// doi. org/ 10.
1145/ 31906 47

 16. D’Ambra P, Durastante F, Filippone S (2021) AMG preconditioners for linear solvers at extreme
scale. SIAM J Sci Comp. https:// doi. org/ 10. 1137/ 20M13 4914X

 17. Filippone S, Buttari A (2012) Object-oriented techniques for sparse matrix computations in Fortran
2003. ACM TOMS 38(4):23:1-23:20

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0045-7825(99)00242-X
https://doi.org/10.1016/S0045-7825(99)00242-X
https://www.sciencedirect.com/science/article/pii/S004578259900242X
https://www.sciencedirect.com/science/article/pii/S004578259900242X
https://doi.org/10.1007/978-3-642-14438-7_2
https://doi.org/10.1016/j.camwa.2015.06.028
https://doi.org/10.1016/j.camwa.2015.06.028
https://doi.org/10.1137/100798806
https://doi.org/10.1007/s10546-011-9636-y
https://www.bolund.vindenergi.dtu.dk
https://doi.org/10.1016/j.compfluid.2018.01.040
https://doi.org/10.1007/s00200-007-0035-z
https://doi.org/10.2514/1.J054569
https://doi.org/10.1109/IPDPS.2011.360
https://doi.org/10.1007/s00791-014-0224-9
https://doi.org/10.1145/1824801.1824808
https://doi.org/10.1145/1824801.1824808
https://doi.org/10.1145/3190647
https://doi.org/10.1145/3190647
https://doi.org/10.1137/20M134914X

1 3

Alya toward exascale: algorithmic scalability using…

 18. Filippone S, Colajanni M (2000) PSBLAS: a library for parallel linear algebra computations on
sparse matrices. ACM TOMS 26(4):527–550

 19. Houzeaux G, de la Cruz R, Owen H et al (2013) Parallel uniform mesh multiplication applied to a
Navier–Stokes solver. Comput Fluids 80:142–151. https:// doi. org/ 10. 1016/j. compfl uid. 2012. 04. 017

 20. Houzeaux G, Borrell R, Fournier Y, et al (2018) High-Performance Computing: Dos and Don’ts.
In: Ionescu A (ed) Computational Fluid Dynamics - Basic Instruments and Applications in Science.
IntechOpen, pp 3–41, https:// doi. org/ 10. 5772/ intec hopen. 72042

 21. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J Sci Comput 20(1):359–392. https:// doi. org/ 10. 1137/ S1064 82759 52879 97

 22. Lehmkuhl O, Houzeaux G, Owen H et al (2019) A low-dissipation finite element scheme for scale
resolving simulations of turbulent flows. J Comput Phys 390:51–65. https:// doi. org/ 10. 1016/j. jcp.
2019. 04. 004

 23. Li XS (2005) An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans
Math Software 31(3):302–325. https:// doi. org/ 10. 1145/ 10890 14. 10890 17

 24. Owen H, Chrysokentis G, Avila M et al (2020) Wall-modeled large-eddy simulation in a finite ele-
ment framework. Int J Numer Meth Fluids 92(1):20–37. https:// doi. org/ 10. 1002/ fld. 4770

 25. PRACE (accessed May 2020) Unified European Application Benchmark Suite. https:// repos itory.
prace- ri. eu/ git/ UEABS/ ueabs/

 26. PRACEBS (accessed May 2020) PRACE benchmark-suite. https:// prace- ri. eu/ train ing- suppo rt/
techn ical- docum entat ion/ bench mark- suites/

 27. Vaněk P, Mandel J, Brezina M (1996) Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems. Computing 56(3):179–196. https:// doi. org/ 10. 1007/ BF022 38511.
(international GAMM-Workshop on Multi-level Methods (Meisdorf, 1994))

 28. Vassilevski PS (2008) Multilevel block factorization preconditioners: matrix-based analysis and
algorithms for solving finite element equations. Springer, New York

 29. Vazquez M, Houzeaux G, Koric S et al (2016) Alya: multiphysics engineering simulation toward
exascale. J Comput Sci 14:15–27. https:// doi. org/ 10. 1016/j. jocs. 2015. 12. 007

 30. Vreman AW (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic the-
ory and applications. Phys Fluids 16(10):3670–3681

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Herbert Owen1 · Oriol Lehmkuhl1 · Pasqua D’Ambra2 · Fabio Durastante2,3 ·
Salvatore Filippone2,4

 * Pasqua D’Ambra
 pasqua.dambra@cnr.it

 Herbert Owen
 herbert.owen@bsc.es

 Oriol Lehmkuhl
 oriol.lehmkuhl@bsc.es

 Fabio Durastante
 fabio.durastante@unipi.it

 Salvatore Filippone
 salvatore.filippone@uniroma2.it

1 Barcelona Supercomputing Centre (BSC), Plaça d’Eusebi Güell, 08034 Barcelona, Spain

https://doi.org/10.1016/j.compfluid.2012.04.017
https://doi.org/10.5772/intechopen.72042
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1016/j.jcp.2019.04.004
https://doi.org/10.1016/j.jcp.2019.04.004
https://doi.org/10.1145/1089014.1089017
https://doi.org/10.1002/fld.4770
https://repository.prace-ri.eu/git/UEABS/ueabs/
https://repository.prace-ri.eu/git/UEABS/ueabs/
https://prace-ri.eu/training-support/technical-documentation/benchmark-suites/
https://prace-ri.eu/training-support/technical-documentation/benchmark-suites/
https://doi.org/10.1007/BF02238511
https://doi.org/10.1016/j.jocs.2015.12.007

 H. Owen et al.

1 3

2 Institute for Applied Computing, National Research Council (CNR), Via P. Castellino, 111,
80131 Naples, NA, Italy

3 Department of Mathematics, University of Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa, PI,
Italy

4 Department of Civil and Computer Engineering, University of Rome “Tor Vergata”, Via del
Politecnico, 1, 00133 Rome, RM, Italy

	Alya toward exascale: algorithmic scalability using PSCToolkit
	Abstract
	1 Introduction
	2 Alya description
	3 PSCToolkit: PSBLAS and AMG4PSBLAS
	3.1 AMG preconditioners

	4 Interfacing Alya to PSCToolkit
	5 The Bolund test case
	6 Parallel performance results
	6.1 Comparison of AMG preconditioners
	6.1.1 Strong scalability
	6.1.2 Weak scalability

	6.2 Results at extreme scales

	7 Conclusions
	Acknowledgements
	References

