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1. Introduction

Given an ergodic, finite, discrete-time, time-homogeneous Markov chain, Kemeny’s 
constant is the expected time for the Markov chain to travel between randomly chosen 
states, where these states are sampled according to the stationary distribution. Originally 
defined in [22] as the expected time to reach a randomly-chosen state from a fixed 
starting state, this quantity is independent of the choice of initial state. Various intuitive 
explanations for the constancy have been provided in [3,14,27]. Moreover, Kemeny’s 
constant has many applications to a variety of subjects, including the study of road 
traffic networks [1,11], disease spread [24,36], and many others.

In addition, Kemeny’s constant has recently received significant attention within the 
graph theory community. Such constant finds special relevance in the study of random 
walks on graphs. In the context of random walks, Kemeny’s constant is used as a mea-
sure of connectivity of the graph: the smaller the constant, the faster a random walker 
moves around the graph. As a graph invariant, much research has been dedicated to 
understanding how the structure of a graph influences Kemeny’s constant. Extremal Ke-
meny’s constant has been studied in [5,10,19]. The impact of edge addition/removal on 
this quantity has also been explored in [1,9,16,23,28,29]. Recently, work in [25] provides 
insights into the interplay between a graph and its complement regarding Kemeny’s 
constant.

The pursuit of reducing the computational complexity of Kemeny’s constant of a 
Markov chain with n states, which is O(n3), is interesting. Randomized approaches for 
the direct approximation of Kemeny’s constant have been used in [30,35]. Addition-
ally, exploring computational questions where partial information is available without 
computing from scratch has been investigated. Work in [1] investigated computation of 
Kemeny’s constant for a graph obtained by removing an edge. Moreover, work from [6]
provided an explicit formula for Kemeny’s constant for graphs with bridges in terms of 
some quantities on the subgraphs resulting from the deletion of the bridges.

In this article, we furnish a formula for Kemeny’s constant of a Markov chain by 
utilizing two Markov chains induced from the original, known as censored (watched) 
Markov chains (see [31]). Let P be the transition matrix of an irreducible Markov chain 
with state space {1, . . . , n}. Let

P =
[
P11 P12
P21 P22

]
, (1)

where P11 and P22 are square of size m ×m and (n −m) × (n −m), respectively. The 
transition matrices P1 and P2 of the censored Markov chains are given by

P1 = P11 + P12(I − P22)−1P21, P2 = P22 + P21(I − P11)−1P12. (2)

In particular, we will provide expressions of the difference γ = κ(P ) − κ(P1) − κ(P2), 
given in terms of the stationary distribution vector of the Markov chain P .
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The paper is organized as follows: In Section 2, we introduce some notation and 
review the definitions and properties of stochastic complements and Kemeny’s constant. 
Section 3 concerns the main theoretical result (Theorem 3.3), where Kemeny’s constant 
of a Markov chain is related to Kemeny’s constants of censored Markov chains. Section 4
explores applications of the main result for various structured transition matrices and 
subsequently determines the minimum Kemeny’s constant of a periodic Markov chain. 
In Section 5, we establish lower and upper bounds for the constant γ and bounds on 
Kemeny’s constant of perturbed matrices are given. In Section 6, we introduce a divide-
and-conquer algorithm to compute κ(P ) where P is a large and highly sparse matrix, 
and we present numerical experiments performed with real world matrices to show the 
effectiveness and reliability of this algorithm. Section 7 draws the conclusions.

2. Notation and preliminaries

A matrix A = [aij ] ∈ Rm×n is said to be nonnegative (resp. positive), if aij ≥ 0
(aij > 0) for any i, j, and we write A ≥ 0 (resp. A > 0). We denote by 1n the all ones 
vector of size n. If n is clear from the context, we shall omit the subscript of 1n. A matrix 
A is said to be reducible if there exists a permutation matrix Π such that ΠAΠT is a 
block upper triangular matrix with square diagonal blocks. If A is not reducible, then 
we say that A is irreducible. A nonnegative matrix A is said to be stochastic if A 1 = 1. 
For A ∈ Rn×n, we use ρ(A) to denote the spectral radius of A.

A matrix A is a non-singular (resp. singular) M-matrix if A = sI − B with B ≥ 0
and s > ρ(B) (resp. s = ρ(B)). It is known that if A is a non-singular M-matrix, then 
aii > 0, aij ≤ 0 for i �= j, and A−1 ≥ 0.

Given a vector v = (vi) ∈ Rn, we denote by ‖v‖ the 1-norm of v, i.e., ‖v‖ =
∑n

i=1 |vi|, 
and we use ‖v‖∞ to indicate the infinity norm of v, that is, ‖v‖∞ = maxi |vi|. For a 
matrix A, we denote by ‖A‖∞ the norm induced by the infinity norm, that is, ‖A‖∞ =
maxj

∑n
i=1 |aij |.

2.1. Stochastic complement

Let P be an n ×n irreducible stochastic matrix, with stationary distribution vector π, 
i.e., πTP = πT and πT 1 = 1. Let P be partitioned into the 2 ×2 block matrix as in (1). 
Since P is irreducible, I − P11 and I − P22 are non-singular M-matrices. It is found in 
[31] that the matrices P1 and P2 in (2) are stochastic and irreducible. We call P1 (resp. 
P2) the stochastic complement of P11 (resp. P22) in P . The matrix P1 represents the 
transition matrix of the Markov chain obtained by censoring the states {m + 1, . . . , n}, 
while P2 represents the transition matrix of the Markov chain obtained by censoring the 
states {1, . . . , m}. This suggests the name “censored Markov chain”.

Let π be partitioned conformally with P so that πT =
[
πT

1 πT
2
]

where π1 ∈ Rm

and π2 ∈ Rn−m. Denoting by π̂i the stationary distribution vector of Pi, we have
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π̂i = 1
‖πi‖

πi, i = 1, 2.

Moreover, setting αi = ‖πi‖, we see that

πT = [α1π̂
T
1 , α2π̂

T
2 ], (3)

and the vector αT = [α1, α2] satisfies

αTS = αT , αT 1 = 1, S =
[
π̂T

1 P11 1m π̂T
1 P12 1n−m

π̂T
2 P21 1m π̂T

2 P22 1n−m

]
. (4)

That is, α is the stationary distribution vector of the aggregated matrix S, which is 
stochastic and irreducible.

2.2. Kemeny’s constant

Let P be the transition matrix of an ergodic, finite, discrete-time, time-homogeneous 
Markov chain. Kemeny’s constant of P , denoted by κ(P ), is the expected number of 
time steps required by the Markov chain to go from a given state i to a random state j, 
sampled according to the stationary distribution π. Kemeny’s constant has an algebraic 
characterization, in terms of the trace of a suitable matrix [21,34], as stated in the 
following.

Lemma 2.1. Let g, h ∈ Rn be vectors with hTg = 1, hT 1 �= 0, πTg �= 0. Then, I − P +
ghT is non-singular, and

κ(P ) = Tr(Z) − πTZ 1, (5)

where Z = (I − P + ghT )−1.

By choosing g = 1, we find that

κ(P ) = Tr(Z) − 1 where Z = (I − P + 1hT )−1. (6)

Let λ1 = 1, λ2, . . . , λn be the eigenvalues of P . Since P is irreducible, λ1 is simple. By 
the Brauer theorem [4], the eigenvalues 1 − λi of the matrix I − P coincide with the 
eigenvalues of I −P +1hT except for the eigenvalue 1 −λ1 = 0 which is mapped into 1. 
This fact enables us to express Kemeny’s constant in terms of the eigenvalues λi of P as

κ(P ) =
n∑

i=2

1
1 − λi

. (7)

Recall that given two square stochastic matrices A, B of the same size, the products 
AB and BA are stochastic as well and have the same characteristic polynomial, see [17, 
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Theorem 1.3.20]. So, their eigenvalues coincide and have the same algebraic multiplicities. 
Thus, it follows from (7) that

κ(AB) = κ(BA). (8)

A slightly different situation is encountered for non-square matrices. Suppose that A
and B are stochastic matrices of size m × n and n × m, respectively, where n > m. 
Then AB and BA are square stochastic matrices of size m ×m and n × n, respectively. 
Moreover, their nonzero eigenvalues coincide, thus we deduce from (7) that

κ(BA) = κ(AB) + n−m. (9)

2.3. Kemeny’s constant and graphs

A graph is a pair G = (V, E), where V is a finite set of vertices of cardinality |V | = n, 
and E is a set of pairs {i, j} where i, j ∈ V , called edges. A graph is weighted if it is 
equipped with a function a : E → R+ that associates a non-negative weight to each 
edge. For unweighted graphs, the weight of each edge is assumed to be equal to 1. The 
adjacency matrix of a graph on n vertices is the n × n matrix A = [aij ] such that aij is 
equal to the weight of edge {i, j} if {i, j} ∈ E, and zero otherwise.

Given a graph G, we can associate the Markov chain having transition matrix P =
D−1A, where D = diag(d), d = A 1, and A is the adjacency matrix of the graph. Here, 
we assume that di �= 0 for any i, that is there are no isolated vertices. The matrix P
describes a random walk on the graph G. We can then define Kemeny’s constant of the 
graph as κ(G) := κ(P ).

A graph is said to be bipartite if there exist disjoint sets of vertices V1 and V2, of 
cardinality m1 and m2, respectively, such that V = V1 ∪ V2, and the vertices in V1
as well as the vertices in V2 are connected by no edges. The adjacency matrix H of a 
bipartite graph can be partitioned into 4 blocks Hi,j, i, j = 1, 2 where H11 and H22 are 
the null square matrices of size m1, and m2, respectively. If the graph is unweighted 
complete bipartite then the blocks H12 and H21 of size m1 ×m2, m2 ×m1, respectively, 
have all the entries equal to 1.

3. Kemeny’s constant and stochastic complement

In this section we relate Kemeny’s constant of the transition matrix P in (1) to 
Kemeny’s constants of the stochastic complements (2). We begin with introducing the 
following preliminary result.

Lemma 3.1. Let P be the transition matrix given by (1), and let Z = (I − P + 1hT )−1

where h ∈ Rn with hT 1 = 1. Partition h conformally with P as hT =
[
hT

1 hT
2
]
. Then

Tr(Z) = Tr(Z1) + Tr(Z2) (10)
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where

Z1 = (I − P1 + σ−1
2 u1vT

1 )−1, Z2 = (I − P2 + σ−1
1 u2vT

2 )−1, (11)

and

u1 = 1m +P12(I − P22)−1 1n−m, u2 = 1n−m +P21(I − P11)−1 1m,

vT
1 = hT

1 + hT
2 (I − P22)−1P21, vT

2 = hT
2 + hT

1 (I − P11)−1P12,

σi = 1 + hT
i (I − Pii)−1 1 for i = 1, 2.

Proof. By partitioning Z conformally with P in (1), we find that

Z =
[
I − P11 + 1m hT

1 −P12 + 1m hT
2

−P21 + 1n−m hT
1 I − P22 + 1n−m hT

2

]−1

.

We shall omit the subscripts of all ones vectors. Then

Z =
[
Z1 ∗
∗ Z2

]
,

where

Z1 =
(
I − P11 + 1hT

1 − (P12 − 1hT
2 )(I − P22 + 1hT

2 )−1(P21 − 1hT
1 )

)−1
,

Z2 =
(
I − P22 + 1hT

2 − (P21 − 1hT
1 )(I − P11 + 1hT

1 )−1(P12 − 1hT
2 )

)−1
,

(12)

and ∗ denotes a generic entry. In particular, Tr(Z) = Tr(Z1) + Tr(Z2). By using the 
Sherman–Morrison formula, we find that

(I − P22 + 1hT
2 )−1 = (I − P22)−1 − σ−1

2 (I − P22)−1 1hT
2 (I − P22)−1,

where σ2 = 1 + hT
2 (I − P22)−1 1. Let r1 = (I − P22)−11 and rT2 = hT

2 (I − P22)−1. 
Replacing this expression in the first formula in (12) yields

Z−1
1 = I − P1 + 1

((
1 − rT2 1 + σ−1

2 (rT2 1)(rT2 1)
)
hT

1 + (1 − σ−1
2 rT2 1)rT2 P21

)
+ P12r1

(
σ−1

2 rT2 P21 + (1 − σ−1
2 rT2 1)hT

1
)
.

Since σ2 = 1 + rT2 1, we obtain the formula for Z1 in (11). We proceed similarly for 
Z2. �

Observe that the vectors v1 and v2 in Lemma 3.1 depend on the vector h that can be 
chosen arbitrarily under the condition hT 1 = 1. In the next proposition we show that h
can be chosen with v1 = π̂1 and v2 = π̂2. This choice will allow us to express Kemeny’s 
constant of P in terms of Kemeny’s constant of the stochastic complements P1 and P2, 
which will be shown in Theorem 3.3.
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Proposition 3.2. There exist vectors h1 ∈ Rm and h2 ∈ Rn−m such that

hT
1 + hT

2 (I − P22)−1P21 = π̂T
1 ,

hT
2 + hT

1 (I − P11)−1P12 = π̂T
2 ,

(13)

and hT
1 1m +hT

2 1n−m = 1.

Proof. Observe that (13) is equivalent to

hT
1
(
I − (I − P11)−1P12(I − P22)−1P21

)
= π̂T

1 − π̂T
2 (I − P22)−1P21,

hT
2 = π̂T

2 − hT
1 (I − P11)−1P12.

(14)

Since the matrix T = (I − P11)−1P12(I − P22)−1P21 is stochastic, the vector 1m is 
orthogonal to the rows of I − T . On the other hand, since (I − P22)−1P21 is stochastic 
and π̂T

1 1m = π̂T
2 1n−m = 1, the vector 1m is orthogonal to the right-hand side of the 

first equation in (14). Hence, the system has a solution by the Rouché–Capelli Theorem 
[17, Section 0.2.4]. If h1 is a solution, then h2 can be recovered from the second equation 
in (14). By multiplying to the right by 1m the first equation in (13), we find that 
hT

1 1m +hT
2 1n−m = 1. �

Proposition 3.2, together with Equation (10) and Lemma 2.1, implies the following 
result.

Theorem 3.3. Let P be a stochastic irreducible matrix, partitioned as in (1), and denote 
by P1 and P2 the stochastic complements (2). Then

κ(P ) = κ(P1) + κ(P2) + γ, (15)

where

γ =
[
π̂T

1 −π̂T
2
]
(I − P + uvT )−1

[
‖π2‖1
−‖π1‖1

]
, (16)

and u, v ∈ Cn are any vectors such that vT 1 �= 0 and πTu �= 0.

Proof. From (6), κ(P ) = Tr(Z) − 1, where Z = (I − P + 1hT )−1 and h is a vector 
such that hT 1 = 1. Partition h as hT = [hT

1 , hT
2 ], where h1 and h2 satisfy (13). We 

shall maintain the same notation in Lemma 3.1. Then vT
1 = π̂T

1 and vT
2 = π̂T

2 . Since 
π̂T

1 (I − P1) = 0, the eigenvalues of I − P1 + σ−1
2 u1π̂

T
1 are the eigenvalues of I − P1, 

except for the eigenvalue equal to zero, which is replaced by σ−1
2 π̂T

1 u1. Similarly, the 
eigenvalues of I −P2 + σ−1

1 u2π̂
T
2 are the eigenvalues of I −P2, except for the eigenvalue 

equal to zero, which is replaced by σ−1
1 π̂T

2 u2. In view of (10), Tr(Z) = Tr(Z1) + Tr(Z2). 
From the expression of u1 in Lemma 3.1, we find that
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π̂T
1 u1 = 1 + π̂T

1 P12(I − P22)−1 1n−m = 1 + πT
2 1n−m

‖π1‖
= 1 + ‖π2‖

‖π1‖
= 1

‖π1‖
.

Hence, Tr(Z1) = κ(P1) + σ2‖π1‖. Similarly, π̂T
2 u2 = 1

‖π2‖ and so Tr(Z2) = κ(P2) +
σ1‖π2‖. Since Tr(Z) = κ(P1) +κ(P2) +σ2‖π1‖+σ1‖π2‖, we have κ(P ) = κ(P1) +κ(P2) +γ

where γ = σ2‖π1‖ + σ1‖π2‖ − 1.
Set kT

i = hT
i (I − Pii)−1, i = 1, 2. Then

γ = ‖π1‖kT
2 1+‖π2‖kT

1 1 .

We find from (13) that k1 and k2 solve the linear system

[
kT

1 −kT
2
] [I − P11 −P12

−P21 I − P22

]
=

[
π̂T

1 −π̂T
2
]
. (17)

Since (I − P ) 1 = 0 and πT (I − P ) = 0, this system is consistent. According to [21, 
Theorem 2], a solution of such a system is[

kT
1 −kT

2
]

=
[
π̂T

1 −π̂T
2
]
Ẑ

where Ẑ = (I − P + uvT )−1, and u, v ∈ Cn are such that vT 1 �= 0 and πTu �= 0. 
Therefore we arrive at (16). �

By choosing u = 1 and v = π, we have

(I − P + 1πT )−1
[

‖π2‖1
−‖π1‖1

]
=

⎛⎝I +
∞∑
j=1

(P j − 1πT )

⎞⎠[
‖π2‖1
−‖π1‖1

]

=
∞∑
j=1

(
P j

[
‖π2‖1
−‖π1‖1

])

therefore

γ =
∞∑
j=1

([
π̂T

1 −π̂T
2
]
P j

[
‖π2‖1
−‖π1‖1

])
.

By partitioning P j according to the partitioning of P , we have

P j =
[
P

(j)
11 P

(j)
12

P
(j)
21 P

(j)
22

]
.

Since P j 1 = 1, we find that

[
π̂T

1 −π̂T
2
]
P j

[
‖π2‖1
−‖π ‖1

]
= π̂T

1 P
(j)
11 1+π̂T

2 P
(j)
22 1−1 = −λ

(j)
2 ,
1



D.A. Bini et al. / Linear Algebra and its Applications 703 (2024) 137–162 145
where λ(j)
2 is the eigenvalue different from 1 of the 2 × 2 aggregated matrix[

π̂T
1 P

(j)
11 1 π̂T

1 P
(j)
12 1

π̂T
2 P

(j)
21 1 π̂T

2 P
(j)
22 1

]
.

Since πT (I − P + 1πT )−1 = πT , (I − P + 1πT )−1 1 = 1, and πT 1 = 1 we may 
conclude that

γ =
(
rπT +

[
π̂T

1 −π̂T
2
])

(I − P + 1πT )−1
(
s1+

[
‖π2‖1
−‖π1‖1

])
− rs,

for any scalars r and s. Other expressions for γ are stated by the following:

Proposition 3.4. We have

γ = ‖π1‖θ − ‖π2‖, (18)

where θ has one of the following equivalent expressions

θ =
[
0T π̂T

2
](

I − P +
[
1
0

] [
π̂T

1 0T
])−1 [0

1

]
(19)

= π̂T
2

(
I + (I − P22)−1P21(I − P1 + 1 π̂T

1 )−1P12

)
(I − P22)−1 1 (20)

= π̂T
2

(
I − P22 − P21(I − P11 + 1 π̂T

1 )−1P12

)−1
1 (21)

= π̂T
2

(
I − P2 + 1

1 + π̂T
1 S 1

P21S 1 π̂T
1 SP12

)−1

1, S = (I − P11)−1. (22)

Proof. From (16), by choosing uT =
[
1T 0T

]
and vT =

[
πT

1 0T
]
, and by observing 

that Ẑu = 1 and vT Ẑ = πT , where Ẑ = (I − P + uvT )−1, we arrive at (18), with θ
given in (19). The remaining expressions are obtained by applying formal manipulations 
to (19) and properties of Schur complements. �
4. Application of Theorem 3.3

Here we apply the main result of the previous section to structured stochastic matrices.

4.1. Periodic Markov chains

Let P be the transition matrix of an ergodic Markov chain with n states. The period pi
of state i is the greatest common divisor of all natural numbers m such that (Pm)i,i > 0. 
A Markov chain is called periodic if pi ≥ 2 for all 1 ≤ i ≤ n, and it is called aperiodic
otherwise. The period of a periodic Markov chain is the greatest common divisor of 



146 D.A. Bini et al. / Linear Algebra and its Applications 703 (2024) 137–162
periods of all states. It is well-known that if the Markov chain is periodic, then P is 
permutationally similar to a block-cyclic matrix (see [8]).

Given a periodic Markov chain with n states and period d, we may assume that the 
transition matrix P is given by

P =
[
P11 P12
P21 P22

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 Ad

A1 0
. . . . . . 0

0 A2
. . . . . .

...
...

. . . . . . 0
...

0 . . . 0 Ad−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

where all block diagonal matrices are square and each of Ai’s is a rectangular stochastic 
matrix. Let ni be the size of ith block diagonal matrix of P for i = 1, . . . , d. A set of 
the states corresponding to a block diagonal matrix is called a cyclic class. The cyclicity 
index is the number of cyclic classes. One can find that each of

AdAd−1 · · ·A1, A1Ad · · ·A2, . . . , Ad−1 · · ·A1Ad (24)

is a square stochastic matrix and its corresponding Markov chain is aperiodic. It can be 
seen that

(I − P22)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0

A2 I
...

...
A3A2 A3 · · · 0 0

...
... I 0

Ad−1 · · ·A3A2 Ad−1 · · ·A4A3 Ad−1 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

It is immediate to find that the stochastic complements P1 and P2 of P11 and P22 are, 
respectively,

P1 = AdAd−1 · · ·A1, P2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0 A1Ad

A2 0
. . . . . . 0

0 A3
. . . . . .

...
...

. . . . . . 0
...

0 . . . 0 Ad−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (26)

We note that the censored Markov chain for P2 is periodic.

Proposition 4.1. Let P be the transition matrix of a periodic Markov chain. Suppose that 
P is of form (23). Then
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κ(P ) = κ(P1) + κ(P2) + 1
2

where P1 and P2 are given in (26).

Proof. It suffices to show that γ in (15) is 1
2 . In order to find γ, we shall find the value 

of θ introduced in Equation (18). From (19), we may look at θ as the sum of two terms 
θ1 and θ2, where

θ1 = π̂T
2 (I − P22)−1 1,

θ2 = π̂T
2 (I − P22)−1P21(I − P1 + 1 π̂T

1 )−1P12(I − P22)−1 1 .

We first find expressions of π̂T
2 and (I − P22)−1 1. Let

πT = [sT1 , sT2 , . . . , sTd ]

be conformally partitioned with P and be the stationary distribution vector. From the 
condition πTP = πT , we have sTi = sTi+1 Ai, i = 1, . . . , d − 1, and sTd = sT1 Ad. Then

sT2 = sT1 AdAd−1 · · ·A2, sT3 = sT1 AdAd−1 · · ·A3, . . . , sTd−1 = sT1 AdAd−1.

Moreover, since Ai 1 = 1, it follows that sTi 1 = sTi+1 1 and sTd 1 = sT1 1. Hence, ‖ sj ‖ = 1
d

for 1 ≤ j ≤ d. Note that π1 = s1. Therefore,

πT = 1
d

[
π̂T

1 π̂T
1 (AdAd−1 · · ·A2) π̂T

1 (AdAd−1 · · ·A3) · · · π̂T
1 Ad

]
,

whence

π̂T
2 = 1

d− 1
[
π̂T

1 (AdAd−1 · · ·A2) π̂T
1 (AdAd−1 · · ·A3) · · · π̂T

1 Ad

]
. (27)

Observing (I − P22)−1 in (25), we have

(I − P22)−1 1 =
[
1T 21T · · · (d− 1)1T

]T
,

P12(I − P22)−1 1 = (d− 1)1,

(I − P22)−1P21 1 = 1 .

(28)

By using the expression of π̂2 in (27) and the expression of (I − P22)−1 1 in (28)
together with the property Ai 1 = 1, we find that

θ1 = 1
d− 1

d−1∑
iπ̂T

1 1 = 1
2d.
i=1
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Note that since (I −P1 + 1 π̂T
1 ) 1 = 1, we have (I −P1 + 1 π̂T

1 )−1 1 = 1. Concerning θ2, 
we find from (28) that

θ2 = π̂T
2 (I − P22)−1P21(I − P1 + 1 π̂T

1 )−1P12(I − P22)−1 1 = d− 1.

Thus, θ = θ1 + θ2 = 3
2d − 1 and therefore γ = ‖π1‖θ − ‖π2‖ = 1

2 . �
Theorem 4.2. Let P be the transition matrix of a periodic Markov chain. Suppose that 
P is of form (23). Then

κ(P ) = dκ(AdAd−1 · · ·A1) + n− dn1 + d− 1
2 . (29)

Moreover, if n1 = · · · = nd then

κ(P ) = dκ(AdAd−1 · · ·A1) + d− 1
2 . (30)

Proof. Consider P2 in (26) with d ≥ 3. Note that the Markov chain corresponding to P2
is periodic. Applying Proposition 4.1, we find that

κ(P2) = κ(A1AdAd−1 · · ·A2) + κ(P3) + 1
2 ,

where

P3 =

⎡⎢⎢⎢⎢⎣
0 . . . 0 A2A1Ad

A3
. . . . . . 0
. . . . . .

...
0 Ad−1 0

⎤⎥⎥⎥⎥⎦ .

Hence, κ(P ) = κ(AdAd−1 · · ·A1) + κ(A1AdAd−1 · · ·A2) + κ(P3) + 1. If d ≥ 4, one can 
apply the proposition to P3 with the partition. In this manner, recursively applying the 
proposition, we obtain

κ(P ) = κ(AdAd−1 · · ·A1) + κ(A1AdAd−1 · · ·A2) + · · ·

+ κ(Ad−1Ad−2 · · ·A1Ad) + d− 1
2 .

Recall that Ai is of size ni+1 × ni for 1 ≤ i ≤ d − 1 and Ad is of size n1 × nd. Note 
that Ai−1Ak−2 · · ·A1AdAd−1 · · ·Ai is of size ni × ni for 1 ≤ i ≤ d. From (9), we obtain

κ(Ak−1Ak−2 · · ·A1AdAd−1 · · ·Ak) = κ(Ak−2Ak−3 · · ·A1AdAd−1 · · ·Ak−1)

+ nk − nk−1
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for 2 ≤ k ≤ d. It follows that

κ(AdAd−1 · · ·A1) + · · · + κ(Ad−2 · · ·A1AdAd−1) + κ(Ad−1 · · ·A1Ad)

= dκ(AdAd−1 · · ·A1) + (d− 1)(n2 − n1) + · · ·
+ 2(nd−1 − nd−2) + nd − nd−1 = dκ(AdAd−1 · · ·A1) + n− dn1. �

Remark 4.3. The characteristic polynomials of the matrices P in (23) and P1 =
AdAd−1 · · ·A1 are related by the equation det(λI − P ) = λ� det(λdI − P1), where 
	 = n − dn1. Therefore, from the computational point of view, if the eigenvalues of 
P1 are explicitly known, then also the eigenvalues of P are explicitly known and we can 
recover κ(P ) from (7). On the other hand, if the eigenvalues of P1 are not known, but 
the value of κ(P1) is available, then Kemeny’s constant of P can be directly obtained 
from (29).

Example 4.4. A collection of random walks on undirected graphs is one of the most 
accessible families of Markov chains. If a random walk is periodic, then the underlying 
graph is necessarily bipartite. Let P be an irreducible stochastic matrix with the structure

P =
[

0 P12
P21 0

]
where P12 and P21 have size n1 × n2 and n2 × n1, respectively. Then

κ(P ) = 2κ(P1) − n1 + n2 + 1
2 , (31)

where P1 = P12P21.

Example 4.5. Consider the transition matrix P in (23). Suppose that for i = 1, . . . , d, Ai

is the matrix with all entries equal to 1
ni

. Then AdAd−1 · · ·A1 is the n1×n1 matrix with 
all entries equal to 1

n1
. Since κ(AdAd−1 · · ·A1) = n1 − 1, we have

κ(P ) = n− d + 1
2 .

Now we provide a lower bound on Kemeny’s constant of a periodic Markov chain.

Corollary 4.6. Let P be the transition matrix of a periodic Markov chain. Suppose that 
P = [pxy] is of form (23) with n1 ≤ ni for 1 ≤ i ≤ d. Then

κ(P ) ≥ n− dn1 + 1
2 ,

with equality when pxy is given as in (32).
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Proof. From (29), κ(P ) = dκ(AdAd−1 · · ·A1) + n − dn1 + d−1
2 . It is known in [26, Re-

mark 2.14] that given an m × m irreducible stochastic matrix P , κ(P ) ≥ m−1
2 with 

equality if and only if P is the adjacency matrix of a directed m-cycle. Hence, it is 
enough to find a periodic Markov chain such that AdAd−1 · · ·A1 is the adjacency matrix 
of a directed n1-cycle.

Note that n1 ≤ ni for 1 ≤ i ≤ d. We may suppose that for j = 1, . . . , d, the cyclic class 
corresponding to jth block diagonal matrix of P = [pxy] is partitioned into n1 subsets 
Cj

1 , . . . , C
j
n1

. Let pxy be given as follows:

pxy =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
|Cd

� |
, if x ∈ C1

� and y ∈ Cd
� for 1 ≤ 	 ≤ n1;

1
|Cj−1

� | , if x ∈ Cj
� and y ∈ Cj−1

� for 1 ≤ 	 ≤ n1 and 3 ≤ j ≤ d;

1, if x ∈ C2
� and y ∈ C1

�−1 for 2 ≤ 	 ≤ n1, or x ∈ C2
1 and y ∈ C1

n1
;

0, otherwise.

(32)

It can be seen that AdAd−1 · · ·A1 is the adjacency matrix of a directed n1-cycle, which 
completes the proof. �
4.2. Kronecker product of stochastic matrices

Given stochastic matrices A and B, A ⊗ B is also stochastic where ⊗ denotes the 
Kronecker product. We will provide an expression of Kemeny’s constant of A ⊗B after 
applying Theorem 3.3.

Partition P = A ⊗B as follows:

P =
[
P11 P12
P21 P22

]
=

⎡⎢⎢⎢⎢⎣
a11B a12B . . . a1nB

a21B
... A1 ⊗B

an1B

⎤⎥⎥⎥⎥⎦ . (33)

We use ei to denote the vector with a 1 in the ith entry and zeros elsewhere. We have 
the following

Proposition 4.7. Let A = [aij ] and B be stochastic matrices with stationary distribution 
vectors x = (xi) and y, respectively. Let P = A ⊗B. Then

κ(P ) = κ(P1) + κ(P2) + 1
1 − x1

(eT1 (I −A + 1xT )−1e1 − x1),

where P1 and P2 are the stochastic complements in (33) of P11 and P22, respectively.

Proof. Let A = [aij ] and B be matrices of size n ×n and m ×m, respectively. It suffices 
to provide an explicit expression for γ in Theorem 3.3.
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Let x = (xi) ∈ Rn and y ∈ Rm be the stationary distribution vector for A and B, 
respectively. Then xTA = xT , yTB = yT and xT 1 = yT 1 = 1. Let πT =

[
πT

1 πT
2
]

be conformally partitioned with P and be the stationary distribution vector for P . Since 
π = x⊗y, we have π1 = x1y and π2 = (x2, . . . , xn) ⊗y. So, ‖π1‖ = x1 and ‖π2‖ = 1 −x1.

Set q = mn −m. Consider[
‖π2‖1m

−‖π1‖1q

]
= −‖π1‖

[
1m

1q

]
+

[
1m

0q

]
.

Then

(I − P + 1πT )−1
[
‖π2‖1m

−‖π1‖1q

]
= −‖π1‖

[
1m

1q

]
+ (I − P + 1πT )−1(e1 ⊗ 1m). (34)

We claim that

(I − P + 1πT )−1(e1 ⊗ 1m) = z ⊗ 1m

where z = (I −A + 1n xT )−1e1. Consider

(I −A⊗B + 1(x ⊗ y)T )(z ⊗ 1m) = e1 ⊗ 1m .

This system has the form

(z ⊗ 1m) − (A⊗B)(z ⊗ 1m) + (1n ⊗1m)(x ⊗ y)T (z ⊗ 1m) = (e1 ⊗ 1m).

This implies that

(z −Az + (1n xT )z − e1) ⊗ 1m = 0.

Hence, our desired claim is established.
Now, applying (34) together with the claim to the expression of γ given in Theo-

rem 3.3, we obtain

γ =
[
π̂T

1 −π̂T
2
]
(I − P + 1πT )−1

[
‖π2‖1m

−‖π1‖1q

]
=

[
π̂T

1 −π̂T
2
]
(−‖π1‖1+z ⊗ 1m)

=(
[
1 − 1

1−‖π1‖ (x2, . . . , xn)
]
⊗ yT )(z ⊗ 1m)

= 1
1 − x1

[1 − x1 −x2 . . . −xn ] z

= 1
1 − x1

(e1 − x)T (I −A + 1n xT )−1e1

= 1 (eT1 (I −A + 1n xT )−1e1 − x1).
1 − x1
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Therefore, we obtain the desired result. �
4.3. Sub-stochastic matrices with constant row sums

Here is the result of this subsection.

Proposition 4.8. Let

P =
[
P11 P12
P21 P22

]
,

be an irreducible stochastic matrix, where P11 1 = r1 1 and P22 1 = r2 1 for some 0 ≤
r1, r2 < 1. Denote by P1 and P2 the stochastic complements of P11 and P22, respectively. 
Then

‖π1‖ = 1 − r2
2 − r1 − r2

, ‖π2‖ = 1 − r1
2 − r1 − r2

,

κ(P ) = κ(P1) + κ(P2) + 1
2 − r1 − r2

.

Proof. Note that P12 1 = (1 − r1) 1 and P21 1 = (1 − r2) 1. From (19),

θ = π̂T
2 (I − P22)−1 1+π̂T

2 (I − P22)−1P21(I − P1 + 1 π̂T
1 )−1P12(I − P22)−1 1

= 1
1 − r2

+ 1 − r1
1 − r2

= 2 − r1
1 − r2

.

On the other hand, we find from (4) that the aggregated matrix S is given by

S =
[

r1 1 − r1
1 − r2 r2

]
,

and so α1 = ‖π1‖ = (1 − r2)/(2 − r1 − r2), α2 = ‖π2‖ = (1 − r1)/(2 − r1 − r2), and 
‖π1‖(1 + θ) = (3 − r1 − r2)/(2 − r1 − r2). Whence, in view of (15) and (18), we deduce 
that

κ(P ) = κ(P1) + κ(P2) + 1
2 − r1 − r2

. �

5. Some bounds

Assume we are given the values of κ(P1) and κ(P2). According to Equation (15), we 
can provide lower and upper bounds to the value of κ(P ) once we are given bounds to 
the constant γ. In order to do this, we need to determine upper and lower bounds to the 
value of ‖π1‖.
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From the equation πTP = πT we find that

πT
1 = πT

2 P21(I − P11)−1, πT
2 = πT

1 P12(I − P22)−1.

Taking the infinity norms of both sides and using the identity ‖xT‖∞ = ‖x‖1, we obtain

‖π1‖ ≤ ‖π2‖ ‖P21‖∞‖(I − P11)−1‖∞ ≤ ‖π2‖
‖P21‖∞

1 − ‖P11‖∞
,

where the latter inequality is valid if ‖P11‖∞ < 1. A similar inequality can be obtained 
for ‖π2‖. Combining both inequalities, under the assumption ‖P11‖∞, ‖P22‖∞ < 1, we 
get

1 − ‖P22‖∞
‖P12‖∞

≤ ‖π1‖
‖π2‖

≤ ‖P21‖∞
1 − ‖P11‖∞

.

Moreover, since ‖π2‖ = 1 − ‖π1‖, we obtain

1 − ‖P22‖∞
1 − ‖P22‖∞ + ‖P12‖∞

≤ ‖π1‖ ≤ ‖P21‖∞
1 − ‖P11‖∞ + ‖P21‖∞

. (35)

Since the matrix P is known, the above bounds can be actually computed at a low 
computational cost.

Now a bound to the constant γ can be obtained by relying on Equation (18) coupled 
with (19) (one can use (21) or (20)). From (18), γ = (1 + θ)‖π1‖ − 1. We see from (35)
that, if 1 + θ ≥ 0, then

(θ + 1) 1 − ‖P22‖∞
1 − ‖P22‖∞ + ‖P12‖∞

− 1 ≤ γ ≤ (θ + 1) ‖P21‖∞
1 − ‖P11‖∞ + ‖P21‖∞

− 1.

A similar inequality holds if 1 + θ < 0.
Note that ‖(I − P22)−1P21‖∞ = 1. Concerning θ, it follows from (19) that

θ ≤ ‖(I − P22)−1‖∞
(
1 + ‖P12‖∞‖(I − P1 + 1 π̂T

1 )−1‖∞
)
. (36)

The upper bound to γ is expressed in terms of (I − P22)−1, (I − P1 + 1 π̂T
1 )−1 and the 

norms of the blocks Pij .
For another bound on γ, consider the expression of γ in Theorem 3.3, i.e.,

γ =
[
π̂T

1 −π̂T
2
]
(I − P + 1πT )−1

[
||π2‖1
−‖π1‖1

]
.

Taking the infinity norm of both sides in the above equation yields

|γ| ≤ 2‖(I − P + 1πT )−1‖∞ max(‖π1‖, 1 − ‖π1‖).
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5.1. A perturbation result

Let P be an n ×n stochastic and irreducible matrix, and E be n ×n matrix such that 
E 1 = 0. Let ε > 0. Then (P + εE) 1 = 1. Assume that P (ε) := P + εE is stochastic and 
‖E‖∞ ≤ 1.

Here, our goal is to relate κ(P (ε)) and κ(P ). We have

κ(P (ε)) = Tr((I − P (ε) + 1hT )−1), κ(P ) = Tr((I − P + 1hT )−1),

where h is any vector such that hT 1 = 1. By subtracting both sides of the above 
equations we get

κ(P (ε)) − κ(P ) = Tr((I − P (ε) + 1hT )−1(P (ε) − P )(I − P + 1hT )−1).

Neglecting O(ε2) terms, we obtain

κ(P (ε)) − κ(P ) = εTr((I − P + 1hT )−1E(I − P + 1hT )−1)

= εTr((I − P + 1hT )−2E) + O(ε2).

This estimate can be also deduced as a specific case of [7, Lemma 3.2].
From the Cauchy–Schwarz inequality, we have Tr(AB) ≤ ‖A‖F ‖B‖F , where ‖ · ‖F is 

the Frobenius norm. It follows that

|κ(P (ε)) − κ(P )| ≤ ε‖(I − P + 1hT )−2‖F ‖E‖F + O(ε2). (37)

Combining the above bound with Example 4.4 yields the following result that concerns 
Kemeny’s constant of a matrix associated with an almost bipartite graph.

Corollary 5.1. Let P be the stochastic matrix defined in Example 4.4 and E be a matrix 
such that E 1 = 0 and ‖E‖∞ ≤ 1. Set P (ε) = P + εE and assume that P (ε) is stochastic 
in a neighborhood of 0. Then, up to within O(ε2) terms we have∣∣∣∣κ(P (ε)) − κ(P1) − κ(P2) −

1
2

∣∣∣∣ ≤ ε‖(I − P + 1hT )−2‖F ‖E‖F + O(ε2),

where h is any vector such that hT 1 = 1

Similar bounds can be obtained for the “stochastic” perturbation of a cyclic matrix 
having arbitrary cyclicity index and for the perturbation of the Kronecker product of 
two stochastic matrices.

Analogously, we may provide a “perturbed version” of Proposition 4.8 obtained by 
combining Proposition 4.8 itself with Equation (37).
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6. A divide-and-conquer algorithm

We can use the analysis done in Section 3 to construct a divide-and-conquer algorithm 
for computing Kemeny’s constant of a stochastic sparse matrix P . In fact, it is sufficient 
to identify a partitioning of the form (1) to start a recursion procedure. This procedure 
employs Theorem 3.3 to express κ(P ) in terms of κ(P1) and κ(P2) of the censored chains 
and the γ, where P1 and P2 are the stochastic complements. Algorithm 1 compactly 
describes the entire procedure in a recursive formulation.

Algorithm 1: Divide-and-conquer algorithm for the computation of Kemeny’s con-
stant.

1 Kemeny(P ,π) /* Implementation as a recursive function */
Input: Stochastic matrix P , stationary distribution vector π, an integer n0 > 0.
Output: Kemeny’s constant κ(P ) of P .

2 /* In the following the ← means variable assignment while the = are used to define 
shorthand. */

3 n ← size(P );
4 if n < n0 then
5 κ(P ) ← Tr

(
(I − P + 11

T/n)−1) − 1;
6 return
7 else
8 m ← �n/2�;
9 P11 = P (1 : m, 1 : m); /* Block structure */

10 P12 = P (1 : m, m + 1 : n);
11 P21 = P (m + 1 : n, 1 : m);
12 P22 = P (m + 1 : n, m + 1 : n);
13 π1 = π(1 : m);
14 π2 = π(m + 1 : n);
15 π̂i ← 1

‖πi‖πi, i = 1, 2;
16 /* Remark: we can compute the LU factorization of I − P22 once and reuse it. */
17 P1 ← P11 + P12(I − P22)−1P21; /* stochastic complements */
18 P2 ← P22 + P21(I − P11)−1P12;
19 x ← (I − P22)−1 1; /* Computation of θ using (19) */
20 y ← (I − P1 + 1 π̂T

1 )−1(P12x);
21 y ← (I − P22)−1(P21y);
22 θ ← π̂T

2 (x + y);
23 γ ← ‖π1‖θ − ‖π2‖; /* Compute correction as in (18) */
24 κ(P1) ← Kemeny(P1,π̂1); /* Recursion */
25 κ(P2) ← Kemeny(P2,π̂2); /* Recursion */
26 κ(P ) ← κ(P1) + κ(P2) + γ;
27 return

To effectively apply this strategy, it is crucial to efficiently address several compu-
tational subproblems. Let us set aside the computation of the stationary distribution 
vector π for the starting chain P , which is the essential component required to initiate 
the entire procedure (to this regard, for large-scale problems, the algorithms proposed 
in [13] might be used). The most significant part of the computation lies in the solution 
of the linear systems to lines 17–21 of Algorithm 1.

Let us focus on the solution of the following systems:

(I − Pii)x = b, i = 1, 2,
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where we further assume that the block matrices {Pii}2
i=1 can benefit from sparse stor-

age. By construction, the blocks Pii, i = 1, 2 are sub-stochastic, i.e., (Pii)p,q ≥ 0 for 
all p, q, and Pii 1 ≤ 1, Pii 1 �= 1. Since P is irreducible, the matrices I − Pii, i = 1, 2, 
are non-singular M-matrices. This property allows us to resort to different efficient iter-
ative strategies for the solution of the systems involved. Since in general matrices will 
be non-symmetric, one can consider using GMRES [33, Section 6.5] or BiCGstab [33, 
Section 7.4.2] for solving the different linear systems. (In any case it will be necessary to 
have a preconditioner available to accelerate the convergence of the Krylov method in 
question.) Since we are working with M-matrices, a natural choice is to use incomplete 
factorizations. Specifically, we can use Incomplete LU factorizations (ILU), that is, we 
can approximate the matrices as

I − Pii = L̃iŨi + Ri ≈ L̃iŨi i = 1, 2,

with the residual matrix Ri satisfying certain constraints, such as having zero entries in 
some prescribed locations–either static, determined on the base of the natural occurring 
fill-in during the computation, or via thresholding on their entries. For M-matrices, 
the existence of such objects is guaranteed by the fact that Gaussian elimination and 
non-diagonal dropping of the entries preserves the property of being a non singular M-
matrix–see [15] for the original proof or [33, Theorem 10.1] for a modern explanation. 
Similarly, to precondition the system on the line 20 of the algorithm that contains the 
matrix P1, we can consider an incomplete factorization of an approximation of the matrix 
I − P1, namely,

I − P1 = I − P11 − P12(I − P22)−1P21

≈ I − P11 − P12(diag(I − P22))−1P21 ≈ L̃3Ũ3,

where diag(I − P22) is the diagonal matrix formed by the diagonal entries of I − P22. 
It is known that the computation of LU factorization, incomplete or not, benefits from 
the reordering of the entries of the matrix itself, see, e.g., [2]. Furthermore, as seen in 
Proposition 4.8, the closer a matrix is to block diagonal after appropriate permutation, 
the easier the global calculation will be. Since the off-diagonal matrices in the block 
decomposition (1) will be made up of a few nonzero elements, the natural choice for 
the permutation algorithm is to use Nested Dissection permutation algorithm [20]; an 
example of the application of this algorithm is given in Fig. 1, from which we observe 
that the resulting matrix has the desired “quasi block-diagonal” structure. We want 
to underline that this initial permutation step would also be advisable if one wants to 
obtain Kemeny’s constant directly from the expression (6), since the related effect of 
this choice is also that of a permutation which is fill-reducing for the computation of 
LU factorization of sparse matrices, a step needed for the efficient computation of the 
matrix inverse in (6).
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Fig. 1. Application of the Nested Dissection algorithm from [20] to the Gaertner/nopoly matrix from the
SuiteSparse Matrix Collection (formerly the University of Florida Sparse Matrix Collection) [12].

6.1. Low-precision randomized approximation

We note that since we want to solve intermediate linear systems using an iterative 
method, what we are actually calculating is an approximation of Kemeny’s constant. 
For this reason, it makes sense to consider randomized algorithms for the direct approx-
imation of (6) through the trace of a matrix. Such approaches have been also used for 
instance in [30], for reversible Markov chains, and in [35], for Markov chains modeling a 
random walk on an undirected graph. We consider here the application of the Hutch++
algorithm [32], which is a straightforward improvement on the Hutchinson estimator [18]
used in [35]. In our case this means having an oracle that computes

y = (I − P + 1hT )−1x ≡ Ax, h = 1/n. (38)

Then the following results give us the number of oracle calls, i.e., linear system solutions, 
we have to approximate Tr

(
(I − P + 1hT )−1) within a given tolerance.

Theorem 6.1 ([32, Theorem 1]). If Hutch++ is implemented with 	 = O(
√

log(1/δ)/ε +
log(1/δ)) matrix-vector multiplication queries, then for any positive semidefinite matrix 
A, with probability ≥ 1 − δ, the output of Hutch++(A) satisfies

(1 − ε) Tr(A) ≤ Hutch++(A) ≤ (1 + ε) Tr(A).
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Similarly to what was done for the solution of linear systems in the divide-and-conquer 
algorithm, we can use the PCG with an Incomplete Cholesky preconditioner calculated 
on I − P , i.e.,

A ≈ L̃−T

(
I − 1

1 + (hT L̃−T )(L̃−1 1)
(L̃−1 1)(hT L̃−T )

)
L̃−1,

as an oracle for the calculation of the products Ax necessary for Hutch++. We point out 
that the Hutch++ algorithm works under the assumption that the matrix of which we 
approximate the trace is symmetric positive semidefinite, and this assumption is verified 
for Markov chains modeling a random walk on an undirected graph.

6.2. Numerical examples

This section contains some numerical examples in which the performance of the al-
gorithms obtained starting from the theoretical analysis is analyzed. All experiments 
are reproducible starting from the code contained in the repository github.com/Cirdans-
Home/Kemeny-and-Conquer. All experiments are performed on a vertex of the Toeplitz 
cluster at the University of Pisa equipped with an Intel® Xeon® CPU E5-2650 v4 at 
2.20 GHz and 250 Gb of RAM, using MATLAB 9.10.0.1602886 (R2021a). The Markov 
chains used in the examples are built employing matrices from the SuiteSparse Matrix 
Collection (formerly the University of Florida Sparse Matrix Collection) [12]. Specifi-
cally, we build the probability transition matrix P from irreducible adjacency matrices 
A as

P = diag(Â1)−1Â,

for Â the matrix obtained from A with all weights set to 1. For the low-precision ran-
domized case we use instead

P = diag(Â1)−1/2Âdiag(Â1)−1/2,

for cases with A = AT , i.e., the graph is undirected. All the relative errors in the following 
experiments are computed with respect to Kemeny’s constant obtained directly, i.e., 
applying (6) by computing the whole matrix inverse.

6.2.1. Low-precision randomized approximation
We first focus on using randomized estimators from Section 6.1 for the trace of a 

matrix. Table 1 contains the estimates obtained using Hutch++ with the parameters 
(δ, ε) of Theorem 6.1 chosen as δ = 1/4, and ε = 10−1, i.e., we use a set of l = 13
random sample vectors. As an internal solver for the oracle calculation we use the PCG 
preconditioned with an ICHOL(0), i.e., such as to preserve the sparsity pattern of the 

https://github.com/Cirdans-Home/Kemeny-and-Conquer
https://github.com/Cirdans-Home/Kemeny-and-Conquer
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Table 1
Randomized approximation of Kemeny’s constant with 
Hutch++algorithm. The relative error and the timings (s) 
for the Hutch++is the average over 100 repetitions. The inner 
iterative solver is PCG preconditioned by the ICHOL(0)-based 
preconditioner from 6.1 and with a tolerance of 10−2. The number 
of samples is l = 13, that corresponds to δ = 1/4 and ε = 10−1.

Matrix n Time (s) Rel. Error
Direct Hutch++

Pajek/USpowerGrid 4941 2.11 0.43 2.69e-04
Gaertner/nopoly 10774 21.97 2.64 7.58e-03
Gleich/minnesota 2640 0.33 0.15 1.94e-03

starting matrix in L̃. Since the external precision we expect to achieve is of the order of 
10−2, the tolerance for the iterative method is chosen to be 10−3. In all cases, we always 
start from the matrix reordered with the Nested Dissection permutation algorithm [20].

6.2.2. Divide-and-conquer algorithm
Here we test the application of the divide-and-conquer strategy on the transition 

matrices built from the matrices in SuiteSparse Matrix Collection [12] in the previous 
section. We use two variants of Algorithm 1: one called Recursive in Table 2 exploits 
an incomplete ILU(0) factorization and the GMRES to solve systems with left term 
I−P22, and the other called direct-recursive exploits the LU factorization of the matrix, 
already needed for the calculation of the stochastic complement, also for the solution of 
the two auxiliary systems with the same matrix for the calculation of θ. From the results 
in Table 2 we observe that in most cases the divide-and-conquer algorithm manages 
to reduce the computational time compared to the direct computation of Kemeny’s 
constant. In some cases we observe the absence of an improvement, investigating in 
detail what we observe is that the decomposition into blocks done by halving is far from 
being optimal. This causes both the creation of denser stochastic complements and higher 
solution times for auxiliary linear systems. The implementation of nested dissection in 
MATLAB does not have in output the limitation of the clusters obtained, being able to 
use that should increase the advantage of the recursive version compared to the one in 
which the recursion is done by simple halving.

7. Conclusions

Kemeny’s constant κ(P ) of a stochastic matrix P has been expressed in terms of 
Kemeny’s constants of the stochastic complements obtained from a block partitioning, 
and the constant γ. Explicit expressions of κ(P ) have been provided for the transition 
matrix of a periodic Markov chain, the Kronecker product of stochastic matrices, and 
sub-stochastic matrices with constant row sums. The main result, Theorem 3.3, has been 
used to design a divide-and-conquer algorithm for recursively computing κ(P ). Numer-
ical experiments applied to real-world graphs show the effectiveness of this approach 
especially in the case of nearly completely decomposable matrices.
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 constant on some test matrices. If the matrix name 
on the largest irreducible sub-chain.

Rel. Error
Dir-Rec Recursive Dir-Rec
4.15 1.57e-08 4.09e-09
56.76 8.28e-13 1.25e-11
1591.04 2.59e-10 1.53e-10
0.11 1.97e-09 1.09e-09
6.71 3.25e-07 3.09e-07
3.30 2.15e-07 2.28e-07
542.88 8.65e-07 1.60e-07
93.20 2.85e-04 3.58e-05
0.58 3.01e-08 2.80e-08
0.22 8.37e-08 3.53e-08
Table 2
Performance of the recursive implementation of the divide-and-conquer algorithm for computing Kemeny’s
has a † symbol, then the experiment has been run on the largest connected component of the graph, i.e.,

Matrix n κ(P ) Time (s)
Direct Recursive

Gaertner/big 13209 58134.53 17 5.81
vanHeukelum/cage10 11397 15378.12 11.06 44.83
vanHeukelum/cage11 39082 51177.08 315.27 1259.11
HB/gre_1107 1107 1483.57 0.04 0.10
Gaertner/nopoly 10774 171656.87 9.56 9.14
Gaertner/pesa 11738 131250.78 11.45 6.36
Gleich/usroads-48 126146 1818057.53 8243.57 743.37
Barabasi/NotreDame_www† 34643 1173610.94 172.36 94.28
Pajek/USpowerGrid 4941 30166.55 1.32 1.48
Gleich/minnesota† 2640 18243.53 0.30 0.34
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As Kemeny’s constant measures the expected time of a Markov chain X to travel 
between two randomly chosen states, a natural question arises: “What interpretation 
can be ascribed to Kemeny’s constant of a censored Markov chain X1 associated with 
the original Markov chain X?”. Since X1 is induced from X, it would be interesting 
to provide insights into what features of X are captured in Kemeny’s constant of X1. 
Partitioning the state space of X into two subsets yields two censored Markov chains. We 
can see from Theorem 3.3 that Kemeny’s constants of these censored Markov chains are 
interdependent. Understanding how partitioning the state space influences Kemeny’s 
constants of censored Markov chains would be beneficial for gaining insights into the 
question.
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