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Abstract
We consider here a cell-centered finite difference approximation of the Richards
equation in three dimensions, averaging for interface values the hydraulic con-
ductivity K = K(p), a highly nonlinear function, by arithmetic, upstream and
harmonic means. The nonlinearities in the equation can lead to changes in
soil conductivity over several orders of magnitude and discretizations with
respect to space variables often produce stiff systems of differential equations.
A fully implicit time discretization is provided by backward Euler one-step for-
mula; the resulting nonlinear algebraic system is solved by an inexact Newton
Armijo–Goldstein algorithm, requiring the solution of a sequence of linear sys-
tems involving Jacobian matrices. We prove some new results concerning the
distribution of the Jacobians eigenvalues and the explicit expression of their
entries. Moreover, we explore some connections between the saturation of the
soil and the ill conditioning of the Jacobians. The information on eigenvalues
justifies the effectiveness of some preconditioner approaches which are widely
used in the solution of Richards equation. We also propose a new software
framework to experiment with scalable and robust preconditioners suitable for
efficient parallel simulations at very large scales. Performance results on a litera-
ture test case show that our framework is very promising in the advance toward
realistic simulations at extreme scale.
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1 INTRODUCTION

Groundwater flow in the unsaturated zone is a highly nonlinear phenomenon that can be modeled by the Richards
equation, and there is a significant amount of research concerning different formulations and algorithms for calculating
the flow of water through unsaturated porous media.1-5

The Richards equation is a time-dependent Partial Differential Equation (PDE) whose discretization leads to large
nonlinear systems of algebraic equations, which often include coefficients showing large variations over different orders of
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magnitude. Typically, the variation in the coefficients is due to the use of a geostatistical model for hydraulic conductivity,
allowing changes of many orders of magnitude from one cell to the next (heterogeneity) as well as correlations of values
in each direction (statistical anisotropy). High heterogeneity and anisotropy in the problem and the presence of strong
nonlinearities in the equation’s coefficients make the problem difficult to be solved numerically.

The main contribution of the present work is twofold. First, we investigate the spectral properties of the sequence
of Jacobian matrices arising in the solution of the nonlinear systems of algebraic equations by a quasi-Newton method;
these properties allow us to formulate a new theoretical justification for some preconditioning choices in solving Richards
equation which are indeed current usual practices in the literature; to the best of our knowledge, this is the first theoretical
formulation to support such common practices. Then, on the basis of the theoretical indications, we discuss a scalable
and efficient parallel solution of a modified inexact quasi-Newton method with Krylov solvers and Armijo–Goldstein’s
line search, that is, Newton-like algorithms where the Newton correction linear equations are solved by a Krylov subspace
method. To this aim, we interface the KINSOL package available from the Sundials project6 with the most recent version
of libraries for solving sparse linear systems by parallel Krylov solvers coupled with purely algebraic preconditioners,7
currently being extended in some EU-funded projects.

The work is organized as follows. First, in Section 2 we discuss the discretization of the Richards equation by means of
cell-centered finite differences. Then, in Section 3, we summarize the inexact quasi-Newton method as implemented in
the KINSOL framework. In Section 4 we propose an analysis of some spectral properties of the sequence of Jacobian matri-
ces produced by the underlying Newton method. In Section 5, we describe some of the main features of the PSCToolkit
parallel software framework, which we use to implement the computational procedure described in this paper.

The information produced by the spectral analysis of the Jacobian matrices is used in Section 5.2 to devise a precon-
ditioning strategy for the Krylov subspace method and to present the preconditioners used in this study. Some numerical
examples highlighting the computational performance of the proposed methods are then presented in Section 6. Finally,
in Section 7 we draw our conclusion and briefly discuss future extensions.

2 FORMULATING THE DISCRETE PROBLEM

Flow in the vadose zone, which is also known as the unsaturated zone, has rather delicate aspects such as the parameters
that control the flow, which depend on the saturation of the media, leading to the nonlinear problem described by the
Richards equation. The flow can be expressed as a combination of Darcy’s law and the principle of mass conservation by

𝜕 (𝜌 𝜙s(p))
𝜕t

+ ∇ ⋅ q = 0,

in which s(p) is the saturation at pressure head p of a fluid with density 𝜌 in terrain with porosity𝜙, and q is the volumetric
water flux. By using Darcy’s law as

q = −K(p) (∇p + cẑ) ,

for K(p) the hydraulic conductivity, and c the cosine of the angle between the downward z axis ẑ and the direction of the
gravity force, we obtain that the overall equation has a diffusion as well as an advection term, the latter being related to
gravity. For the sake of simplicity, we consider cases in which c = 1, that is, the advection acts only in the z direction. There
are two different forms of the Richards equation that differ in how they deal with the nonlinearity in the time derivative.
The most popular form, which is the one considered here for a fluid that will always be water, permits to express the
general equation as

𝜌 𝜙
𝜕s(p)
𝜕t

− ∇ ⋅ K(p)∇p −
𝜕K(p)
𝜕z

= f , (1)

where p(t) is the pressure head at time t, s(p) is water saturation at pressure head p, 𝜌 is water density, 𝜙 is the porosity
of the medium, K(p) the hydraulic conductivity, f represents any water source terms and z is elevation. The equation is
then completed by adding boundary and initial conditions. This formulation of the Richards equation is called the mixed
form References 1 and 3 because the equation is parameterized in p (pressure head) but the time derivative is in terms
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of s (water saturation). Another formulation of the Richards equation is known as the head-based form, and is popular
because the time derivative is written explicitly in terms of the pressure head p.2,3

It is important to note that in unsaturated flow both water content, 𝜙s(p), and hydraulic conductivity, K(p), are
functions of the pressure head p. There are several empirical relations8 used to relate these parameters, including, for
example, the Brooks–Corey9 model and the Van Genuchten model.2 The Van Genuchten model is slightly more popular
because it containts no discontinuities in the functions, unlike the Brooks–Corey model, and therefore avoids the risk
of losing the uniqueness of the solution of the semidiscretized equation in space by the well-known Peano Theorem. A
version of the Van Genuchten–Richards equation in mixed form model by Celia et al.3 reported the following choices:

s(p) = 𝛼(ss − sr)
𝛼 + |p|𝛽

+ sr, (2)

and

K(p) = Ks
a

a + |p|𝛾
, (3)

where the 𝛼, 𝛽, 𝛾 , and a are fitting parameters that are often assumed to be constant in the media; sr and ss are the residual
and saturated moisture contents, and Ks is the saturated hydraulic conductivity.

Small changes in the pressure head can change the hydraulic conductivity by several orders of magnitude, and K(p)
is a highly nonlinear function. The water content curve is also highly nonlinear as saturation can change drastically over
a small range of pressure head values. It should be noted that these functions are only valid when the pressure head is
negative; that is, the media is semi-saturated; when the media is fully saturated, K = Ks, s(p) is equal to the porosity, and
the Richards equation reduces to the Darcy linear equation; see the example in Figure 1.

Typical uses of the Richards equation are to simulate infiltration experiments in the laboratory and in the field. These
begin with initially dry soil, then water is added to the top of the core sample (or ground surface). These experiments
require the simulation of fast changes in pressure head and saturation over the most nonlinear part of the Van Genuchten
curves.

2.1 Cell-centered finite difference discretization

At the beginning of an infiltration experiment, the pressure head p can be close to discontinuous. These large changes
are also reflected in the nonlinear terms K and s(p). Taking into account the effect of the initial conditions, the time step
can be severely limited if an inappropriate time discretization is chosen. Hydrogeologists are often interested in following

F I G U R E 1 Hydraulic conductivity K(p) and volumetric water content S(p) for parameters 𝛼 = 1.611e+6, 𝛽 = 3.96, 𝛾 = 4.74,
a = 1.175e+6, Ss = 0.287, Sr = 0.075, Ks = 0.00944 cm∕s.
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the process until a steady state is achieved, which may take a long time; therefore, large time steps should be used to
avoid excessively expensive simulations. The presence of stiffness and the desire to use long time steps, lead to implicit
time integration schemes. In this paper, we consider an implicit backward Euler numerical scheme; higher-order implicit
methods are not considered because of the uncertainty associated with the fitting parameters in the Van Genuchten
models and the possible low smoothness of s (i.e., the max order of differentiability) can severely reduce the effective
order of a (theoretically) high order numerical method.

Successful discretizations in space for Richards equation are based on finite differences;3,5 using finite elements may
require mass lumping in order to recover possible large mass balance errors and undershoot errors ahead of the infiltration
front.3

We consider here a discretization of the Richards equation on a cell-centered finite difference tensor mesh on a paral-
lelepiped discretized with N = (Nx,Ny,Nz) nodes, in such a way that the most external nodes are on the physical boundary
of the domain. We then denote the cell centers as {xi,j,k = (ihx, jhy, khz)}N−1

i,j,k=0, for h = (hx, hy, hz) = (Lx,Ly,L)∕(N − 1), and
with the interfaces located at midpoints between adjacent nodes. The time direction is then discretized by considering Nt
uniform time steps, that is, the grid {tl = lΔ t}Nt−1

l=0 for Δ t = 1∕(Nt − 1); the approximation on the cell (i, j, k) at time step l
of the pressure head p is denoted as p(l)i,j,k.

With this choice, the discretization of the mixed form of the Richards equation in (1) on the internal nodes of the grid
for l ≥ 1 is written, for i, j, k = 1, … ,N − 2, as

𝚽i,j,k(p(l)) =
𝜌𝜙

Δt

(

s
(

p(l)i,j,k

)

− s
(

p(l−1)
i,j,k

))

+ q(l)i+1∕2,j,k − q(l)i−1∕2,j,k + q(l)i,j+1∕2,k − q(l)i,j−1∕2,k + q(l)i,j,k+1∕2 − q(l)i,j,k−1∕2 + fi,j,k ≡ 0, (4)

with

q(l)i+1∕2,j,k = −
AVK(l)

i+1,i

⎛
⎜
⎜
⎝

p(l)i+1,j,k − p(l)i,j,k

h2
x

⎞
⎟
⎟
⎠

, q(l)i−1∕2,j,k = −
AVK(l)

i−1,i

⎛
⎜
⎜
⎝

p(l)i,j,k − p(l)i−1,j,k

h2
x

⎞
⎟
⎟
⎠

,

q(l)i,j+1∕2,k = −
AVK(l)

j+1,j

⎛
⎜
⎜
⎝

p(l)i,j+1,k − p(l)i,j,k

h2
y

⎞
⎟
⎟
⎠

, q(l)i,j−1∕2,k = −
AVK(l)

j−1,j

⎛
⎜
⎜
⎝

p(l)i,j,k − p(l)i,j−1,k

h2
y

⎞
⎟
⎟
⎠

,

q(l)i,j,k+1∕2 = −
AVK(l)

k+1,k

⎛
⎜
⎜
⎝

p(l)i,j,k+1 − p(l)i,j,k

h2
z

⎞
⎟
⎟
⎠

−
K(pi,j,k+1)

2hz
, q(l)i,j,k−1∕2 = −

AVK(l)
k−1,k

⎛
⎜
⎜
⎝

p(l)i,j,k − p(l)i,j,k−1

h2
z

⎞
⎟
⎟
⎠

−
K(pi,j,k−1)

2hz
,

in which the generic term AVK(l)
L,U represents an average at the interfaces of the function K(p) in (3). The selection of the

form of the average term best suited to more realistic simulations does depend on the problem and is still an open issue.10,11

In particular, the choice is dependent on the type of fluid infiltration one needs to deal with. If we denote by KU and KL
the two values of the function K on the opposite sides of the interface, for example, KU = K(p(l)i,j+1,k) and KL = K(p(l)i,j,k),
the most frequently used formulations are the arithmetic mean,3 that is, ARITK(l)

L,U = (KU + KL)∕2, the geometric mean,12

that is, GEOMK(l) =
√

KU KL, the upstream-weighted mean,13 that is,

UPK(l) =

{
KU , pU − pL ≥ 0,
KL, pU − pL < 0,

(5)

and the integral mean,14 that is,

INTK(l) =
⎧
⎪
⎨
⎪
⎩

1
pL−pU

pU

∫

pL

K(𝜓)d𝜓, pL ≠ pU ,

pU , otherwise.

It is also possible to employ a combination of the above, using two different means, one for the horizontal and another
for the vertical direction, or to use an algorithm that computes the internodal conductivity by using different approaches
depending on the terrain and the value of the pressure head.10
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3 APPLYING THE INEXACT NEWTON METHOD

We apply at each time step a quasi-Newton method for the solution of the nonlinear system of equations (4) as
implemented in the KINSOL parallel library.6 Let pr be the current iterate of pressure head, for each node of the
computational mesh and for each time step. A Newton method computes an increment dr as the solution of the following
equation:

J(pr)dr = −𝚽(pr), (6)

where J(pr) is the Jacobian matrix of 𝚽. Specifically, we consider an inexact Newton solver in which we update
the Jacobian matrix as infrequently as possible. This means that a first Jacobian is computed in the initialization phase,
that is, in the first step r = 0 of the algorithm; then, a new one is built if and only if at least one of the following conditions
are met

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

r ≡ 0 (mod 10),
|𝜆dr−1|Du,∞ > 1.5,
|𝜆dr|Du,∞ < 𝜀

2∕3
machine

The linear solver failed to converge with the
previous Jacobian (backtracking), or

The line search failed with outdated Jacobian information,

(7)

where we are using the scaled norm | ⋅ |Du,∞ = |Du ⋅ |∞ for a diagonal matrix Du such that the entries of the scaled vector
are almost of the same magnitude when pr is close to a solution. Similarly, | ⋅ |DF ,∞ = |DF ⋅ |∞ for a diagonal matrix DF
when we are far from the solution. The value of the step length 𝜆 is computed via the Armijo–Goldstein line search
strategy, that is, 𝜆 is chosen to guarantee a sufficient decrease in𝚽 with respect to the step length as well as a minimum
step length to the initial rate of decrease of𝚽.

The Jacobian matrix J = J𝚽 can then be recovered by direct computation from (4) using finite-difference approxima-
tions to the derivatives of the constitutive equations in (2), and (3) given by

s′(p) = −
𝛼𝛽|p|𝛽−1sgn(p) (Ss − Sr)

(
𝛼 + |p|𝛽

)2 , and K′(p) = −
a𝛾ks|p|𝛾−1sgn(p)

(
a + |p|𝛾

)2 . (8)

At the core of the parallel procedure we tackle the solution of the (right preconditioned) linear system

JM−1(Mdr) = −𝚽(pr), (9)

where J could be either a freshly computed Jacobian for the vector pr, or the Jacobian coming from a previous step.
The linear iterative solver for the Newton equations should handle the tradeoff between using a tolerance that is large
enough to avoid oversolving, and reducing the number of iterations to attain the prescribed convergence. In the follow-
ing, we focus on a choice for the preconditioner M in (9) which allows to balance accuracy and efficiency on parallel
distributed-memory architectures when very large scale simulations have to be carried out.

In Section 4 we investigate the asymptotic spectral properties of the sequence of the Jacobian matrices. This infor-
mation will then be used to devise an asymptotically spectrally equivalent sequence of symmetric and positive definite
matrices. Then, to approximate the action of the inverses of the approximating sequence, we will employ some precondi-
tioners from the PSCToolkit framework described in Section 5. The aim to experiment the functionalities of PSCToolkit for
building and apply preconditioners for the linear systems arising in the quasi-Newton procedure by KINSOL, we devel-
oped some KINSOL modules that enable it to use the solvers and preconditioners from PSCToolkit inside its Newton-based
nonlinear procedure. These interfaces are written in C from the KINSOL library and use the C/Fortran2003 interfaces
from the PSCToolkit libraries, guaranteeing a full interoperability of the data structures, that is, they do not require pro-
ducing any auxiliary copy of KINSOL objects for translation into PSCToolkit objects; everything can be manipulated
from KINSOL directly into the native formats for PSCToolkit. The details about the implementation of the relevant APIs,
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6 of 21 BERTACCINI et al.

and the operators made available by the interfacing are described in the documentation for the interface that can be
downloaded from https://github.com/Cirdans-Home/kinsol-psblas. This interfacing had the twofold aim of extending
the PSCToolkit to handle nonlinear algebraic equations, as well as to extend the KINSOL library with new methods for
solving sparse linear systems on high-end supercomputers.

4 SPECTRAL ANALYSIS OF THE JACOBIAN SEQUENCE

In general, the construction of the preconditioner M in (9) depends on the choice of the average for the discretization
used in (4). To formulate a proposal for M, we divide the discussion into two steps: first, we look for a suitable matrix M
to precondition the Jacobian matrix J associated with the different averages; then we discuss how we can efficiently setup
and apply M−1 inside the Krylov subspace method on a high-end parallel computer.

4.1 Tools for the spectral analysis

Our idea to compute M starts by investigating the distribution of the eigenvalues, {𝜆j(JN)}
N=(Nx ,Ny,Nz)
j=1 , for the Jacobian

matrix JN of size N = NxNyNz. Specifically, we look for a measurable function f ∶ D ⊂ Rk → C to associate to the sequence
{JN}N for which we can prove the following asymptotic relation

lim
N→∞

1
N

N∑

i=1
F(𝜆i(JN)) =

1
𝜇k(D)∫

D

F(f (x))dx, ∀ F ∈ Cc(C),

where 𝜇k(⋅) is the Lebesgue measure on Rk, 0 < 𝜇k(D) <∞, and Cc(C) is the space of continuous functions with compact
support. Despite the apparently technical form of the previous expression, we can easily summarize the information
contained in f . If we assume that N is large enough, then the eigenvalues of the matrix JN, except possibly for o(N) outliers,
are approximately equal to the samples of f over a uniform grid in D, that is, the function f , that we will call symbol of the
sequence of matrices {JN}N, provides an accurate description of their spectrum asymptotically.

In order to achieve this result, we need to introduce some preliminary tools. To simplify notation, let us start by
focusing on the one dimensional problem to select only an expression for AVKL,U related to the flux oriented toward the
z axis. For these cases, we are interested in the overall behavior for both the eigenvalues and the singular values of the
Jacobian matrices. Formally, we are interested in the computation of the so-called singular and spectral value symbol for
the sequence of the Jacobians.

Definition 1. Let {AN}N be a sequence of matrices and let f ∶ D ⊂ Rk → C be a measurable function defined
on a set D with 0 < 𝜇k(D) < ∞.

• {AN}N has a singular value distribution described by f , and we write {AN}N ∼𝜎 f , if

lim
N→∞

1
N

N∑

i=1
F(𝜎i(AN)) =

1
𝜇k(D)∫

D

F(|f (x)|)dx, ∀ F ∈ Cc(R).

In this case, f is called the singular value symbol of {AN}N .
• {AN}N has a spectral (or eigenvalue) distribution described by f , and we write {AN}N ∼𝜆 f , if

lim
N→∞

1
N

N∑

i=1
F(𝜆i(AN)) =

1
𝜇k(D)∫

D

F(f (x))dx, ∀ F ∈ Cc(C).

In this case, f is called the spectral (or eigenvalue) symbol of {AN}N .

If {AN}N has both a singular value and a spectral distribution described by f , we write {AN}N ∼𝜎,𝜆 f .
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Moreover, we refer to a sequence of matrices {ZN}N such that {ZN}N ∼𝜎 0 as a zero-distributed sequence.
Examples of sequences for which we can easily compute such symbols are the nth diagonal sampling matrix generated by
a ∶ [0, 1]→ C and N ∈ N, that is the N × N diagonal matrix given by

DN(a) = diagi=1,… ,N a
( i

N

)

,

and the Toeplitz sequences, that is, for a N ∈ N and f ∶ [−𝜋, 𝜋]→ C a L1([−𝜋, 𝜋]) function, the N × N matrix

TN(f ) = [fi−j]Ni,j=1,

where the numbers fk are the Fourier coefficients of f ,

fk =
1

2𝜋

𝜋

∫
−𝜋

f (𝜃)e−i k𝜃d𝜃, k ∈ Z.

For these sequences, if f ∈ L1([−𝜋, 𝜋]) then {TN(f )}N ∼𝜎 f , while if f ∈ L1([−𝜋, 𝜋]) and f is real then {TN(f )}N ∼𝜆 f .
A similar relationship holds for the case of multilevel Toeplitz matrices.

To compute the asymptotic spectral/singular value distribution of more general matrix sequences we need to expand
our set of tools, and for this task, we use the Generalized Locally Toeplitz (GLT) sequences.15,16 GLT sequences are
sequences of matrices equipped with a measurable function 𝜅 ∶ [0, 1] × [−𝜋, 𝜋]→ C called symbol; we will use the nota-
tion {AN}N ∼GLT 𝜅 to indicate that {AN}N is a GLT sequence with symbol 𝜅. We can characterize the sequences by the
following list of properties.

GLT 1. If {AN}N ∼GLT 𝜅 then {AN}N ∼𝜎 𝜅. If {AN}N ∼GLT 𝜅 and the matrices AN are Hermitian then {AN}N ∼𝜆 𝜅.
GLT 2. If {AN}N ∼GLT 𝜅 and AN = XN + YN , where

• every XN is Hermitian,
• ||XN ||, ||YN || ≤ C for some constant C independent of N, and || ⋅ || the spectral norm, that is, the norm

induced by the Euclidean vector norm,
• N−1||YN ||1 → 0, and || ⋅ ||1 the Schatten–1 norm, that is, the sum of the singular values.

then {AN}N ∼𝜆 𝜅.
GLT 3. We have

• {TN(f )}N ∼GLT 𝜅(x, 𝜃) = f (𝜃) if f ∈ L1([−𝜋, 𝜋]),
• {DN(a)}N ∼GLT 𝜅(x, 𝜃) = a(x) if a ∶ [0, 1] → C is Riemann-integrable,
• {ZN}N ∼GLT 𝜅(x, 𝜃) = 0 if and only if {ZN}N ∼𝜎 0.

GLT 4. If {AN}N ∼GLT 𝜅 and {BN}N ∼GLT 𝜉 then

• {A∗
N}N ∼GLT 𝜅,

• {𝛼AN + 𝛽BN}N ∼GLT 𝛼𝜅 + 𝛽𝜉 for all 𝛼, 𝛽 ∈ C,
• {AN BN}N ∼GLT 𝜅𝜉.

GLT 5. If {AN}N ∼GLT 𝜅 and 𝜅 ≠ 0 a.e. then {A†
N}N ∼GLT 𝜅

−1.

We call unilevel sequences those for which the dimension is characterized by a single index N, we call d-level those
in which the dimension is characterized by a multi-index N ∈ Nd. All definitions and the related GLT tools have been
generalized to the multi-level setting.16

Another tool we will use in the proofs is the modulus of continuity for a function g. We report here the definition for
completeness.

Definition 2 (modulus of continuity). If g ∶ D → R is continuous over D ⊆ Rk for some k, we denote by
𝜔g(⋅) the modulus of continuity of g,

𝜔g(h) = sup
x,y∈D

||x−y||≤h

|g(x) − g(y)|, h > 0.
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8 of 21 BERTACCINI et al.

Furthermore, we recall also that by the Heine–Cantor theorem every continuous function on a compact set is uni-
formly continuous, therefore for a continuous function on a compact set any modulus of continuity is required to be
infinitesimal at 0.

Remark 1. In all the following analysis, to simplify the notation, we remove from the vector p(k,l+1) the index
k denoting the dependence on the iterate of the Newton method. The spectral analysis uses only the entries
p(l+1)

i and does not depend on the step at which such a vector has been obtained.

4.2 Arithmetic average

The simplest choice for the AVKL,U is given by the arithmetic mean of the values of K in (3) at the two sides of the interface,
that is,

ARITK(l+1)
i+1,i =

1
2

(

K(p(l+1)
i ) + K(p(l+1)

i+1 )
)

,

ARITK(l+1)
i−1,i =

1
2

(

K(p(l+1)
i ) + K(p(l+1)

i−1 )
)

.

With this choice, Equation (4) becomes

ARITΦi(p(l+1)) =
S
(

p(l+1)
i

)

− S
(

p(l)i

)

Δt
− 1

2h2
z

[(

p(l+1)
i+1 − p(l+1)

i

)(

K
[

p(l+1)
i+1

]

+ K
[

p(l+1)
i

])

−
(

p(l+1)
i − p(l+1)

i−1

)(

K
[

p(l+1)
i−1

]

+ K
[

p(l+1)
i

])]

− 1
2hz

(

K
[

p(l+1)
i+1

]

− K
[

p(l+1)
i−1

])

Then, the Jacobian matrix is, as in all the other one dimensional cases, a tridiagonal matrix with entries

ARITJN = tridiag(𝜂i, 𝜁i, 𝜉i) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜁1 𝜉1

𝜂2 ⋱ ⋱

⋱ ⋱ 𝜉N−3

𝜂N−2 𝜁N−2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (10)

where,

𝜁i =
ΔtK

[

p(l+1)
i−1

]

+ ΔtK
[

p(l+1)
i+1

]

+ 2ΔtK
[

p(l+1)
i

]

+ 2h2
z S′

(

p(l+1)
i

)

2Δth2
z

−
p(l+1)

i−1 K′
(

p(l+1)
i

)

2h2
z

+
p(l+1)

i K′
(

p(l+1)
i

)

h2
z

−
p(l+1)

i+1 K′
(

p(l+1)
i

)

2h2
z

,

𝜉i = −
K
[

p(l+1)
i+1

]

+ K
[

p(l+1)
i

]

+ hzK′
(

p(l+1)
i+1

)

2h2
z

−
p(l+1)

i+1 K′
(

p(l+1)
i+1

)

2h2
z

+
p(l+1)

i K′
(

p(l+1)
i+1

)

2h2
z

,

𝜂i = −
K
[

p(l+1)
i−1

]

+ K
[

p(l+1)
i

]

− hzK′
(

p(l+1)
i−1

)

2h2
z

−
p(l+1)

i−1 K′
(

p(l+1)
i−1

)

2h2
z

+
p(l+1)

i K′
(

p(l+1)
i−1

)

2h2
z

.
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BERTACCINI et al. 9 of 21

To perform the spectral analysis we first rewrite the Jacobian matrices as a sum of matrices that are easier to investigate,
we use then the ∗-algebra (GLT4) and perturbation techniques (GLT2) to obtain the spectral information we look for.
In particular, to analyze the Jacobian in (10) we separate it into three parts, one for the time-stepping, one taking into
account the Darcian diffusion, and the last one related to the transport along the z-axis, that is,

{ARITJN
}

N =
{ARITDN

}

N +
{ARITLN

}

N +
{ARITTN

}
,

where
{ARITDN

}

N is the scaled diagonal matrix sampling s′(p) on the function p approximated at the (i + 1)th time step,
that is,

ARITDN =
1
Δt

diag
(

s′
[

p(l+1)
i

])N−2

i=1
. (11)

We can express the Darcian diffusion part as

ARITLN =
1

2h2
z

tridiag
(

−K
[

p(l+1)
i−1

]

, 2K
[

p(l+1)
i

]

,−K
[

p(l+1)
i+1

])N−2

i=1

+ 1
2h2

z
tridiag

(

0,K
[

p(l+1)
i−1

]

,−K
[

p(l+1)
i

])N−2

i=1

+ 1
2h2

z
tridiag

(

−K
[

p(l+1)
i

]

,K
[

p(l+1)
i+1

]

, 0
)N−2

i=1

+ 1
2h2

z
tridiag

(

−p(l+1)
i−1 K′

[

p(l+1)
i−1

]

, 2p(l+1)
i K′

[

p(l+1)
i

]

,−p(l+1)
i+1 K′

[

p(l+1)
i+1

])N−2

i=1

+ 1
2h2

z
tridiag

(

0,−p(l+1)
i−1 K′

[

p(l+1)
i

]

, p(l+1)
i K′

[

p(l+1)
i+1

])N−2

i=1

+ 1
2h2

z
tridiag

(

p(l+1)
i K′

[

p(l+1)
i−1

]

,−p(l+1)
i+1 K′

[

p(l+1)
i

]

, 0
)N−2

i=1
,

while the remaining part is given by

ARITTN = −
1

2hz
tridiag

(

−K′
[

p(l+1)
i−1

]

, 0,K′
[

p(l+1)
i+1

])N−2

i=1
. (12)

Lemma 1. Assuming that C = limN,Nt→+∞ h2
z∕Δt is a finite nonzero constant, then the matrix sequence

{h2
z

ARITDN}N has GLT symbol Cs′(p(𝜓(x))), for s′ in (8), for 𝜓(x) the function mapping the [0, 1] interval to the
domain of definition for the z variable.

Proof. We observe that ARITDN is the (N − 2)th diagonal sampling matrix for the function s′(p(z)). Therefore,
it is one of the sequences of which we know the distribution (GLT3), and we conclude that

{
h2

z
ARITDN

}

N ∼GLT Cs′(p(𝜓(x))).
▪

Remark 2. We observe that the assumption on the ratio C in the above Lemma 1 is such that

∃C > 0 ∶
h2

z

Δt
∼ C, for hz,Δt → 0, (N,Nt → +∞),

that is, it is bounded whenever we impose the compatibility conditions for the relation between the time and
space discretization. Therefore the assumption can be justified in terms of the analysis of the error and the
physics of the problem.

Lemma 2. The matrix sequence
{

h2
z

ARITLN
}

N has GLT symbol

K(p(𝜓(x)))(2 − 2 cos(𝜃)),

where 𝜓(x) is the function mapping [0, 1] interval to the domain of definition for the z variable.
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10 of 21 BERTACCINI et al.

Proof. Let us start from the first tridiagonal matrix

AN =
1
2

tridiag
(

−K
[

p(l+1)
i−1

]

, 2K
[

p(l+1)
i

]

,−K
[

p(l+1)
i+1

])N−2

i=1
,

to produce its GLT symbol, we can consider the matrix sequence

DN
(

K
(

p(l+1)))TN(2 − 2 cos 𝜃).

If we then perform a direct comparison of

AN −
1
2

DN
(

K
(

p(l+1)))TN(2 − 2 cos 𝜃),

we observe that the only nonzero entries are the ones on the lower and upper diagonals, in which we have
the differences K

(

p(l+1)
i±1

)

− K
(

p(l+1)
i

)

on the grid points |zi±1 − zi| = hz. From this, we bound the modulus of
each off-diagonal entries of

AN −
1
2

DN
(

K
(

p(l+1)))TN(2 − 2 cos 𝜃),

by the modulus of continuity of the function K(p(z)) that is expressed by 1
2
𝜔K(p(z))(hz) as in Definition 2 and

then the 1-norm and the ∞-norm of the difference AN − 1
2

DN
(

K
(

p(l+1)))TN(2 − 2 cos 𝜃) are bounded by
𝜔K(p(z))(hz). Thus,

||AN −
1
2

DN
(

K
(

p(l+1)))TN(2 − 2 cos 𝜃)|| ≤ 𝜔K(p(z))(hz)→ 0 for N → +∞,

therefore, ZN = AN − 1
2

DN
(

K
(

p(l+1)))TN(2 − 2 cos 𝜃) is distributed as zero. Then, a direct application of GLT3
and GLT4 tells us that AN ∼GLT 1∕2K(p(𝜓(x)))(2 − 2 cos(𝜃)). With minor modifications, the same arguments
can be applied to the other parts of {h2

z
ARITLN}N , and by means of the *-algebra properties from GLT4, we

can write
{

h2
z

ARITLN
}

N ∼GLT
1
2

K(p(𝜓(x)))(2 − 2 cos(𝜃))

+ 1
2

K(p(𝜓(x)))(2 − 2 cos(𝜃))(1 − e−i𝜃)

+ 1
2

K(p(𝜓(x)))(2 − 2 cos(𝜃))(1 − e−i𝜃)

+ 1
2

p(𝜓(x))K′(p(𝜓(x)))(2 − 2 cos(𝜃))

+ 1
2

p(𝜓(x))K′(p(𝜓(x)))(−1 + ei𝜃)

+ 1
2

p(𝜓(x))K′(p(𝜓(x)))(−1 + ei𝜃)

= K(p(𝜓(x)))(2 − 2 cos(𝜃)).
▪

Remark 3. In the computation of the GLT symbol of the sequence ARITLN we have that a part of the
distribution simplifies itself. This appears as if there was a simplification of the lower order terms induced by
the arithmetic mean, that is, in a chain-rule style the correction due to the term pK′(p) cancels out.

Lemma 3. The matrix sequence
{

h2
z

ARITTN
}

N is a sequence distributed as zero.

Proof. By construction, the matrices of the sequence
{

h2
z

ARITTN
}

N are such that

||h2
z

ARITTN || ≤ hz||K′(p)||∞ ≤
C
N
,

for some constant C independent of N. Therefore,
{

h2
z

ARITTN
}

N ∼𝜎 0. ▪
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BERTACCINI et al. 11 of 21

Theorem 1. The matrix sequence
{

h2
z

ARITJN
}

N is distributed in the eigenvalue sense as the function

𝜅(x, 𝜃) = Cs′(p(𝜓(x))) + K(p(𝜓(x)))(2 − 2 cos(𝜃)),

where 𝜓(x) is the function mapping [0, 1] interval to the domain of definition for the x variable.

Proof. The proof follows in two steps from applying GLT4 with the symbols obtained in Lemmas 1,2, and 3, we
first find that

{
h2

z
ARITJN

}

N ∼GLT 𝜅(z, 𝜃) = Cs′(p(𝜓(x))) + K(p(𝜓(x)))(2 − 2 cos(𝜃)). Then, by GLT2, that holds
in virtue of Lemma 3, we have that the distribution holds also in the eigenvalue sense, since we can write

h2
z JN = h2

z DN + h2
z LN + h2

z TN = XN + YN with XN = h2
z DN + h2

z TN = XT
N , ∀ N

furthermore, by direct inspection

||XN || ≤ 4(||K(p)||∞ + ||pK(p)||∞) + C||s′(p)||∞ = C1,

independent of N, and, due to the fact that the we can bound the spectral norm with the p-norms

||X|| ≤
√
|X|1|X|∞,

and analogously ||YN || ≤ hz||K′||∞ → 0 for hz → 0. Furthermore, the Schatten 1-norm || ⋅ ||1 can be always
estimated in terms of the spectral norm as

||X||1 ≤ rank(X)||X|| ≤ m||X||, ∀X ∈ C
m×m

,

thus by the inequality in the proof of Lemma 3, we conclude that ||YN ||1 = O(1), hence GLT2. ▪

Remark 4. From Theorem 1 we infer that the ill-conditioning in the Jacobian matrices is determined by two
main factors. On the one hand, we have the ill-conditioning due to the diffusion operator that drives the
eigenvalues to zero as an O(h2

z). On the other, we observe that this effect is enhanced by the behavior of the
hydraulic conductivity K(p) at the current time step/Newton iterate. Indeed, for lower values of the pressure
head, this further enhances the decay to zero of the eigenvalues. This implies also that, when the soil becomes
more saturated, the ill-conditioning is due only to diffusion.

Now, with the choice of this average for all the spatial dimensions, we can explicitly write the nonzero elements of the
Jacobian matrix by maintaining the local (i, j, k)-indices, that is, in a way that is independent of the selected ordering; see
the Supplementary Material Section B for the complete expression. To complete the discretization we only need to impose
and discretize the boundary conditions. For the test case considered here, we focus on Dirichlet boundary conditions that
can be either homogeneous, to identify water table boundary conditions, or time dependent.

Theorem 2. Assuming that h = 𝜈(q1, q2, q3), qi ∈ Q+ = {q ∈ Q ∶ q > 0}, and that C = lim𝜈,Δ t→0
𝜈

2

Δt
is finite

and non zero then the sequence
{

J(k,j)N

}

N
obtained with the entries in (B1), for K(p), s(p) in (2), (3) is distributed

in the sense of the eigenvalues as the function

f (x, 𝜃) = C𝜌𝜙s′(p(k,j)(𝜓(x))) x ∈ [0, 1]3, 𝛉 ∈ [−𝜋, 𝜋]3,
+ K(p(k,j)(𝜓(x)))(q−2

1 (2 − 2 cos(𝜃1)) + q−2
2 (2 − 2 cos(𝜃2)) + q−2

3 (2 − 2 cos(𝜃3))),

where 𝜓(x) is the function mapping the [0, 1]3 cube to the physical domain.

Proof of Theorem 2. Moving from the results in Theorem 1 to the ones in Theorem 2 is just a technical
rewriting. The proofs in Lemma 1, and Lemma 3 remain the same. We need to rewrite the decomposition of
ARITLN exploiting the fact that the tensor structure in the grid corresponds to a Kronecker structure in the
matrix. ▪

We can prove the exact same statement given in Theorem 2 also for the upstream mean together with the expression
of the complete Jacobian. By virtue of the mechanism applied, the proof is completely analogous and requires only some
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12 of 21 BERTACCINI et al.

technical adjustments related to the corrections in rank. The details and full Jacobian expression for this case are given
in the Supplementary Material, see Sections C and D.

Theorem 3. Assuming that h = 𝜈(q1, q2, q3), qi ∈ Q+ = {q ∈ Q ∶ q > 0}, and that C = lim𝜈,Δ t→0
𝜈

2

Δt
is finite

and non zero then the sequence
{

J(k,j)N

}

N
obtained with the choice of the upstream average (entries in (C2)) or

with the arithmetic average (entries in (B1)), for K(p), s(p) in (2), (3) is distributed in the sense of the eigenvalues
as the function

f (x, 𝜃) = C𝜌𝜙s′(p(k,j)(𝜓(x))) x ∈ [0, 1]3, 𝛉 ∈ [−𝜋, 𝜋]3,
+ K(p(k,j)(𝜓(x)))(q−2

1 (2 − 2 cos(𝜃1)) + q−2
2 (2 − 2 cos(𝜃2)) + q−2

3 (2 − 2 cos(𝜃3))),

where 𝜓(x) is the function mapping the cube [0, 1]3 to the physical domain.

We can conclude that, independently of the mean used, the asymptotic behavior of the spectrum remains the same
and it is dominated by the diffusion operator. This suggests the idea of how to define an appropriate sequence of precon-
ditioners for the underlying problem. Specifically, we use the matrix sequence generated by the considered discretization
of the Jacobians of (4) having modified the flux term q to be:

qprec. = −K(p)∇p.

In practice, we disregard all the terms related to the fluid motion along the ẑ axis thus using the Jacobians of the nonlinear
diffusion operators. using the Jacobian matrices of the nonlinear diffusion operators only. Indeed, these diffusion matri-
ces have the same spectral distribution we have proved with Theorem 3, and therefore by GLT4 and GLT5 they provide
an optimal preconditioner for the underlying sequence of matrices. We note that, to the best of our knowledge, this is the
first theoretical justification of a very common approach in preconditioning Newton correction linear systems for solv-
ing the Richards equation.5,17,18 We are now left with the problem of inverting the asymptotically spectrally equivalent
sequence we have just built from the nonlinear diffusion. To face this task, we will perform a further approximation of the
theoretical operator’s sequence by employing the preconditioners library available in PSCToolkit, a software framework
recently proposed for scalable simulations on high-end supercomputers.* We point out that the inversions of the theo-
retical preconditioners will be based on Algebraic MultiGrid methods, as explained in Section 5.2, whose convergence
properties for spd matrices, such as those arising from diffusion operators, are well-known and are widely discussed in
the literature.7,19

5 SOFTWARE FRAMEWORK FOR VERY LARGE-SCALE SIMULATIONS

In this work, we employ the recently proposed PSCToolkit software framework for parallel sparse computations on current
petascale supercomputers. PSCToolkit is composed of two main libraries, named PSBLAS (Parallel Sparse Basic Linear
Algebra Subprograms),20,21 and AMG4PSBLAS (Algebraic MultiGrid Preconditioners for PSBLAS).7 PSBLAS implements
all the main computational building blocks for iterative Krylov subspace linear solvers on parallel computers made of
multiple nodes; a plugin for NVIDIA GPUs allows the exploitation of these devices in main sparse matrix and vector
computations on hybrid architectures. The toolkit also implements a number of support functionalities to handle the
construction of sparse matrices and of their communication structure.

AMG4PSBLAS is a package of preconditioners leveraging on PSBLAS kernels and providing one-level Additive
Schwarz (AS) and Algebraic MultiGrid (AMG) preconditioners for PSBLAS-based Krylov solvers. For the present work,
we developed a new set of interfaces allowing seamless integration of linear solvers and preconditioners from PSBLAS
and AMG4PSBLAS into the SUNDIALS/KINSOL library,6 in order to use the KINSOL version of the modified Newton
methods to solve the discretized Richards nonlinear equations. Interfacing with KINSOL provides a double advantage:
the extension of PSCToolkit to handle nonlinear algebraic equations, as well as the extension of the KINSOL library with
new methods for solving sparse linear systems on high-end supercomputers.

In the following we describe the details of the proposed parallel Richards solver implemented in C by using PSCToolkit
facilities for data generation and distribution and for preconditioner setup and application inside Krylov solvers, and on
top of KINSOL facilities for the quasi-Newton procedure as described in Section 3.
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BERTACCINI et al. 13 of 21

5.1 Domain decomposition and data partitioning

In our parallel solution procedure of the discrete problem in (4), we employ a 2D block decomposition of the par-
allelepipedal domain Ω of size [0,Lx] × [0,Ly] × [0,L], that is, we partition only in the horizontal directions. Indeed,
in realistic simulations, one often needs to work with a wide horizontal domain, with a fixed size and resolution for
the vertical layer and the vertical physical fields. The above domain decomposition corresponds to a mesh partition-
ing in which each parallel process owns all degrees of freedom (dofs) in the z direction, while uniform partitioning
is applied in the x and y directions. PSBLAS provides all the functionalities needed for very general parallel mesh
partitioning and to set up parallel data structures by compact and easy-to-use interfaces. All PSBLAS routines have a pure
algebraic interface, where the main data structures are a distributed sparse matrix and a corresponding communication
descriptor. The procedure for mesh partitioning builds a local sparse matrix of possibly noncontiguous rows of the global
matrix, where each row corresponds to a local mesh dof and is handled through a local numbering scheme, and auto-
matically builds an index map object contained in the communication descriptor to keep track of the correspondence
between local and global indices. The communication descriptor also includes information needed for data communica-
tion among processes which is automatically generated after the mesh partitioning procedure and handled internally by
the software.

5.2 AMG4PSBLAS preconditioners

The results in Theorem 2 suggest that we can expect to achieve good convergence in the iterative solution of the linear
systems of the quasi-Newton steps (6) by using a matrix M with symbol given by f (x,𝜽) as a preconditioner. By means
of the ∗-algebra properties in GLT4 and GLT5, this would guarantee a sequence {M−1J𝚽(p(l))}N ∼𝜆 1. Informally, by the
spectral symbol, this implies that we can expect the spectrum of the sequence of the preconditioned matrices to have a
cluster of eigenvalues in 1. While this would guarantee the theoretical properties we look for, we also need to approximate
the inverse of the symmetric and positive definite (spd for short) preconditioner. To this aim, we exploit some of the
methods available in AMG4PSBLAS.7

AMG4PSBLAS includes iterative methods for the approximation of the inverse of the preconditioner M,
including domain decomposition techniques of Additive Schwarz (AS) type and AMG methods based on aggre-
gation of unknowns; details on the methods and their parallel versions are available in the literature.7,22,23

In the following we describe the main features of the preconditioners selected for the experiments discussed
in section 6.

In the AS methods, the index space, that is, the set of row/column indices of M,ΩN = {1, 2, … ,N}, is divided into m,
possibly overlapping, subsetsΩN

i of size Ni. For each subset, we can define the restriction operator Ri which maps a vector
x ∈ N to the vector xi ∈ Ni made of the components of x having indices in ΩN

i , and the corresponding prolongation
operator Pi = (Ri)T . The restriction of M to the subspace ΩN

i is then defined by the Galerkin product Mi = RiMPi. The
Additive Schwarz preconditioner for M is defined as the following matrix:

M−1
AS =

m∑

i=1
Pi(Mi)−1Ri, (13)

where Mi is supposed to be nonsingular and an inverse (or an approximation of it) can be computed by an efficient
algorithm. We observe that in the case of nonoverlapping subsets ΩN

i , the AS preconditioner reduces to the well-known
block-Jacobi preconditioner.

AMG4PSBLAS includes all the functionalities for setup and application of the preconditioner in (13) in a parallel
setting, where the original index set Ω has been partitioned into subsets Ωi, each of which is owned by one of the m
parallel processes so that the inverse of Mi can be locally computed by a LU factorization or variants of incomplete LU
factorizations and sparse approximate inverses.

AS methods can also be applied as smoothers in an AMG procedure, which is the main focus of the AMG4PSBLAS
software framework. In this case, the inverse of the preconditioner matrix is defined by the recursion below. Let Ml be a
sequence of spd coarse matrices obtained from M by a Galerkin product Ml+1 = (Pl)TMlPl, l = 0, … ,nl − 1, with M0 = M,
and Pl a sequence of prolongation matrices of size Nl × Nl+1, with N0 = N and Nl+1 < Nl. Let Sl be a convergent smoother
with respect to the Ml−inner product, the well-known symmetric V-cycle, with one smoother iteration applied at each
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14 of 21 BERTACCINI et al.

level before and after the coarse-level correction, defines the inverse of the preconditioner matrix as a sequence of the
following matrices:

Ml = (Sl)−T + (Sl)−1 − (Sl)−TMl(Sl)−1 + (I − (Sl)−TMl)(PlMl+1(Pl)T)(I −Ml(Sl)−1) ∀l,

assuming that Mnl ≈ (Mnl)
−1 is an approximation of the inverse of the coarsest-level matrix. AMG methods are character-

ized by the coarsening procedure applied to setup the sequence of coarse matrices, that is, the corresponding prolongation
matrices; they use only information from the original (fine) matrix, with no additional information related to the geom-
etry of the problem. In AMG4PSBLAS two different parallel coarsening procedures for spd matrices are available; both
employ disjoint aggregates of fine dofs to form the coarse dofs, and the prolongation matrices are piecewise-constant
interpolation matrices (unsmoothed aggregation) or a smoothed variant thereof (smoothed aggregation). Details on the
coarsening procedures implemented in AMG4PSBLAS are available in the literature.7,23 Here we note that in section 6
we refer to the two acronyms:

DSVMB: the smoothed aggregation scheme introduced by Vaněk, Mandel and Brezina in Reference 24, and applied in
a parallel setting by a decoupled approach, where each process applies the coarsening algorithm to its subset
of dofs, ignoring interactions with dofs owned by other processes.23

SMATCH: the smoothed aggregation scheme introduced by D’Ambra and Vassilevski.7,25,26 It relies on a parallel
coupled aggregation of dofs based on a maximum weighted graph matching algorithm, where the maximum
size of aggregates can be chosen in a flexible way by a user-defined parameter so that computational
complexity and convergence properties of the final preconditioner can be balanced.

The parallel smoothers available in AMG4PSBLAS can be applied both as one-level preconditioners as well as in
an AMG procedure. These include variants of the AS methods described above, weighted versions of the simple Jacobi
method, such as the so-called 𝓁1−Jacobi, and a hybrid version of Gauss-Seidel, which acts as the Jacobi method among
matrix blocks assigned to different parallel processes and updates the unknowns in a “Gauss-Seidel style” within the
block owned by a single process.7,27 Some of the above methods are well suited for use with the PSBLAS plugin for GPU
accelerators in the preconditioner application phase.

6 NUMERICAL EXPERIMENTS

In this section, we investigate the parallel performances of our Richards equation solver relying on the PSCToolkit soft-
ware framework using preconditioners discussed in Section 5.2. The section is divided in two parts: in Section 6.1 we
analyse strong scalability by measuring how the overall computational time decreases with the number of processes for
a fixed problem size, then in Section 6.2 we focus on weak scalability, that is, we measure how the solution time varies
by increasing the number of processes, while keeping fixed the problem size per process, so that the global problem
size proportionally increases with the number of processes. Experiments validating the spectral analysis are reported in
Supplementary Material Sections E and F.

All the experiments are executed on the CPU cores of the Marconi-100 supercomputer (June 21, 2022 TOP500 list†),
with no usage of hyperthreading. Marconi’s nodes are built on an IBM Power System AC922, they contain two banks of
16 cores IBM POWER93 3.1 GHz processors and are equipped with 256 GB of RAM. The inter-node communication is
handled by a Dual-rail Mellanox EDR Infiniband network by IBM with 220/300 GB/s of nominal and peak frequency.
All the code is compiled with the gnu/8.4.0 suite and linked against the openmpi/4.0.3 and openblas/0.3.9
libraries. We use only inner functionalities of the PSBLAS 3.7.0.2 and AMG4PSBLAS 1.0 libraries, with no use of optional
third-party libraries.

We discuss the results of the overall solution procedure for solving the discretized Richards equation, by comparing
parallel performance and convergence behavior when the AS preconditioner in (13) and the two AMG preconditioners
based on the two different coarsening strategies discussed in Section 5.2 are employed for solving the linear systems within
the modified Newton procedure. For the one-level AS preconditioner we use one layer of mesh points in each direction as
overlap among the subdomains Ωi, each of them assigned to different processes, and apply an Incomplete LU factoriza-
tion with no fill-in for computing the local subdomain matrix inverses M−1

i . In the case of AMG preconditioners, we apply
a symmetric V-cycle with 1 iteration of hybrid backward/forward Gauss-Seidel as pre/post-smoother at the intermediate
levels. As a coarsest-level solver we use a parallel iterative procedure based on the preconditioned Conjugate Gradient
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BERTACCINI et al. 15 of 21

method with block-Jacobi as preconditioner, where ILU with 1 level of fill-in is applied on the local diagonal blocks. The
coarsest-level iterative procedure is stopped when the relative residual is less than 10−4 or when a maximum number
of 30 iterations is reached. In both the DSVMB and SMATCH procedures, the coarsening is stopped when the size
of the coarsest matrix includes no more than 200 dofs per core; in the case of the SMATCH coarsening, a maximum size of
aggregates equal to 8 is required. In the following, the two AMG preconditioners are referred as VDSVMB and VSMATCH,
respectively. In order to reduce the setup costs of the AMG preconditioners in nonlinear and/or time-dependent
simulations, we support a re-use strategy of operators that is often used in our Richards solution approach. Namely, we
compute the multilevel hierarchy of coarser matrices only on the first Jacobian of the sequence (at the first time step),
then for subsequent Jacobians we just update the smoother on the current approximation of the matrix, while keeping
fixed the coarser matrices and transfer operators. Moreover, at each subsequent time step, we reuse the Jacobian (and its
related approximation) from the previous one; we leave KINSOL control over the possible need to recompute a Jacobian
at each new Newton iteration.

All the preconditioners are applied as right preconditioner to the PSBLAS-based Restarted GMRES with restarting
step equal to 10 – GMRES(10). We stop the iterations when the relative residual satisfies ||Jdr +𝚽|| < 𝜂||𝚽||with 𝜂 = 10−7

or when a maximum number of iterations equal to 200 is done.
To solve the Richards equation with upstream averages on a parallelepipedal domainΩ of size [0,Lx] × [0,Ly] × [0,L],

we apply water at height z = L such that the pressure head becomes zero in a square region at the center of the top layer,
( a

4
≤ x ≤ 3a

4
, b

4
≤ y ≤ 3b

4

)
, and is fixed to the value h = hr on all the remaining boundaries, that is

p(x, y,L, t) = 1
𝛼

ln
[

exp(𝛼hr) + (1 − exp(𝛼hr))𝜒[ a
4
,

3a
4

]

×
[

b
4
,

3b
4

](x, y, z)
]

,

where we denote by 𝜒Ω the characteristic function of the set Ω. The associated initial condition is given by
p(x, y, z, 0) = hr. In all cases we run the simulation for t ∈ [0, 2] and Nt = 10. This means that the number of time steps
Nt is fixed independently from the number of processes np, thus the performance analysis will be done on the quantities
averaged on the number of time steps relative to the given np.

All the timings reported in the figures of the following sections are in seconds.

6.1 Strong scalability

In this section, we discuss parallel performance results of our solution procedure when we fix the target domain as
the parallelepiped [0, 64] × [0, 64] × [0, 1], discretized with Nx = Ny = 800 mesh points in the x and y directions, and
Nz = 40 mesh points in the vertical direction, for a total number of 20 millions of dofs, on a number of computational
cores from 1 to 256; in particular we used a number of cores np = 4p p = 0, … , 4, so that the computational domain is
uniformly partitioned in an increasing number of vertical subdomains with square basis, for increasing number of parallel
cores.

We start by looking at the average number of linear iterations done for the Newton correction by using the three
different preconditioners, and the time needed per each linear iteration in Figure 2. We observe that, as expected, the AMG
preconditioners require a smaller number of iterations than the AS method; the latter shows an increase in the number of
iterations as the number of cores, and therefore of subdomains, increases. VDSVMB always requires the smallest number
of iterations showing the ability of the DSVMB coarsening procedure to setup a good quality matrix hierarchy on the
first Jacobian. On the other hand, we observe that when increasing the number of cores, the number of linear iterations
also increases, due to the decoupled parallel approach of the coarsening. The VSMATCH algorithm, thanks to its coupled
approach, produces a number of iterations that is essentially unaffected by the number of processes, even though it is
always larger than VDSVMB.

If we look at the time per linear iteration in Figure 2B, we observe, as expected, that the AS preconditioner has the
smallest time per iteration. Indeed, for his one-level nature, its application cost is smaller than that of the multigrid
methods. It also shows a regular decreasing for increasing number of parallel cores. If we look at the time per iteration of
the AMG preconditioners, we observe that VDSVMB and VSMATCH have very similar behavior, and a regular decreasing
for larger number of cores. On the other hand, VDSVMB always achieves a smaller time per iteration than VSMATCH,
due to its better coarsening ratio. Indeed, it coarsens the original fine matrix in an efficient way, producing coarse matrices
that are both smaller and of good quality. This feature makes the VDSVMB preconditioner competitive with respect to the
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16 of 21 BERTACCINI et al.

F I G U R E 2 Strong scaling. Average number of linear iterations and execution time per linear iteration with different preconditioners.

F I G U R E 3 Strong scaling. Total execution time and Speedup for the solution of the whole problem (all time steps), Kinsol with
different linear solvers.

AS method. Both preconditioners produce similar global solution times, as shown in Figure 3. We can observe that, in all
the cases, the overall simulation has a regular decreasing computational time for increasing number of cores, leading to a
global speedup ranging from 150 to 169, depending on the preconditioner, on 256 computational cores. This corresponds
to a satisfactory parallel efficiency ranging from 59% to 66%.

For the sake of completeness, in Table 1 we report the total number of computed Jacobians and of the Newton itera-
tions required by the global simulation, when the different preconditioners are employed. We can see that the choice of
the preconditioner also affects the KINSOL nonlinear procedure, and that the best behavior always corresponds to the
VDSVBM preconditioner.

6.2 Weak scalability

In this section, we look at the weak scalability of the overall solution procedure. The ideal goal is to obtain a constant
execution time when the number of cores increases, while the computational work per core is kept fixed. Unfortunately, it
is, in general, impossible to get an exactly constant execution time. Indeed, we would need perfect algorithmic scalability
of the preconditioners, that is, the ability to keep the number of linear iterations perfectly constant with an increasing
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BERTACCINI et al. 17 of 21

T A B L E 1 Strong scaling.

VDSVBM VSMATCH AS

np N Jac.s NLin It.s N Jac.s NLin It.s N Jac.s NLin It.s

1 3 36 3 38 3 43

4 3 37 3 38 4 39

16 3 37 3 38 4 39

64 3 37 3 38 4 39

256 3 37 3 38 4 39

Note: Number of nonlinear iterations (NLin It.s), and number of computed Jacobians (N Jac.s) for the three preconditioners.

F I G U R E 4 Weak scaling. Average number of linear iterations and execution time per linear iteration with different preconditioners.

problem size. Moreover, the parallelization efficiency of sparse matrix kernels, which are communication bound, is also
affected by the increase in the number of processes and hence in the communication requirements.

To achieve a scaling of the computational work that is meaningful with respect to the physical properties of the
underlying problem, we consider a growing domain Ω(np) = [0, 2p × 4.0] × [0, 2q × 4.0] × [0, 1.0] split on np = p × q pro-
cesses for increasing p = 0, … , 7, q = 0, … , 6, and a corresponding mesh with a total of points equal to N(p × q) =
(2pNx, 2qNy,Nz), where Nx = Ny = 50, and Nz = 40. In this way, each process has the same amount of computational and
communication load, and the overall problem size increases with the total number of processes np. We run experiments
with up to 8192 CPU cores for solving a problem with a global size of up to about 829 million dofs.

As in the previous section, we first discuss convergence behavior and efficiency of the linear solvers for the Newton
corrections, when the different preconditioners are employed. In Figure 4 we show the average number of linear iterations
along the overall simulation and the average execution time per each linear iteration. We observe that, as expected, the
AS method has the worst algorithmic scalability, showing a general increase in the linear iterations needed to solve prob-
lems of increasing size. The average number of iterations has a slow and small decrease from 16 to 1024 cores, while there
is a rapid increase from 150 to 203 iterations going from 1024 up to 8192 cores, confirming that convergence properties of
the one-level Schwarz-type domain decomposition methods are dependent on the number of involved subdomains. On
the other hand, if we look at the AMG preconditioners, where a better coupling among the subdomains is considered, we
see that the average number of iterations is smaller and has a very small variation for increasing number of subdomains.
In particular, we observe that for the VDSVMB preconditioner the average number of linear iterations has an increase
from 67 to 84 iterations going from 1 to 8192 cores. The VSMATCH preconditioner, after an initial small increase, dis-
plays a decrease which shows that the coupled aggregation algorithm based on matching is able to produce an effective
preconditioner with very good algorithmic scalability properties. This makes VSMATCH promising for exploring extreme
scalability in this type of simulation procedure for the Richards model.
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18 of 21 BERTACCINI et al.

If we look at the average execution time per linear iteration, for all the preconditioners we observe a very small
increase, which demonstrates a good implementation scalability for all the sparse computations involved in the linear
solver phase.

We now turn to the evaluation of the overall time to solution and scaled efficiency‡, of the global simulation. In
Figure 5A, we see that, as for linear solvers, also for the global procedure there is a generally small increase for increas-
ing number of cores and problem size for all the employed preconditioners, except for the VSMATCH method going
from 4096 to 8192 cores, where a better convergence behavior of the linear solver also produces a small reduction
in nonlinear iterations (cf. Table F3 in the Supplementary Material). The best time to solution is in general obtained
by using the AS preconditioner till to 1024 cores, due to the smallest computational cost of this preconditioner. On
the other hand, its worst algorithmic scalability (i.e., the large increase in the number of linear iterations) results in
larger global execution times with respect to the most effective VDSVMB preconditioner when the number of cores
increases.

If we look at the scaled efficiency shown in percentage scale in Figure 5, the AMG preconditioners show similar
behavior, while VSMATCH confirms its better efficiency when the largest number of cores is used.

To give a complete picture of the performance of the various parts of the solution procedure we also report
the percentage of the execution time spent in the different computational kernels. The barplots in Figure 6 deliver
several useful information. First of all, as expected, the two main parts of the efforts are represented by the time spent
in actually solving the linear systems (6) (LinSol) and evaluating the nonlinear function 𝚽 encoding the discretization
(Feval), on which our implementation efforts were more focused. In particular, in the Feval kernel we exploited many
of the support functionalities of PSCToolkit. To increase the efficiency, at the expense of a marginal increase in the
use of memory, we experimented with memorizing the local-to-global map on the MPI tasks, thus avoiding the overhead
of explicit calls to the functions that permit the user to explore the index space. This is made possible by the fact that
we are using a communicator for data distribution which is fixed through the time steps and iterates of Newton’s
method; see the discussion in Section 5.1. Thanks to the flexibility of the underlying software framework, we were
able to optimize the procedure for building the vectors and matrices at each nonlinear time step, making good reuse of
local data.

We have a small and almost equal time that is spent in building the distributed Jacobian (Jacobian) and auxiliary
matrices (Auxiliary). The rebuild of the local portions of the matrices is well optimized and is very close to the absolute
minimum that is necessary to compute the coefficient values. A reasonably small amount of time is spent in building and
updating the preconditioners (Setup). In particular, it is possible to reuse and apply the aggregation hierarchy, so that we
only need to recompute the smoothers. The other (almost invisible) bar is represented by the halo exchanges: this is the
data exchange among the parallel processes that happens before each build of the Jacobian, build of auxiliary matrices,
and function evaluation. It is a communication that is necessary for having an agreement on all the quantities needed
by the processes to perform their computations, namely the exchange of the boundary data; this operation is persistent,

F I G U R E 5 Weak scaling: Total execution time and Scaled efficiency shown in percentage for the solution of the whole problem (all
time steps), Kinsol with different linear solvers.
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F I G U R E 6 Percentage of the overall time spent in the different phases for the overall solution process. We sum all the partial times and
normalize it against the total to account for the different computational kernels.

in the sense that the pattern of the data exchange is determined by the discretization mesh structure. The last overhead
is all the remaining computations that are made inside the Newton method, that is, vector updates and vector norm
computations, namely the Newton direction updates, convergence checks, and line-searches, and are in charge to the
KINSOL library.

7 CONCLUSIONS AND PERSPECTIVES

In this paper, we focused on two main objectives: to prove some spectral properties of the sequence of Jacobian matri-
ces generated by discretizing the Richards equation in mixed form for simulation of unsaturated subsurface flows by a
Newton-type method, and to prove the efficiency, flexibility, and robustness of a software framework for parallel sparse
matrix computations.

The theoretical results we obtained are consistent with expectations and justify some preconditioner choices already
used in the literature for solving Richards equations. We used several functionalities of the PSCToolkit for iterative solu-
tion of sparse linear systems, some of the support routines for re-using preconditioners in solving sequences of linear
systems, and for an efficient setup and update of data structures needed for Jacobian and right-hand side computations in
Newton iterations. The performances of our strategy on one of the most powerful supercomputers currently available are
quite promising in view of exploring extreme scalability and confirming the benefits of using multigrid preconditioners
when the number of processing cores largely increases.

Our plans for future work include the extension of the PSCToolkit interface to KINSOL, in order to use the ability of
the PSCToolkit linear solvers in exploiting GPU architectures, and the integration of the software stack into the Parflow
code28 for realistic simulations in hydrological applications.
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ENDNOTES
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‡Scaled efficiency is defines as Ep =

T1(N)
Tp(N⋅np)

, where T1(N) is the time employed to solve a problem of size N on 1 processing unit, and Tp(N ⋅ np)
is the time employed for solving a problem of size N × np on np processing units.
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