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NONLOCAL PAGERANK

Stefano Cipolla1, Fabio Durastante2,* and Francesco Tudisco3

Abstract. In this work we introduce and study a nonlocal version of the PageRank. In our approach,
the random walker explores the graph using longer excursions than just moving between neighboring
nodes. As a result, the corresponding ranking of the nodes, which takes into account a long-range
interaction between them, does not exhibit concentration phenomena typical of spectral rankings which
take into account just local interactions. We show that the predictive value of the rankings obtained
using our proposals is considerably improved on different real world problems.
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1. Introduction

Identifying and quantifying important components in a dataset or a complex system modeled by a network,
using only the topological structure of nodes and edges, is a very important issue in exploratory data analysis.

Various specific tasks have been designed around this quite general problem, at a global scale – with the aim
of providing insightful summary statistics such as clustering coefficients, robustness or total communicability
[7,18,33] – at an intermediate (or meso) scale – by identifying structures such as communities, anti-communities
or core-periphery [30, 33, 53, 60] – and at a local level – where we aim at quantifying various node or edge
properties such as triadic closure or edge communicability [18, 25]. Here we focus on the so called centrality
problem, where we aim at assigning an importance score to each node in the network in order to discover the
most relevant nodes. While this task aims at unveiling network features that take place at a very local scale
(nodes), it is nowadays apparent that complex networks feature an intrinsic higher-order organization [5] and
that centrality scores should exploit the structure of the network as a whole in order to unveil insightful network
properties that are otherwise overlooked. To this end, in this work we propose a simple generalization of the
renowned PageRank centrality which forces the global network structure into this local scale centrality model.

PageRank had its fortune due to its employment in early versions of the Google search engine [48]. The
main idea of this centrality model is a mutually reinforcing definition of importance: the importance of a node
is influenced by the importances of the nodes it connects to. Equivalently, PageRank centrality can be be
interpreted as the average amount of time that a random walker spends on each node as the length of the
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walks tend to infinity. While this recursive definition clearly involves the global structure of connections in the
network, at each time step the random walker moves from one node to another taking into account only the
direct neighbors of that node. Thus, while this definition implies that each node score is influenced by all the
other node importances, the classical PageRank centrality often results into a localized measure, as it typically
happens for typical eigenvector-based centrality scores [43].

Different strategies have been considered in recent literature to overcome this issue. On the one end, higher-
order adjacency tensors have been employed to model higher-order neighborhoods made by hyperedges con-
taining three or more nodes. This approach is typically characterized by the use of hypergraphs or simplicial
complexes [3,4,11,17]. On the other hand, non Markovian stochastic processes with memory have been used to
model random walks that take into account longer paths of connections [2, 6, 16,31].

Following this second line of research, in this work we propose a nonlocal version of the classical PageRank
model based on the usage of the Lévy random walk, i.e. the usage of an anomalous nonlocal diffusion that
employs a one-parameter family of decaying transition probabilities. In the case of undirected networks, this
type of random walk was considered for example in [51]. The main idea of our approach is to move from the
original exploration strategy of the network exploited in the PageRank, where the random walker moves between
neighboring nodes with uniform probability, to a strategy that permits longer excursions between the nodes
of the network, i.e. it allows us to move from a node 𝑖 to any other node that is connected to 𝑖 through a
path of any length. These types of longer length interactions enhance the navigability of the network and thus
allow for a faster exploration, as observed in other related contexts, including fractal small-worlds networks [52],
lattices [39] and general multi-hopper models on digraphs [26, 63]. In particular, very related to our approach
is the concept of path Laplacians introduced by Estrada et al. [24] and further analyzed in [27, 28]; another
related approach is the generalized PageRank [40], which is based a matrix function of the transition probability
matrix. The proposed nonlocal PageRank is also based on a function of the transition matrix, however, unlike
generalized PageRank, it uses a entrywise function.

The reminder of the paper is structured as follows: We start by fixing the notation and by recalling the
standard PageRank model in Section 2. Then, in Section 3 we introduce the proposed nonlocal PageRank
model, which is based on the choice of a distance function between the nodes and a one-parameter family of
Lévy-type random walks on the graph. In Section 4 we perform an asymptotic analysis on the selection of
the parameter that defines the transition probabilities and we show that the classical PageRank follows as a
special case of the new model for large values of the parameter and when the chosen distance is the standard
shortest-path distance. However, different values of the parameter allow us to obtain models that are more
stable and less localized, as discussed in Section 4.1. These properties help improving a number of network
mining tasks: In Section 4.2 we show how different values of the parameter affect the behavior of the model in
the context of link prediction. Whereas in Section 5 we discuss how different choices of the distance function
can affect the model. In particular, choosing suitable – and possibly problem related – distance functions gives
us an additional flexibility which allows us to improve the quality of the resulting centrality assignment. We
highlight this by considering the London underground train test problem, where we design a “metro distance”
that takes into account the multilayer structure of the network (given by the several underground train lines)
and that compares favorably with other PageRank-like centralities.

Data and software

All data and software used in this work are available online. For convenience, we list below all the network
data used in the different sections of the paper. We detail additional information on the various datasets when
appropriate in the text.

– USAir97, this is a directed network of air traffic in the U.S.A. available from Pajek repository [54].
– EUair, this is a thirty-seven layer network, each one corresponding to a different airline operating in

Europe [10]. We use the aggregate graph, consisting of the union of all the layers.
– Barcelona, this is the directed transportation network for the city of Barcelona (Spain) from the Research

Core Team collection [57].
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– adjnoun, this undirected network represents common occurrences of adjectives and nouns in the “David
Copperfield” novel by C. Dickens [46].

– zachary, this is a (small) social network of a university karate club [46].
– gre 115, this directed network is available from the Harwell-Boeing collection [23].
– cage9, this is a network obtained from a DNA electrophoresis model [61] in which a polymer is modeled as

a chain of “monomers” connected by bonds.
– delaunay n10/delaunay n12, are networks obtained from the adjacency matrices relative to two Delaunay

triangulations of random points in the unit square [36].
– 3elt, is an example graph from the AG-Monien Graph Collection by Ralf Diekmann and Robert Preis

(see [19]).
– tube is the undirected multilayer network of London’s underground trains connections.

The tube network was created by us starting from the dataset developed in [20] and it is made of 13 layers:
one layer for Docklands Light Railway (DLR) trains, one layer for overground trains and eleven underground
train layers, one for each line. The dataset includes also geographical coordinates of the nodes and passengers
usage statistics across several years (2008–2017), obtained from ORR London Datastore [47]. Both this dataset
and the software we developed for the experiments shown in the paper are available at https://github.com/
Cirdans-Home/NonLocalPageRank.

2. The PageRank algorithm

A digraph, or directed graph, Γ = (𝑉,𝐸) is defined by a set of 𝑛 nodes 𝑉 = {𝑣1, . . . , 𝑣𝑛} ≡ {1, . . . , 𝑛}, and a
set of ordered edges 𝐸 = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉 } ⊆ 𝑉 × 𝑉 representing the connections between the nodes. A walk of
length 𝑘 in Γ is a list of nodes 𝑖1, . . . , 𝑖𝑘, 𝑖𝑘+1 such that (𝑖𝑗 , 𝑖𝑗+1) ∈ 𝐸, ∀𝑗 = 1, . . . , 𝑘. If the first and the last edge
coincides then the walk is called a closed walk. If no repeated nodes appear in the sequence then the walk is
called a path, while a path in which only the first and last node coincide is called a cycle. We consider here only
loop-less graphs, i.e. edges of the form (𝑖, 𝑖) ∈ 𝐸 are not allowed. We say that a digraph is strongly connected if
there exists a path between every pair of nodes.

Every graph Γ can be represented as a binary adjacency matrix 𝐴 = (𝑎𝑖,𝑗) with

𝑎𝑖,𝑗 =
{︂

1 (𝑖, 𝑗) ∈ 𝐸,

0 otherwise.

As we allow directed graphs, such matrix will not be symmetric, in general.
Let 1 be the vector of all ones of size 𝑛, and let 𝐴 be the adjacency matrix of the digraph Γ = (𝑉,𝐸) with

|𝑉 | = 𝑛. We define the diagonal matrix 𝐷 of the out-degrees of Γ as

𝐷out = diag(𝐴1) = diag(𝑑out
1 , . . . , 𝑑out

𝑛 ), (2.1)

in which each diagonal entry 𝑑out
𝑖 represents the number of outgoing edges from the node 𝑖.

We can now build a random walk on Γ by considering the following transition matrix 𝑃 = (𝑝𝑖,𝑗)

𝑝𝑖,𝑗 =
{︂

1/𝑑out
𝑖 (𝑖, 𝑗) ∈ 𝐸,

0 otherwise.
(2.2)

Note that 𝑃 is tightly related to the adjacency matrix and the diagonal matrix of the out degrees. In fact,
a compact form for (2.2) reads 𝑃 = 𝐷−1

out𝐴, where the matrix 𝐷−1
out is defined by setting the inverse of zero

diagonal entries to zero by convention.
A random walker that obeys the transition matrix 𝑃 has equal chance of moving from a node to any of its

out-neighbors. Note that by following this transition we could end in a cul-de-sac, represented by a node 𝑖 with

https://github.com/Cirdans-Home/NonLocalPageRank
https://github.com/Cirdans-Home/NonLocalPageRank


80 S. CIPOLLA ET AL.

Figure 1. Pictorial representation of the PageRank vector s for the Zachary’s karate club
digraph [33], computed with 𝑐 = 0.85.

𝑑out
𝑖 = 0. To avoid this circumstance we modify 𝑃 in (2.2) to permit the walker to teleport to any other location

in the graph with some probability, i.e. we define the PageRank transition matrix

𝐺 = 𝑐 ̃︀𝑃 +
1− 𝑐

𝑛
11𝑇 , 𝑐 ∈ (0, 1], (2.3)

where ̃︀𝑃 is the matrix 𝑃 in which each zero row has been replaced by the uniform vector 1𝑇
/𝑛. The matrix 𝐺

is a positive, row stochastic matrix. Thus, by the Perron–Frobenius Theorem, it admits a unique positive and
dominant left eigenvector s corresponding to the eigenvalue 1 (see e.g. [8]). In other words, the Markov chain
with transition matrix 𝐺 has a unique and positive stationary distribution

s𝑇 = s𝑇 𝐺, s𝑇 1 = 1, 𝑠𝑖 > 0, ∀ 𝑖 = 1, . . . , 𝑛.

Such s is called the PageRank vector of Γ, and its 𝑖th entry provides a measure of the importance of node 𝑖 in
the digraph Γ. Figure 1 illustrates an example PageRank vector on the Zachary’s karate club network.

From the modeling point of view, the teleportation factor 𝑐 included in (2.3) can be interpreted in terms of
a “surfer” navigating the digraph Γ of the web hyperlinks. When moving from a page to another, the surfer
may decide to follow one of the hyperlinks that are listed in the web page, choosing among them with uniform
probability. The surfer makes this choice with probability 𝑐. Whilst, with probability 1− 𝑐, they may decide to
“teleport” onto a new web page, in principle not connected with the current one, choosing again uniformly at
random. This is an example of a nonlocal behavior in which it is possible to end up being in nodes that are far
away from the original starting node. However, we have only partial control on this longer jumps. In fact, we
are only allowed to either tune the parameter 𝑐 or to introduce a “personalized version of the PageRank” where
the surfer chooses to teleport onto a new page 𝑗 with a probability 𝑣𝑗 that depends on the destination page 𝑗,
rather than choosing among all the possible web pages uniformly at random. From a mathematical viewpoint,
this second choice means we replace the PageRank matrix (2.3) with 𝑐 ̃︀𝑃 + (1− 𝑐)1v𝑇 , being v = (𝑣1, . . . , 𝑣𝑛).

In the next Section 3 we introduce a modification of this model that allows us to include one additional level
of nonlocality to the original PageRank centrality.
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3. The nonlocal PageRank model

Let us suppose that we are at a node 𝑖 in the digraph Γ. Following from the discussion of Section 2 we know
that we have now two possibilities: going to a node that is connected to the present one, or to teleport away in
the graph, possibly giving preference to certain nodes over others. However, this preference does not depend on
the current node 𝑖 and, thus, does not take into account the fact that one is typically more inclined to teleport to
some page that is somewhat related to 𝑖. To overcome this issue, we define here a process where the probability
to move to a node 𝑗, that lies on a walk that contains 𝑖, is large when 𝑗 is close to 𝑖 and decreases the further
away we move from 𝑖.

To this end, we let 𝛿 : 𝑉 × 𝑉 → R+ be a distance function on Γ and define the transition probability matrix
𝑃𝛼 = (𝑝𝑖,𝑗) as

𝑝𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑓𝛼

(︀
𝛿(𝑖,𝑗)

)︀
∑︀

𝑘 ̸=𝑖 𝑓𝛼

(︀
𝛿(𝑖,𝑘)

)︀ 𝛿(𝑖, 𝑗) < ∞

0 otherwise,
(3.1)

where 𝑓𝛼(𝑥) : R+ → R+ is a family of nonnegative and nonincreasing functions parametrized by 𝛼 ∈ R+. The
family 𝑓𝛼 will be used to regulate the trade-off between the importance of the nodes at a short-range and the
ones that are further away. Note that the distance 𝛿 does not need to define a metric on Γ and, for example,
does not need to be symmetric, i.e. we allow 𝛿(𝑖, 𝑗) ̸= 𝛿(𝑗, 𝑖). In particular, observe that this is the situation if
we choose 𝛿 to be the shortest path distance, as we will discuss in more details in the next section. Also note
that, if ∆ denotes the distance matrix such that ∆𝑖𝑗 = 𝛿(𝑖, 𝑗), then it holds

𝑃𝛼 = diag(𝑓𝛼(∆)1)−1𝑓𝛼(∆)

where 𝑓𝛼 is applied entrywise and the inverse of +∞ is set to zero by convention.
As for the standard PageRank case, a random walker obeying the transition rule (3.1) could end up in a node

𝑖 such that 𝛿(𝑖, 𝑗) = +∞ for all other 𝑗 ∈ 𝑉 (i.e. the 𝑖-th row of 𝑃𝛼 is all zero) and get stuck there. Thus we
modify the state transitions to include a teleportation, i.e. we let

𝐺𝛼 = 𝑐 ̃︀𝑃𝛼 +
1− 𝑐

𝑛
11𝑇 , 𝑐 ∈ (0, 1], (3.2)

where ̃︀𝑃𝛼 is the matrix 𝑃𝛼 in which each zero row has been replaced by 1𝑇
/𝑛. The matrix 𝐺𝛼 is again a positive

row stochastic matrix and, by the Perron–Frobenius Theorem, there exists a unique s𝛼 with positive entries,
such that s𝑇

𝛼 = s𝑇
𝛼𝐺𝛼, s𝑇

𝛼1 = 1. We call s𝛼 the nonlocal PageRank vector.
Clearly, the nonlocal PageRank depends on the choice of the distance 𝛿 and on the choice of the family of

decaying functions 𝑓𝛼. In the next section we show that, when 𝛿 is the shortest path distance and 𝑓𝛼 is suitably
defined, the nonlocal PageRank interpolates the standard PageRank and the parameter 𝛼 can be used to tune
the “amount of nonlocality” we want to take into account.

4. Shortest path distance and convergence to the PageRank

As we will see in Section 5, different choices of the distance 𝛿 can be used, depending on the application.
In fact, this flexibility is one of the key advantages of our proposed framework, which allows us to model
nonstandard node-node interactions and thus to capture node properties that are overlooked otherwise. On the
other hand, the arguably most natural choice for distance 𝛿 is the shortest path distance, whose definition we
recall below

Definition 4.1. Given a digraph Γ = (𝑉,𝐸) the shortest-path distance 𝛿Γ(𝑖, 𝑗) between any two nodes 𝑖, 𝑗 ∈ 𝑉
is the smallest length of any path from 𝑖 to 𝑗. If there exists no such a path, we let 𝛿Γ(𝑖, 𝑗) = +∞.
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This choice of the distance function allows us to retrieve the classical PageRank as a special case of our
nonlocal PageRank model, provided the family 𝑓𝛼 satisfies the following nonrestrictive decaying condition.

Definition 4.2. We say that 𝑓𝛼 is a smoothing family of functions for the distance 𝛿 if 𝑓𝛼(𝑥) → 0 and
𝑓𝛼(𝑥)/𝑓𝛼(1) → 0 as 𝛼 →∞, for all 𝑥 in the set

Ω𝛿 = {𝑥 : 𝑥 ≥ 𝛿(𝑖, 𝑗), for all (𝑖, 𝑗) /∈ 𝐸} ⊆ R+.

When 𝛿 = 𝛿Γ we have Ω𝛿Γ = [2,∞], and we can easily produce examples of smoothing families by considering
any nonincreasing function 𝑓 such that 𝑓(2) < 1 and then defining 𝑓𝛼(𝑥) = 𝑓(𝑥)𝛼. For example, we can choose,
as in [51], the functions

𝑓𝛼(𝑥) =
1
𝑥𝛼
·

In this case, the resulting transition matrix 𝑃𝛼 describes a Lévy random walk on Γ. Another example is the
exponential function

𝑓𝛼(𝑥) = 𝑒−𝛼 𝑥.

For any smoothing family of functions we have

Lemma 4.3. Let 𝑓𝛼 be a smoothing family of nondecreasing functions for the distance 𝛿 = 𝛿Γ. Then 𝑃𝛼 → 𝑃
entrywise as 𝛼 →∞, where 𝑃 is the PageRank transition matrix (2.3).

Proof. Note that
∑︀

𝑘 𝑓𝛼(𝛿Γ(𝑖, 𝑘)) = 𝑑out
𝑖 𝑓𝛼(1) +

∑︀
𝑘:𝛿Γ(𝑖,𝑘)≥2 𝑓𝛼(𝛿Γ(𝑖, 𝑘)). Thus, simple algebraic manipulations

show that 𝑃𝛼 = 𝑃 + 𝑌𝛼, with

(𝑌𝛼)𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

𝑑out
𝑖

∑︀
𝑘:𝛿Γ(𝑖,𝑘)≥2 𝑓𝛼(𝛿Γ(𝑖, 𝑘))

𝑑out
𝑖 𝑓𝛼(1) +

∑︀
𝑘:𝛿Γ(𝑖,𝑘)≥2 𝑓𝛼(𝛿Γ(𝑖, 𝑘))

(𝑖, 𝑗) ∈ 𝐸

𝑓𝛼(𝛿Γ(𝑖, 𝑗))∑︀
𝑘 ̸=𝑖 𝑓𝛼(𝛿Γ(𝑖, 𝑘))

2 ≤ 𝛿Γ(𝑖, 𝑗) < ∞

0 𝛿Γ(𝑖, 𝑗) = ∞.

As 𝑓𝛼(𝑥) → 0 for 𝛼 →∞ and 𝑥 ≥ 2, we have (𝑌𝛼)𝑖𝑗 → 0, and the proof is complete. �

Note that, when 𝑓𝛼(𝑥) = 𝑓(𝑥)𝛼 is defined via a power-law (and 𝑓(𝑥) is bounded) we obviously have 𝑓𝛼(𝑥) → 1
as 𝛼 → 0, implying that 𝑃𝛼 converges to the uniform transition matrix where 𝑖 transitions to every node 𝑗 at
finite distance from 𝑖 with equal probability. This observation, combined with the lemma above, shows that
choosing values of 𝛼 reasonably far from 0 and ∞ allows us to define a model that interpolates between a
standard Markov chain on the graph and a purely uniformly random model. This is also shown by Figure 2,
where we plot the Kendall’s 𝜏 correlation coefficient between the nonlocal PageRank centrality score – obtained
with different values of 𝛼 – and the standard PageRank centrality on the datasets netscience, astro-ph and
hep-th. In particular, the figure highlights the result in Lemma 4.3 showing that as 𝛼 → +∞ the correlation
between the nonlocal PageRank and the PageRank converges to 1, thus showing the convergence to the standard
PageRank algorithm.

Clearly, while the two extreme choices 𝛼 → 0 and 𝛼 →∞ do not require to compute 𝛿Γ, one of the drawbacks
of using the nonlocal PageRank transition matrix 𝑃𝛼 for other choices of 𝛼 is the computation of the shortest-
path distance matrix from Definition 4.1. The algorithm of choice for computing all the distances between the
nodes is either the Floyd–Warshall algorithm [32, 62] or the Johnson’s algorithm [37]. The first one works on
weighted digraphs with positive or negative edge weights, and no negative cycles, and it has a running time of
𝑂(𝑛3). The second one allows only for few negative edge weights and has a running time of 𝑂(𝑛2 log(𝑛) + 𝑛𝑚)
where 𝑚 = |𝐸|. As it is clear from the running times estimates, the Floyd–Warshall algorithm is best suited
for dense networks (𝑚 ≈ 𝑛), while the Johnson’s algorithm should be preferred in the case of sparse networks
(𝑚 ≪ 𝑛). The storage of 𝑂(𝑛2) machine numbers has to be expected.

In the next section we show how different values of 𝛼 can improve the stability and reduce the localization
phenomenon of the standard PageRank.
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Figure 2. The figure shows Kendall’s 𝜏 correlation coefficient of PageRank vs. Nonlocal PageR-
ank for different 𝑓𝛼(𝑥) and different values of 𝛼 for the shortest path distance. Problems sizes
(left to right) 𝑛 = 1589, 𝑛 = 16 706 and 𝑛 = 8361.

4.1. Stability and nonlocality

The classical PageRank centrality measure shares the same principal flaw of all the eigenvector centralities.
The leading eigenvector of the associated transition matrix can suffer the localization phenomenon [35, 43, 56],
i.e. most of the measure weight tends to concentrate around few most important nodes while giving to all the
other nodes a small and numerically identical value, and thus ranking. This phenomenon has also the secondary
effect of producing high variations in the value of the entries of the PageRank vector when the network topology
faces a small perturbation, for example few edges are added or removed from the graph [42,49,50].

In a linear algebra terminology, this type of graph modification is equivalent to a structured perturbation of
the transition matrix and is related to the concept of condition number of a Markov chain [45].

For a given 𝛼, a given distance 𝛿 and a given smoothing function 𝑓𝛼, we define a condition number of
the nonlocal PageRank as a coefficient 𝜅𝛼 that quantifies the relative change in the nonlocal PageRank vec-
tor when changes occur in the graph. More precisely, suppose that Γ = (𝑉,𝐸) is an edge-perturbation of
Γ = (𝑉,𝐸) and let 𝐺𝛼 be the nonlocal transition matrix (3.2) of Γ. Then 𝜅𝛼 is a condition number of the nonlocal
PageRank if

‖s𝛼 − s𝛼‖
‖s𝛼‖

≤ 𝜅𝛼
‖𝐺𝛼 −𝐺𝛼‖
‖𝐺𝛼‖

(4.1)

and this bound holds for all possible perturbations of Γ. In (4.1) s𝛼 and s𝛼 are the nonlocal PageRank of 𝐺𝛼

and 𝐺𝛼 respectively. Note that property (4.1) does not define a unique condition number 𝜅𝛼 and in fact several
comparisons between different possible choices of 𝜅𝛼 have been studied [14, 38, 45]. Here we use a result of
Seneta [55] to characterize the stability of the nonlocal PageRank in terms of its norm-1 condition number.

To this end, we use the ergodicity coefficient of the matrix sequence {𝐺𝛼}𝛼. For a fixed 𝛼, this coefficient is
defined as

𝜏1(𝐺𝛼) = sup
‖𝛿‖1=1

𝛿𝑇 1=0

‖𝛿𝑇 𝐺𝛼‖1 =
1
2

max
𝑗
‖𝐺𝑇

𝛼(𝐼 − e𝑗1𝑇 )‖1 =
1
2

max
𝑖,𝑗

∑︁
𝑘

|(𝐺𝛼)𝑖𝑘 − (𝐺𝛼)𝑗𝑘| (4.2)

and the following quantity

cond1(s𝛼) =
1

1− 𝜏1(𝐺𝛼)

is a condition number for the nonlocal PageRank, in the sense that inequality (4.1) holds for 𝜅𝛼 = cond1(s𝛼)
and ‖ · ‖ = ‖ · ‖1, see e.g. [55]. Therefore, if we define the remainder 𝑅 = 𝐺𝛼 − 𝐺𝛼 and we express 𝐺𝛼 as the
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structured perturbation 𝐺𝛼 = 𝐺𝛼 + 𝑅, with 𝑅 such that 𝑅1 = 0, we can recover the following perturbation
bound on the associated PageRank vectors

‖s𝛼 − s𝛼‖1 ≤ ‖𝑅‖1(1− 𝜏1(𝐺𝛼))−1. (4.3)

In particular, as ‖s𝑇
𝛼‖1 = ‖𝐺𝛼‖1 = 1 and |𝜆(𝐺𝛼)| ≤ 𝜏1(𝐺𝛼), for any eigenvalue 𝜆(𝐺𝛼) of 𝐺𝛼 such that 𝜆(𝐺𝛼) ̸= 1

(see e.g. [59]), the relation (4.3) gives us a bound on the condition number of s𝛼 for relative changes in 𝐺𝛼 in
the norm sense, i.e.

cond1(s𝛼) ≤ 1
1− |𝜆(𝐺𝛼)|

, ∀𝜆(𝐺𝛼) ̸= 1. (4.4)

It is then interesting to evaluate the behavior of such quantity with respect to the parameter 𝛼, and indeed
it is possible to prove the following result.

Theorem 4.4. Let 𝑓𝛼 be a family of decreasing smoothing functions for the distance 𝛿 = 𝛿Γ. Then, there exists
𝛼0 such that 𝜏1(𝐺𝛼) ≤ 𝜏1(𝐺) for all 𝛼 ≥ 𝛼0.

Proof. Since 𝐺𝛼 and 𝐺 are rank-one modifications of ̃︀𝑃𝛼 and ̃︀𝑃 , using the second part of (4.2), the thesis holds
if and only if 𝜏1( ̃︀𝑃𝛼) ≤ 𝜏1( ̃︀𝑃 ). Moreover, since 𝑃 and 𝑃𝛼 have the same zero rows and ̃︀𝑃 and ̃︀𝑃𝛼 coincide on
those rows, using the third part in (4.2), we see that it is enough to show that 𝜏1(𝑃𝛼) ≤ 𝜏1(𝑃 ), for all 𝛼 ≥ 𝛼0.

We will obtain the thesis modifying one row at time of the matrix 𝑃 to obtain the matrix 𝑃𝛼. Recall, moreover,
that by Lemma 4.3, we have lim

𝛼→∞
𝑃𝛼 = 𝑃 .

If 𝛿Γ(𝑖, 𝑗) = 1 for all 𝑖, 𝑗 then 𝑃𝛼 = 𝑃 for all 𝛼 and thus the thesis is straightforward.
Assume that there exist 𝑖 and 𝑗 such that 𝛿Γ(𝑖, 𝑗) > 1. Define the matrix ̂︀𝑃𝛼 obtained modifying the 𝑖-th row

of 𝑃 into the 𝑖-th row of 𝑃𝛼, i.e. let

( ̂︀𝑃𝛼)𝑖,: =
[︁

𝑓𝛼(𝛿Γ(𝑖,1))∑︀
ℓ ̸=𝑖 𝑓𝛼(𝛿Γ(𝑖,ℓ)) · · · 0 · · · 𝑓𝛼(𝛿Γ(𝑖,𝑛))∑︀

ℓ ̸=𝑖 𝑓𝛼(𝛿Γ(𝑖,ℓ))

]︁
where the zero entry is the diagonal ( ̂︀𝑃𝛼)𝑖,𝑖, and let ( ̂︀𝑃𝛼)𝑗,: = 𝑃𝑗,: for all 𝑗 ̸= 𝑖. Observe that if 𝑘 ∈ 𝐸𝑖 :=
{𝑘 s.t. (𝑖, 𝑘) ∈ 𝐸}, it holds

( ̂︀𝑃𝛼)𝑖,𝑘 =
1

𝑑𝑖 +
∑︁

ℓ:𝛿Γ(𝑖,ℓ)≥2

𝑓𝛼(𝛿Γ(𝑖, ℓ))/𝑓𝛼(1)
<

1
𝑑𝑖

= 𝑃𝑖,𝑘, (4.5)

were the strict inequality holds from our assumption. More precisely,

( ̂︀𝑃𝛼)𝑖,𝑘 = 𝑃𝑖,𝑘 + 𝐷𝛼
𝑖 (4.6)

where 𝐷𝛼
𝑖 := 1/(𝑑𝑖 +

∑︀
ℓ:𝛿Γ(𝑖,ℓ)≥2 𝑓𝛼(𝛿Γ(𝑖, ℓ))/𝑓𝛼(1))− 1 < 0 for all 𝛼 > 0. Let us define 𝑖0(𝛼), 𝑗0(𝛼) such that

𝜏( ̂︀𝑃𝛼) =
1
2

∑︁
𝑘

|( ̂︀𝑃𝛼)𝑖0(𝛼),𝑘 − ( ̂︀𝑃𝛼)𝑗0(𝛼),𝑘|.

Since ̂︀𝑃𝛼 converges, there exists 𝛼0 s.t. 𝑖0(𝛼) = 𝑖0 and 𝑗0(𝛼) = 𝑗0 for all 𝛼 ≥ 𝛼0. Moreover, since ̂︀𝑃𝛼 differs from
𝑃 only in the 𝑖-th row, to prove 𝜏1( ̂︀𝑃𝛼) ≤ 𝜏1(𝑃 ), it is enough to consider the case 𝑖0 = 𝑖, 𝑗0 ̸= 𝑖.

In the setting we are considering we have ( ̂︀𝑃𝛼)𝑗0,𝑘 = 𝑃𝑗0,𝑘 for all 𝑘. So, for 𝑖 = 𝑖0, let us define the following
sets

ℐ := {𝑘 : ( ̂︀𝑃𝛼)𝑖,𝑘 ≥ 𝑃𝑗0,𝑘}, 𝑉 ∖ ℐ := {𝑘 : ( ̂︀𝑃𝛼)𝑖,𝑘 < 𝑃𝑗0,𝑘},
𝒥 := {𝑘 : 𝑃𝑖,𝑘 ≥ 𝑃𝑗0,𝑘}, 𝑉 ∖ 𝒥 := {𝑘 : 𝑃𝑖,𝑘 < 𝑃𝑗0,𝑘}.
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We then observe that

– since both 𝑃 and ̂︀𝑃𝛼 are stochastic, we have
∑︀

𝑘∈𝑉 {( ̂︀𝑃𝛼)𝑖,𝑘 − 𝑃𝑗0,𝑘} = 0, and thus the row sum on the two
complementary sets ℐ and 𝑉 ∖ ℐ yields

∑︀
𝑘∈ℐ{( ̂︀𝑃𝛼)𝑖,𝑘 − 𝑃𝑗0,𝑘} =

∑︀
𝑘∈𝑉 ∖ℐ{𝑃𝑗0,𝑘 − ( ̂︀𝑃𝛼)𝑖,𝑘};

– since by (4.5) when 𝑘 ∈ 𝐸𝑖 we have 𝑃𝑖,𝑘 > ( ̂︀𝑃𝛼)𝑖,𝑘, then ℐ ∩ 𝐸𝑖 ⊆ 𝒥 ∩ 𝐸𝑖.

From the above observations, we find

𝜏1( ̂︀𝑃𝛼) =
∑︁
𝑘∈ℐ

(( ̂︀𝑃𝛼)𝑖,𝑘 − 𝑃𝑗0,𝑘)

=
∑︁

𝑘∈ℐ∩𝐸𝑖

(( ̂︀𝑃𝛼)𝑖,𝑘 − 𝑃𝑗0,𝑘) +
∑︁

𝑘∈ℐ∩𝐸𝐶
𝑖

(( ̂︀𝑃𝛼)𝑖,𝑘 − 𝑃𝑗0,𝑘)

=
∑︁

𝑘∈ℐ∩𝐸𝑖

(𝑃𝑖,𝑘 − 𝑃𝑗0,𝑘) +
∑︁

𝑘∈ℐ∩𝐸𝑖

𝐷𝛼
𝑖 +

∑︁
𝑘∈ℐ∩𝐸𝐶

𝑖

(( ̂︀𝑃𝛼)𝑖,𝑘 − 𝑃𝑗0,𝑘)

≤
∑︁

𝑘∈ℐ∩𝐸𝑖

(𝑃𝑖,𝑘 − 𝑃𝑗0,𝑘) +
∑︁

𝑘∈ℐ∩𝐸𝑖

𝐷𝛼
𝑖 +

∑︁
𝑘∈ℐ∩𝐸𝐶

𝑖

𝑓𝛼(𝛿Γ(𝑖, 𝑘))/𝑓𝛼(1)

𝑑𝑖 +
∑︁

ℓ:𝛿Γ(𝑖,ℓ)≥2

𝑓𝛼(𝛿Γ(𝑖, ℓ))/𝑓𝛼(1)

≤
∑︁

𝑘∈𝒥∩𝐸𝑖

(𝑃𝑖,𝑘 − 𝑃𝑗0,𝑘) +
∑︁

𝑘∈ℐ∩𝐸𝑖

𝐷𝛼
𝑖 +

∑︁
𝑘∈ℐ∩𝐸𝐶

𝑖

𝑓𝛼(𝛿Γ(𝑖, 𝑘))/𝑓𝛼(1)

𝑑𝑖 +
∑︁

ℓ:𝛿Γ(𝑖,ℓ)≥2

𝑓𝛼(𝛿Γ(𝑖, ℓ))/𝑓𝛼(1)
,

(4.7)

where in the first inequality we used (4.6) and the definition of ( ̂︀𝑃𝛼)𝑖,𝑘 and, in the second one, the fact that
ℐ ∩ 𝐸𝑖 ⊆ 𝒥 ∩ 𝐸𝑖.

Since
∑︀

𝑘∈ℐ∩𝐸𝑖
𝐷𝛼

𝑖 < 0 for all 𝛼 > 0 and
∑︀

𝑘∈ℐ∩𝐸𝐶
𝑖

(︁
𝑓𝛼(𝛿Γ(𝑖,𝑘))/𝑓𝛼(1)

𝑑𝑖+
∑︀

ℓ:𝛿Γ(𝑖,ℓ)≥2 𝑓𝛼(𝛿Γ(𝑖,ℓ))/𝑓𝛼(1)

)︁
→ 0 as 𝛼 → ∞ (𝑓𝛼 is a

smoothing family), there exists 𝛼
(1)
0 ≥ 𝛼0 s.t.∑︁

𝑘∈ℐ∩𝐸𝑖

𝐷𝛼
𝑖 +

∑︁
𝑘∈ℐ∩𝐸𝐶

𝑖

𝑓𝛼(𝛿Γ(𝑖, 𝑘))/𝑓𝛼(1)

𝑑𝑖 +
∑︁

ℓ:𝛿Γ(𝑖,ℓ)≥2

𝑓𝛼(𝛿Γ(𝑖, ℓ))/𝑓𝛼(1)
< 0 for all 𝛼 ≥ 𝛼

(1)
0 .

Finally, observing that
∑︀

𝑘∈𝒥∩𝐸𝑖
(𝑃𝑖,𝑘 − 𝑃𝑗0,𝑘) ≤ 1

2

∑︀
𝑘 |𝑃𝑖,𝑘 − 𝑃𝑗0,𝑘| ≤ 1

2 max𝑠,𝑚

∑︀
𝑘 |𝑃𝑠,𝑘 − 𝑃𝑚,𝑘| = 𝜏1(𝑃 ), we

obtain from (4.7), that 𝜏1( ̂︀𝑃𝛼) ≤ 𝜏1(𝑃 ) for all 𝛼 ≥ 𝛼
(1)
0 .

Let us now define ̂︀𝑃 (1)
𝛼 = ̂︀𝑃𝛼. Observe that the above reasoning is still valid using ̂︀𝑃 (1)

𝛼 in place of 𝑃 and
considering as ̂︀𝑃𝛼 the matrix obtained modifying one more row of the new ̂︀𝑃 (1)

𝛼 into the same row of 𝑃𝛼 (overall
modifying exactly two rows of the original 𝑃 into the corresponding rows of 𝑃𝛼). We call the matrix obtained
in this way ̂︀𝑃 (2)

𝛼 . In this case we have that there exists 𝛼
(2)
0 such that, for all 𝛼 ≥ 𝛼

(2)
0 , 𝜏1( ̂︀𝑃 (2)

𝛼 ) ≤ 𝜏1( ̂︀𝑃 (1)
𝛼 ).

Applying this argument 𝑛 times we obtain that there exists 𝛼
(𝑛)
0 =: 𝛼0 such that, for all 𝛼 ≥ 𝛼0, the following

chain of inequalities holds
𝜏1(𝑃𝛼) = 𝜏1( ̂︀𝑃 (𝑛)

𝛼 ) ≤ · · · ≤ 𝜏1( ̂︀𝑃 (1)
𝛼 ) ≤ 𝜏1(𝑃 ),

concluding the proof. �

The result above shows that when the nonlocality parameter 𝛼 is large enough, the corresponding PageRank
vector is more stable with respect to structured perturbations of Γ or, equivalently, with respect to perturbations
of the adjacency matrix. In fact, if s and s𝛼 are the PageRank and the nonlocal PageRank vectors, respectively,
the inequality 𝜏1(𝐺𝛼) ≤ 𝜏1(𝐺) implies cond1(s𝛼) ≤ cond1(s). On the other hand, extensive numerical experi-
ments show that this inequality actually holds for all values of 𝛼. We illustrate this result in Figure 3 where we
compare the ergodicity coefficient 𝜏1(𝐺𝛼) of the nonlocal PageRank (for 𝛿 = 𝛿Γ) with the coefficient 𝜏1(𝐺) for
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Figure 3. Behavior of the ergodicity coefficient 𝜏1 for both the power law 𝑓𝛼(𝑥) = 𝑥−𝛼 and
the exponential 𝑓𝛼(𝑥) = exp(−𝛼𝑥) transitions. The heat-maps on the left-hand side represent
the difference 𝜏1(𝐺)− 𝜏1(𝐺𝛼) for growing values of 𝛼 on a large set of test networks. Whereas,
the panels on the right-hand side report the behavior of the ergodic coefficients for one hundred
random graphs of Small World and Erdős–Rényi type. For every graph the ergodic coefficient
for the nonlocal PageRank is computed for one hundred different random alphas and, in every
case, we observe that 𝜏1(𝐺𝛼) ≤ 𝜏1(𝐺).

the standard PageRank, for a broad range of values of the parameter 𝛼 and for both the example smoothing
families of functions 𝑓𝛼(𝑥) = 𝑥−𝛼 and 𝑓𝛼(𝑥) = 𝑒−𝛼𝑥. This figure shows that the nonlocal PageRank is actually
more stable than its local counterpart for all values of 𝛼.

Clearly, the norm-1 bound we have obtained provides an indication on the entry-wise variation of the PageR-
ank vector as well. To showcase this effect we consider the case of the undirected cycle graph 𝒞𝑛, i.e. the graph
on 𝑛 nodes containing a single cycle through all of them. It is easy to observe that for such graph the non-
normalized PageRank vector is s𝛼 = 1, ∀𝛼 ≥ 0. Let us now add a directed edge between the ℓth and the 1st
node of the graph, and evaluate how the PageRank vector for the relative value of 𝛼 is modified. It is known that
for 𝛼 = ∞ this modification produces a strong localization effect on the standard PageRank vector s∞ ([49],
Thm. 8.1). The bound obtained in Theorem 4.4 suggests that the relative change on the vector s𝛼 decreases
with smaller values of 𝛼, i.e. the localization effect is milder on the nonlocal PageRank vector. This is shown in
Figure 4 where we plot the PageRank vector of the cycle 𝒞100 perturbed with one additional edge that connects
nodes 1 and 40, for different values of 𝛼 and for 𝛿 = 𝛿Γ. Consistently with the analysis carried out in [49], we
observe two localized peaks that appear in the PageRank vector s∞ entries corresponding to the nodes 1 and
40. At the same time, nonlocal versions of PageRank smooth out these peaks as soon as we let the value of 𝛼
decrease.

In Figure 5 we show the localization behavior of nonlocal PageRank vectors on the adjnoun real-world
network. As expected, the standard PageRank algorithm concentrates the measure around few nodes (hubs)
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Figure 4. Locality of the PageRank vector for the undirected cycle graph with 𝑛 = 100 nodes
when a single directed edge between nodes 40 and 1 is added to the graph (right panel). The
PageRank vector for the undirected cycle is the vector 1. The smaller the value of 𝛼 is, the
more stable the measure is with respect to the addition of this new edge since the curves
for the smaller values of 𝛼 tends to the PageRank of the unmodified graph. On the other
hand, for growing values of 𝛼 the the curve representing the value of the nonlocal PageRank
converges to curve of the standard PageRank (represented as the dot-dashed black line on the
left panel).

and assigns small and almost indiscernible values to the nodes that occupy the lower part of the ranking, whereas
tuning the parameter 𝛼 allows us spread the measure more evenly.

The nonlocality properties of s𝛼 are useful in a number of situations. As an example of the improvements one
can obtain by tuning the parameter 𝛼, while fixing the choice of the distance to the shortest-path distance 𝛿Γ,
in the next section we consider the link prediction task with rooted PageRank similarity.

4.2. Link prediction

Link prediction is an important task in network analysis, which consists of the problem of predicting the
existence of one or more missing (unobserved) edges in a given instance of a network Γ [1, 41]. More precisely,
we suppose having a snapshot Γ0 = (𝑉,𝐸0) at time 𝑡0 of a graph, and we want to guess what edges will be
added at a subsequent time step 𝑡1, in which the graph becomes Γ1 = (𝑉,𝐸1), with 𝐸1 = 𝐸0 ∪ 𝐸add, and
𝐸add ⊂ 𝑉 × 𝑉 ∖ 𝐸0. Two typical scenarios where this problem applies are the case of an evolving network and
the case of network data affected by noise, where it is suspected that a certain number of edges are missing.

A successful approach for link prediction works by first assigning every edge 𝑒𝑖→𝑗 in 𝑉 × 𝑉 ∖ 𝐸0 a score,
score(𝑖, 𝑗), based on the graph Γ0. In this way a ranked list of edges is produced, in decreasing order of score(𝑖, 𝑗),
and the new edges defining 𝐸1 are taken as the edges with higher score.

Rooted (or seeded) PageRank is an established method for assigning such scores, based on the PageRank
transition matrix. By extending that method, we consider a nonlocal rooted PageRank similarity, where the
whole matrix of the scores of all the edges of type 𝑒𝑖→𝑗 for the parameter 𝛼 is defined by

(𝑆𝛼)𝑖,𝑗 = score𝛼(𝑖, 𝑗) = (𝑋𝛼 + 𝑋𝑇
𝛼 )𝑖,𝑗 , 𝑋𝛼 = (1− 𝑐)(𝐼 − 𝑐𝑃𝑇

𝛼 )−1, (4.8)

being 𝑃𝛼 the nonlocal transition probability matrix in (3.1). Note that, due to Lemma 4.3, we have that score𝛼

coincides with the standard rooted PageRank similarity score when 𝛼 →∞.
In what follows we compare the link prediction performance of the nonlocal PageRank with the one obtained

by using the standard PageRank. The test networks are both real-world examples: adjnoun, USAir97, cage9,
EuAirComplete; and synthetic graphs delaunay n10, delaunay n12, and 3elt. The network EuAirComplete is
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 = 0.01  = 0.5

 = 3  = 

Figure 5. Localization of the PageRank values for the graph Newman/adjnoun contains the
network of common adjective and noun adjacencies for the novel “David Copperfield” by
C. Dickens, as described in [46]. We have computed the PageRank vector for different values of
𝛼 and plotted here the same graph with the nodes of the size representing the value assigned
them by the algorithm. All values are consistently scaled. We observe that as 𝛼 decreases the
localization of the measure is sensibly reduced.

the flattened version of the multilayer network EuAir from [10], representing the connection of airports in the
European Union by the different airlines operating there. We subtract from each of the graphs 10% of the edges
chosen uniformly at random and we try to guess back all of them. To determine the parameters needed for
the predictions, namely the 𝛼 and 𝑐 parameters for the nonlocal Pagerank, and the 𝑐 parameter for the rooted
PageRank, we apply a 10-fold cross-validation procedure on the smaller graph. The parameters are chosen on the
grids 𝑐 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.85, 0.9, 0.99} and 𝛼 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 5}.
The whole procedure is then repeated fifteen times and the results obtained are then reported in Figure 6 as
boxplots showing median and quartiles of the obtained prediction accuracy on the fifteen trials. What we observe
is that harvesting information from far-away nodes, i.e. exploiting the slower decay of the similarity matrix 𝑆𝛼

in (4.8), yields better results. When such behavior is not observed the cross-validation pushes then the solution
to be the one obtained with the rooted PageRank. The selected 𝛼 and 𝑐 parameters from the cross-validation
are available in the repository together with the code. For what concerns the cost, here it is dominated by
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Figure 6. Boxplot showing median and quartiles of prediction accuracy over 15 trials
on seven synthetic benchmarks and real-world datasets, for standard rooted PageR-
ank versus nonlocal PageRank with smoothing function 𝑓𝛼(𝑥) = 𝑥−𝛼. For each trial
we remove 10% of edges chosen uniformly at random and we try to guess back all
of them, choosing the parameters 𝛼 and 𝑐 for nonlocal PageRank and the parame-
ter 𝑐 for rooted PageRank via 10-fold cross validation on the smaller graph (with the
removed edges) using the grids 𝑐 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.85, 0.9, 0.99} and 𝛼 ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 5}.

the 𝑂(𝑛3) matrix inversion in (4.8), thus the overall cost of both the standard and the nonlocal PageRank are
comparable.

5. Choosing the appropriate distance

The shortest path distance in Definition 4.1 is not the only possible choice for generating the transition
matrix in (3.1). Being able to choose the distance function 𝛿 is an additional degree of flexibility of the proposed
nonlocal PageRank which allows us to adapt the model more tightly to the problem. In principle any graph
distance, respectively metric, can be adopted to define the transition probability matrix and the choice is a
matter of modeling reasons.

For illustration purposes, in the next section we first describe an example of graph metric obtained by using
the logarithmic distance. Then, in Section 5.2 we consider the London underground train multilayer network
and define a problem-dependent metro distance. This distance takes into account for the multiple layers and
allows us to improve the centrality assignment of the train stations, when compared to independent station
usage data we collected from [47].

5.1. An example of digraph metric: Logarithmic distance

We illustrate here the behaviour of the nonlocal PageRank obtained with a distance that generates a metric
on the graph, i.e. that is both symmetric, and satisfies the triangle inequality. To introduce such metric, called
Logarithmic distance [12, 13], we need to start from a particular proximity (similarity) measure, 𝑆 = (𝑠𝑖,𝑗) =
(𝑠(𝑖, 𝑗)). Such measure is defined in terms of the following Laplacian matrix 𝐿 of the digraph Γ

𝐿 = 𝐷out −𝐴, (5.1)

as
𝑆 = (𝐼 + 𝐿)−1, (5.2)

where 𝐷out is the diagonal matrix of the out degrees in (2.1) and 𝐴 is the adjacency matrix of Γ.
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Figure 7. HB/gre 115 digraph. The figure shows the adjacency and distance matrices for the
loop-less version of the HB/gre 115 digraph.

This measure still accounts for the lack of symmetry of the underlying digraph, i.e. of its adjacency matrix,
and satisfies both the transition inequality and graph bottleneck identity, i.e. it is such that 𝑠𝑖,𝑗𝑠𝑗,𝑘 ≤ 𝑠𝑖,𝑘𝑠𝑗,𝑗 ,
and 𝑠𝑖,𝑗𝑠𝑗,𝑘 = 𝑠𝑖,𝑘𝑠𝑗,𝑗 if and only if every path from 𝑖 to 𝑘 contains 𝑗. In the case of undirected graphs (5.2)
is usually called the regularized Laplacian kernel. Such definition is indeed well posed, i.e. we are ensured that
the matrix 𝐼 + 𝐿 can be inverted, because 𝐼 + 𝐿 is an example of a nonsingular 𝑀 -matrix (cf. [8]). Note that
this is sufficient to guarantee also that all the elements of 𝑆 are nonnegative; see [8] for further details.

To obtain the Logarithmic distance based on the similarity 𝑆 we then build the matrix 𝐻 = (ℎ𝑖,𝑗) and the
vector h defined as

ℎ𝑖,𝑗 = log(𝑠𝑖,𝑗) ≤ 0, h = (ℎ1,1, ℎ2,2, . . . , ℎ𝑛,𝑛)𝑇 (5.3)

from which we define the logarithmic distance as

𝛿log(𝑖, 𝑗) =
(︂

1
2

(𝑈 + 𝑈𝑇 )
)︂

𝑖,𝑗

, 𝑈 = h1𝑇 −𝐻. (5.4)

We stress that 𝛿log, differently from the shortest-path distance in Definition 4.1, generates a metric on the
digraph, see e.g. Theorem 1 of [13]. This can also be observed by the example network in Figure 7 in which
we show the comparison of the entries of the distance matrix for the shortest path distance (central panel) and
for the logarithmic distance (right panel) as compared to the pattern of the adjacency matrix of the real world
network gre 115 (left panel).

Instead, in order to better grasp the differences between the centralities obtained, in Figure 8 we scatter
plot the behavior of the nonlocal PageRank on the dataset USAir97, for the two different smoothing functions
𝑓(𝑥)𝛼 = 1/𝑥𝛼 and 𝑓𝛼(𝑥) = 𝑒−𝛼𝑥 and the two choices of graph distances 𝛿 = 𝛿Γ and 𝛿 = 𝛿log.

5.2. Metro distance and the London’s train multilayer network

In this final example scenario of applicability for the proposed nonlocal PageRank model we consider the
ranking in term of importance of urban railways. Tools from network science have proved to be valuable in
the study of urban transport [22, 58] and here we consider the use of nonlocal PageRank network centrality
in the case of the London train network. Nodes in the network represent stations, and we seek a distance 𝛿
so that the resulting centrality measure correlates well with passenger usage. Such a measure, which requires
only the topological connectivity structure, offers helpful information at the design stage. More importantly, it
can be used in what-if-scenario testing, in order to predict the effect of changes, including unplanned network
disruptions.
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Figure 8. USAir97 digraph. The figure shows scatter plots of Nonlocal PageRank obtained
using shortest path distance vs. Nonlocal PageRank obtained using logarithmic distance for
different 𝑓𝛼(𝑥) and different values of 𝛼.

The London train network is an undirected transportation network representing connections between tube
train stations of the city of London. The dataset tube we consider here is a multilayer version of the train
network, where each underground line corresponds to one layer. The dataset has been generated using the data
from [20] as baseline. The aggregate network consists of one connected component with 271 nodes and 315 edges
with nonzero weights. Each edge encodes the information about the membership of a given node to one – or
more than one in the case of intersections – of the 𝑘 = 11 different underground lines. We collect additional
passenger data from [47]: for each train station of the above network, we collect the number of passengers
entering or exiting that station per year. We collect data for ten years: from 2008 to 2017. Our data is publicly
available at https://github.com/Cirdans-Home/NonLocalPageRank.

Motivated by the question of whether we can identify highly populated stations by exploiting only the topology
of connections between stations, in this section we study the behavior of the nonlocal PageRank centrality with
different choices of the distance function 𝛿 and of the decaying parameter 𝛼. In particular, in the next subsection
we will design a distance that is specifically conceived for this issue and we will show that this indeed helps
boosting the performance of the centrality model in this context.

The metro distance

Every day experience using underground trains suggests that not all the paths between two connected nodes
𝑖 and 𝑗 of the network are equally attractive: we posit that users tend to prefer paths that avoid line changes
(or minimize them) even if that means choosing a path that is longer in terms of the number of stations that
the path involves.

This argument suggests that the shortest path distance 𝛿Γ(𝑖, 𝑗) is not appropriate to faithfully model the graph
exploration of a rail traveler. Hence, we consider here a natural modification of the shortest path distance 𝛿Γ,
which we will call metro distance and which we define as follows

𝛿𝑀 (𝑖, 𝑗) =

{︃
𝛿Γ(𝑖, 𝑗) if 𝑖, 𝑗 are on the same metro line,

𝛿Γ(𝑖, 𝑗) + 𝐶(𝑖, 𝑗) if 𝑖, 𝑗 are on different metro lines,
(5.5)

https://github.com/Cirdans-Home/NonLocalPageRank
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Figure 9. Non-local PageRank ranking performance. Year 2017.

where 𝐶(𝑖, 𝑗) is the number of times a traveler needs to change train line when traveling from node 𝑖 to node 𝑗.
In other words, the metro distance penalizes paths using as penalization parameter the number of times the
passenger changes line.

Our aim is now to test the extent to which the nonlocal PageRank centrality with 𝛿𝑀 can identify nodes
that perform better, in terms of total passenger usage, than other PageRanks. In order to measure this type of
performance for the different ranking strategies, we consider the Intersection Similarity (ISIM), whose definition
we briefly recall. The intersection similarity is a measure that compares two ranked lists that may not contain
the same elements. It is defined as follows [29]: let p,q be two ranked lists of 𝑛 elements we want to compare.
The intersection similarity of p and q is the vector ISIM(p,q) with entries

ISIM(p,q)𝑘 =
1
𝑘

𝑘∑︁
𝑗=1

|∆ ((𝑝1, . . . , 𝑝𝑗), (𝑞1, . . . , 𝑞𝑗))|
2𝑗

, 𝑘 = 1, . . . , 𝑛

where, for sets 𝑆, 𝑇 , |𝑆| denotes the cardinality and ∆ is the symmetric difference operator ∆(𝑆, 𝑇 ) := (𝑆 ∖𝑇 )∪
(𝑇 ∖ 𝑆).

When the first 𝑘 entries in p and q are completely different ISIM(p,q)𝑘 is equal to 1, whereas ISIM(p,q)𝑘 = 0
if and only if the first 𝑘 entries in p and q coincide exactly. More in general, lower values in ISIM(p,q) imply
a better matching between p and q.

In Figure 9 we aim at comparing the top fifteen stations identified by the following three models

– the nonlocal PageRank with 𝛿Γ (“SP distance”);
– the nonlocal PageRank with 𝛿𝑀 (“Metro distance”);
– the standard PageRank.

with the “ground truth”, i.e. the actual fifteen stations with the highest number of passengers, whose corre-
sponding ranked list we denote by 𝜌. In particular, we compute the intersection similarity between the ranking
of any of the three above PageRanks and 𝜌, which we denote respectively by ISIM(𝛿Γ), ISIM(𝛿𝑀 ) and ISIM(𝑝𝑟).

The two curves in the left panel of Figure 9 show the ratios

ISIM(𝛿Γ)15
ISIM(𝑝𝑟)15

and
ISIM(𝛿𝑀 )15
ISIM(𝑝𝑟)15

with blue and red lines, respectively, for different values of the parameter 𝛼, computed with the power-law
decaying function 𝑓𝛼(𝑥) = 1/𝑥𝛼.

Whereas, the central panel compares the cumulative sum of passenger usage values for the 15 top ranked
stations for the three rankings. This comparison is done by showing both the ratio between the cumulative sum
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Table 1. Millions of passengers per year using the top 𝑘 = 5, 15, 45 stations ranked according
to the standard “local PageRank” the nonlocal PageRank with 𝛿Γ (𝛼 = 1.7) and the nonlocal
PageRank with 𝛿𝑀 (𝛼 = 1.7). We consider the range 2017–2008.

𝑘 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008

Ground truth

5 421.6895 433.7675 437.0499 443.6953 413.9785 399.7917 386.0158 366.9199 353.7508 359.7531

15 891.2556 918.167 920.4402 918.3901 867.6314 835.8205 805.7167 755.9158 731.6231 739.0077

45 1614.8047 1665.0602 1615.3159 1615.757 1542.1181 1490.7425 1430.1159 1374.3307 1329.411 1348.2863

“Local” PageRank

5 286.787 294.6265 288.0692 286.9402 273.3404 264.2259 255.6953 245.6262 229.4468 230.0058

15 580.5896 592.7364 588.1613 589.1657 545.3233 522.9533 504.7835 480.4868 462.1433 473.7567

45 1260.4716 1294.76 1259.7501 1259.2124 1204.2262 1159.854 1116.8103 1070.5588 1036.5845 1050.4783

Nonlocal PageRank 𝛿Γ

5 341.4023 349.6481 349.839 353.9939 323.0698 311.4126 297.0677 279.9141 268.7073 271.4097

15 746.1333 768.6693 762.5181 751.9844 723.7442 699.2322 675.9891 648.6213 624.0347 629.1298

45 1302.5842 1320.4892 1320.0771 1324.7913 1269.6994 1222.4786 1181.0192 1150.9596 1123.1939 1133.568

Nonlocal PageRank 𝛿𝑀

5 341.4023 349.6481 349.839 353.9939 323.0698 311.4126 297.0677 279.9141 268.7073 271.4097

15 758.6355 785.5156 774.1294 761.5849 733.9973 709.7501 686.8022 659.9881 634.5561 639.799

45 1352.7352 1373.8639 1362.7264 1366.1506 1300.7856 1251.9737 1203.3251 1154.5498 1124.5568 1139.3027

of passenger usage values corresponding to 𝛿Γ and the one corresponding to the standard PageRank (blue line)
and the ratio between the one corresponding to 𝛿𝑀 and the one corresponding to the standard PageRank (red
line), for different values of 𝛼. In both panels we observe the metro distance 𝛿𝑀 performing generally better than
the standard shortest path distance, with relative optimal performance obtained for 𝛼 = 1.7. This is further
highlighted by the panel on the right of Figure 9, where we compare the first 25 entries of the three different
intersection similarity vectors ISIM(𝛿Γ), ISIM(𝛿𝑀 ) and ISIM(𝑝𝑟), for 𝛼 = 1.7.

As shown in Figure 9, a proper choice of the parameter 𝛼, allows for a more accurate ranking than the
local PageRank. In particular, choosing 𝛼 = 1.7 and the metro distance 𝛿𝑀 , we are able to match the ground
truth ranking more closely if compared with the local PageRank and the nonlocal PageRank employing the
distance 𝛿Γ. Finally, as the right panel of Figure 9 shows, even thought the ISIM performance with respect
to the ground truth ranking coincides on the top ranked nodes for the standard PageRank and the nonlocal
PageRank with Metro distance, the nonlocal model allows us to obtain sensibly better performance in terms
of ISIM when a greater number of ranked nodes is taken into account. This issue is further corroborated from
the results presented in Table 1 where a similar behavior is observed across the ten-year span usage data; here
we compare the number of passengers using the top 𝑘 = 5, 15, 45 stations identified by local/nonlocal Pagerank
as before. Finally, in Table 2 and Figure 10 we show the name and the geographic collocations of the top 10
ranked stations according to the considered different ranking algorithms. The overall emerging experimental
evidence from Figures 9, 10 and Tables 1, 2, highlights how the flexibility of the proposed model allows us to
design centrality that better adapt to the specific problem. While the nonlocal PageRank model with the metro
distance does not yield a perfect matching with the ground truth, it outperforms other PageRank models and
obtains remarkable performance which we find particularly interesting given that the model exploits only the
topological structure of nodes and edges.

Computation of the metro distance

To obtain the penalized version of the shortest path distance 𝛿𝑀 (𝑖, 𝑗), see (5.5), we synthesized from a
multilayer interpretation for the graph Γ. This is a particularly useful approach and, in this case, enabled us
to encode the information coming from the connectedness of two nodes 𝑖 and 𝑗 via the line 𝑘. The multilayer
structure of the graph can be naturally represented using a tensor 𝒯 ∈ R𝑛×𝑛×𝑘 such that

𝒯𝑖𝑗ℓ =

{︃
1 if 𝑖 ∼ 𝑗 on the line ℓ

0 otherwise.
(5.6)

In the following we will use the following Matlab notation: 𝒯 (:, :, ℓ) := (𝒯 (𝑖, 𝑗, ℓ))𝑖,𝑗∈{1,...,𝑛}. Observe that for
every ℓ = 1, . . . , 𝑘, since we are considering undirected connections among nodes, we have 𝒯 (:, :, ℓ) = 𝒯 (:, :, ℓ)𝑇 ;
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Table 2. Ten London train stations with highest ranking value, according to the standard “local
PageRank”, the nonlocal PageRank with 𝛿Γ and the nonlocal PageRank with 𝛿𝑀 (𝛼 = 1.7 in
both cases). Year 2017.

Ground
truth

“Local”
PageRank

Nonlocal
PageRank
𝛿Γ

Nonlocal
PageRank
𝛿𝑀

King’s
Cross

97.9183 King’s
Cross

97.9183 Green
Park

39.3382 King’s
Cross

97.9183

Waterloo 91.2706 Baker Str. 28.7846 Baker Str. 28.7846 Baker Str. 28.7846
Oxford
Circus

84.0906 Paddington 48.8225 Oxford
Circus

84.0906 Green
Park

39.3382

Victoria 79.3593 Earl’s
Court

19.991 King’s
Cross

97.9183 Oxford
Circus

84.0906

London
Bridge

69.0507 Waterloo 91.2706 Waterloo 91.2706 Waterloo 91.2706

Liverpool
Str.

67.7402 Turnham
Green

6.1552 Bond Str. 38.8027 Paddington 48.8225

Stratford 61.9904 Green
Park

39.3382 Bank 30.8981 Bank 30.8981

Canary
Wharf

50.9136 Oxford
Circus

84.0906 Westminster 25.5954 Bond Str. 38.8027

Paddington 48.8225 Stockwell 11.6971 Paddington 48.8225 Earl’s
Court

19.991

Euston 43.0737 Liverpool
Str.

67.7402 Liverpool
Str.

67.7402 Euston 43.0737

Figure 10. This figure shows the name and the geographic collocations of the top 10 ranked
stations according to the considered different ranking algorithms together with the top 10
ranked stations with respect to the actual number of passengers.
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moreover, sign(
∑︀𝑘

ℓ=1 𝑇 (:, :, ℓ)) returns exactly the adjacency matrix of the full graph Γ. By mapping each node
𝑖 ∈ {1, . . . , 𝑛} of the graph in 𝑖1, . . . , 𝑖𝑘, it is possible to form the block matrix

𝑇 =

⎡⎢⎣𝑇1,1 . . . 𝑇1,𝑘

...
...

...
𝑇𝑘,1 . . . 𝑇𝑘,𝑘

⎤⎥⎦ ∈ R𝑛𝑘×𝑛𝑘 (5.7)

such that 𝑇ℓ,ℓ = 𝒯 (:, :, ℓ) and (𝑇ℓ1,ℓ2)𝑖,𝑖 = (𝑇ℓ2,ℓ1)𝑖,𝑖 = 1 if the node 𝑖 ∈ {1, . . . , 𝑛} is at the intersection of
the metro lines ℓ1 and ℓ2; the remaining elements of 𝑇ℓ1,ℓ2 and 𝑇ℓ2,ℓ1 are set to zero. Now, in the expanded
graph Γ = 𝑎𝑑𝑗(𝑇 ) with nodes {11, . . . , 𝑛1, . . . , 1𝑘, . . . , 𝑛𝑘}, let us analyze the path 𝑗ℓ1 → 𝑖ℓ2 → 𝑢ℓ3 → 𝑒ℓ4 with
{𝑗, 𝑖, 𝑢, 𝑒} ∈ {1, . . . , 𝑛}; it is easy to recognize that the case 𝑖 = 𝑢 corresponds to the case where a traveler
changes metro line ℓ2 into metro line ℓ3 at the node 𝑖. The metro distance 𝛿𝑀 (𝑖, 𝑗) is then obtained considering
𝛿𝑀 (𝑖, 𝑗) = minℓ1=1,...,𝑘,ℓ2=1,...,𝑘 𝛿Γ(𝑖ℓ1 , 𝑗ℓ2), being 𝛿Γ the shortest path distance of the nodes 𝑖ℓ1 , 𝑗ℓ2 computed
in Γ. As in most of the other examples, the main computational cost is represented by the computation of the
shortest path distance on Γ.

6. Conclusions and future work

In this work we have introduced a nonlocal version of the classic PageRank model. The new version encom-
passes a nonlocal navigation strategy of the underlying network, permitting the usage of any suitable graph
distance. Generalizing the Lévy and exponential transition models, we have introduced a general definition for
a class of functions which can be used to modulate the range of the interactions.

With the approach presented here it is possible to mitigate several typical phenomena occurring in eigenvector
centralities, such as the phenomenon of localization of the measure, and the issue of the assignation of numerically
indistinguishable values to nodes that are in the lower part of the ranking. The mitigation of these behaviors
increases the predictive power of the nonlocal PageRank when compared with the local PageRank, as it has
been confirmed by the real-world applications presented in this work.

Even if the model we present encodes a completely different dynamics for the network interactions, if compared
with the local approach, it is still possible to use a standard series of numerical tools for the efficient computations
of PageRank vectors, see for example [9, 15, 21, 34]. The main differences are represented by the setup phase
of the algorithm, i.e. by the need of computing the distance matrix for the underlying network, and by the
fact that nonlocal transition matrices are in general not sparse. On the other hand, suitable choices of the
smoothing functions 𝑓𝛼 may lead to structured transition matrices (as in the case of fractional derivatives e.g.
[44]) and exploring this line of research may lead to efficient methods for using nonlocal PageRank on large
scale problems, an issue that will be object of future investigations.
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