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Abstract

In this work, we introduce and investigate a class of matrix-free regularization tech-
niques for discrete linear ill-posed problems based on the approximate computation
of a special matrix-function. In order to produce a regularized solution, the proposed
strategy employs a regular approximation of the Heavyside step function computed
into a small Krylov subspace. This particular feature allows our proposal to be inde-
pendent from the structure of the underlying matrix. If on the one hand, the use of the
Heavyside step function prevents the amplification of the noise by suitably filtering
the responsible components of the spectrum of the discretization matrix, on the other
hand, it permits the correct reconstruction of the signal inverting the remaining part
of the spectrum. Numerical tests on a gallery of standard benchmark problems are
included to prove the efficacy of our approach even for problems affected by a high
level of noise.
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1 Introduction

Object of this work is the numerical solution of the problem
An,mingnEgn'i‘e: An,mERnxm, Xm eRm’ gn,eeR”, n,m >0, (1)

obtained from the discretization of an ill-posed problem in the Hadamard sense [1],
in which the right-hand side g, is the sum of the true signal g, and of a noise vector
€ with |le|| = 6.

A vast source of problems of this type is indeed the class of inverse problems,
such as the numerical solution of Fredholm integral equations of the first kind with
nondegenerate kernels, deblurring problems for images, and, more generally, the
application of linear models for the reconstruction of corrupted signals.

The usual techniques for the solution of linear systems cannot be applied directly
to (1) since their straightforward application would end up in the recovery of a non-
physical/noisy corrupted solution [2]. A vast amount of ad-hoc techniques have been
proposed in the literature to overcome this problem and they are broadly referred
to as regularization techniques. In particular, we cite two strategies related to our
proposal: regularizing preconditioning and hybrid methods.

Regularizing preconditioners have been developed to accelerate the convergence
of iterative methods likes Landweber or CGLS, without spoiling the computed solu-
tion avoiding to amplify the high frequencies, where the noise lives. Many proposals
define the preconditioner in a trigonometric matrix algebra [2—6], that can be applied
only to shift-invariant operators. Since the preconditioner should preserve the struc-
ture of the coefficient matrix A, ,, (see [7]), we follow the more general approach to
define it in a Krylov subspace as suggested in [8, 9].

The combination of a direct solution of the original problem in a small size Krylov
subspace is usually referred as a hybrid method. In more detail, hybrid methods com-
bine the iterative construction of the Krylov subspace with the exact solution of the
Tikhonov problem projected into the computed Krylov subspace [10—13]. The small
size of the Krylov space allows to efficiently solve the projected Tikhonov problem.

In this work, tackling problem (1) through the normal equation

AL Anm¥m = AL .80, 2)

we propose and investigate a class of regularization techniques based on a Matrix-
Function approach. In detail, a regularized approximation of the solution of problem
(1) is obtained as

X0 o = fa(AL A )AL g0, 3)

where fy(z) is a suitable regularization of the inverse function applied to A;’nAm’n,
ie., fu(AL ,Amn)AL ,Ann ~ I and, at the same time, fy (AL ,Am.n) does not
propagate the noise € presents in g,.

The matrix function f, is defined having the property

Ja (M)A~ ha(R), 4)
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where hy (A) is a differentiable approximation of the Heavyside step function in «,
ie.,

1, )»>a+/371,
given § >0, ho(X) =14 1/2, A=aq, 5)
0, A<a—ﬂ_1.

In this way, we are able to filter the spectrum of the inverse of A;E,nAm,n cluster-

ing to zero the eigenvalues smaller than o and inverting the remaining ones. As a
result, the eigencomponents of the eigenvalues clustered to zero are neglected in the
approximate solution and the propagation of the noise due to the ill-conditioning is
avoided.

In this paper, we consider a smooth approximation of the Heavyside step function
(5) previously proposed in [14, 15] for the analysis of electronic structures. Moreover,
in order to obtain a fast matrix function evaluation, we consider a Krylov subspace
method of polynomial type based on either the Arnoldi or the Lanczos decompo-
sition, according to the properties of the matrix A, ,. Hence, we obtain a hybrid
method combining the approximate Heavyside step function with the iterative regu-
larization due to the iterative computation of the Krylov subspace. Our proposal is
independent of the particular structure of A, ,, and it allows to work in a matrix-free
framework simply requiring only the matrix-vector product operation.

The parameter o will be fixed according to the noise level assumed to be known,
while the computation of the Krylov basis is stopped according to the combina-
tion of the discrepancy principle with a new criterion based on the stagnation of the
norm of the residual. The several numerical results presented include different kinds
of inverse problems proving that the proposed framework is general and robust. To
enhance the reproducibility of the presented results, the codes of the new algorithms
are publicly available (see https://github.com/Cirdans-Home/IRfun).

The paper is organized as follows. In Section 2 we discuss the construction of the
approximation (3) connecting it to the classic works in regularization [1]. In Section 3
we define our proposal for the actual computation of our matrix-function regulariza-
tion and we provide two suitable stopping criteria. In Section 4 we apply the proposed
procedures to several test problems proving the goodness of our proposal. Finally,
Section 5 is devoted to some final comments.

2 Motivations and literature review
2.1 Filter-based regularization methods

In this section we briefly summarize the framework of filter-based regularization
methods. The notation and results are entirely borrowed from [1] and the interested
reader can find there further details. Let us consider a compact linear operator A :
Z — % between Hilbert spaces 2", % and denote with A* : %" — 2 the adjoint
operator of A. We denote by A” the Moore-Penrose inverse of A, and by D(AT) its
domain.
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We are interested in an ill-posed (in the Hadamard-sense) linear operator equation
of the form

Ax = g. (6)
The following results hold:

Theorem 1 Ler g € D(AT). Then, Ax = g has a unique best-approximate solution,
which is given by
x= ATg.

‘We have, moreover, that

Theorem 2 Let g € D(AT); x € X is a least-square solution of Ax = g if and only
if the normal equation
A*Ax = A%g @)

holds.

From the above results it follows that xT is the solution of (7), i.e.,
AT = (A*A)TA*.

When considering problem (6) where only an approximation g® of g is available
and § is the noise level, due to the unboundedness of AT, the solution ATg‘3 is not a
good approximation of xT = A¥g (we suppose g to be attainable). This follows by
the following simple observation: consider the singular value expansion (s.v.e.) of A
(o7; vi, Ui)ieN, thenif g € D(AT), we have

oo
< g Ui >
Ao = ot T .
g Z e ®)
i=1

which clearly shows that errors in < g, u; > are propagated with a factor of 1/0;.
In practice, problem (6) is approximated by a family of neighboring well-posed

problems [1].

Definition 1 By regularization operator for A™ we call any family of operators
{Ralacap) : ¥ — 2, ag € (0, +00] )

with the following properties:

1. Ry :% — Z isbounded for every «;
For every g € D(AT) there exists a rule choice « : Ry x % — (0,0) C R,
o =u(s, g‘s), such that

lim sup{a(8, ¢%) : g® € 7, g — &’ < 8} =0,
§—0

and

lim sup = {[| Ry(5.4,8" — A'gll: ¢’ € # . lg — gl <8} =0.
§—0
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Thus, a regularization method consists of a regularization operator and a parameter
choice rule which is convergent in the sense that, if the regularization parameter is
chosen according to that rule, then the regularized solutions converge as the noisy
level tends to zero. Moreover, we have

Proposition 1 Let, for all @ > 0, Ry be a continuous operator. Then, the family {R,}
is a regularization for A" if

Ry, — AT pointwise on D(AT) asa — 0. (10)

We consider here a class of linear regularization methods based on spectral the-

ory for selfadjoint compact linear operators. The basic idea is the following one: let

{E; ) be a spectral family for A*A. The best-approximate solution x* = ATg can be
characterized as

1
T— | ZdE; A*g.
X /A A g

When the above integral does not exist due to the fact that 1 /X has a pole in 0, then
the problem Ax = g is ill-posed, and the idea is now to replace 1/A by a parameter
dependent family of functions f,(4), i.e.,

Xg ::/fa()\)dE;LA*g =: fu(A*A)A%g,
i.e., we are considering
Ry ::/fa(k)dExA* (11)

as regularization operator for A,
The following result gives sufficient conditions for R, as in (11), to be a
regularization operator for AT:

Theorem 3 Let, foralla > O and ane > 0, fy : [0, |A]|> + &) — R fulfills the
following assumptions: f, is piece-wise continuous, and there exists a C > 0 such
that

e = C

and X

Jim fa ) = 5

forall € (0, ||A||*]. Then, for all g € D(AT)
lim fo(A*A)A™g = ATg.

Ify ¢ D(A"), then limy ¢ || fu (A*A)A*g|| = +oc.

@ Springer



1280 Numerical Algorithms (2021) 88:1275-1308

2.2 Tikhonov regularization and Heavyside step function

A special choice for f, which fulfills the assumptions of Theorem 3 is

1
A) = ———.
Ja ) At o
In this case we have
o0 o
) ) ! §
x5 = fu(A*A)A™ g’ = E P < g% ui > ;. (12)

i=1"i

Formula (12), if on the one hand, clearly shows the regularization capabilities for
this choice of f, () since errors in < g°, u; > are not propagated with factors 1/o;
but with factors o; / (Gi2 + «), on the other hand, it shows the limitation of choosing a
uniform shift of all the singular values: this choice is responsible of an over-damping
of the largest singular values.

Our proposal synthesizes and moves from the above observation. Let us consider
(12) for a generic f, we have

o
xb = fu(A* A% =) fuloD)oi < &°,ui > v;. (13)
i=1
In order to provide a regularized solution xg, using (8), the function f, should be s.t.
2 ) Vo, if O’iz >«
Ju(07)oi = {0, if al.z <a,
i.e., it should be
2y 22 o 2
Ja(07)oi” = ho(07),
from which we recover (5). Observe that the function

ha()
fulr) = =%

clearly satisfies the hypothesis of Theorem 3, and hence

e
R, :=f "‘x( )dEAA*

is a regularizing operator for AT

(14)

Remark I We remark in passing [1], that when the operator A is already selfadjoint
positive semidefinite, one will not use R, := fo(A*A)A*, but apply the theory of
regularization methods for equations with selfadjoint operators, where R, would be
just fu(A).

Moreover, from now on, as it is customary, we will suppose that an approximation
A, m of A in finite dimensional subspaces is available, i.e., that we have a discretiza-
tion of the regularization operator [1]. In the following part we focus then on the
construction of a regularization approach of hybrid type in which the regularization
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is effected by both the parameters defining the function f (1) and the choice of the
projection subspace (see, e.g., [11-13]).

2.3 Regularizing preconditioners

In this section, for the sake of simplicity, we will suppose that A, = A, , is a sym-
metric positive definite matrix. Then, using Remark 1, instead of solving problem
in (2), we can suppose to solve

AXy =g, =g, + ¢, A, e RV g, e cR", n>0, (15)

During the last twenty years, intense research has been devoted the computation of
an approximate solution of (15) by coupling the classic preconditioned Krylov iter-
ative methods with preconditioners P, able to prevent the propagation of the noisy
corrupted components contained in g, i.e.,

PlAx, =P g, (16)

where P, is a regularizing preconditioner [2—4, 16]. These can be heuristically
intended as preconditioners P, with a dual role; on the one hand they have to be
able to speed up the convergence in the well-conditioned space of the spectra of A,,
and, simultaneously, on the other, they need to slow down the restoration of the most
corrupted components of g,.

Just to fix ideas in the right order, we stress that this is not the only class of pre-
conditioners used in regularization problems, indeed there exist ample casuistry in
which the objective is the same one of classic preconditioning, i.e., accelerating the
solution of the underlying linear system and this happens, for example, when looking
for the solution of the linear systems arising in the Tikhonov regularization, consider,
e.g., [5, 6].

The class of regularizing matrix algebras preconditioners P, is a well studied
class of regularizing preconditioners and can be described in a very general setting
(see [3, Definition 3.1]).

Such definition is built up mimicking the procedure that is usually followed to
produce regularizing preconditioner for matrices A, of Toeplitz type, i.e.,

T
[An (K)]r,s =dar—s, Qak = L Kk (x) CXP(—ikX)dxv
2 J_»
for k € Z and « a function in L! with one (or more) root(s). In this case the
Pn_1 preconditioners are nothing more than matrices generated from a family of
bounded functions approximating the unbounded function 1/k. Specifically, if they
are selected from an algebra .7, of matrices simultaneously diagonalized by an
orthogonal transform U, [17, 18], i.e.,

My = {M, € C"" : M, = U, diag(2)U,;;, ze€C", UU, = I,,}, (17)

then the construction of P, can be achieved by applying a suitable filter fo to the
diagonal term in the Schur decomposition of some suitably chosen matrix M,, € .#,,
(e.g., the projection of A,) . This is indeed nothing more than the computation of a
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filtering matrix-function f, (1) on the particular M chosen, since what is then built
is simply
Py = fo(My) = Uy, diag(fo(2)U, . (18)

To this class of preconditioners belong all the combinations that can be built taking
M, as a trigonometric algebra and f, a suitable filtering function in the sense of
[3, Definition 3.1]. The steps needed in this approach include a careful selection of
the algebra (17) in which the problem is projected, and the selection of an appropri-
ate filter function; both the choices are strictly connected with the structure of the
sequence of matrices {A,},, and severely effect the quality of the restored solution.
An analogous observation holds for all those regularizing structured precondition-
ers [7, 19], in which the preconditioner shares the same structure of the underlying
matrix.

As a matter of fact, in many applications, it is not possible to retrace a useful
structure in A, in order to devise a proper matrix algebra .#,.

The approach we propose in this work, synthesizing from the above presented
techniques and from [8, 9], aims to be applied independently from the particular
structure of A, avoiding the necessity of devising an opportune matrix algebra .#,,. In
particular, it allows to work with the matrices {A,}, in a matrix-free framework, i.e.,
gathering information from the matrices just focusing on the matrix-vector product
operation (Krylov-type techniques).

2.4 The matrix-function technique

To give a precise idea of the general framework of our approach, if A,, is symmetric
and positive definite, we have

Ufa(Aa)U gy =Y fuO )@l g)u;
j=1

Y fOp@igyui+ > f0 )@ gy, (19)

Jirj<a JiAhj>a

Ja(An)gn

where « is a suitable threshold parameter and f : Ry — R.

Since the eigencomponents related to the {j : A; < «} are those responsible for
the propagation of the noise contained in g,—while the {j : A; > «} are the ones for
which it is possible to reconstruct the signal without incurring in a noise propagation
phenomenon—we devise the use of a f,, (1) such that

Fa) & he (M)A, (20)

for h, (A1) the Heavyside step function in « as in (5). Accordingly to this choice, we
are setting in (19)

> fulplgu; ~ 0,

j:)\jfot

1
> faOp@ignuix Y (g,
Jihj>a Jirj>a
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To build such matrix function we need a suitable regular approximation of the Heavy-
side step function. This is a problem that has been addressed in a completely different
setting for the analysis of electronic structures in quantum chemistry and solid state
physics [14, 15]; we use hence the approximation

fa(An) = ha(A) A ~ % [1 +tanh (B(A, — al,))] A, a,f>0. 2D

Since we want to avoid any occurrences of the computation of A, Ix in this context,
for computing fy (A,)g,, we decide to recur to a Krylov subspace method of polyno-
mial type based on either the Lanczos decomposition, if A, are symmetric matrices,
or the Arnoldi decomposition, if the A, are nonsymmetric.

2.5 Fixing the parameters

As for all regularization methods, we need a suitable way of fixing the various param-
eters defining the method. In our case, we have to discuss the choice of the «, 8 for
Ja(R).

From Fig. 1, the effects of the two parameters are clear. The value of « regulates
which part of the spectrum we are filtering, and the § how sharp is the threshold
process. Of course, the choice of « and 8 should depend on the noise level and on
the decay speed of the eigenvalues/singular values of A,,.

A reasonable heuristic for this choice is represented by a value of « that is slightly
smaller than the level of noise and by a value of g that is such that 1/8 << «, in
order to avoid the instances represented by the dashed lines in Fig. 1, where some
small eigenvalues end up being magnified in the inversion procedure.

Theorem 4 Given the regularization problem in (1) and the regularizing function
fou(Ap) in (21), when § — O, for the parameter choice « & § and 1/B < «, we find
that

1. IfAn,m = Ay, then f, (A8 — En,
2. otherwise, fq (A,{mAn’m)A,{’mgn converges to the least-square solution of (1).

Proof We simply need to observe that, by (20) and (5), fy(A) — A~! when § — 0
for the parameter choice « « § and 1/8 < «. O

3 Computing the matrix function

For the sake of readability, from this section on, we fix the dimension of the problem
n. We will write A instead A, X instead X,, and g instead g;,.

The core of our approach is the computation f,(A)g and for this task, we will
exploit Krylov subspace methods. This section is devoted to a careful review of these
techniques.

We have seen in (18) that for diagonalizable matrices, computing f, (A)g amounts
to the computation of the function f,, on the eigenvalues of the matrix A. This proce-
dure can be defined also in a more general setting [20], for an arbitrary matrix A and
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1 30 :
wea=10", B =10 28 =101, f=10'
097 a=10",p=310' 2% E s =10", =310
08 —a=10"p8=10" | " —afIO",ﬁ=102
2 ‘

0.5tanh(B(x — ot))x~!
=

10°

(a)

e =102 B =10
s =107 B=310%
—a=102%B=10°

260}
20 %
20%

_ 200 *

180

160

§140

£120

100
=]

= a=1072 B =10
=102, =3 102
—_—o =102 B =10°

1073 1072 . 107! 10° 10°

(b)

Fig. 1 Regularized version of hy (1) (left) and f, (1) function (right) for o« = 1071, 1072 and several
values of 8

filter function f analytic inside a closed contour I” enclosing the spectrum of A: the
matrix function-vector product f(A)g can be defined as

1
fA)g = 2—/ f@)@l — A gdz. (22)
Tl Jr

An efficient class of algorithms for computing (22) is represented by projection meth-
ods. Let Vi be an orthogonal matrix whose columns vy, ..., vt span an arbitrary
subspace, then we can approximate f(A)g on that subspace as

fAg= 5= [ fRGEI - A)'gdz
~ o [ F@Viel = VIAV) ™'V gd 2 (23)
= Vif(VAV)V/ g
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In this work we are interested in projection methods such that the matrix Vi spans
the kth Krylov subspace

(A, g) = Span{g, Ag, ..., A" 'g}.

In the case of generic square matrix the Arnoldi procedure with modified Gram-
Schmidt builds an orthonormal basis Vj of J7; (A, g) satisfying the so-called Arnoldi
relation

AVi = ViHi + hi1 kit 181 (24)

where Hy = (h; ;); j is an upper Hessenberg matrix of size k x k. Finally, the
approximation in (23) is computed as

f = yVif(Hoer, v =Ilgl, e1=(1,0,...,07 e R

In Algorithm 1 we give a synthetic presentation for the matrix-function-times-vector
computation which encompasses a reorthogonalization method.

Algorithm 1 Matrix function computation (Arnoldi-Modified Gram-Schmidt
based).

Input: A € R"™" g € R", mp,y, function f.
Output: f,, ~ f(A)g.

1y < ligll2;

2 Vi < g/y;

3 fork=1:myu do

4 Wi <— Avg; /* Modified Gram-Schmidt =/
5 fori =1:kdo

6 hix << Wk, Vi >;

7 Wi <= Wi — hi Vi3

8 end

9 fori =1:kdo

10 T <<V, Wi > /+ Reorthogonalization =/
11 Wi < Wi — TV;;

12 hix < hix+7;

13 end

14 Rtk < Well2;

15 Vi =[vil. . |ve];

16 fr < yVif(Hpe ; /* Schur-Parlett =/
17 if hg+1.4 = O then

18 f, =1 ;

19 exit;

20 end

2| Vil < Wi/hit1 ks

22 end

When the matrix A is symmetric, Algorithm 1 can be greatly simplified by using
the Lanczos procedure to generate the basis of the Krylov subspace J# (A, g). By
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this procedure we build an orthonormal basis Vj of JZ; (A, g) satisfying a modified
version of the Arnoldi relation (24)

AV = ViTi + (xk+1vk+1e;{, (25)

where Ty = diag(B, «, B) is a symmetric tridiagonal matrix of size k x k. Finally, the
approximation in (23) is computed as

f = yVif(Toer, v =lgl, e =(1,0,...,0" e R

As for the nonsymmetric case, also the Lanczos algorithm can suffer from a loss
of orthogonality in the computed vectors, thus the Algorithm 2 includes also a full
reorthogonalization step.

Algorithm 2 Matrix function computation (Lanczos—Based).

Input: A € R"*", g € R", myqy, function f.
Output: f,, ~ f(A)g.

1y < lgl2;

2 Vi < g/y;

3 W < Avy;

4 0] << W],V] >,

5 Wl =W| —AV];

6 fork =2 : my,, do

7| Bj < w2

8 if B; # 0 then

9 Vi =W;_1;

10 Vi = [vi|...|vk];

1 fi < yVif(Ter;

12 else

13 £, =1 ;

14 exit;

15 end

16 Vi < (Ix — Vk—leT_l)Vk ; /* Reorthogonalization */
17 W < Avj;

18 oj << Wj, V| >;

[ Wi =W v =BV
20 end

As a matter of fact, we will use both Algorithm 1 and 2 in an iterative fashion and
we need to provide a stopping rule to completely specify our proposal. In the next
Section 3.1 we discuss and clarify this issue.

We conclude this section by highlighting a connection between our proposal and
the standard approach with hybrid Krylov method. Specifically, we stress that under
some hypotheses on the Krylov subspace the methods produce the same iterates.
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Proposition 2 If Vi f, (VI AVi)V e| = Vi(VI AVi)~' V[ e then

— fy coincides with the kth iteration of the CG Algorithm, if A is SPD, and
Algorithm 2 is used;

— f, coincides with the kth iteration of the CGLS Algorithm, if f, is computed on
AT A, and Algorithm 2 is used;

—  fy coincides with the kth iteration of the FOM Algorithm, if f, is computed on
A, and Algorithm 1 is used.

Proof All the properties follow straightforwardly from the standard construction
of the CG, and CGLS Algorithm with the Lanczos orthogonalization procedure,
and of FOM, for the Arnoldi orthogonalization procedure. We refer to [21] for the
construction of the relative algorithms. O

3.1 The stopping criterion

A well-known stopping criterion for regularization is represented by the discrepancy
principle. If we consider problem (1) and we denote by f; an approximation of the
solution X obtained in an iterative fashion, the basic idea behind this criterion is to
stop the iteration of the chosen method as soon as the norm of the residual ry =
g — Af} is sufficiently small, typically of the same size of §, i.e., the norm of the
perturbation ¢ in the right-hand side of (1). In our setting, fy = Vj fa(VkTAVk)VkT g,
and we can easily monitor the residuals

el = llg — Afell = llg — AVi fu (V] AV V/ gll. (26)
The discrepancy principle, based on this quantities, reads as
select the smallest £ such that ||rg||/]lgll < iﬂ;”, 27
g
where n > 1 and we call NoiseLevel the relative noise level |le||/]gll = §/llgll.

Observe now that, since f, does not coincide, in general, with the function 1/A, the
quantity |[rg|| is not guaranteed to converge to O as k increases, as it happens in the
linear system solution framework. In general, it will stabilize when the dimension of
the Krylov space increases: when k — n, f; will be an increasingly better approxi-
mation of f(A)gand hence ||g— A Vi fy (VkT AVy) VkTg|| will converge to the quantity
llg — Af (A)gll # 0 since f(A) # A~".

In order to improve the stopping capabilities of our regularized reconstruction
algorithm, we need to add a further stopping criterion. With this in mind, we consider

the sequence of the residuals {cy := |||rk|| — |Irk—1l/|}x Which is such that
Hewll — lek—1lll < llee — ve—1 |l = [[Afy — Af—y |l (28)
and thus goes to zero as k increases. We select as a stopping criterion the following:
-8
select the smallest k such that |||rg|| — |[re—11l1/]Igll < 7|7|—” (29)
g

Heuristically this choice is supported by the fact that, due to the noise presence, it
is not possible to discern among reconstructions giving rise to residuals which differ
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for a quantity of the same order of the noise level. Observe, moreover, that from (28),
it is clear that the stopping residual (29) will be satisfied. Finally, we point out that
performing the stopping check using the form in (29) is very cheap in space and time
once the norm of residuals has been computed.

We stress again that the method we are using generates a solution that is in the
Krylov subspace % (A, b), or either (AT A, ATb), for the fixed choice of the
parameter « made in Section 2.5. Using analogous techniques to the one in [11-13],
it is possible to devise a suitable hybrid choice that selects adaptively an optimal
threshold o within the given Krylov space of order k, i.e., we could connect the choice
of k and « in an adaptive way.

In the following Algorithm 3 we present the full pseudo-code for our proposal
in the case in which the Arnoldi procedure is used; the case for the Lanczos based
procedure is obtained similarly from Algorithm 2.

Algorithm 3 Regularization using matrix function.

Input: A € R"™", g € R", mpqy, function f, fp =0, n, NoiseLevel := NL.
Output: x,, regularized solution of Ax = g.

1y =gl

2 v =g/y;

3 fork=1:mpyu do

4 Wi <— AV /* Modified Gram—-Schmidt =*/

5 fori =1:kdo

6 hik << Wi,V >;

7 Wi < Wi — hi kvi;

8 end

9 fori =1:kdo

10 T <<V, W >, /* Reorthogonalization =*/

11 Wi < Wi — TV;;

12 hix < hjx+1;

13 end

14 hit1.k < [IWill2;

15 Vi =[vi]...|vkl;

16 Xr < Yy Vi f(Hpep /* Schur—-Parlett =*/

17 Iy < g— AXy ;

18 if higr1.6 =0or % < nNL or W <nNL; /* Stop Check
*/

19 then

20 X = Xf ;

21 exit;

22 end

23 Vil < Wi/hey1 ks

24 end
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4 Numerical experiments

All the numerical experiments are performed on a Linux machine with an Intel®
Xeon® Platinum 8176 CPU, 2.10 GHz, with 84 Gb of RAM. The code is written
and executed in Matlab 9.3.0.713579 (R2017b). The regularization routines used for
comparison, and the test problems are generated with the packages AIR Tools II [22]
and IR Tools [23]. The algorithm presented here, together with the example files
generating the examples, is available as the IRfun MATLAB function on https://
github.com/Cirdans-Home/IRfun.

In order to study the effectiveness of our stopping criteria, we organize the tests
comparing the best achievable PSNR within maximum allotted iterations with the
results obtained employing the stopping criteria discussed in Section 3.1. More-
over, some testing on the stability of the algorithm with respect to the choice of the
optimization parameter « in f, (x) is investigated here.

The methods we used for comparison are the standard Krylov methods for regu-
larization implemented in IR Tools [23], i.e., the CGLS, Preconditioned CGLS [4],
Range Restricted GMRES (RR-GMRES), the hybrid GMRES, GMRES with ¢
penalty [24], and hybrid LSQR method [25]. Moreover, we consider also the solution
with the Tikhonov regularization method in which we solve the auxiliary linear sys-
tem with the CGLS method and compute the optimal parameter A by means of the
L-curve criterion using of the SVD of the matrix A. We report, moreover, the com-
putational time for every method. To conclude, let us stress the fact that our proposal
is a linear method exploiting the information from Kyrlov subspaces: for this reason,
in the comparisons, we restrict ourselves only to the linear methods mentioned above
not taking into account nonlinear techniques.

4.1 Deblurring problems: f,(A) for A symmetric

In all the examples in this section, the parameters ¢, and § for the matrix function
regularization are selected as @ = 8 x 10!, and 8 = 10°. We perform a fixed num-
ber of iterations (100) for each method, independently from the fact that a stopping
criterion is satisfied or not; for all the comparison methods the discrepancy principle
is used to pick the k at which the iterations are halted, while for our proposal we use
the stopping criteria described in Section 3.1, i.e., the minimun between the two that
satisfy the (27) and (29). The parameter A for the Tikhonov method is set by using
the SVD/L-curve criterion and the CGLS method is used to obtain the solution of
the resulting linear system. We report in every table, both, the number of iterations
and the achieved PSNR: the ones in brackets are relative to the best-reconstructed
solution while the others, correspond to the results obtained by applying the stop-
ping criteria. For the Tikhonov-CGLS method the two quantities coincide since the
regularization is obtained by the shift A, and the linear system is then solved to the
highest accuracy. For the preconditioned CGLS we use the algebra preconditioner
1

Piy(A) = .,?Az;,j " !introduced by the authors in [4], where L4 is the projection
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of the matrix A on the space sd F of matrices simultaneously diagonalized by the
two-level Fourier transform

¥ :=sd F = {Fdiag(z) F* : z € C"}.

Specifically, we always test the various preconditioners obtained fori = 1,...,8,
and take the one giving the best results. Observe that in this way we always consider
also the classic optimal and super-optimal preconditioners (see [4, 17]).

Satellite The first example is the ‘satellite’ image (Fig. 2) with a mild,
medium, and severe Gaussian blur generated by the PRblurgauss () function.
Since the images terminate with a zero boundary, we have used the zero Dirich-
let boundary conditions to assemble the matrix A. To the right-hand side we add
Gaussian noise of level

§=1{1072,10"2, 107, 2x 107", 3x 107", 5 x 1071} (30)

by means of the function PRnoise (b, ‘gauss’,delta).

For the sake of completeness, for this particular problem set, we compare our
approach using as preconditioner for the CGLS method an approximate inverse
Toeplitz preconditioner proposed in [19]. To have a fair comparison with the
CGLS and the PCGLS methods we apply the £ftPrec () from the Regularization
Tools [26] package to the CGLS method (the associate threshold for £ftPrec ()
has been set using the generalized cross validation method). In the following, this
method will be denoted as fftPCGLS.

The results are collected in Tables 1, if reorthogonalization is used for the Lanczos
method, and in Table 2 without reorthogonalization.

An example of the reconstructed ‘satellite’ by the various algorithms is
instead given in Fig. 3.

The first observation we can make on these cases is that the stopping crite-
ria work efficiently on all the test cases. As a matter of fact, the PSNR for the
best-reconstructed signal, and the one obtained from the stopping are comparable.

' 0.8 07
06
_ 06 05
0.4
) 04
03
. 02 0.2
0.1
0 0
(a) (b) (©)

Fig.2 ‘satellite’ test problem with different Gaussian blur generated by the PRblurgauss ()
function. a mild. b medium. ¢ severe
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Noisy and Blurred Image CGLS PCGLS

\

PSNR 20.37 PSNR 23.26 PSNR 22.88

RR-GMRES Tikhonov CGLS Matrix Function

PSNR 24.05 PSNR 23.26 PSNR 23.44

Fig. 3 Reconstructed signals for the *satellite’ test problem, for § = Se — 1 and medium level of
blur

For high levels of noise (§ > 2e — 1) and severe blur level the combination of the
matrix function routine and the stopping criteria deliver better results than the com-
parison methods in the majority of the cases. In particular, in the comparison with
the hybrid Krylov methods, we should mention the fact that, in some cases, the lat-
ter achieves slightly better results in terms of combination of PSNR/stopping results
but at the cost of having a higher execution time. Generally, we can observe that the
timings of our proposal are smaller than the one needed for solving the problem with
the Tikhonov approach and are comparable with the ones for the other Krylov-type
methods. There is some improvement on the timings when no reorthogonalization is
used at the cost of a slightly minor performance in terms of PSNR.

We are also interested in investigating the sensitiveness of the proposed approach
with respect to the regularization parameters « and 8 of Section 2.5 in terms of
achieved PSNR. In Fig. 4 we report the PSNR of the best reconstruction in 100
iterations obtained by the matrix function iterative regularization with the function
f«(A), and varying the parameter « around the selected value in Section 2.5, i.e.,
a=38x10"".

We repeat the test for all the blur levels in Fig. 2 and the noise levels § in (30). We
report, moreover, the same stability test for 8. What we observe is that the selected
parameters lay, always, in a flat zone of the graph. This implies that even if we slightly
vary them the resulting restoration quality is unchanged.
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Fig.4 Sensibility with respect to the choice of @ and § for the matrix-function regularization algorithm
based on the Lanczos procedure with reorthogonalization for the *satellite’ test problem. The sen-
sibility with respect to f is evaluated for the value of « selected for the experiments. a mild. b medium. ¢
severe
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4.2 Space variant problems: f,(A)

We consider also the regularization of problems whose solution is not spatially invari-
ant, namely we consider the first-kind Fredholm integral equation from Phillips [27].
This problem defines the function

1+ cos(xm/3), |x| < 3,
"’(’“):{0, x| > 3,

and tries to recover it by means of the kernel K (s, t) = ¢ (s — t), with right-hand
side g(s) = (6 — |s|)(1 4 .5cos(s/3)) +9/(27) sin(|s|7/3) on the interval [—6, 6].
The second problem of this class we decide to investigate is the discretization of 1D
gravity surveying model problem [28] in which a mass distribution f(¢) = sin(w¢) +
0.5 sin(2rt), is located at depth d = 0.25, while the vertical component of the gravity
field g(s) is measured at the surface. The resulting problem is again a first-kind
Fredholm integral equation, this time with kernel K (s, 1) = d(d* + (s — t)z)_%,
in which the discretization of the source g(¢) is obtained as g = Ax, where A is
computed by means of a mid-point quadrature rule on the interval [0, 1]. We perturb
again the right-hand side by the noise in (30), and give the solution in Table 3.

The “~” reported for the RR-GMRES algorithm in Table 3b occurs when the
algorithm generates a Hessenberg matrix that is numerically singular, and thus halts
without giving back a result.

In Fig. 5 we report the PSNR of the best reconstruction in 100 iteration obtained
by the matrix function iterative regularization with the function f,(A), and varying
the parameter o around the selected value in Section 2.5, i.e., « = § X 10—, from
which we observe again that the selected parameter is located in a flat zone, i.e., small
variations do not alter the resulting PSNR for the best reconstruction.

4.3 Tomography problem: f(AnT,mA,,,m) for Ap,m rectangular

Tomography problems are imaging problems in which the image has to be recon-
structed from some of its sections obtained through the use of a penetrating wave,
and it literally means a “slice view”. In general, we could expect to have to solve a
problem of the form

findx,, € R" s.t. Ay X =81, n#EmM, ApymeR" g, eR" 3D

Using the least-square interpretation of problem (31), we can then compute our
regularized solution as

Xn = falA] mAnm) AL .80,

for the f, given in (21) by means of the matrix function algorithm based on the
Lanczos orthogonalization process.

Parallel tomography we consider the “line model” for creating a 2D X-ray
tomography test problem with an N x N pixel domain, using p parallel rays

@ Springer
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Fig. 5 Sensibility with respect to the choice of the o parameter for the matrix-function regularization
algorithm with reorthogonalization for the *Phillips’ and ‘Gravity’ test problems

for each angle 6 generated by the paralleltomo routine from the AIR-
TOLSII package. To the right-hand side we add Gaussian noise of level § as
in (30). In this example the maximum number of iterations is fixed at 800.
The results are collected in Table 4. The relaxation parameters for the Kacz-
marz, the random Kaczmarz, Cimmino, and Landweber methods are set with
the training routine train relaxpar (A,b,x_true,@method,20), while
the threshold parameter 7 is computed with train_dpme (A,bl,x_true,
@method, 'DP’ ,NoiseLevel,10,20,o0ptions).

On this set of test problems, we observe different behaviors for the considered
methods allowing us to observe a couple of interesting facts. Firstly, we observe that
for higher levels of noise the discrepancy principle combined with the Kaczmarz,
random Kaczmarz, Landweber and Cimmino methods do not work well, i.e., the
iteration at which it stops the method is very far from the one for which the best
PSNR is achieved even though the discrepancy principle gives better results when
combined with the standard CGLS algorithm.

Secondly, it is interesting to compare the best achievable reconstructions obtained
by CGLS and by our proposal: the best obtained PSNR is the same in the two cases.
This is due to the fact that the ill-conditioning of the matrices A, , obtained for
this test problem is the result of very large singular values and not to the presence
of decaying ones. This behavior is in accordance with Theorem 4, i.e., the function
fo(x) is not “cutting out” the singular values with relatively small magnitude since
they are not present, hence the solution computed by our method coincides with the
one provided by the CGLS method. Even if on this dataset our proposal does not
compare favorably with CGLS in terms of execution time, the results here obtained
suggest its typical use-case, i.e., our proposal should be employed for problems
exhibiting a fast decay of the smallest singular value to zero.

@ Springer



Numerical Algorithms (2021) 88:1275-1308

1304

(€0°ST) 120 T0+9T'L (9) 008 (90°91) L6'ST 00+3¢'C ©c (LLs1 07T T0+3¢'L (6) 008 10-20°S
96°91) LYY 0+ L (11) 008 Tl 1Ll 00+3¢'¢ )¢ (6I'L1) Tr'9 0+ L (S1) 008 10-20°¢
(88°LD)8L'L 70+°8'8 (91) 008 (6T°81) 6781 00+26't (257 (€+'81) 68°6 20+96°L (12) 008 10-20C
(92°00) LS°€1 0+9¢G°L (€€) 008 (09°02) 09°0C 00+96°S 99 (€L°07) 8S°ST 0+ L (#¥) 008 10-20'1
(LT'9D) L1'9T 0L (L89) 008 (0€'92) $9°ST 10+o¢'T 09 ¥1 (T€'90) T€'9T T0+3°L (008) 008 20-20'1
(oL To'Le 70+97'8 (008) 008 (86'87) 96'LT 10+9+°9 (€61) 9¢ (€8'97) €8'9C T0+31°6 (008) 008 €001
ANSd (O 11 ANSd (5)L 11 ANSd ()L 11 9
ourwwri) SO Togampue]
(€0°€T) 69'8- €0+op'e (1008 (TOED) L8'6- €0+or'E (1 008 (9091) 6T°L 00+99'6 ©L 10-20°S
F9°ST) STH- €0+ot'E (1) 008 (96'ST) €¥°6- €0+or'e (1) 008 (T el 10+1°1 WL 10-20°¢
(€0'81) §9°S €0+96°¢ (6) 008 TsLn 161- €0+or'E (1 008 (6T'81) 96°'S1 00+35°6 WL 10-20'C
(Srel) ¥1'y €0+o1°¢ (¥) 008 (Le'6l) €L €0+or'E (2) 008 (09°02) 8L'61 10+9C°1 @6 10-20°1
(1092) 9561 €0+9G°¢ (81) 008 (60'92) 65°CT €0+o¢'T Lo Lig (0£'90) 96'ST 10+20°¢ (0¢) 81 20-90'1
(96'80) 8€°LT 10+9T°6 (Lo e (PL'8T) €1'LT 10+96°'8 (008) 0T (86'82) €L'9T 10+98°¢ (€61) 8T €0-°0'T
ANSd (O 11 ANSd (S)L 1I ANSd (O 11 9
ZIPWZOTY[ Wopuey ZIBWZOe Y] ug S.w«\ﬁs.n«\ sw)b o[

sj[nsal uonezuensoy (8)

(suotado ‘0z ‘0T ‘ToASTSSTION’ ,dd, ‘'POoylswe ‘aniy x ‘19 'y)sudp ureil
Aq pondwod sr 2 1oowered ploysaryl QY J[UM ‘(07 ‘POUIBWD ‘ONIY X ’Y) IedxeTSIUTRII UM )OS Qe SPOyjoW  JIQIMPURT pUB  ‘OUTUWI))
‘ZIBWZOPY WOpURI ‘ZIRWZORY JoJ sIooweled uonexedr oyl [Q°)] = U "¢ osiou JO S[@A9] JUAIPIp ‘wo[qoid 31s9) ,ocwolTsTTexed, ¢ I|qel

pringer

Qs



1305

Numerical Algorithms (2021) 88:1275-1308

10°1°¢ 7029°1 10-°1°¢ °0+98C 00+98°6 1026'1 00+29°9 10-°9C 10-20°¢
10-°0°¢ Y0=L'1 10-°0°¢ 0+96C 001986 10261 001299 10-°9'C 10-°0°¢
10-20C Y0=L1 1020C wtre 10+36°L 0=t'e 00+99°9 10-°9'C 1020'C
10201 Y02L1 10201 0+aTe 00+30°L 10-°9C 00+31°9 10-98C 10201
2001 Y0=L'1 20-20'1 0+aT’e 00+og'y 10°9°L 00+98°6 10-°8'¢ 20-20'1
€0-°0'1 Y0=L'1 €0-°0'1 w+aTe 00+96't 00+oC'1 10+°8C 10-20'8 €0-°0'1

1 ® 1 ® 1 ® 1 ® 4

Iogompue] [Sisiiiiiiig) ZIBWZOeY WOopuey ZIBWZIr Y|

s1o1owrered paurely, (q)

(ponunuoo)

volqeL

pringer

As



1306 Numerical Algorithms (2021) 88:1275-1308

5 Conclusion and future perspectives

In this work we have introduced a hybrid Krylov method for the regularization of dis-
crete inverse problems through the usage of matrix functions computed with Krylov
methods. This construction generalizes the approach used for structured regularizing
preconditioners to cases in which the opportune structure is not easily devised. The
theoretical justification of the given approach is based on spectral filtering framework
for the inverse, or the pseudo-inverse, of an ill-posed operator. We have discussed a
heuristic for the stopping criterion and for the selection of the parameters of the filter
that does not require further computations to be made on the system matrix, needing
only the knowledge of the norm of the additive noise, and we plan to extend to a fully
adaptive and automatic choice of the parameters in the style of [11-13].

The numerical results show that the proposed methods behave consistently
throughout different applications, and are able to deal with cases in which the noise
level is high (> 20%). The comparison with the standard Krylov-type methods is
promising in terms of achieved PSNR and timings.

Moreover, the proposed methods behave better than both the Tikhonov method and
the fixed point methods (Kaczmarz, Cimmino, Landweber) with trained parameters
in several test cases.

Matter of future investigations is the usage of rational Krylov methods for the
computation of the various matrix functions and the possible exploitation of different
filtering functions within the same framework.
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