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A complex network is a graph with
non-trivial topological features, neither a
structured graph nor a completely random

graph.
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Complex Networks and what we want to do with them

2 Complex Networks and Centrality

We are interested in tasks in exploratory
data analysis, that is analyzing the data to
summarize their main characteristics:

My Divide the nodes into groups that are in
the same community (clustering),

W Find the “most relevant” nodes in the
network (centrality),

> Find the “most relevant” edge in the
network (edge centrality)

&l Individuation of motifs, computation of
fluxes, maximum cuts, etc.
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Network

A network G = (V, E) is defined as a pair of sets: aset V= {1,2,...,n} of nodes and a
set E C V x V of edges between them.

Directed/Undirected

If ¥ (i,j) € E then (j,i) € E the network is
said to be undirected is directed otherwise.

oo

Directed Undirected Loop
Ansggge from a node to itself is called a loop.
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A network G = (V, E) is defined as a pair of sets: aset V.= {1,2,...,n} of nodes and a
set E C V x V of edges between them.
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Adjacency Matrix

We represent a Network via its adjacency
matrix A = (a;;) € R™", entrywise defined

as
wy if (i,j) € E

aij = X
0 otherwise

where wy; > 0 is the weight of edge (i,j).
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A network G = (V, E) is defined as a pair of sets: aset V.= {1,2,...,n} of nodes and a
set E C V x V of edges between them.

/. Degree Matrix

2 O Wi Wi3 Wiy O We call degree matrix the diagonal matrix
Q/ ’ wig O o) O Wgs .
oy Wid D = diag(Al),

wiz O o o o

T

wi@ W19 9 9 0 where 1 = (1,1,...,1)T.
O wg5 O o o

5/27



Two centrality measures

2 Complex Networks and Centrality

Given o > O such that 0 < ap(A) < 1, the Katz
centrality of node v; is the ith entry of the vector
p=(I—ad) 1.

e A>0=p>1.

B Katz, L. A new status index derived from sociometric analysis. Psychometrika. 18, 39 - 43 (1953)
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Two centrality measures

2 Complex Networks and Centrality

Given a € (0, 1) a teletrasportation parameter, and
given v > (0 a personalization vector such that
vI1 = 1, the PageRank centrality of node v; is the ith
entry of the stationary vector 7 of the stochastic
matrix GT, where G = a(D7!A)T + (1 — a)v1T.

e Gr=m, wll1=1,

e I—a(D A7 =(1-a)v.

B Page, L. &Brin, S. The anatomy of a large-scale hypertextual Web search engine. Computer Networks.
30, 107 - 117 (1998)

B Gleich, D. PageRank beyond the web. SIAM Rev.. 57, 321-363 (2015)
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To the centralest

2 Complex Networks and Centrality

€vO’ dA\\olg Hév mtaaty €nv daipwy, oudE mob’ “Hpn
0oUSE Mooeldawyv oude YAaukwridt Kovpn,

AN’ €xov WG o@LY MPWTWV armyBeto “IAog 1dE
kai Mpiapog kai Aaog Ae€avdpou évek’ amg,

¢ vékevae Bedg, 6Te ol Héaov avAOV ikovTo,

mv &' iyna’ 1) ol Tope LaxAooUVNV ANEYELVV.

Homer, lliad 24.25

© Can we change the outcome of the judgment
given by the centrality measure?
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2 Complex Networks and Centrality

And this was pleasing to all the others, but never to Hera

nor to Poseidon, nor to the flashing-eyed maiden,

but they remained hostile to sacred llios as in the beginning,

and to Priam and to his people, because of Alexander’s folly,

he who insulted the goddesses when they came to his inner courtyard
and praised her who provided his grievous lust.

Homer, lliad 24.25 N

© Can we change the outcome of the judgment
given by the centrality measure?

® We want to find a small perturbation A of the
matrix A that transforms @ and 7 into two
vectors of our choice.
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Reformulation as an optimization problem
3 Enforcing Katz Centrality

We can formulate the problem we want to solve as:

min  J(A) = B||A[F + (1 — B)||A[4,
i )= BIAR+ (Bl
P © st (I—a(A+A)~11 =g, 0<pB <1,

A+A >0,

8l the objective function weighs between the magnitude of the perturbation (|| - ||2)
and promoting the sparsity of the solution (|| - [|1),
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Reformulation as an optimization problem
3 Enforcing Katz Centrality

We can formulate the problem we want to solve as:

. _ 2 —
min J(A) = Bl Al + (1= B) Al

Katz . N
Pald o st (I-a(A+A) ™1 =, 0<B<1.
A+A>0,

8l the objective function weighs between the magnitude of the perturbation (|| - ||2)
and promoting the sparsity of the solution (|| - [|1),

@ the first constraint requires that the perturbed network has the desired centrality o,
> the second constraint ensures that the network weights still make sense,

& we can have requirements on the sparsity pattern of A, e.g., we can require that it
has a pattern contained in the sparsity pattern of A: S(A).
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Does this problem have a solution?
3 Enforcing Katz Centrality

Proposition (Cipolla, D., Meini)
Given gt > 1, A > 0 such that A1 > 0, and « > 0 such that p(A) < 1/a, then the set of
matrices A € S(A) such that (I — «(A+ A))g —1=0and A+ A > 0is non-empty.
Moreover, for any such matrix A we have p(A + A) < 1/a.

v In optimization parlance this tells us that the constraints are feasible.
@ If Ais nonnegative and irreducible the condition A1 > 0 is automatically satisfied.
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3 Enforcing Katz Centrality

Proposition (Cipolla, D., Meini)

Given gt > 1, A > 0 such that A1 > 0, and « > 0 such that p(A) < 1/a, then the set of
matrices A € S(A) such that (I — «(A+ A))g —1=0and A+ A > 0is non-empty.
Moreover, for any such matrix A we have p(A + A) < 1/a.

v In optimization parlance this tells us that the constraints are feasible.
@ If Ais nonnegative and irreducible the condition A1 > 0 is automatically satisfied.
/¥ The same feasibility result holds if A € S(M), forM € R™"and M > 0, M1 > 0.

s \What optimization algorithm do we actually use to solve the problem?
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Formulation as Quadratic Programming (QP) problem
3 Enforcing Katz Centrality

Rewriting the problem requires some formal manipulations

min  J(A) = | vee(A)|3 + (1 - B)| vee(A)]1,
st. (' @Dvec(A) = L(p—1) - Ag,
diag(vec(11T — Mo 117)) vec(A) = 0,
—vec(A) < vec(A).

e First we vectorize everything
P2 vec(+) stacks the column of its matrix argument,
# ®is the Kronecker product and vec(AXB) = (BT @ A) vec(X),
A ois the Hadamard product.
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Formulation as Quadratic Programming (QP) problem
3 Enforcing Katz Centrality

Rewriting the problem requires some formal manipulations

min  J(x) = B||Pyx|3 + (1 — B)[|Pyx|1,
xER"PM
st (AT DPhx=L(A—1)— A,

«

—Pyvec(4d) < x.

e First we vectorize everything,

¢ then we restrict the problem to the variables associated to the possibly non-zero
elements of A

& Py € R xn is the projector onto the pattern of M,
& x € R™x is defined as x = Py vec(A).
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Formulation as Quadratic Programming (QP) problem
3 Enforcing Katz Centrality

Rewriting the problem requires some formal manipulations

min  J(X) = |[X — Py vec(A))|3 + 7[[% — Pyvec(4)]1,
M

st. (u'@DPhx=L1(i-1)-An+ (5" © )PLPyvec(A),
x > 0.

e First we vectorize everything,

e then we restrict the problem to the variables associated to the possibly non-zero
elements of A,

e DefineX = x + Py vec(A) and 7 = (1 — ) /5.
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Rewriting the problem requires some formal manipulations
min  J(X) = [|X — Puvec(4))|3 + 7[|x — Puvec(4) |1,
X M

st. (AT@DPLx=1(4—1) - A + (" @ )PPy vec(A),
x > 0.

e First we vectorize everything,
e then we restrict the problem to the variables associated to the possibly non-zero
elements of A,
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Rewriting the problem requires some formal manipulations
min  J(X) = [|X — Puvec(4))|3 + 7[|x — Puvec(4) |1,
X M

st. (AT@DPLx=L(a—1) - Af + (5" @ )PPy vec(A),
x > 0.

e First we vectorize everything,
e then we restrict the problem to the variables associated to the possibly non-zero
elements of A,
e DefineXx = x + Py vec(A) and 7 = (1 — 3)/3, and get rid of the || - ||;-norm by
adding the nonnegative auxiliary variables:
& 07 = max(x — Pyyvec(A),0) and £~ = max(—(X — Py vec(A)),0),
F L7 — 0 =% — Pyvec(A) and ||x — Py vec(A)||, = 17¢" + 1T~
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Formulation as Quadratic Programming (QP) problem
3 Enforcing Katz Centrality

Which finally brings us to the QP problem in standard form:

1
min fxTQx +eTx
x€R"Pu
st. Lx =b,
x>0,
with:
Q = blkdiag(21,0,0), ¢ = (—2Pyvec(A);T1;71),
. (B'enPl, 0 0
—I I —I|’

L. PN
b= (a(u —1)— A+ (" @ I)PL Py vec(A); —PMvec(A)> ,

Xx=(X£"£7) eR¥™u, 7= (1-p)/B
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For the PageRank problem we have a prescribed 7 and we look for a A such that
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13/27



Enforcing PageRank Centrality

4 Enforcing PageRank Centrality

For the PageRank problem we have a prescribed 7 and we look for a A such that
(1 — o (D + diag(A1))" (A + A))T) F=(1-a), ac(01),

A\ This formulation of the problem is not linear in A like the one for Katz centrality!

13/27



Enforcing PageRank Centrality

4 Enforcing PageRank Centrality

For the PageRank problem we have a prescribed 7 and we look for a A such that
(1 — o (D + diag(A1))" (A + A))T) F=(1-a), ac(01),

A\ This formulation of the problem is not linear in A like the one for Katz centrality!
2 We make the simplifying assumption that A1 = 0.
And solve the problem in two steps, first we solve
Jmn BN+ (1 )] oft-diag(A)
st. (I— o(diag(Al) 1A+ A)T) 7 = (1 - a)v, a€(0,1), &)
Al =0
off-diag(A + A) > 0.
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4 Enforcing PageRank Centrality

For the PageRank problem we have a prescribed 7 and we look for a A such that
(1 — o (D + diag(A1))" (A + A))T) F=(1-a), ac(01),

A\ This formulation of the problem is not linear in A like the one for Katz centrality!
2 We make the simplifying assumption that A1 = 0.
And solve the problem in two steps, first we solve
Jmn BN+ (1 )] oft-diag(A)
st. (I— o(diag(Al) 1A+ A)T) 7 = (1 - a)v, a€(0,1), &)
Al =0
off-diag(A + A) > 0.

Then we use the A obtained from (&a) to o compute @ € (0, 1) and a stochastic
P € S(A +I) such that GT# = 7, where G = &P + (1 — @) 1v7.

13/27
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?/A§ Why this complication?

4 Enforcing PageRank Centrality

Proposition (Cipolla, D., Meini) - 8l3

Given A > 0 irreducible, v > 0 such that vI'1 = 1, o € (0,1), ® > 0 such that 771 =1,
then the set of matrices A € S(A + I) such that:

e A1 =0,
o the off-diagonal entries of A + A are nonnegative,
o GT7w =7, where G = aD '(A+ A) + (1 — a)1v’ and D = diag(A1),

is non-empty.

+ We can prove that the optimization problem (8l3) is feasible.

@ The assumptions on the pattern can be slightly generalized to A € S(M + I), and M
any non-negative irreducible matrix such that M1 = Al.

14/27
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4 Enforcing PageRank Centrality

Proposition (Cipolla, D., Meini) - 8o

Given a matrix A satisfying the conditions of Proposition 813, define
0 = min;([D~1(A + A)]is). If 0 > 0, then D~1(A + A) is stochastic. Otherwise, if § < 0,
by setting” = 1 — o, then for any r > 7 we have GTw = 7, where

G=aP+ (1-a)1v,

and " |
G=1--—2 p—
r r—1+a«

(aD™' A+ A) + (r— 1)),

with P stochastic.

v/ We can then obtain a solution to the initial problem under the assumption that we

, (may) need to modify the teleportation parameter.
14/27
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4 Enforcing PageRank Centrality

To understand where the problem lies, let’s look at a small example and look for a feasible
A of the form A = D, (A — D):

01 0 1
A=1|1 0 1|,v=13|1|, a=0.75.
01 0 1

15/27
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4 Enforcing PageRank Centrality

To understand where the problem lies, let’s look at a small example and look for a feasible

A of the form A = D, (A — D):
010 1
A=1[10 1|,v=131|,a=075
010 1

we have to determine a o for which the perturbed matrix has the given 7, equivalently,

0 1 0 1 702 -1
D'A= |12 0 12|, w=1a|2|, I-D'A+IW) =151 6 1
0 1 0 1 -1 2 7

& Foro=a ' D' (I-D'A+1wl)T((1 —a)v— (I— aD'A)T7) + 4D 'w

15/27
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//A\w An example where things go wrong

4 Enforcing PageRank Centrality

To understand where the problem lies, let’s look at a small example and look for a feasible
A of the form A = D, (A — D):

010 702 -1
A=|1 0 1|, 0-D'A+1whH) =151 6 1
010 -1 2 7

We select #7 = 1/3[1,1,1] and get a feasible matrix A for any ~ for (83), but none of
them satisfies A + A > 0, e.g.:

-5 11 0] _ ~-13 35 2
A+A=1|8 —4 8|,G=12u|14 -4 14
0 11 -5 2 35 —13

15/27
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//A\w An example where things go wrong

4 Enforcing PageRank Centrality

To understand where the problem lies, let’s look at a small example and look for a feasible
A of the form A = D, (A — D):

010 7 02 —1
A=|1 0 1|, I-D'A+1whH) =151 6 1
010 -1 2 7

We select #7 = 1/3[1,1, 1] and get a feasible matrix A for any ~ for (8a), but none of
them satisfies A + A > 0, e.g.:

5 11 0] _ ~13 35 2
A+A=1|8 —4 8|,C=1/u|14 -4 14
0 11 -5 2 35 —13

A Ghas eigenvalues 1, —5/8, —13/3, i.e., p(é) > 1 and it has diagonal negative entries.

15/27



Formulation as Quadratic Programming problem
4 Enforcing PageRank Centrality

With steps similar to those of the Katz problem, we rewrite the problem in the QP form:

min leQx +¢'x
XERZ ML~
st. Lx=bh,
x>0, ifieC,
x; freeifi € F

Where we first define
K :Kvec(A) = vec(AT),
F={kic{ki=i+(i—1)n}, : (Purrvec(A)) = Aul,
C=({1,...,mp J\F)U{np, +1,...,3m,, —2n} =CU{np, +1,...,3n,, — 2n},
a =Py, ;diag(vec(11T — I0 117)) vec(A).

16/27



Formulation as Quadratic Programming problem
4 Enforcing PageRank Centrality

With steps similar to those of the Katz problem, we rewrite the problem in the QP form:

min 1XTQX +¢’x
XERSHPA’H’I?% 2
st. Lx=Db,
x>0, ifieC,
x; freeifi e F
Where
((diag(A1)~'7)T @ DKPy; 0
Q = blkdiag(2I,0,0), ¢ = (—2a;71c;;T1c|), L= (1T @ P, 0
_I|C|><an+I I‘C‘
L@ — (1 - a)v) — AT diag(A1)~'7 + ((diag(A1)~'m)T ® )KP}, a
b= (1"® P}, a

16/27
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Interior Point Methods - PS-IPM

5 How do we solve QP problems

We solve the optimization problems via the Proximal Stabilised-Interior Point Method,’:
e [tis well-suited for problems characterised by inherent ill-conditioning of the
problem’s data,
e The Proximal-Stabilization induces a Primal-Dual Regularization, i.e., we solve linear
systems with matrix:

Sys =LQ+O7" +pI)'LT + 61

'Cipolla, S., Gondzio, J. & Zanetti, F. A regularized interior point method for sparse optimal transport on
graphs. European J. Oper. Res.. (2023)
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e |t is well-suited for problems characterised by inherent ill-conditioning of the
problem’s data,
e The Proximal-Stabilization induces a Primal-Dual Regularization, i.e., we solve linear
systems with matrix:

Ss =L(Q+ O+ pI) LT 441

@ O~ lisadiagonal IPM iteration dependent matrix responsible for the identification
of the active-variables,

'Cipolla, S., Gondzio, J. & Zanetti, F. A regularized interior point method for sparse optimal transport on
graphs. European J. Oper. Res.. (2023)
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5 How do we solve QP problems

We solve the optimization problems via the Proximal Stabilised-Interior Point Method,:
e |tis well-suited for problems characterised by inherent ill-conditioning of the
problem’s data,
e The Proximal-Stabilization induces a Primal-Dual Regularization, i.e., we solve linear
systems with matrix:

Sps =LQ+07" +pI) LT + 61

@ |If we don't use the Primal-Dual regularization, i.e., p = § = 0, then the
L(Q+ @*1)LT matrices have diverging condition numbers as we reach convergence.

'Cipolla, S., Gondzio, J. & Zanetti, F. A regularized interior point method for sparse optimal transport on
graphs. European J. Oper. Res.. (2023)
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5 How do we solve QP problems

We solve the optimization problems via the Proximal Stabilised-Interior Point Method,’:

o It is well-suited for problems characterised by inherent ill-conditioning of the
problem’s data,

e The Proximal-Stabilization induces a Primal-Dual Regularization, i.e., we solve linear
systems with matrix:

S5 =L(Q+ O +pI) LT 441

@ We currently solve these linear systems with a direct method: Cholesky.

'Cipolla, S., Gondzio, J. & Zanetti, F. A regularized interior point method for sparse optimal transport on
graphs. European J. Oper. Res.. (2023)
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ﬂk\V A small example with Katz: Sioux Falls road network

6 Numerical Examples

Adjacency

Correction sign

rta=e a5 19

20

25
0 5 10 15 20 25
(Blue) Positive 20 - (Red) Negative 11

- - - KatzxDesired Katz o Obtained Katz—— Error

—15.4
95 110
1.5 E: 10715.6‘
24
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ﬂk\V A larger set of experiments

6 Numerical Examples

We look at two scenarios:
S1: u/7 puts the top 10, 20, 30, 40, 50% of the nodes to their averaged value
inp/m;
S2: u/7 reverts the rank of the top 10% of nodes in p/7r.

On the following test networks:

Name Type n nnz Name Type n nnz
1 EX5 comb. prob. 6545 295680 9 de2010 undir. wtd. 24115 116056
2 PGPgiantcompo  undir. multigr. 10680 48632 10 delaunay_n16  undir. 65536 393150
3 cagelo dir. wtd. 11397 150645 11 fe_gelt2 undir. 11143 65636
4  cagen dir. wtd. 39082 559722 12 gre_1107 dir. wtd. 1107 5664
5 Cs4 undir. 22499 87716 13 nh2010 undir. wtd. 48837 234550
6  ct2010 undir. wtd. 67578 336352 14  uk undir. 4824 13674
7 cti undir. 16840 96464 15  vt2010 undir. wtd. 32580 155598
8 data undir. 2851 30186
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Enforcing Katz in $1

6 Numerical Examples

-0 -10 -10

-12
12 12

Fraction of top nodes averaged Fraction of top nodes averaged Fraction of top nodes averaged Fraction of top nodes averaged Fraction of top nodes averaged

Value in log, ,-scale of the relative objective function J(4)/a). On the columns, we read the
fraction of equalized vertices in increasing order, on the rows, the different test cases.
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Enforcing Katz in $1

6 Numerical Examples

x=10.0 %

£

Q‘b e% Qb( Q‘I/ N

x =20.0 % x =30.0 %

x =40.0 %

1
0.95
0.9
0.85
0.8
0.75
0.7
0.65

N
SN Db( Ng

3

e% %% Q\X QW N

B

1

0.98
0.96
0.94
0.92
0.9

0.88
0.86
0.84
0.82
0.8

N
NN c"‘ N

Number of nonzero entries scaled by the number of nonzero entries of the original adjacency
matrix. On the columns we read the value of the 5 parameter, on the rows, the different test
cases. Each block is obtained for a different percentage of the averaged nodes.
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Enforcing KatzinS2-3 =1

6 Numerical Examples

cond(LLT) Iter T(s)  I2AlF/|ja, + — nnz Chol. K.
1 ] 1.199e+00 5 0.94 1.802e-02 146886 101416 6545 1.00
2] 5.889e+02 15 0.63  1.591e+00 24314 7828 10680 1.00
3 ] 5.673e+00 12 1.09 1.907e-02 9923 7698 11397 1.00
4] 1137e+01 12 378 1.901e-02 33462 31160 39082  1.00
5] 2169eto0 5 0.32  6.483e-02 17526 14068 22499  1.00
6 ] 5.723e+01 24 4.26 3.822e-01 111141 116710 67578 1.00
71 3.447e+00 5 0.36 2.978e-02 8688 5453 16840 1.00
8] 1.037e+01 5 0.12  8.773e-02 2013 1578 2851  1.00
9 ] 4.786e+01 21 1.56 5.465e-01 42497 43350 24115 1.00
10 ] 1.169e+01 6 1.43 1.015e-01 100320 85616 65536 1.00
1] 6.458e+00 5 0.23  1.247e-01 7251 6783 11143 100
12 ] 7.461e+00 10 0.07 9.505e-02 991 2714 1107 1.00
13] 8.208e+01 23 2.95  4.453e-01 89297 92063 48837 1.00
14] 5.676e+t00 6 0.08 4.968e-02 1002 669 4824 1.00
15 ] 8.338e+01 21 1.91 5.337e-01 46689 50026 32580 1.00




Enforcing Katzin S2- (1 — 3)/6 = 100

6 Numerical Examples

cond(LL") Iter T(s) AN/ 4l + — nnz Chol. Kr
1]  1.512e+02 22 15.23 2.485e+01 26476 18341 597905  1.00
2] 1.838e+03 24 2.84 3.576e+02 2994 4411 107944 1.00
3]  9.129e+01 17 5.45 2.678e+00 1330 2041 312687 1.00
4] 1176e+02 20 28.98 5.288e+00 3961 7646 1158526  1.00
5] 1.522e+01 18 372 2.588e+01 10566 8091 197931  1.00
6] 2.242e+02 32 23.96  1.251e+07 84844 86183 740282  1.00
71  2.212e+01 17 3.88 1.288e+01 7671 4061 209768 1.00
8] 5.358e+01 14 1.05 2.125e+01 743 637 63223 1.00
9] 1.884e+02 31 8.02 1.244e+07 35519 36245 256227 1.00
10] 8.551e+01 18 17.32 1.073e+02 25598 23428 851836  1.00
1]  4.505e+01 17 2.79 4.766e+01 3149 2935 142415 1.00
12]  4.78e+01 15 0.26 2.683e+00 116 167 12435 1.00
13] 3.151e+02 33 16.85  1.894e+07 60963 61177 517937 1.00
14] 1.896e+01 16 0.65 6.828e+00 799 541 32172 100
15] 3.026e+02 29 9.28 2.274e+07 25824 27907 343776  1.00
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PageRank and the Target Stationary Distribution Problem

6 Numerical Examples

For the PageRank problem there exists an alternative procedure®that finds

min ||Al;
AGRHXH

st. Al,=0,,
#TA=#x"(I-0),
A+G>0,
Aijj=0 for(i,j) ¢ Q.

2Gillis, N. & Van Dooren, P. Assigning Stationary Distributions to Sparse Stochastic Matrices. SIAM Journal
On Matrix Analysis And Applications. 45, 2184-2210 (2024)
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PageRank and the Target Stationary Distribution Problem

6 Numerical Examples

For the PageRank problem there exists an alternative procedure? which we can apply to
e G=a(D AT+ (1 - a)vl],
e to then try and find from the obtained A a perturbation on A.

2Gillis, N. & Van Dooren, P. Assigning Stationary Distributions to Sparse Stochastic Matrices. SIAM Journal
On Matrix Analysis And Applications. 45, 2184-2210 (2024)
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PageRank and the Target Stationary Distribution Problem

6 Numerical Examples

For the PageRank problem there exists an alternative procedure? which we can apply to
e G=aD AT+ (1—-a)vl?,
e to then try and find from the obtained A a perturbation on A.

@ Our approach directly computes the perturbation for the adjacency matrix of the
graph A.

2Gillis, N. & Van Dooren, P. Assigning Stationary Distributions to Sparse Stochastic Matrices. SIAM Journal
On Matrix Analysis And Applications. 45, 2184-2210 (2024)
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Comparison

6 Numerical Examples

TDSP (Dense)

— |PM
= == GUROBI

TDSP Pattern of A + |
= A= TDSP (Dense Matrix)

TDSP Pattern of A + |

0 10 20 30 0 10 20 30 0 10 20 30
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Comparison

6 Numerical Examples

B
S s 32 8 & =
&4 & o o Y
g & 4 © § 3
:|:|ﬂg
) o 4 2
e =224

nz =35

X If we recover the perturbation of A from the TSDP method we fail on the nonnegative requirement!

@ The small increase in the perturbation norm is repaid by the preservation of the solution properties.
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Conclusions

7 Conclusions

v/ Proved the existence of network modifications to obtain a given centrality index.

v/ Proposed a reliable algorithmic framework for computing such modifications.

What do we want to do in the future?
Can we enforce walk-based centralities?, e.g., f(A + A)1 = t?
Can we control centralities of dynamical networks?
Finding iterative strategies for linear systems arising in IPMs.
Where to find details and codes:

[ ] Cipolla, S., D.,F. & Meini, B. Enforcing Katz and PageRank Centrality Measures in Complex Networks.
(2024), arXiv:2409.02524.

) Code available at: Cirdans-Home/enforce-katz-and-pagerank

3Massei, S. & Tudisco, F. Optimizing network robustness via Krylov subspaces. ESAIM M2AN. 58, 131-155 (2024).
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https://arxiv.org/abs/2409.02524
https://github.com/Cirdans-Home/enforce-katz-and-pagerank

NV

AN,

Enforcing Katz and PageRank Centrality
Measures in Complex Networks thank you

for listening!
Any questions?
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