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Complex Networks and what we want to do with them
ŵ Complex Networks and Centrality

A complex network is a graph with
non-trivial topological features, neither a
structured graph nor a completely random

graph.

We are interested in tasks in exploratory
data analysis, that is analyzing the data to
summarize their main characteristics:

Divide the nodes into groups that are in
the same community (clustering),
Find the “most relevant” nodes in the
network (centrality),
Find the “most relevant” edge in the
network (edge centrality)
Individuation of motifs, computation of
fluxes, maximum cuts, etc.
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Notation
ŵ Complex Networks and Centrality

Network
A network G = (V,E) is defined as a pair of sets: a set V = {1, 2, . . . , n} of nodes and a
set E ⊂ V× V of edges between them.
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Notation
ŵ Complex Networks and Centrality

Network
A network G = (V,E) is defined as a pair of sets: a set V = {1, 2, . . . , n} of nodes and a
set E ⊂ V× V of edges between them.

Directed/Undirected
If ∀ (i, j) ∈ E then (j, i) ∈ E the network is
said to be undirected is directed otherwise.

Directed Undirected Loop
An edge from a node to itself is called a loop.
Ÿ/ŵź
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Network
A network G = (V,E) is defined as a pair of sets: a set V = {1, 2, . . . , n} of nodes and a
set E ⊂ V× V of edges between them.
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Adjacency Matrix
We represent a Network via its adjacency
matrix A = (aij) ∈ Rn×n, entrywise defined
as

aij =

{
wij if (i, j) ∈ E

0 otherwise

where wij > 0 is the weight of edge (i, j).
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Degree Matrix
We call degree matrix the diagonal matrix

D = diag(A1),

where 1 = (1, 1, . . . , 1)T.
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Two centrality measures
ŵ Complex Networks and Centrality

Given α > 0 such that 0 < αρ(A) < 1, the Katz
centrality of node vi is the ith entry of the vector
µ = (I− αA)−11.
• A ≥ 0 ⇒ µ ≥ 1.

Katz, L. A new status index derived from sociometric analysis. Psychometrika. ŴŻ, Ŷż - ŷŶ (ŴżŸŶ)
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Two centrality measures
ŵ Complex Networks and Centrality

Given α ∈ (0, 1) a teletrasportation parameter, and
given v > 0 a personalization vector such that
vT1 = 1, the PageRank centrality of node vi is the ith
entry of the stationary vector π of the stochastic
matrix GT, where G = α(D−1A)T + (1− α)v1T.
• Gπ = π, πT1 = 1,

• (I− α(D−1A)T)π = (1− α)v.

Page , L. & Brin, S. The anatomy of a large-scale hypertextual Web search engine. Computer Networks.
Ŷų, Ŵųź - ŴŴź (ŴżżŻ)

Gleich, D. PageRank beyond the web. SIAM Rev.. Ÿź, ŶŵŴ-ŶŹŶ (ŵųŴŸ)
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To the centralest
ŵ Complex Networks and Centrality

ἐνθ’ ἄλλοις μὲν πᾶσιν ἔην δαίμων, οὐδέ ποθ’ Ἥρη
οὐδὲ Ποσειδάων οὐδὲ γλαυκώπιδι Κούρη,
ἀλλ’ ἔχον ὡς σφιν πρώτων ἀπήχθετο Ἴλιος ἠδὲ
καὶ Πρίαμος καὶ λαὸς Ἀλεξάνδρου ἕνεκ’ ἄτης,
ὃς νέκενσε θεὰς, ὅτε οἱ μέσον αὐλὸν ἵκοντο,
τὴν δ’ ἤνησ’ ἢ οἱ πόρε μαχλοσύνην ἀλεγεινήν.

Homer, Iliad ŵŷ.ŵŸ

Can we change the outcome of the judgment
given by the centrality measure?

We want to find a small perturbation∆ of the
matrix A that transforms µ and π into two
vectors of our choice.
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To the centralest
ŵ Complex Networks and Centrality

And this was pleasing to all the others, but never to Hera
nor to Poseidon, nor to the flashing-eyed maiden,
but they remained hostile to sacred Ilios as in the beginning,
and to Priam and to his people, because of Alexander’s folly,
he who insulted the goddesses when they came to his inner courtyard
and praised her who provided his grievous lust.

Homer, Iliad ŵŷ.ŵŸ

Can we change the outcome of the judgment
given by the centrality measure?
We want to find a small perturbation∆ of the
matrix A that transforms µ and π into two
vectors of our choice.
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Reformulation as an optimization problem
Ŷ Enforcing Katz Centrality

We can formulate the problem we want to solve as:

PKatz
α,β :

min
∆∈S(A)

J(∆) = β∥∆∥2F + (1− β)∥∆∥1,

s.t. (I− α(A+∆))−11 = µ̂,
A+∆ ≥ 0,

0 < β ≤ 1.

the objective function weighs between themagnitude of the perturbation (∥ · ∥2F)
and promoting the sparsity of the solution (∥ · ∥1),

the first constraint requires that the perturbed network has the desired centrality µ̂,
the second constraint ensures that the network weights still make sense,
we can have requirements on the sparsity pattern of∆, e.g., we can require that it
has a pattern contained in the sparsity pattern of A: S(A).
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Does this problem have a solution?
Ŷ Enforcing Katz Centrality

Proposition (Cipolla, D., Meini)
Given µ̂ ≥ 1, A ≥ 0 such that A1 > 0, and α > 0 such that ρ(A) < 1/α, then the set of
matrices∆ ∈ S(A) such that (I− α(A+∆))µ̂− 1 = 0 and A+∆ ≥ 0 is non-empty.
Moreover, for any such matrix∆ we have ρ(A+∆) < 1/α.

In optimization parlance this tells us that the constraints are feasible.
If A is nonnegative and irreducible the condition A1 > 0 is automatically satisfied.

The same feasibility result holds if∆ ∈ S(M), forM ∈ Rn×n andM ≥ 0,M1 > 0.

What optimization algorithm do we actually use to solve the problem?

Ŵų/ŵź



Does this problem have a solution?
Ŷ Enforcing Katz Centrality

Proposition (Cipolla, D., Meini)
Given µ̂ ≥ 1, A ≥ 0 such that A1 > 0, and α > 0 such that ρ(A) < 1/α, then the set of
matrices∆ ∈ S(A) such that (I− α(A+∆))µ̂− 1 = 0 and A+∆ ≥ 0 is non-empty.
Moreover, for any such matrix∆ we have ρ(A+∆) < 1/α.

In optimization parlance this tells us that the constraints are feasible.
If A is nonnegative and irreducible the condition A1 > 0 is automatically satisfied.
The same feasibility result holds if∆ ∈ S(M), forM ∈ Rn×n andM ≥ 0,M1 > 0.

What optimization algorithm do we actually use to solve the problem?

Ŵų/ŵź



Does this problem have a solution?
Ŷ Enforcing Katz Centrality

Proposition (Cipolla, D., Meini)
Given µ̂ ≥ 1, A ≥ 0 such that A1 > 0, and α > 0 such that ρ(A) < 1/α, then the set of
matrices∆ ∈ S(A) such that (I− α(A+∆))µ̂− 1 = 0 and A+∆ ≥ 0 is non-empty.
Moreover, for any such matrix∆ we have ρ(A+∆) < 1/α.

In optimization parlance this tells us that the constraints are feasible.
If A is nonnegative and irreducible the condition A1 > 0 is automatically satisfied.
The same feasibility result holds if∆ ∈ S(M), forM ∈ Rn×n andM ≥ 0,M1 > 0.

What optimization algorithm do we actually use to solve the problem?

Ŵų/ŵź



Formulation as Quadratic Programming (QP) problem
Ŷ Enforcing Katz Centrality

Rewriting the problem requires some formal manipulations

• First we vectorize everything
• then we restrict the problem to the variables associated to the possibly non-zero
elements of∆

• Define x̄ = x+ PM vec(A) and τ = (1− β)/β
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Formulation as Quadratic Programming (QP) problem
Ŷ Enforcing Katz Centrality

Rewriting the problem requires some formal manipulations

min J(∆) = β∥ vec(∆)∥22 + (1− β)∥ vec(∆)∥1,
s.t. (µ̂T ⊗ I) vec(∆) = 1

α(µ̂− 1)− Aµ̂,
diag(vec(11T −M ◦ 11T)) vec(∆) = 0,
− vec(A) ≤ vec(∆).

• First we vectorize everything
vec(·) stacks the column of its matrix argument,
⊗ is the Kronecker product and vec(AXB) = (BT ⊗ A) vec(X),
◦ is the Hadamard product.

• then we restrict the problem to the variables associated to the possibly non-zero
elements of∆

• Define x̄ = x+ PM vec(A) and τ = (1− β)/β
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Formulation as Quadratic Programming (QP) problem
Ŷ Enforcing Katz Centrality

Rewriting the problem requires some formal manipulations

min
x∈RnPM

J(x) = β∥PTMx∥22 + (1− β)∥PTMx∥1,

s.t. (µ̂T ⊗ I)PTMx = 1
α(µ̂− 1)− Aµ̂,

−PM vec(A) ≤ x.

• First we vectorize everything,
• then we restrict the problem to the variables associated to the possibly non-zero
elements of∆

PM ∈ RnPM×n2 is the projector onto the pattern ofM,
x ∈ RnPM is defined as x = PM vec(∆).

• Define x̄ = x+ PM vec(A) and τ = (1− β)/β
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adding the nonnegative auxiliary variables:
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Formulation as Quadratic Programming (QP) problem
Ŷ Enforcing Katz Centrality

Which finally brings us to the QP problem in standard form:

min
x∈R3nPM

1

2
xTQx+ cTx

s.t. Lx = b,
x ≥ 0,

with:
Q = blkdiag(2I, 0, 0), c = (−2PM vec(A); τ1; τ1),

L =

[
(µ̂T ⊗ I)PTM 0 0

−I I −I

]
,

b =

(
1

α
(µ̂− 1)− Aµ̂+ (µ̂T ⊗ I)PTMPM vec(A);−PM vec(A)

)
,

x = (x̄; ℓ+; ℓ−) ∈ R3npM , τ = (1− β)/β.
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Enforcing PageRank Centrality
ŷ Enforcing PageRank Centrality

For the PageRank problem we have a prescribed π̂ and we look for a∆ such that(
I− α

(
(D+ diag(∆1))−1(A+∆)

)T)
π̂ = (1− α)v, α ∈ (0, 1),

This formulation of the problem is not linear in∆ like the one for Katz centrality!
We make the simplifying assumption that∆1 = 0.

And solve the problem in two steps, first we solve
min

∆∈S(A+I)
β∥∆∥2F + (1− β)∥ off-diag(∆)∥1

s.t.
(
I− α(diag(A1)−1(A+∆))T

)
π̂ = (1− α)v, α ∈ (0, 1),

∆1 = 0
off-diag(A+∆) ≥ 0.

( )

Then we use the∆ obtained from ( ) to compute α̂ ∈ (0, 1) and a stochastic
P̂ ∈ S(A+ I) such that ĜTπ̂ = π̂, where Ĝ = α̂P̂+ (1− α̂)1vT.
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ŴŶ/ŵź



Enforcing PageRank Centrality
ŷ Enforcing PageRank Centrality

For the PageRank problem we have a prescribed π̂ and we look for a∆ such that(
I− α

(
(D+ diag(∆1))−1(A+∆)

)T)
π̂ = (1− α)v, α ∈ (0, 1),

This formulation of the problem is not linear in∆ like the one for Katz centrality!
We make the simplifying assumption that∆1 = 0.

And solve the problem in two steps, first we solve
min

∆∈S(A+I)
β∥∆∥2F + (1− β)∥ off-diag(∆)∥1

s.t.
(
I− α(diag(A1)−1(A+∆))T

)
π̂ = (1− α)v, α ∈ (0, 1),

∆1 = 0
off-diag(A+∆) ≥ 0.

( )

Then we use the∆ obtained from ( ) to compute α̂ ∈ (0, 1) and a stochastic
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Why this complication?
ŷ Enforcing PageRank Centrality

Proposition (Cipolla, D., Meini) -
Given A ≥ 0 irreducible, v ≥ 0 such that vT1 = 1, α ∈ (0, 1), π̂ ≥ 0 such that π̂T1 = 1,
then the set of matrices∆ ∈ S(A+ I) such that:
• ∆1 = 0,
• the off-diagonal entries of A+∆ are nonnegative,
• G̃Tπ̂ = π̂, where G̃ = αD−1(A+∆) + (1− α)1vT and D = diag(A1),

is non-empty.

We can prove that the optimization problem ( ) is feasible.
The assumptions on the pattern can be slightly generalized to∆ ∈ S(M+ I), andM
any non-negative irreducible matrix such thatM1 = A1.
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Why this complication?
ŷ Enforcing PageRank Centrality

Proposition (Cipolla, D., Meini) -
Given a matrix∆ satisfying the conditions of Proposition , define
θ = mini([D−1(A+∆)]i,i). If θ ≥ 0, then D−1(A+∆) is stochastic. Otherwise, if θ < 0,
by setting r̂ = 1− αθ, then for any r ≥ r̂ we have ĜTπ̂ = π̂, where

Ĝ = α̂P̂+ (1− α̂)1vT,

and
α̂ = 1− 1− α

r
, P̂ =

1

r− 1 + α

(
αD−1(A+∆) + (r− 1)I

)
,

with P̂ stochastic.

We can then obtain a solution to the initial problem under the assumption that we
(may) need to modify the teleportation parameter.
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An example where things go wrong
ŷ Enforcing PageRank Centrality

To understand where the problem lies, let’s look at a small example and look for a feasible
∆ of the form∆ = Dσ(A− D):

A =

0 1 0
1 0 1
0 1 0

 , v = 1/3

11
1

 , α = 0.75.
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To understand where the problem lies, let’s look at a small example and look for a feasible
∆ of the form∆ = Dσ(A− D):

A =

0 1 0
1 0 1
0 1 0

 , v = 1/3

11
1

 , α = 0.75.

we have to determine a σ for which the perturbed matrix has the given π̂, equivalently,

D−1A =

 0 1 0
1/2 0 1/2
0 1 0

 , w = 1/4

12
1

 , (I− D−1A+ 1wT)−1 = 1/8

 7 2 −1
1 6 1
−1 2 7

 .

For σ = α−1D−1
π̂ (I− D−1A+ 1wT)−T

(
(1− α)v− (I− αD−1A)Tπ̂

)
+ γD−1

π̂ w.
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An example where things go wrong
ŷ Enforcing PageRank Centrality

To understand where the problem lies, let’s look at a small example and look for a feasible
∆ of the form∆ = Dσ(A− D):

A =

0 1 0
1 0 1
0 1 0

 , (I− D−1A+ 1wT)−1 = 1/8

 7 2 −1
1 6 1
−1 2 7

 .

We select π̂T = 1/3 [1, 1, 1] and get a feasible matrix∆ for any γ for ( ), but none of
them satisfies A+∆ > 0, e.g.:

A+∆ = 1/6

−5 11 0
8 −4 8
0 11 −5

 , G̃ = 1/24

−13 35 2
14 −4 14
2 35 −13


ŴŸ/ŵź



An example where things go wrong
ŷ Enforcing PageRank Centrality

To understand where the problem lies, let’s look at a small example and look for a feasible
∆ of the form∆ = Dσ(A− D):

A =

0 1 0
1 0 1
0 1 0

 , (I− D−1A+ 1wT)−1 = 1/8

 7 2 −1
1 6 1
−1 2 7

 .

We select π̂T = 1/3 [1, 1, 1] and get a feasible matrix∆ for any γ for ( ), but none of
them satisfies A+∆ > 0, e.g.:

A+∆ = 1/6

−5 11 0
8 −4 8
0 11 −5

 , G̃ = 1/24

−13 35 2
14 −4 14
2 35 −13


G̃ has eigenvalues 1,−5/8,−13/8, i.e., ρ(G̃) > 1 and it has diagonal negative entries.
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Formulation as Quadratic Programming problem
ŷ Enforcing PageRank Centrality

With steps similar to those of the Katz problem, we rewrite the problem in the QP form:

min
x∈R3npM+I−2n

1

2
xTQx+ cTx

s.t. Lx = b,
xi ≥ 0, if i ∈ Ĉ,
xi free if i ∈ F̂

Where we first define

K :K vec(∆) = vec(∆T),

F̂ ={ki ∈ {ki = i+ (i− 1)n}ni=1 : (PM+I vec(∆))k̄i = ∆ii},

Ĉ =
(
{1, . . . , npM+I} \ F

)
∪ {np∆ + 1, . . . , 3np∆ − 2n} = C ∪ {np∆ + 1, . . . , 3np∆ − 2n},

a =PM+I diag(vec(11T − I ◦ 11T)) vec(A).
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Formulation as Quadratic Programming problem
ŷ Enforcing PageRank Centrality

With steps similar to those of the Katz problem, we rewrite the problem in the QP form:

min
x∈R3npM+I−2n

1

2
xTQx+ cTx

s.t. Lx = b,
xi ≥ 0, if i ∈ Ĉ,
xi free if i ∈ F̂

Where

Q = blkdiag(2I, 0, 0), c = (−2a; τ1|C|; τ1|C|), L =

((diag(A1)−1π̂)T ⊗ I)KPTM+I 0 0
(1T ⊗ I)PTM+I 0 0
−I|C|×nPM+I

I|C| −I|C|

 ,

b =

 1
α (π̂ − (1− α)v)− AT diag(A1)−1π̂ + ((diag(A1)−1π̂)T ⊗ I)KPTM+Ia

(1T ⊗ I)PTM+Ia
−aC

 .
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Interior Point Methods – PS-IPM
Ÿ How do we solve QP problems

We solve the optimization problems via the Proximal Stabilised-Interior PointMethod,Ŵ:
• It is well-suited for problems characterised by inherent ill-conditioning of the
problem’s data,

• The Proximal-Stabilization induces a Primal-Dual Regularization, i.e., we solve linear
systems with matrix:

Sρ,δ = L(Q+Θ−1 + ρI)−1LT + δI

ŴCipolla, S., Gondzio, J. & Zanetti, F. A regularized interior point method for sparse optimal transport on
graphs. European J. Oper. Res.. (ŵųŵŶ)

ŴŻ/ŵź



Interior Point Methods – PS-IPM
Ÿ How do we solve QP problems

We solve the optimization problems via the Proximal Stabilised-Interior PointMethod,Ŵ:
• It is well-suited for problems characterised by inherent ill-conditioning of the
problem’s data,

• The Proximal-Stabilization induces a Primal-Dual Regularization, i.e., we solve linear
systems with matrix:

Sρ,δ = L(Q+Θ−1 + ρI)−1LT + δI

Θ−1 is a diagonal IPM iteration dependent matrix responsible for the identification
of the active-variables,

ŴCipolla, S., Gondzio, J. & Zanetti, F. A regularized interior point method for sparse optimal transport on
graphs. European J. Oper. Res.. (ŵųŵŶ)
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Interior Point Methods – PS-IPM
Ÿ How do we solve QP problems

We solve the optimization problems via the Proximal Stabilised-Interior PointMethod,Ŵ:
• It is well-suited for problems characterised by inherent ill-conditioning of the
problem’s data,

• The Proximal-Stabilization induces a Primal-Dual Regularization, i.e., we solve linear
systems with matrix:

Sρ,δ = L(Q+Θ−1 + ρI)−1LT + δI

If we don’t use the Primal-Dual regularization, i.e., ρ = δ = 0, then the
L(Q+Θ−1)LT matrices have diverging condition numbers as we reach convergence.

ŴCipolla, S., Gondzio, J. & Zanetti, F. A regularized interior point method for sparse optimal transport on
graphs. European J. Oper. Res.. (ŵųŵŶ)
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Interior Point Methods – PS-IPM
Ÿ How do we solve QP problems

We solve the optimization problems via the Proximal Stabilised-Interior PointMethod,Ŵ:
• It is well-suited for problems characterised by inherent ill-conditioning of the
problem’s data,

• The Proximal-Stabilization induces a Primal-Dual Regularization, i.e., we solve linear
systems with matrix:

Sρ,δ = L(Q+Θ−1 + ρI)−1LT + δI

We currently solve these linear systems with a direct method: Cholesky.

ŴCipolla, S., Gondzio, J. & Zanetti, F. A regularized interior point method for sparse optimal transport on
graphs. European J. Oper. Res.. (ŵųŵŶ)
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A small example with Katz: Sioux Falls road network
Ź Numerical Examples
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A larger set of experiments
Ź Numerical Examples

We look at two scenarios:
SŴ: µ̂/π̂ puts the top 10, 20, 30, 40, 50% of the nodes to their averaged value

in µ/π;
Sŵ: µ̂/π̂ reverts the rank of the top 10% of nodes in µ/π.

On the following test networks:

Name Type n nnz Name Type n nnz

Ŵ EXŸ comb. prob. ŹŸŷŸ ŵżŸŹŻų ż deŵųŴų undir. wtd. ŵŷŴŴŸ ŴŴŹųŸŹ
ŵ PGPgiantcompo undir. multigr. ŴųŹŻų ŷŻŹŶŵ Ŵų delaunay_nŴŹ undir. ŹŸŸŶŹ ŶżŶŴŸų
Ŷ cageŴų dir. wtd. ŴŴŶżź ŴŸųŹŷŸ ŴŴ fe_ŷeltŵ undir. ŴŴŴŷŶ ŹŸŹŶŹ
ŷ cageŴŴ dir. wtd. ŶżųŻŵ ŸŸżźŵŵ Ŵŵ gre_ŴŴųź dir. wtd. ŴŴųź ŸŹŹŷ
Ÿ csŷ undir. ŵŵŷżż ŻźźŴŹ ŴŶ nhŵųŴų undir. wtd. ŷŻŻŶź ŵŶŷŸŸų
Ź ctŵųŴų undir. wtd. ŹźŸźŻ ŶŶŹŶŸŵ Ŵŷ uk undir. ŷŻŵŷ ŴŶŹźŷ
ź cti undir. ŴŹŻŷų żŹŷŹŷ ŴŸ vtŵųŴų undir. wtd. ŶŵŸŻų ŴŸŸŸżŻ
Ż data undir. ŵŻŸŴ ŶųŴŻŹ
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Enforcing Katz in SŴ
Ź Numerical Examples
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Value in log10-scale of the relative objective function J(∆)/J(A). On the columns, we read the
fraction of equalized vertices in increasing order, on the rows, the different test cases.
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Enforcing Katz in SŴ
Ź Numerical Examples
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Number of nonzero entries scaled by the number of nonzero entries of the original adjacency
matrix. On the columns we read the value of the β parameter, on the rows, the different test
cases. Each block is obtained for a different percentage of the averaged nodes.
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Enforcing Katz in Sŵ - β = 1
Ź Numerical Examples

cond(LLT) Iter T (s) ∥∆∥F/∥A∥F + − nnz Chol. κτ

Ŵ ] Ŵ.Ŵżże+ųų Ÿ ų.żŷ Ŵ.Żųŵe-ųŵ ŴŷŹŻŻŹ ŴųŴŷŴŹ ŹŸŷŸ Ŵ.ųų
ŵ ] Ÿ.ŻŻże+ųŵ ŴŸ ų.ŹŶ Ŵ.ŸżŴe+ųų ŵŷŶŴŷ źŻŵŻ ŴųŹŻų Ŵ.ųų
Ŷ ] Ÿ.ŹźŶe+ųų Ŵŵ Ŵ.ųż Ŵ.żųźe-ųŵ żżŵŶ źŹżŻ ŴŴŶżź Ŵ.ųų
ŷ ] Ŵ.ŴŶźe+ųŴ Ŵŵ Ŷ.źŻ Ŵ.żųŴe-ųŵ ŶŶŷŹŵ ŶŴŴŹų ŶżųŻŵ Ŵ.ųų
Ÿ ] ŵ.ŴŹże+ųų Ÿ ų.Ŷŵ Ź.ŷŻŶe-ųŵ ŴźŸŵŹ ŴŷųŹŻ ŵŵŷżż Ŵ.ųų
Ź ] Ÿ.źŵŶe+ųŴ ŵŷ ŷ.ŵŹ Ŷ.Żŵŵe-ųŴ ŴŴŴŴŷŴ ŴŴŹźŴų ŹźŸźŻ Ŵ.ųų
ź ] Ŷ.ŷŷźe+ųų Ÿ ų.ŶŹ ŵ.żźŻe-ųŵ ŻŹŻŻ ŸŷŸŶ ŴŹŻŷų Ŵ.ųų
Ż ] Ŵ.ųŶźe+ųŴ Ÿ ų.Ŵŵ Ż.źźŶe-ųŵ ŵųŴŶ ŴŸźŻ ŵŻŸŴ Ŵ.ųų
ż ] ŷ.źŻŹe+ųŴ ŵŴ Ŵ.ŸŹ Ÿ.ŷŹŸe-ųŴ ŷŵŷżź ŷŶŶŸų ŵŷŴŴŸ Ŵ.ųų
Ŵų ] Ŵ.ŴŹże+ųŴ Ź Ŵ.ŷŶ Ŵ.ųŴŸe-ųŴ ŴųųŶŵų ŻŸŹŴŹ ŹŸŸŶŹ Ŵ.ųų
ŴŴ ] Ź.ŴŸŻe+ųų Ÿ ų.ŵŶ Ŵ.ŵŷźe-ųŴ źŵŸŴ ŹźŻŶ ŴŴŴŷŶ Ŵ.ųų
Ŵŵ ] ź.ŷŹŴe+ųų Ŵų ų.ųź ż.ŸųŸe-ųŵ żżŴ ŵźŴŷ ŴŴųź Ŵ.ųų
ŴŶ ] Ż.ŵųŻe+ųŴ ŵŶ ŵ.żŸ ŷ.ŷŸŶe-ųŴ Żżŵżź żŵųŹŶ ŷŻŻŶź Ŵ.ųų
Ŵŷ ] Ÿ.ŹźŹe+ųų Ź ų.ųŻ ŷ.żŹŻe-ųŵ Ŵųųŵ ŹŹż ŷŻŵŷ Ŵ.ųų
ŴŸ ] Ż.ŶŶŻe+ųŴ ŵŴ Ŵ.żŴ Ÿ.ŶŶźe-ųŴ ŷŹŹŻż ŸųųŵŹ ŶŵŸŻų Ŵ.ųų
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Enforcing Katz in Sŵ - (1− β)/β = 100
Ź Numerical Examples

cond(LLT) Iter T (s) ∥∆∥F/∥A∥F + − nnz Chol. κτ

Ŵ ] Ŵ.ŸŴŵe+ųŵ ŵŵ ŴŸ.ŵŶ ŵ.ŷŻŸe+ųŴ ŵŹŷźŹ ŴŻŶŷŴ ŸżźżųŸ Ŵ.ųų
ŵ ] Ŵ.ŻŶŻe+ųŶ ŵŷ ŵ.Żŷ Ŷ.ŸźŹe+ųŵ ŵżżŷ ŷŷŴŴ Ŵųźżŷŷ Ŵ.ųų
Ŷ ] ż.Ŵŵże+ųŴ Ŵź Ÿ.ŷŸ ŵ.ŹźŻe+ųų ŴŶŶų ŵųŷŴ ŶŴŵŹŻź Ŵ.ųų
ŷ ] Ŵ.ŴźŹe+ųŵ ŵų ŵŻ.żŻ Ÿ.ŵŻŻe+ųų ŶżŹŴ źŹŷŹ ŴŴŸŻŸŵŹ Ŵ.ųų
Ÿ ] Ŵ.Ÿŵŵe+ųŴ ŴŻ Ŷ.źŵ ŵ.ŸŻŻe+ųŴ ŴųŸŹŹ ŻųżŴ ŴżźżŶŴ Ŵ.ųų
Ź ] ŵ.ŵŷŵe+ųŵ Ŷŵ ŵŶ.żŹ Ŵ.ŵŸŴe+ųź ŻŷŻŷŷ ŻŹŴŻŶ źŷųŵŻŵ Ŵ.ųų
ź ] ŵ.ŵŴŵe+ųŴ Ŵź Ŷ.ŻŻ Ŵ.ŵŻŻe+ųŴ źŹźŴ ŷųŹŴ ŵųżźŹŻ Ŵ.ųų
Ż ] Ÿ.ŶŸŻe+ųŴ Ŵŷ Ŵ.ųŸ ŵ.ŴŵŸe+ųŴ źŷŶ ŹŶź ŹŶŵŵŶ Ŵ.ųų
ż ] Ŵ.ŻŻŷe+ųŵ ŶŴ Ż.ųŵ Ŵ.ŵŷŷe+ųź ŶŸŸŴż ŶŹŵŷŸ ŵŸŹŵŵź Ŵ.ųų
Ŵų ] Ż.ŸŸŴe+ųŴ ŴŻ Ŵź.Ŷŵ Ŵ.ųźŶe+ųŵ ŵŸŸżŻ ŵŶŷŵŻ ŻŸŴŻŶŹ Ŵ.ųų
ŴŴ ] ŷ.ŸųŸe+ųŴ Ŵź ŵ.źż ŷ.źŹŹe+ųŴ ŶŴŷż ŵżŶŸ ŴŷŵŷŴŸ Ŵ.ųų
Ŵŵ ] ŷ.ŴźŻe+ųŴ ŴŸ ų.ŵŹ ŵ.ŹŻŶe+ųų ŴŴŹ ŴŹź ŴŵŷŶŸ Ŵ.ųų
ŴŶ ] Ŷ.ŴŸŴe+ųŵ ŶŶ ŴŹ.ŻŸ Ŵ.Żżŷe+ųź ŹųżŹŶ ŹŴŴźź ŸŴźżŶź Ŵ.ųų
Ŵŷ ] Ŵ.ŻżŹe+ųŴ ŴŹ ų.ŹŸ Ź.ŻŵŻe+ųų źżż ŸŷŴ ŶŵŴźŵ Ŵ.ųų
ŴŸ ] Ŷ.ųŵŹe+ųŵ ŵż ż.ŵŻ ŵ.ŵźŷe+ųź ŵŸŻŵŷ ŵźżųź ŶŷŶźźŹ Ŵ.ųų
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PageRank and the Target Stationary Distribution Problem
Ź Numerical Examples

For the PageRank problem there exists an alternative procedureŵthat finds

min
∆∈Rn×n

∥∆∥1

s.t. ∆1n = 0n,

π̂⊤∆ = π̂⊤(I− G),

∆+ G ≥ 0,

∆i,j = 0 for (i, j) /∈ Ω.

ŵGillis, N. & Van Dooren, P. Assigning Stationary Distributions to Sparse Stochastic Matrices. SIAM Journal
On Matrix Analysis And Applications. ŷŸ, ŵŴŻŷ-ŵŵŴų (ŵųŵŷ)
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PageRank and the Target Stationary Distribution Problem
Ź Numerical Examples

For the PageRank problem there exists an alternative procedureŵ which we can apply to
• G = α(D−1A)T + (1− α)v1T,
• to then try and find from the obtained∆ a perturbation on A.

Our approach directly computes the perturbation for the adjacency matrix of the
graph A.

ŵGillis, N. & Van Dooren, P. Assigning Stationary Distributions to Sparse Stochastic Matrices. SIAM Journal
On Matrix Analysis And Applications. ŷŸ, ŵŴŻŷ-ŵŵŴų (ŵųŵŷ)
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PageRank and the Target Stationary Distribution Problem
Ź Numerical Examples

For the PageRank problem there exists an alternative procedureŵ which we can apply to
• G = α(D−1A)T + (1− α)v1T,
• to then try and find from the obtained∆ a perturbation on A.
Our approach directly computes the perturbation for the adjacency matrix of the
graph A.

ŵGillis, N. & Van Dooren, P. Assigning Stationary Distributions to Sparse Stochastic Matrices. SIAM Journal
On Matrix Analysis And Applications. ŷŸ, ŵŴŻŷ-ŵŵŴų (ŵųŵŷ)
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Comparison
Ź Numerical Examples
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Comparison
Ź Numerical Examples
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If we recover the perturbation of A from the TSDP method we fail on the nonnegative requirement!

The small increase in the perturbation norm is repaid by the preservation of the solution properties.
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Conclusions
ź Conclusions

Proved the existence of network modifications to obtain a given centrality index.
Proposed a reliable algorithmic framework for computing such modifications.

What do we want to do in the future?
Can we enforce walk-based centralitiesŶ, e.g., f(A+∆)1 = t̂?
Can we control centralities of dynamical networks?
Finding iterative strategies for linear systems arising in IPMs.

Where to find details and codes:
Cipolla, S., D.,F. & Meini, B. Enforcing Katz and PageRank Centrality Measures in Complex Networks.
(ŵųŵŷ), arXiv:ŵŷųż.ųŵŸŵŷ.

Code available at: Cirdans-Home/enforce-katz-and-pagerank
ŶMassei, S. & Tudisco, F. Optimizing network robustness via Krylov subspaces. ESAIM MŴAN. ŸŻ, ŴŶŴ-ŴŸŸ (ŵųŵŷ).

ŵŹ/ŵź

https://arxiv.org/abs/2409.02524
https://github.com/Cirdans-Home/enforce-katz-and-pagerank


Enforcing Katz and PageRank Centrality
Measures in Complex Networks Thank you

for listening!
Any questions?

ŵź/ŵź
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